JP2006019059A - Solid electrolyte fuel battery cell, cell stack, and fuel battery - Google Patents

Solid electrolyte fuel battery cell, cell stack, and fuel battery Download PDF

Info

Publication number
JP2006019059A
JP2006019059A JP2004193134A JP2004193134A JP2006019059A JP 2006019059 A JP2006019059 A JP 2006019059A JP 2004193134 A JP2004193134 A JP 2004193134A JP 2004193134 A JP2004193134 A JP 2004193134A JP 2006019059 A JP2006019059 A JP 2006019059A
Authority
JP
Japan
Prior art keywords
fuel
cell
power generation
generation element
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004193134A
Other languages
Japanese (ja)
Other versions
JP4741815B2 (en
Inventor
Shoji Yamashita
祥二 山下
Masahito Nishihara
雅人 西原
Yoshio Matsuzaki
良雄 松崎
Kenjiro Fujita
顕二郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2004193134A priority Critical patent/JP4741815B2/en
Publication of JP2006019059A publication Critical patent/JP2006019059A/en
Application granted granted Critical
Publication of JP4741815B2 publication Critical patent/JP4741815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel battery cell, a cell stack, and a fuel battery, wherein a stable mutual connection to each other of the fuel battery cells is possible, and efficiency and reliability is superior. <P>SOLUTION: On the surface of an insulating support 2 of a pillar shape in which a fuel gas flow passage has been formed in the axial length direction, a fuel electrode, the solid electrolyte, and an air electrode 5 are sequentially laminated to form a plural number of power generation element parts which are installed at a prescribed distance in the axial length direction, then the plurality of power generation element parts are connected in series with an inter-connector 6 to form the fuel cell. The width D of the inter-connector 6 for connection to the other fuel cells in the power generation element part which is nearest to the fuel gas manifold M or in the power generation element part which is farthest from the fuel gas manifold M is formed wider than the width d of the inter-connector 6 installed for the connection between the power generation element parts. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、 内部に燃料の流通部を有する絶縁性の絶縁支持体の表面に発電素子部を設けた固体電解質形の燃料電池セル、セルスタック及び燃料電池に関するものである。   The present invention relates to a solid electrolyte fuel cell, a cell stack, and a fuel cell in which a power generation element portion is provided on the surface of an insulating insulating support having a fuel circulation portion therein.

次世代エネルギーとして、近年、燃料電池が種々提案されている。このような燃料電池には、固体高分子形、リン酸形、溶融炭酸塩形、固体電解質形など、各種のものが知られているが、中でも固体電解質形燃料電池(SOFC;Solid Oxide Fuel Cell)は、作動温度が800〜1000℃と高いものの、発電効率が高く、また排熱利用ができるなどの利点を有しており、その研究開発が推し進められている。   In recent years, various fuel cells have been proposed as next-generation energy. Various types of fuel cells such as a solid polymer type, a phosphoric acid type, a molten carbonate type, and a solid electrolyte type are known. Among them, a solid oxide fuel cell (SOFC) is known. ) Has a high operating temperature of 800 to 1000 ° C., but has advantages such as high power generation efficiency and the ability to use exhaust heat, and its research and development is being promoted.

固体電解質形燃料電池は、燃料電池セルを複数有し、これらの燃料電池セルを互いに電気的に接続してセルスタックとし、このセルスタックを収納容器内に収容したものである。燃料電池セルにおいては、その燃料電池セルに発電素子部をどのように配置するかによって、いわゆる「横縞形」のタイプが知られている。
この横縞形の燃料電池セルは、発電素子部を、セルの軸長方向に沿って複数個配置し、それらを直列に接続したものである。発電素子部は1つあたり0.7Vの起電力しか得られないが、複数直列に接続することで、1セル当たり相当の起電力が得られる。
The solid oxide fuel cell has a plurality of fuel cells, and these fuel cells are electrically connected to each other to form a cell stack, and the cell stack is accommodated in a storage container. In a fuel cell, a so-called “horizontal stripe” type is known depending on how the power generation element portion is arranged in the fuel cell.
In this horizontally striped fuel cell, a plurality of power generating element portions are arranged along the axial length direction of the cells and connected in series. Only one electromotive force of 0.7 V can be obtained for each power generating element section, but by connecting a plurality of power generating elements in series, an equivalent electromotive force can be obtained per cell.

横縞形の燃料電池セルは、多孔質絶縁体である円筒状の絶縁支持体の表面に、発電素子部を軸長方向に所定間隔をおいて複数配置している。それぞれの発電素子部は、燃料極、固体電解質及び空気極を順次積層した層構造となっている。互いに隣り合う発電素子部は、それぞれインターコネクタにより直列に接続されている。すなわち、一方の発電素子部の燃料極と他方の発電素子部の空気極とが、インターコネクタにより接続されている。そして、絶縁支持体の内部にはガス流路が形成されている。   In the horizontally striped fuel cell, a plurality of power generating element portions are arranged at predetermined intervals in the axial direction on the surface of a cylindrical insulating support that is a porous insulator. Each power generating element portion has a layer structure in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially stacked. The power generating element portions adjacent to each other are connected in series by an interconnector. That is, the fuel electrode of one power generation element part and the air electrode of the other power generation element part are connected by the interconnector. A gas flow path is formed inside the insulating support.

前記構造の横縞形の燃料電池セルの発電原理は、次のとおりである。
固体電解質の酸素イオン伝導性は600℃程度から高くなるため、600℃以上の温度域で、空気極に酸素を含むガスを、燃料極に水素を含むガスを各々供給することで、空気極と燃料極間の酸素濃度差が発生する。
空気極から固体電解質を通じて燃料極へ移動した酸素イオンは、燃料極で水素イオンと結合して水となる。このとき、空気極では、下記式(1)の電極反応を生じ、燃料極では、下記式(2)の電極反応を生じる。これにより電子の移動が起こり、発電する。
The power generation principle of the horizontal stripe fuel cell having the above-described structure is as follows.
Since the oxygen ion conductivity of the solid electrolyte increases from about 600 ° C., by supplying a gas containing oxygen to the air electrode and a gas containing hydrogen to the fuel electrode in a temperature range of 600 ° C. or higher, A difference in oxygen concentration occurs between the fuel electrodes.
Oxygen ions that have moved from the air electrode to the fuel electrode through the solid electrolyte are combined with hydrogen ions at the fuel electrode to become water. At this time, an electrode reaction of the following formula (1) occurs at the air electrode, and an electrode reaction of the following formula (2) occurs at the fuel electrode. As a result, electrons move and generate electricity.

空気極: 1/2O2+2e- → O2-(固体電解質) …(1)
燃料極: O2-(固体電解質)+H2 → H2O+2e- …(2)
横縞形の燃料電池セルでは、以上の反応を起こす発電素子部が、絶縁支持体表面に、軸長方向に複数形成され且つ互いに直列に接続されているために、少ないセル数で高い電圧を得られるという利点がある。
特開平10−003932号公報
Air electrode: 1 / 2O 2 + 2e → O 2− (solid electrolyte) (1)
Fuel electrode: O 2− (solid electrolyte) + H 2 → H 2 O + 2e (2)
In the horizontally striped fuel cell, a plurality of power generating element portions that cause the above reaction are formed in the axial direction on the surface of the insulating support and connected in series with each other, so a high voltage can be obtained with a small number of cells. There is an advantage that
JP 10-003932 A

前記横縞形の燃料電池セルを、他の燃料電池セルと接続する場合、セル間接続部材を用いて接続するが、接触面積が狭いと、燃料電池セル間の接続抵抗が増大し、燃料電池から発電電力を効率よく取り出せなくなる。また、接触の安定性も低下し、信頼性の高いセルスタック及び燃料電池が得られなくなる。
そこで本発明は、燃料電池セル同士の安定な接続が可能で、効率、信頼性に優れた固体電解質形の燃料電池セル、セルスタック及び燃料電池を提供することを目的とする。
When the horizontal stripe fuel cell is connected to another fuel cell, it is connected using an inter-cell connection member. However, if the contact area is small, the connection resistance between the fuel cells increases, and the fuel cell The generated power cannot be extracted efficiently. In addition, contact stability is reduced, and a highly reliable cell stack and fuel cell cannot be obtained.
Accordingly, an object of the present invention is to provide a solid electrolyte fuel cell, a cell stack, and a fuel cell that are capable of stable connection between fuel cells and are excellent in efficiency and reliability.

本発明の燃料電池セルは、単一若しくは複数の燃料ガス流路が、軸長方向に形成された柱状の絶縁支持体の表面に、燃料極、固体電解質及び、空気極を順次積層してなる発電素子部を軸長方向に所定間隔をおいて複数個設け、該複数の発電素子部をインターコネクタで直列に接続してなるものであって、前記複数の発電素子部のうち、燃料ガスマニホールドに最も近い発電素子部又は燃料ガスマニホールドに最も遠い発電素子部に形成される、他の燃料電池セルとの接続用のインターコネクタの固体電解質からの露出幅が、発電素子部間を接続するために設けられたインターコネクタの固体電解質からの露出幅よりも、広く形成されていることを特徴とする。   The fuel battery cell of the present invention is formed by sequentially laminating a fuel electrode, a solid electrolyte, and an air electrode on the surface of a columnar insulating support formed with a single or a plurality of fuel gas flow paths in the axial direction. A plurality of power generation element portions are provided at predetermined intervals in the axial length direction, and the plurality of power generation element portions are connected in series by an interconnector, and a fuel gas manifold among the plurality of power generation element portions The width of exposure from the solid electrolyte of the interconnector for connection with other fuel cells formed in the power generation element part closest to the power generation element part or the power generation element part farthest from the fuel gas manifold connects the power generation element parts It is characterized in that the interconnector provided in the connector is formed wider than the exposed width from the solid electrolyte.

この構造であれば、他の燃料電池セルとの接続用のインターコネクタの幅を広く形成することによって、セル間接続部材で他の燃料電池セルと電気的に接続したときに、接触面積を広くとれる。したがって、燃料電池セル間の接続抵抗が低下するので、セルスタック及び燃料電池の集電損失を小さくすることができる。また、接触面積が広くなることによって、接続の安定性も向上するので、信頼性の高いセルスタック及び燃料電池が得られる。   With this structure, the width of the interconnector for connecting to other fuel cells is widened, so that the contact area is widened when electrically connected to other fuel cells with the inter-cell connecting member. I can take it. Therefore, since the connection resistance between the fuel cells is lowered, the current collection loss of the cell stack and the fuel cell can be reduced. Further, since the contact area is increased, the stability of the connection is also improved, so that a highly reliable cell stack and fuel cell can be obtained.

前記発電素子部間を接続するために絶縁支持体に設けられたインターコネクタの露出幅が大きければ、燃料電池セル自体の長さが長くなってしまうので、この幅は3mm以下であることが望ましい。したがって、本発明では、他の燃料電池セルとの接続用のインターコネクタの幅は3mm以上となる。
また、本発明の燃料電池セルは、絶縁支持体の横断面が扁平状であることが好ましい。このような形状の燃料電池セルでは、1セルあたりの発電量を大きくすることができるため、必要とする発電量を得るためのセル本数を減らすことができ、セル間の接続箇所を減少させることができる。そのため、構造、組み立てが簡単になるとともに、信頼性が向上する。
If the exposed width of the interconnector provided on the insulating support for connecting the power generation element portions is large, the length of the fuel cell itself becomes long. Therefore, the width is preferably 3 mm or less. . Therefore, in the present invention, the width of the interconnector for connection with other fuel cells is 3 mm or more.
In the fuel cell of the present invention, it is preferable that the insulating support has a flat cross section. In the fuel cell having such a shape, since the power generation amount per cell can be increased, the number of cells for obtaining the required power generation amount can be reduced, and the number of connection points between the cells can be reduced. Can do. Therefore, the structure and the assembly are simplified and the reliability is improved.

また、本発明によれば、セルの発電素子部と他の燃料電池セルの発電素子部とを電気的に接続するためのセル間接続部材を用いて、前記の燃料電池セルの複数を、セル間接続部材を介して互いに電気的に接続してなるセルスタックが提供される。この構造によれば、燃料電池セル間の接続抵抗が小さいので、内部抵抗の小さな、大きな電力が取り出せる、信頼性の高いセルスタックが得られる。   Further, according to the present invention, a plurality of the fuel battery cells can be connected to each other by using an inter-cell connecting member for electrically connecting the power generation element part of the cell and the power generation element part of another fuel battery cell. A cell stack is provided which is electrically connected to each other via an inter-connection member. According to this structure, since the connection resistance between the fuel cells is small, a highly reliable cell stack having a small internal resistance and capable of taking out large electric power can be obtained.

以上に説明したセルスタックを収納容器に複数収納してなる燃料電池を構成すると、熱効率の高い燃料電池を提供することができる。   By configuring a fuel cell in which a plurality of the cell stacks described above are stored in a storage container, a fuel cell with high thermal efficiency can be provided.

以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図1は、本発明の燃料電池セルの構造を示す斜視図であり、図2はその正面図である。
この燃料電池セル1は、発電素子間接続部材7(図3参照)を塗布する前の状態を示している。
この燃料電池セル1は、中空かつ扁平板状の絶縁支持体2に、複数の発電素子部をセルの軸長方向に沿って複数個配置し、それらをインターコネクタ6及び 発電素子間接続部材7を介して直列に接続した「横縞形」といわれるものである。発電素子部は、絶縁支持体2の表面及び裏面にそれぞれ形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view showing the structure of a fuel battery cell of the present invention, and FIG. 2 is a front view thereof.
The fuel cell 1 shows a state before the power generating element connecting member 7 (see FIG. 3) is applied.
In this fuel cell 1, a plurality of power generation element portions are arranged in a hollow and flat plate-like insulating support 2 along the axial length direction of the cell, and these are connected to an interconnector 6 and a power generation element connecting member 7. It is said to be "horizontal stripe" connected in series via The power generation element portions are formed on the front surface and the back surface of the insulating support 2 respectively.

図1(a)は、セル表面の先端の発電素子部(図示せず)と、セル裏面の先端の発電素子部(図示せず)とが、セルを周回する金属バンド(図5参照)によって接続され、セル表面の電流の方向と、セル裏面の電流の方向とが反対になるタイプを示している。
図1(b)は、セル表面の各発電素子部と、セル裏面の各発電素子部とが、セルを周回するインターコネクタ6によりそれぞれ接続されて、全体としてみればセル表面の発電素子部と、セル裏面の発電素子部とが、並列に接続されるタイプを示している。
FIG. 1A shows a metal band (see FIG. 5) in which a power generation element portion (not shown) at the front end of the cell surface and a power generation element portion (not shown) at the front end of the cell back face the cell. A type in which the direction of the current on the cell surface is opposite to the direction of the current on the back surface of the cell is shown.
FIG. 1B shows that each power generation element portion on the cell surface and each power generation element portion on the back surface of the cell are connected to each other by an interconnector 6 that circulates around the cell. The power generation element part on the back surface of the cell is connected in parallel.

図3は、図2のA−A線で切った、発電素子部が形成された部分を示すセルの断面図である。
燃料電池セル1は、絶縁支持体2の表面に、その軸長方向に所定間隔をおいて、複数の発電素子部を配列することにより構成されている。
それぞれの発電素子部は、集電燃料極3a、活性燃料極3b(集電燃料極3a、活性燃料極3bを総称して「燃料極3」という)、固体電解質4及び空気極5を順次積層した層構造となっている。
FIG. 3 is a cross-sectional view of the cell showing a portion where the power generation element portion is formed, taken along line AA in FIG. 2.
The fuel cell 1 is configured by arranging a plurality of power generation element portions on the surface of the insulating support 2 with a predetermined interval in the axial length direction.
Each power generation element section is formed by sequentially laminating a current collecting fuel electrode 3a, an active fuel electrode 3b (the current collecting fuel electrode 3a and the active fuel electrode 3b are collectively referred to as “fuel electrode 3”), a solid electrolyte 4 and an air electrode 5. It has a layered structure.

隣り合う発電素子部は、インターコネクタ6及び発電素子間接続部材7により直列に接続されている。すなわち、一方の発電素子部の燃料極3の上にインターコネクタ6が形成され、このインターコネクタ6は、軸長方向両端部が固体電解質4により被覆され、固体電解質4から帯状に露出している。このインターコネクタ6の露出した部分が発電素子間接続部材7により被覆され、この発電素子間接続部材7により、他方の発電素子部の空気極5が電気的に接続された構造となっている。   Adjacent power generation element portions are connected in series by an interconnector 6 and a power generation element connecting member 7. That is, an interconnector 6 is formed on the fuel electrode 3 of one power generation element portion, and this interconnector 6 is covered with the solid electrolyte 4 at both ends in the axial length direction and exposed from the solid electrolyte 4 in a strip shape. . The exposed portion of the interconnector 6 is covered with a power generating element connecting member 7, and the air electrode 5 of the other power generating element portion is electrically connected by the power generating element connecting member 7.

絶縁支持体2は多孔質であり、さらにその内部には、内径の小さな複数の燃料ガス流路12が軸方向に形成されている。このように、絶縁支持体2の内部にガス流路12を複数形成することにより、絶縁支持体2の内部に大きなガス流路を1本形成する場合に比べて、絶縁支持体2を扁平板状とすることができ、燃料電池セル1の体積当たりの発電素子部の面積を増加し発電量を大きくすることができる。よって、必要とする発電量を得るためのセル本数を減らすことができる。また、セル間の接続箇所数を減少させることもできる。   The insulating support 2 is porous, and a plurality of fuel gas passages 12 having a small inner diameter are formed in the axial direction therein. In this way, by forming a plurality of gas flow paths 12 inside the insulating support 2, the insulating support 2 is flattened compared to the case where one large gas flow path is formed inside the insulating support 2. It is possible to increase the power generation amount by increasing the area of the power generation element unit per volume of the fuel cell 1. Therefore, the number of cells for obtaining the required power generation amount can be reduced. In addition, the number of connection points between cells can be reduced.

この燃料ガス流路12内に燃料ガス(水素ガス)を流し、かつ空気極5を空気等の酸素含有ガスに曝すことにより、燃料極3及び空気極5間で前述した式(1),(2)に示す電極反応が生じ、両極間に電位差が発生し、発電するようになっている。
図4は、上述した燃料電池セル1の発電素子部の配列パターンをさらに詳細に示す正面図である。
By flowing a fuel gas (hydrogen gas) through the fuel gas flow path 12 and exposing the air electrode 5 to an oxygen-containing gas such as air, the above-described equations (1), ( The electrode reaction shown in 2) occurs, a potential difference is generated between the two electrodes, and power is generated.
FIG. 4 is a front view showing the arrangement pattern of the power generation element portions of the fuel cell 1 described above in more detail.

本発明の実施形態によれば、発電素子部の配列パターンとして、2つのパターンA,Bがある。
両パターンとも、軸長方向に所定間隔をおいて、複数の発電素子部を配列していることは共通しているが、パターンAは、燃料ガスマニホールドMに接続される側(矢印Mで示す)に最も近い部分がインターコネクタ6になっており、パターンBは、燃料ガスマニホールドMに接続される側に最も近い部分が空気極5になっているところが相違している。
According to the embodiment of the present invention, there are two patterns A and B as the array pattern of the power generation element portions.
Both patterns have a common arrangement in which a plurality of power generation element portions are arranged at a predetermined interval in the axial direction, but the pattern A is connected to the fuel gas manifold M (indicated by an arrow M). ) Is the interconnector 6, and the pattern B is different in that the portion closest to the side connected to the fuel gas manifold M is the air electrode 5.

図1(a)の、セル表面の電流の方向とセル裏面の電流の方向とが反対になるタイプは、セル表面にパターンA(又はB)を搭載し、セル裏面にパターンB(又はA)を搭載している。
図1(b)の、セル表面の電流の方向とセル裏面の電流の方向とが同一になるタイプでは、セル表面及び裏面ともにパターンA(又はB)を搭載している。
In the type of FIG. 1A in which the current direction on the cell surface and the current direction on the cell back surface are opposite, the pattern A (or B) is mounted on the cell surface and the pattern B (or A) is mounted on the cell back surface. It is equipped with.
In the type of FIG. 1B in which the current direction on the cell surface and the current direction on the cell back surface are the same, the pattern A (or B) is mounted on both the cell front surface and the back surface.

なお、図4で、燃料ガスマニホールドMに最も近い発電素子部に形成されるインターコネクタ6の幅、及び燃料ガスマニホールドMに最も遠い発電素子部に形成される他の燃料電池セル1との接続用のインターコネクタ6の幅(セル軸長方向に沿った幅)をDで表している。また、前記以外の発電素子部間を接続するために設けられたインターコネクタ6の幅(セル軸長方向に沿った幅)をdで表している。   In FIG. 4, the width of the interconnector 6 formed in the power generation element portion closest to the fuel gas manifold M and the connection with the other fuel cell 1 formed in the power generation element portion farthest from the fuel gas manifold M. The width of the interconnector 6 (width along the cell axis length direction) is denoted by D. Moreover, the width | variety (width along a cell axial length direction) of the interconnector 6 provided in order to connect between electric power generation element parts other than the above is represented by d.

本発明によれば、不等式D>dが成り立つように設定されている。
インターコネクタ6の幅dは、一般に、3mm以下であることが望ましい。インターコネクタ6の幅dの部分は、発電に寄与しない部分であり、この幅dが3mmより長くなると、燃料電池セル1の全長が伸びて、セルスタックの容積が大きくなるだけである。絶縁支持体2の幅bは、一般に、15mm以上であり、好ましくは30〜50mmである。その厚み(紙面垂直方向)は、一般に、2〜5mmであることが望ましい。空気極5の幅aは、一般に、8mm以上であり、より好ましくは24〜44mmである。
According to the present invention, the inequality D> d is established.
In general, the width d of the interconnector 6 is desirably 3 mm or less. The portion of the interconnector 6 having a width d is a portion that does not contribute to power generation. When the width d is longer than 3 mm, the entire length of the fuel cell 1 is increased, and the volume of the cell stack is only increased. The width b of the insulating support 2 is generally 15 mm or more, preferably 30 to 50 mm. In general, the thickness (in the direction perpendicular to the paper surface) is desirably 2 to 5 mm. The width a of the air electrode 5 is generally 8 mm or more, more preferably 24 to 44 mm.

図5及び図6は、 本発明の燃料電池セル1の接続構造を、タイプ別に示す斜視図である。
図5は、図1(a)のセル表面の電流の方向とセル裏面の電流の方向とが反対になるタイプのセル間接続構造を示す。
燃料電池セル1の燃料ガスマニホールドM側の発電素子部には、隣の燃料電池セル1との電気的接続を図るためのセル間接続部材8が配置されている。このセル間接続部材8は、一方のセルの燃料ガスマニホールドMに最も近い発電素子部の空気極5と、他方のセルの燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6とを接続する。インターコネクタ6は、図3に示すように、燃料極3に接続しているので、これにより、一方のセルの燃料ガスマニホールドMに最も近い発電素子部の空気極5と、他方のセルの燃料ガスマニホールドMに最も近い発電素子部の燃料極3とが接続されることになる。すなわち、一方のセルの正極と他方のセルの負極とが接続された形になり、セルスタックを構成するすべてのセルに形成された発電素子部が直列に接続され、高電圧が取り出せる。
FIG.5 and FIG.6 is a perspective view which shows the connection structure of the fuel cell 1 of this invention according to type.
FIG. 5 shows an inter-cell connection structure of the type in which the direction of the current on the cell surface and the direction of the current on the back surface of the cell in FIG.
An inter-cell connecting member 8 for electrical connection with the adjacent fuel cell 1 is disposed in the power generation element portion on the fuel gas manifold M side of the fuel cell 1. This inter-cell connecting member 8 connects the air electrode 5 of the power generation element portion closest to the fuel gas manifold M of one cell and the interconnector 6 of the power generation element portion closest to the fuel gas manifold M of the other cell. . Since the interconnector 6 is connected to the fuel electrode 3 as shown in FIG. 3, the air electrode 5 of the power generation element portion closest to the fuel gas manifold M of one cell and the fuel of the other cell are thereby connected. The fuel electrode 3 of the power generation element portion closest to the gas manifold M is connected. That is, the positive electrode of one cell and the negative electrode of the other cell are connected, and the power generation element portions formed in all the cells constituting the cell stack are connected in series, so that a high voltage can be taken out.

図6は、図1(b)のセル表面の電流の方向とセル裏面の電流の方向とが同一になるタイプのセル間接続構造を示す。
この場合、セル間接続部材8は、一対のセル間の燃料ガスマニホールドM側の発電素子部を接続し、次の対となるセル間の先端側の発電素子部を接続し、さらに次の対となるセル間の燃料ガスマニホールドM側の発電素子部を接続するという具合に、セル間ごとに交互に配置される。この接続により、セルスタックを構成する全てのセルが直列に接続される。ただし、セル内では、表裏の発電素子部は並列に接続されていることは、前述したとおりである。
FIG. 6 shows an inter-cell connection structure of the type in which the direction of current on the cell surface and the direction of current on the back surface of the cell in FIG.
In this case, the inter-cell connection member 8 connects the power generation element part on the fuel gas manifold M side between the pair of cells, connects the power generation element part on the tip side between the next pair of cells, and further connects the next pair. The fuel cell manifold M side power generating element portion between the cells to be connected is connected alternately between the cells. By this connection, all the cells constituting the cell stack are connected in series. However, as described above, the front and back power generating element portions are connected in parallel in the cell.

なお、図6に"S"で示したように、セル間接続部材8が挿入されないセル間には、絶縁物からなるダミーのセル間接続部材を挿入することが好ましい。これによって、セル同士の間隔が一定に保たれるので、セル間接続部材8が、セルの間から落下するのを防ぐことができる。
図7は、セル間接続部材8の形状の一例を示す斜視図である。セル間接続部材8は、弾力性を有する平櫛の歯81を1本ずつ、交互に反対方向に折り曲げた形状をしている。さらに詳しく言えば、セル間接続部材8は、バックボーンとなる1本のまっすぐに伸びた背板部80と、この背板部80から互いに異なる2方向に交互に分岐する櫛歯部81とからなり、前記分岐した櫛歯部81同士は、途中で折れ曲がって互いに平行になる。この平行な部分を「接触部82」という。
As indicated by “S” in FIG. 6, it is preferable to insert a dummy inter-cell connecting member made of an insulating material between cells in which the inter-cell connecting member 8 is not inserted. Thereby, since the space | interval between cells is kept constant, it can prevent that the connection member 8 between cells falls from between cells.
FIG. 7 is a perspective view showing an example of the shape of the inter-cell connection member 8. The inter-cell connection member 8 has a shape in which one flat comb tooth 81 having elasticity is alternately bent in the opposite direction. More specifically, the inter-cell connection member 8 includes a single straight back plate portion 80 serving as a backbone, and comb tooth portions 81 branched alternately from the back plate portion 80 in two different directions. The branched comb teeth 81 are bent in the middle and become parallel to each other. This parallel portion is referred to as a “contact portion 82”.

この接触部82が、発電素子部Bのインターコネクタ6又は発電素子部の空気極5に接触して、両者の電気的導通を実現する。
図8は、セル間接続部材8により、図1(a)のセル表面の電流の方向とセル裏面の電流の方向とが反対になるタイプのセル間を接続する状態を示す断面図である。
セル間接続部材8の接触部82は、一方のセルの、燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6に接続すると同時に、他方のセルの、燃料ガスマニホールドMに最も近い発電素子部の空気極5に接触している。
This contact part 82 contacts the interconnector 6 of the power generation element part B or the air electrode 5 of the power generation element part, thereby realizing electrical continuity between them.
FIG. 8 is a cross-sectional view showing a state in which cells of a type in which the direction of the current on the cell surface and the direction of the current on the back surface of the cell in FIG.
The contact portion 82 of the inter-cell connecting member 8 is connected to the interconnector 6 of the power generation element portion closest to the fuel gas manifold M in one cell, and at the same time, the power generation element portion closest to the fuel gas manifold M in the other cell. In contact with the air electrode 5.

本実施形態の特徴は、セルの、燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6の幅Dが、他の発電素子部のインターコネクタ6の幅dよりも広くなっていることである。このため、セル間接続部材8の接触部82と、前記燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6との接触面積を広げることができ、セル間接続部材8とインターコネクタ6との電気的な接触を安定化させ、その接触抵抗を下げることができる。したがって、燃料電池の内部抵抗を減らすことができ、セルで発生した電力を、燃料電池外に効率よく取り出すことができる。   The feature of this embodiment is that the width D of the interconnector 6 of the power generation element part closest to the fuel gas manifold M of the cell is wider than the width d of the interconnector 6 of the other power generation element part. . For this reason, the contact area of the contact part 82 of the connection member 8 between cells and the interconnector 6 of the electric power generation element part nearest to the said fuel gas manifold M can be expanded, and the connection member 8 between cells and the interconnector 6 are connected. The electrical contact can be stabilized and the contact resistance can be lowered. Therefore, the internal resistance of the fuel cell can be reduced, and the electric power generated in the cell can be efficiently taken out of the fuel cell.

図9は、セル間接続部材8により、図1(b)のセル表面の電流の方向とセル裏面の電流の方向とが同一になるタイプのセル間を接続する状態を示す断面図である。
セル間接続部材8の接触部は、両方のセルの、燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6に接触している。
本実施形態の特徴は、セルの、燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6の幅Dが、他の発電素子部のインターコネクタ6の幅dよりも広くなっている。このため、セル間接続部材8の接触部82と、前記燃料ガスマニホールドMに最も近い発電素子部のインターコネクタ6との接触面積を広げることができ、セル間接続部材8とインターコネクタ6との電気的な接触を安定化させ、その接触抵抗を下げることができる。このため、燃料電池の内部抵抗を減らすことができ、セルで発生した電力を、燃料電池外に効率よく取り出すことができる。
FIG. 9 is a cross-sectional view showing a state in which cells of the type in which the direction of the current on the cell surface and the direction of the current on the back surface of the cell in FIG.
The contact portion of the inter-cell connecting member 8 is in contact with the interconnector 6 of the power generation element portion closest to the fuel gas manifold M in both cells.
The feature of this embodiment is that the width D of the interconnector 6 of the power generation element part closest to the fuel gas manifold M of the cell is wider than the width d of the interconnector 6 of the other power generation element part. For this reason, the contact area of the contact part 82 of the connection member 8 between cells and the interconnector 6 of the electric power generation element part nearest to the said fuel gas manifold M can be expanded, and the connection member 8 between cells and the interconnector 6 are connected. The electrical contact can be stabilized and the contact resistance can be lowered. For this reason, the internal resistance of the fuel cell can be reduced, and the electric power generated in the cell can be efficiently taken out of the fuel cell.

前記燃料電池セル1が複数集合して、図5、図6に示すようなセルスタックを組み立てる。このセルスタックの両端に、セルスタックで発生した電力を燃料電池外に取り出すための導電部材(図示せず)を取り付けて、収納容器内に収容して、燃料電池を製作することができる。 この収納容器に空気等の酸素含有ガスを導入し、水素等の燃料ガスを導入管を通して燃料ガスマニホールドMに導入する。燃料ガスを燃料ガスマニホールドMを通して燃料電池セル1内部に導入し、燃料電池セル1を所定温度に加熱すれば、燃料電池セル1によって発電することができる。使用された燃料ガス、酸素含有ガスは、収納容器外に排出される。   A plurality of the fuel cells 1 are assembled to assemble a cell stack as shown in FIGS. A conductive member (not shown) for taking out the electric power generated in the cell stack to the outside of the fuel cell is attached to both ends of the cell stack, and the fuel cell can be manufactured by accommodating it in a storage container. An oxygen-containing gas such as air is introduced into the storage container, and a fuel gas such as hydrogen is introduced into the fuel gas manifold M through an introduction pipe. If fuel gas is introduced into the fuel cell 1 through the fuel gas manifold M and the fuel cell 1 is heated to a predetermined temperature, power can be generated by the fuel cell 1. The used fuel gas and oxygen-containing gas are discharged out of the storage container.

以下、セルを構成する各部材の材質を詳しく説明する。
前記絶縁支持体2は、Ni若しくはNi酸化物(NiO)と、希土類元素酸化物とからなっている。なお、希土類元素酸化物を構成する希土類元素としては、Y,La,Yb,Tm,Er,Ho,Dy,Gd,Sm,Prなどを例示することができるが、好ましいものは、Y23やYb23、特にY23である。
Hereinafter, the material of each member constituting the cell will be described in detail.
The insulating support 2 is made of Ni or Ni oxide (NiO) and a rare earth element oxide. Examples of the rare earth element constituting the rare earth element oxide include Y, La, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. Preferred is Y 2 O 3. And Yb 2 O 3 , especially Y 2 O 3 .

前記NiあるいはNiO(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、10〜25体積%、特に15〜20体積%の範囲で絶縁支持体2中に含有されているのがよい。
この絶縁支持体2の熱膨張係数は、通常、10.5〜11.0×10-6(1/K)程度である。
Ni or NiO (NiO is usually reduced by hydrogen gas and present as Ni during power generation) is contained in the insulating support 2 in a range of 10 to 25% by volume, particularly 15 to 20% by volume. It is good to be.
The thermal expansion coefficient of the insulating support 2 is usually about 10.5 to 11.0 × 10 −6 (1 / K).

絶縁支持体2は、発電素子部間の電気的ショートを防ぐために電気絶縁性であることが必要であり、通常、10Ω・cm以上の抵抗率を有していなければならない。Ni等の含量が前記範囲を超えると、電気抵抗値が低下し、電気絶縁性が損なわれてしまう。また、Ni等の含量が前記範囲よりも少ないと、希土類元素酸化物(例えばY23)を単独で用いた場合と変わらなくなってしまい、発電素子部との熱膨張係数の調整が困難となってしまうからである。 The insulating support 2 needs to be electrically insulating in order to prevent an electrical short circuit between the power generating element portions, and usually has a resistivity of 10 Ω · cm or more. If the content of Ni or the like exceeds the above range, the electric resistance value is lowered and the electric insulation is impaired. In addition, when the content of Ni or the like is less than the above range, it is not different from the case where a rare earth element oxide (for example, Y 2 O 3 ) is used alone, and it is difficult to adjust the thermal expansion coefficient with the power generation element portion. Because it becomes.

また、Ni等以外の残量の全ては、通常、希土類元素酸化物の少なくとも1種である。しかし、少量、例えば5重量%以下の範囲で、MgOやSiO2などの他の酸化物、若しくは複合酸化物例えばジルコン酸カルシウムなどを含有していてもよい。
なお、前記絶縁支持体2は、燃料ガス流路12内の燃料ガスを燃料極3の表面まで導入可能でなければならず、このため、多孔質であることが必要である。一般に、その開気孔率は25%以上、特に30乃至40%の範囲にあるのがよい。
Further, the remaining amount other than Ni or the like is usually at least one kind of rare earth element oxide. However, other oxides such as MgO and SiO 2 or composite oxides such as calcium zirconate may be contained in a small amount, for example, in the range of 5% by weight or less.
The insulating support 2 must be able to introduce the fuel gas in the fuel gas flow path 12 up to the surface of the fuel electrode 3, and therefore needs to be porous. In general, the open porosity should be 25% or more, particularly in the range of 30 to 40%.

燃料極3は、前記式(2)の電極反応を生じせしめるものであり、本実施形態においては、固体電解質側の活性燃料極3bと、絶縁支持体2側の集電燃料極3aとの二層構造に形成されている。
前記固体電解質側の活性燃料極3bは、それ自体公知の多孔質の導電性セラミックスから形成される。例えば、希土類元素が固溶しているZrO2(安定化ジルコニア)と、Ni及び/又はNi酸化物NiO(以下、Ni等と呼ぶ)とからなる。この希土類元素が固溶した安定化ジルコニアとしては、後述する固体電解質4に使用されているものと同様のものを用いるのがよい。
The fuel electrode 3 causes an electrode reaction of the above formula (2). In this embodiment, the fuel electrode 3 includes an active fuel electrode 3b on the solid electrolyte side and a current collecting fuel electrode 3a on the insulating support 2 side. It is formed in a layer structure.
The active fuel electrode 3b on the solid electrolyte side is formed of a known porous conductive ceramic. For example, it is composed of ZrO 2 (stabilized zirconia) in which a rare earth element is dissolved, and Ni and / or Ni oxide NiO (hereinafter referred to as Ni or the like). As the stabilized zirconia in which the rare earth element is dissolved, it is preferable to use the same zirconia as that used for the solid electrolyte 4 described later.

活性燃料極3b中の安定化ジルコニア含量は、35〜65体積%の範囲にあることが好ましく、またNi等の含量は、良好な集電性能を発揮させるため、65〜35体積%の範囲にあるのがよい。
さらに活性燃料極3bの開気孔率は、15%以上、特に20〜40%の範囲にあるのがよい。
The stabilized zirconia content in the active fuel electrode 3b is preferably in the range of 35 to 65% by volume, and the content of Ni or the like is in the range of 65 to 35% by volume in order to exhibit good current collecting performance. There should be.
Furthermore, the open porosity of the active fuel electrode 3b is preferably 15% or more, particularly preferably in the range of 20 to 40%.

この活性燃料極3bの熱膨張係数は、通常、12.3×10-6(1/K)程度である。
また、活性燃料極3bの厚みは、5μm以上15μm未満の範囲にあることが望ましい。厚み15μm以上であれば、固体電解質4との熱膨張差に起因して発生する熱応力を吸収できないようになり、活性燃料極の割れや剥離などを生じるおそれがある。
燃料極3のうち、前記絶縁支持体2側の集電燃料極3aは、絶縁支持体2と同様、Ni若しくはNi酸化物と、希土類元素酸化物との混合体である。
The thermal expansion coefficient of the active fuel electrode 3b is usually about 12.3 × 10 −6 (1 / K).
The thickness of the active fuel electrode 3b is preferably in the range of 5 μm or more and less than 15 μm. If the thickness is 15 μm or more, the thermal stress generated due to the difference in thermal expansion from the solid electrolyte 4 cannot be absorbed, and the active fuel electrode may be cracked or peeled off.
In the fuel electrode 3, the current collecting fuel electrode 3 a on the insulating support 2 side is a mixture of Ni or Ni oxide and a rare earth element oxide, like the insulating support 2.

前記Ni或いはNi酸化物(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、30〜60体積%の範囲で希土類元素酸化物中に含有されているのがよい。この範囲で調整することにより、絶縁支持体2と集電燃料極3aとの熱膨張差を2×10-5/°C以下とすることができる。
集電燃料極3aは、電流の流れを損なわないように、導電性であることが必要であり、通常、400S/cm以上の導電率を有していなければならない。Ni等の含量が前記範囲を下回ると、電気抵抗値が上昇し、電気伝導度が損なわれてしまう。
The Ni or Ni oxide (NiO is usually reduced by hydrogen gas and exists as Ni during power generation) is preferably contained in the rare earth element oxide in a range of 30 to 60% by volume. By adjusting within this range, the difference in thermal expansion between the insulating support 2 and the current collecting fuel electrode 3a can be set to 2 × 10 −5 / ° C. or less.
The current collecting fuel electrode 3a needs to be conductive so as not to impair the flow of current, and usually has a conductivity of 400 S / cm or more. When the content of Ni or the like is less than the above range, the electrical resistance value increases and the electrical conductivity is impaired.

この集電燃料極3aの熱膨張係数は、通常、11.5×10-6(1/K)程度である。
また、この集電燃料極3aの厚みは、80μm以上であることが望ましい。80μm未満であれば、軸長方向に電流が流れるときの抵抗が増加して、燃料電池セル1内部に無視できない電圧降下が発生してしまう。
以上のように、燃料極3を固体電解質側の活性燃料極3bと、絶縁支持体側の集電燃料極3aと二層に形成した構造であれば、絶縁支持体側の集電燃料極のNi換算でのNi量或いはNiO量を40〜70体積%の範囲内で調整することにより、発電素子部との接合性を損なうことなく、その熱膨張係数を、後述する固体電解質の熱膨張係数に近づけることができ、例えば両者の熱膨張差を、2×10-6/℃未満とすることができ、
したがって、燃料電池セル1の作製時、加熱時、冷却時において両者の熱膨張差に起因して発生する熱応力を小さくすることができるため、燃料極の割れや剥離などを抑制することができる。このため、燃料ガス(水素ガス)を流して発電を行う場合においても、絶縁支持体2との熱膨張係数の整合性は安定に維持され、熱膨張差による割れを有効に回避することができる。
The current expansion fuel electrode 3a usually has a thermal expansion coefficient of about 11.5 × 10 −6 (1 / K).
The thickness of the current collecting fuel electrode 3a is preferably 80 μm or more. If it is less than 80 μm, the resistance when current flows in the axial direction increases, and a voltage drop that cannot be ignored occurs in the fuel cell 1.
As described above, if the fuel electrode 3 is formed in two layers with the active fuel electrode 3b on the solid electrolyte side and the current collecting fuel electrode 3a on the insulating support side, the Ni conversion of the current collecting fuel electrode on the insulating support side is equivalent to Ni. By adjusting the amount of Ni or NiO in the range of 40 to 70% by volume, the thermal expansion coefficient is brought close to the thermal expansion coefficient of the solid electrolyte described later without impairing the bondability with the power generation element portion. For example, the difference in thermal expansion between the two can be less than 2 × 10 −6 / ° C.,
Therefore, since the thermal stress generated due to the difference in thermal expansion between the two during the production, heating, and cooling of the fuel battery cell 1 can be reduced, cracking and peeling of the fuel electrode can be suppressed. . For this reason, even when fuel gas (hydrogen gas) is supplied to generate power, the consistency of the thermal expansion coefficient with the insulating support 2 is stably maintained, and cracks due to thermal expansion differences can be effectively avoided. .

固体電解質4は、電極間の電子の橋渡しをする電解質としての機能を有すると同時に、燃料ガスと空気等の酸素含有ガスとのリークを防止するためにガス遮断性を有していることが必要である。従って、固体電解質4としては、このような特性を備えている緻密質なセラミックス、例えば、3〜15モル%の希土類元素が固溶した安定化ZrO2を用いるのが好ましい。この安定化ZrO2中の希土類元素としては、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luを例示することができるが、安価であるという点で、Y,Ybが好適である。また、8YSZ(8モル%のYが固溶している安定化ZrO2)と熱膨張係数がほぼ等しいランタンガレート系固体電解質なども好適に用いることができる。 The solid electrolyte 4 has a function as an electrolyte for bridging electrons between the electrodes, and at the same time needs to have a gas barrier property in order to prevent leakage between the fuel gas and an oxygen-containing gas such as air. It is. Therefore, as the solid electrolyte 4, it is preferable to use dense ceramics having such characteristics, for example, stabilized ZrO 2 in which 3 to 15 mol% of a rare earth element is dissolved. Examples of rare earth elements in the stabilized ZrO 2 include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. However, Y and Yb are preferable because they are inexpensive. A lanthanum gallate solid electrolyte having a thermal expansion coefficient substantially equal to that of 8YSZ (stabilized ZrO 2 in which 8 mol% of Y is dissolved) can also be suitably used.

前記の固体電解質4は、ガス透過を防止するという点から10〜100μmの厚みを有し、さらに相対密度(アルキメデス法による)が93%以上、特に95%以上であることが望ましい。
固体電解質4上に形成される空気極5は、前述した式(1)の電極反応を生じせしめるものであり、いわゆるABO3型のペロブスカイト型酸化物からなる導電性セラミックスから形成される。このようなペロブスカイト型酸化物としては、遷移金属型ペロブスカイト酸化物、特にAサイトにLaを有するLaMnO3系酸化物、LaFeO3系酸化物、LaCoO3系酸化物の少なくとも一種が好適であり、600〜1000℃程度の比較的低温での電気伝導性が高いという点から、LaFeO3系酸化物が特に好適である。
It is desirable that the solid electrolyte 4 has a thickness of 10 to 100 μm from the viewpoint of preventing gas permeation, and has a relative density (according to Archimedes method) of 93% or more, particularly 95% or more.
The air electrode 5 formed on the solid electrolyte 4 causes the electrode reaction of the above-described formula (1), and is formed from a conductive ceramic made of a so-called ABO 3 type perovskite oxide. As such a perovskite oxide, at least one of a transition metal type perovskite oxide, particularly a LaMnO 3 oxide, a LaFeO 3 oxide, or a LaCoO 3 oxide having La at the A site is preferable. 600 LaFeO 3 -based oxides are particularly suitable because they have high electrical conductivity at a relatively low temperature of about ˜1000 ° C.

なお、前記のペロブスカイト型酸化物においては、AサイトにLaと共にSrが存在していてもよいし、さらにBサイトには、Fe,Co,Mnが共存していてもよい。
また、前記の空気極5は、ガス透過性を有していなければならず、その開気孔率は20%以上、特に30乃至50%の範囲にあるのがよい。さらに、その厚みは、集電性という点から30〜100μmであることが望ましい。
In the perovskite oxide, Sr may exist together with La at the A site, and Fe, Co, and Mn may coexist at the B site.
The air electrode 5 must have gas permeability, and its open porosity should be 20% or more, particularly 30 to 50%. Furthermore, the thickness is preferably 30 to 100 μm from the viewpoint of current collection.

隣り合う発電素子部同士を直列に接続するために使用されるインターコネクタ6は、一方の発電素子部の燃料極3と他方の発電素子部の空気極5とを接続するものであり、導電性セラミックスから形成されるが、燃料ガス(水素ガス)及び空気等の酸素含有ガスと接触するため、耐還元性、耐酸化性を有していることが必要である。
このため、かかる導電性セラミックスとしては、一般に、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO3系酸化物)が使用される。また、絶縁支持体2内のガス流路12を通る燃料ガスと空気極5の外部を通る空気等の酸素含有ガスとのリークを防止するため、かかる導電性セラミックスは緻密質でなければならず、例えば93%以上、特に95%以上の相対密度(アルキメデス法)を有していることが好適である。なお、このインターコネクタ6の端面と、固体電解質4の端面との間には、適当な接合層(例えばY23)を介在させることにより、シール性を向上させることもできる。
The interconnector 6 used for connecting adjacent power generation element portions in series connects the fuel electrode 3 of one power generation element portion and the air electrode 5 of the other power generation element portion, and is electrically conductive. Although it is formed from ceramics, it needs to have reduction resistance and oxidation resistance because it comes into contact with a fuel gas (hydrogen gas) and an oxygen-containing gas such as air.
For this reason, lanthanum chromite perovskite oxides (LaCrO 3 oxides) are generally used as the conductive ceramics. In order to prevent leakage of fuel gas passing through the gas flow path 12 in the insulating support 2 and oxygen-containing gas such as air passing outside the air electrode 5, such conductive ceramics must be dense. For example, it is preferable to have a relative density (Archimedes method) of 93% or more, particularly 95% or more. In addition, a sealing property can also be improved by interposing an appropriate bonding layer (for example, Y 2 O 3 ) between the end face of the interconnector 6 and the end face of the solid electrolyte 4.

なお、上述した例においては、絶縁支持体2上に形成される発電素子部は、内側電極が燃料極3であり、外側電極が空気極5となった層構造を有しているが、両電極の位置関係を逆とすることも勿論可能である。すなわち、絶縁支持体2上に、空気極5,固体電解質4、燃料極3をこの順に積層して発電素子部を形成することもできる。この場合、絶縁支持体2のガス流路12内には、空気等の酸素含有ガスが導入され、燃料ガスは外側電極である燃料極3の外面に供給されることとなる。   In the above-described example, the power generating element portion formed on the insulating support 2 has a layer structure in which the inner electrode is the fuel electrode 3 and the outer electrode is the air electrode 5. Of course, it is also possible to reverse the positional relationship of the electrodes. That is, the power generating element part can be formed by laminating the air electrode 5, the solid electrolyte 4, and the fuel electrode 3 in this order on the insulating support 2. In this case, an oxygen-containing gas such as air is introduced into the gas flow path 12 of the insulating support 2, and the fuel gas is supplied to the outer surface of the fuel electrode 3 that is the outer electrode.

セル間接続部材8は、耐熱性、耐酸化性、電気伝導性という点から、Pt、Ag、Ni基合金、Fe−Cr鋼合金の少なくとも一種以上からなることが望ましい。このセル間接続部材8とインターコネクタ6、セル間接続部材8と空気極5の接続部に、AgやPt等の貴金属やNi等の金属を含有するペーストを導電性接着剤として用いて、接続信頼性を向上させることもできる。   The inter-cell connection member 8 is preferably made of at least one of Pt, Ag, Ni-base alloy, and Fe—Cr steel alloy from the viewpoint of heat resistance, oxidation resistance, and electrical conductivity. Using the paste containing a noble metal such as Ag or Pt or a metal such as Ni as a conductive adhesive at the connection part between the inter-cell connection member 8 and the interconnector 6 and between the inter-cell connection member 8 and the air electrode 5 Reliability can also be improved.

前述した燃料電池セル1は、例えば以下のようにして製造することができる。
先ず、絶縁支持体2の材料として、平均粒径が0.1〜10μmのY23粉末などの希土類元素酸化物粉末と、Ni粉末(NiO粉末でもよい)とを用意し、これらの粉末を、所定の比率で混合し、混合後の熱膨張係数が固体電解質4とほぼ一致するようにする。この混合粉末に、ポアー剤と、セルロース系有機バインダーと、水とからなる溶媒とを混合し、押し出し成形して、内部に燃料ガス流路52を有する中空の板状形状、扁平状の絶縁支持体成形体2を作成する。
The fuel cell 1 described above can be manufactured, for example, as follows.
First, as the material for the insulating support 2, a rare earth element oxide powder such as Y 2 O 3 powder having an average particle size of 0.1 to 10 μm and Ni powder (or NiO powder) are prepared, and these powders are prepared. Are mixed at a predetermined ratio so that the thermal expansion coefficient after mixing is substantially the same as that of the solid electrolyte 4. The mixed powder is mixed with a solvent composed of a pore agent, a cellulose organic binder, and water, extruded, and formed into a hollow plate-like or flat insulating support having a fuel gas channel 52 inside. The body molded body 2 is created.

以下、燃料電池セルスタックの製造工程図である図10を参照して説明する。
まず、絶縁支持体2側の集電燃料極を作製する。例えば、NiO粉末、Ni粉末と、Y23等の希土類元素酸化物が固溶したZrO2粉末とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンを加えてスラリーとし、ドクターブレード法にて、厚み50〜60μmの集電燃料極テープ3aを作製する。集電燃料極テープ3aを発電素子部単位に切断する。
Hereinafter, the fuel cell stack manufacturing process will be described with reference to FIG.
First, a current collecting fuel electrode on the insulating support 2 side is produced. For example, NiO powder, Ni powder, and ZrO 2 powder in which a rare earth element oxide such as Y 2 O 3 is dissolved, are mixed with a pore agent, and an acrylic binder and toluene are added to form a slurry. A current collecting fuel electrode tape 3a having a thickness of 50 to 60 μm is produced by a doctor blade method. The collector fuel electrode tape 3a is cut into power generating element units.

切断した集電燃料極テープ3aにおいて、絶縁体を形成する部分を打ち抜く(図10(a))。
次に、この集電燃料極テープ3a上のインターコネクタ形成部分に、活性燃料極3bを印刷する(図10(b))。このとき前述したように、燃料ガスマニホールドMに最も近い発電素子部においては、活性燃料極の幅Dを、他の活性燃料極の幅dよりも広くとる。
In the cut current collecting fuel electrode tape 3a, a portion for forming an insulator is punched out (FIG. 10A).
Next, the active fuel electrode 3b is printed on the interconnector forming portion on the current collecting fuel electrode tape 3a (FIG. 10B). At this time, as described above, in the power generation element portion closest to the fuel gas manifold M, the width D of the active fuel electrode is set wider than the width d of the other active fuel electrodes.

さらに、活性燃料極3b上に、インターコネクタ6を印刷する(図10(c))。
そしてもう一度、インターコネクタ6の中央部分を除いて活性燃料極3bを全体に印刷する(図10(d))。
次に、この状態で、燃料極テープ3aを、支持体成形体2に横縞状に貼り付ける。その際の燃料極テープ3aと他の燃料極テープ3aとは、3mm程度の間隔をあけて配置する。そして、この積層体を乾燥し、900〜1100℃の温度範囲で仮焼する。(図10(e))。
Further, the interconnector 6 is printed on the active fuel electrode 3b (FIG. 10C).
Then, once again, the active fuel electrode 3b is printed on the entire surface except for the central portion of the interconnector 6 (FIG. 10 (d)).
Next, in this state, the fuel electrode tape 3a is affixed to the support body 2 in a horizontal stripe pattern. In this case, the fuel electrode tape 3a and the other fuel electrode tape 3a are arranged with an interval of about 3 mm. And this laminated body is dried and calcined in the temperature range of 900-1100 degreeC. (FIG. 10 (e)).

インターコネクタ6の、前記活性燃料極3bを印刷しなかった中央部分に、有機物シート(マスキングテープ)10を貼り付ける(図10(f))。
次に、この積層体を、8YSZ(8モル%のYが固溶したZrO2粉末)にアクリル系バインダーとトルエンを加えてスラリーとした固体電解質溶液に漬けて、固体電解質溶液から取り出す。このディップにより、積層体の一面に固体電解質4の層が塗布されるとともに、前記(a)で打ち抜いた空間に絶縁体である固体電解質4が充填される。
An organic sheet (masking tape) 10 is attached to the central portion of the interconnector 6 where the active fuel electrode 3b is not printed (FIG. 10 (f)).
Next, this laminate is immersed in a solid electrolyte solution obtained by adding an acrylic binder and toluene to 8YSZ (ZrO 2 powder in which 8 mol% of Y is solid-dissolved), and is taken out from the solid electrolyte solution. By this dipping, a layer of the solid electrolyte 4 is applied to one surface of the multilayer body, and the space punched in (a) is filled with the solid electrolyte 4 that is an insulator.

この状態で、800°C、1時間仮焼きする。この仮焼き中に、有機物シート10とその上に塗布された固体電解質4の層を除去することができる(図10(g))。
次に空気極の形成部分に反応防止層11を塗布して1480°C、2時間焼成する(図10(h))。その反応防止層11の上から、空気極5を印刷し1050°C、2時間焼き付ける(図10(i))。
In this state, calcining is performed at 800 ° C. for 1 hour. During this calcination, the organic sheet 10 and the layer of the solid electrolyte 4 applied thereon can be removed (FIG. 10 (g)).
Next, the reaction preventing layer 11 is applied to the portion where the air electrode is formed and baked at 1480 ° C. for 2 hours (FIG. 10H). From the reaction preventing layer 11, the air electrode 5 is printed and baked at 1050 ° C. for 2 hours (FIG. 10 (i)).

最後に、1つの発電素子部のインターコネクタ6と、これに隣接する発電素子部の空気極5とを接続するための発電素子接続部材7を貼り付けて(図10(j))、燃料電池セルスタックが完成する。
以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではない。例えば、前記の例では絶縁支持体2は、中空の板状で内部に複数のガス流路12を有するものとして説明したが、絶縁支持体2は、円筒状でもよく、ガス流路12の数は一つでもよく、さらに絶縁体であればその材質も問わない。その他、本発明の範囲内で種々の変更を施すことが可能である。
Finally, a power generation element connecting member 7 for connecting the interconnector 6 of one power generation element section and the air electrode 5 of the power generation element section adjacent thereto is pasted (FIG. 10 (j)), and the fuel cell The cell stack is completed.
Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments. For example, in the above example, the insulating support 2 has been described as having a hollow plate shape and having a plurality of gas passages 12 inside. However, the insulating support 2 may be cylindrical and the number of gas passages 12 There may be only one, and any material may be used as long as it is an insulator. In addition, various modifications can be made within the scope of the present invention.

本発明の燃料電池セル1の構造を示す斜視図である。(a)はセル表面の電流の方向とセル裏面の電流の方向とが反対になるタイプを示し、(b)はセル表面の電流の方向とセル裏面の電流の方向とが同一になるタイプを示す。It is a perspective view which shows the structure of the fuel battery cell 1 of this invention. (A) shows a type in which the direction of the current on the cell surface is opposite to the direction of the current on the back side of the cell, and (b) shows a type in which the direction of current on the cell surface is the same as the direction of the current on the back side of the cell. Show. 燃料電池セル1の正面図である。1 is a front view of a fuel battery cell 1. FIG. 燃料電池セル1の接続構造を拡大して示す縦断面図である。1 is an enlarged longitudinal sectional view showing a connection structure of fuel cell 1. 燃料電池セルの発電素子部の配列パターンを示す正面図である。It is a front view which shows the arrangement pattern of the electric power generation element part of a fuel cell. 燃料電池セル表面の電流の方向と裏面の電流の方向とが反対になるタイプの燃料電池セル間接続構造を示す斜視図である。It is a perspective view which shows the connection structure between fuel cells of the type from which the direction of the electric current of a fuel cell surface and the direction of the electric current of a back surface become opposite. 燃料電池セル表面の電流の方向と裏面の電流の方向とが同一になるタイプの燃料電池セル間接続構造を示す斜視図である。It is a perspective view which shows the connection structure between fuel cells of the type from which the direction of the electric current of a fuel cell surface and the direction of the electric current of a back surface become the same. セル間接続部材8の形状の一例を示す斜視図である。It is a perspective view which shows an example of the shape of the connection member 8 between cells. 燃料電池セル表面の電流の方向と裏面の電流の方向とが反対になるタイプの燃料電池セル間を接続する状態を示す断面図である。It is sectional drawing which shows the state which connects between the types of fuel battery cells from which the direction of the electric current of a fuel cell surface and the direction of the electric current of a back surface become opposite. 燃料電池セル表面の電流の方向と裏面の電流の方向とが同一になるタイプの燃料電池セル間を接続する状態を示す断面図である。It is sectional drawing which shows the state which connects between the fuel cell of the type from which the direction of the electric current of a fuel cell surface and the direction of the electric current of a back surface become the same. 燃料電池セルの製造工程図である。It is a manufacturing-process figure of a fuel cell.

符号の説明Explanation of symbols

1 燃料電池セル
2 絶縁支持体
3 燃料極
4 固体電解質
5 空気極
6 インターコネクタ
7 発電素子間接続部材
8 セル間接続部材
12 燃料ガス流路
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Insulation support body 3 Fuel electrode 4 Solid electrolyte 5 Air electrode 6 Interconnector 7 Inter-generation element connection member 8 Inter-cell connection member 12 Fuel gas flow path

Claims (5)

単一若しくは複数の燃料ガス流路が、軸長方向に形成された柱状の絶縁支持体の表面に、燃料極、固体電解質及び、空気極を順次積層してなる発電素子部を軸長方向に所定間隔をおいて複数個設け、該複数の発電素子部をインターコネクタで直列に接続してなる燃料電池セルであって、
前記複数の発電素子部のうち、燃料ガスマニホールドに最も近い発電素子部又は燃料ガスマニホールドに最も遠い発電素子部に形成される、他の燃料電池セルとの接続用のインターコネクタの固体電解質からの露出幅が、発電素子部間を接続するために設けられたインターコネクタの固体電解質からの露出幅よりも、広く形成されていることを特徴とする燃料電池セル。
A single or multiple fuel gas flow passages are provided in the axial direction with a power generation element portion in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially laminated on the surface of a columnar insulating support formed in the axial direction. A plurality of fuel cells formed by connecting a plurality of power generating element portions in series with an interconnector, provided at a predetermined interval,
Among the plurality of power generation element portions, the power generation element portion closest to the fuel gas manifold or the power generation element portion farthest from the fuel gas manifold is formed from the solid electrolyte of the interconnector for connection with other fuel cells. A fuel cell, wherein an exposed width is formed wider than an exposed width from a solid electrolyte of an interconnector provided to connect power generating element portions.
前記発電素子部間を接続するために絶縁支持体に設けられたインターコネクタの露出幅が3mm以下であり、他の燃料電池セルとの接続用のインターコネクタの露出幅は3mm以上である請求項1記載の燃料電池セル。   An exposed width of an interconnector provided on an insulating support for connecting the power generating element portions is 3 mm or less, and an exposed width of an interconnector for connection to another fuel cell is 3 mm or more. 1. The fuel cell according to 1. 絶縁支持体の横断面が扁平状である請求項1又は請求項2記載の燃料電池セル。   The fuel cell according to claim 1 or 2, wherein a cross section of the insulating support is flat. 請求項1から請求項3のいずれかに記載の燃料電池セルの複数を、セル間接続部材で電気的に接続してなるセルスタック。   A cell stack formed by electrically connecting a plurality of the fuel cells according to any one of claims 1 to 3 with an inter-cell connecting member. 請求項4記載のセルスタックを収納容器内に複数収納してなる燃料電池。   A fuel cell comprising a plurality of cell stacks according to claim 4 housed in a housing container.
JP2004193134A 2004-06-30 2004-06-30 Cell stack and fuel cell Active JP4741815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004193134A JP4741815B2 (en) 2004-06-30 2004-06-30 Cell stack and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004193134A JP4741815B2 (en) 2004-06-30 2004-06-30 Cell stack and fuel cell

Publications (2)

Publication Number Publication Date
JP2006019059A true JP2006019059A (en) 2006-01-19
JP4741815B2 JP4741815B2 (en) 2011-08-10

Family

ID=35793146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004193134A Active JP4741815B2 (en) 2004-06-30 2004-06-30 Cell stack and fuel cell

Country Status (1)

Country Link
JP (1) JP4741815B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095566A (en) * 2005-09-29 2007-04-12 Kyocera Corp Lateral stripe type fuel battery cell
JP2007250368A (en) * 2006-03-16 2007-09-27 Kyocera Corp Lateral stripe type fuel cell and fuel cell
WO2007119437A1 (en) * 2006-03-14 2007-10-25 Ngk Insulators, Ltd. Reaction device
JP2008059793A (en) * 2006-08-29 2008-03-13 Kyocera Corp Fuel cell and horizontal-stripe type cell therefor
JP2008084716A (en) * 2006-09-28 2008-04-10 Kyocera Corp Fuel battery cell, fuel battery cell stack, and fuel cell
JP2008135360A (en) * 2006-10-24 2008-06-12 Ngk Insulators Ltd Thin plate for unit cell of solid oxide fuel battery
JP2008135304A (en) * 2006-11-29 2008-06-12 Kyocera Corp Cell stack of fuel cell and fuel cell
JP2008226789A (en) * 2007-03-15 2008-09-25 Kyocera Corp Horizontal-stripe type fuel battery cell and its manufacturing method
JP2008282653A (en) * 2007-05-10 2008-11-20 Kyocera Corp Lateral stripe type cell for fuel cell and fuel cell
WO2009069739A1 (en) * 2007-11-30 2009-06-04 Kyocera Corporation Horizontally-striped solid-oxide fuel battery cell stack and fuel battery
JP2009129852A (en) * 2007-11-27 2009-06-11 Kyocera Corp Cell stack, and fuel cell
WO2009082032A1 (en) 2007-12-26 2009-07-02 Tokyo Gas Company Limited Lateral-striped solid-oxide fuel cell
JP2010021135A (en) * 2008-07-09 2010-01-28 Samsung Electro Mech Co Ltd Stack and fuel cell electric power generation system including same
JP2010205619A (en) * 2009-03-04 2010-09-16 Kyocera Corp Cell stack of horizontal solid oxide fuel cell, and fuel cell
JP2011165613A (en) * 2010-02-15 2011-08-25 Kyocera Corp Horizontal stripe type solid oxide fuel cell bundle and fuel cell
WO2012086420A1 (en) 2010-12-24 2012-06-28 日本碍子株式会社 Junction for electrically connecting power generation units of solid oxide fuel cell
JP2014089865A (en) * 2012-10-30 2014-05-15 Nippon Soken Inc Fuel cell stack and fuel cell stack unit
CN104934621A (en) * 2015-05-15 2015-09-23 广州中国科学院先进技术研究所 Engine tail gas cleanup device
JP2017010843A (en) * 2015-06-24 2017-01-12 京セラ株式会社 Cell stack, module and module housing device
JP2018098203A (en) * 2016-12-09 2018-06-21 日本碍子株式会社 Fuel battery cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310155A (en) * 1993-04-28 1994-11-04 Mitsubishi Heavy Ind Ltd Manufacture of electrolytic cell for solid electrolytic fuel cell
JP2003123827A (en) * 2001-10-12 2003-04-25 Mitsubishi Heavy Ind Ltd Heat exchange structure of fuel cell
JP2004039428A (en) * 2002-07-03 2004-02-05 Kyocera Corp Cell stack and its manufacturing method as well as fuel cell
JP2004179071A (en) * 2002-11-28 2004-06-24 Kyocera Corp Cell for fuel cell, and fuel cell
JP2004178817A (en) * 2002-11-22 2004-06-24 Kyocera Corp Cell of fuel cell and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310155A (en) * 1993-04-28 1994-11-04 Mitsubishi Heavy Ind Ltd Manufacture of electrolytic cell for solid electrolytic fuel cell
JP2003123827A (en) * 2001-10-12 2003-04-25 Mitsubishi Heavy Ind Ltd Heat exchange structure of fuel cell
JP2004039428A (en) * 2002-07-03 2004-02-05 Kyocera Corp Cell stack and its manufacturing method as well as fuel cell
JP2004178817A (en) * 2002-11-22 2004-06-24 Kyocera Corp Cell of fuel cell and fuel cell
JP2004179071A (en) * 2002-11-28 2004-06-24 Kyocera Corp Cell for fuel cell, and fuel cell

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095566A (en) * 2005-09-29 2007-04-12 Kyocera Corp Lateral stripe type fuel battery cell
WO2007119437A1 (en) * 2006-03-14 2007-10-25 Ngk Insulators, Ltd. Reaction device
JP2007250368A (en) * 2006-03-16 2007-09-27 Kyocera Corp Lateral stripe type fuel cell and fuel cell
JP2008059793A (en) * 2006-08-29 2008-03-13 Kyocera Corp Fuel cell and horizontal-stripe type cell therefor
JP2008084716A (en) * 2006-09-28 2008-04-10 Kyocera Corp Fuel battery cell, fuel battery cell stack, and fuel cell
JP2008135360A (en) * 2006-10-24 2008-06-12 Ngk Insulators Ltd Thin plate for unit cell of solid oxide fuel battery
JP2008135304A (en) * 2006-11-29 2008-06-12 Kyocera Corp Cell stack of fuel cell and fuel cell
JP2008226789A (en) * 2007-03-15 2008-09-25 Kyocera Corp Horizontal-stripe type fuel battery cell and its manufacturing method
JP2008282653A (en) * 2007-05-10 2008-11-20 Kyocera Corp Lateral stripe type cell for fuel cell and fuel cell
JP2009129852A (en) * 2007-11-27 2009-06-11 Kyocera Corp Cell stack, and fuel cell
WO2009069739A1 (en) * 2007-11-30 2009-06-04 Kyocera Corporation Horizontally-striped solid-oxide fuel battery cell stack and fuel battery
JP2009134978A (en) * 2007-11-30 2009-06-18 Kyocera Corp Horizontal-stripe fuel cell stack, and fuel cell
WO2009082032A1 (en) 2007-12-26 2009-07-02 Tokyo Gas Company Limited Lateral-striped solid-oxide fuel cell
JP2009176701A (en) * 2007-12-26 2009-08-06 Tokyo Gas Co Ltd Horizontally-striped solid-oxide fuel battery
JP2010021135A (en) * 2008-07-09 2010-01-28 Samsung Electro Mech Co Ltd Stack and fuel cell electric power generation system including same
JP2010205619A (en) * 2009-03-04 2010-09-16 Kyocera Corp Cell stack of horizontal solid oxide fuel cell, and fuel cell
JP2011165613A (en) * 2010-02-15 2011-08-25 Kyocera Corp Horizontal stripe type solid oxide fuel cell bundle and fuel cell
EP2680360A2 (en) 2010-12-24 2014-01-01 NGK Insulators, Ltd. Junction for electrically connecting power generation units of solid oxide fuel cell
EP2658019A1 (en) * 2010-12-24 2013-10-30 NGK Insulators, Ltd. Junction for electrically connecting power generation units of solid oxide fuel cell
WO2012086420A1 (en) 2010-12-24 2012-06-28 日本碍子株式会社 Junction for electrically connecting power generation units of solid oxide fuel cell
EP2680360A3 (en) * 2010-12-24 2014-07-16 NGK Insulators, Ltd. Junction for electrically connecting power generation units of solid oxide fuel cell
EP2658019A4 (en) * 2010-12-24 2014-07-30 Ngk Insulators Ltd Junction for electrically connecting power generation units of solid oxide fuel cell
US8883369B2 (en) 2010-12-24 2014-11-11 Ngk Insulators, Ltd. Connected body connecting electrically between power generation parts of solid oxide fuel cells
JP2014089865A (en) * 2012-10-30 2014-05-15 Nippon Soken Inc Fuel cell stack and fuel cell stack unit
CN104934621A (en) * 2015-05-15 2015-09-23 广州中国科学院先进技术研究所 Engine tail gas cleanup device
JP2017010843A (en) * 2015-06-24 2017-01-12 京セラ株式会社 Cell stack, module and module housing device
JP2018098203A (en) * 2016-12-09 2018-06-21 日本碍子株式会社 Fuel battery cell

Also Published As

Publication number Publication date
JP4741815B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5132878B2 (en) Fuel cell, fuel cell stack and fuel cell
JP5175527B2 (en) Cell stack and fuel cell
JP5175461B2 (en) Horizontally-striped fuel cell and fuel cell
JP4741815B2 (en) Cell stack and fuel cell
JP4718959B2 (en) Horizontal stripe fuel cell
JP5118865B2 (en) Horizontally-striped fuel cell and method for producing the same
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP5241663B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5192723B2 (en) Horizontally-striped fuel cell and fuel cell
JP5192702B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP5417543B1 (en) Horizontal stripe fuel cell
JP4851692B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP2004179071A (en) Cell for fuel cell, and fuel cell
JP5132879B2 (en) Horizontal stripe fuel cell and fuel cell
JP5449076B2 (en) Fuel cell
JP2007250368A (en) Lateral stripe type fuel cell and fuel cell
JP5179131B2 (en) Horizontal stripe fuel cell and fuel cell
JP4465175B2 (en) Solid electrolyte fuel cell
JP5920880B2 (en) Mounting structure of stacked solid oxide fuel cell
JP5179153B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP5437152B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP4925574B2 (en) Fuel cell and fuel cell
JP5198108B2 (en) Horizontally-striped solid oxide fuel cell stack and fuel cell
JP4021782B2 (en) Fuel cell
JP6039461B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Ref document number: 4741815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250