JP2006017671A - せん断力検出方法及びすべり検出方法 - Google Patents

せん断力検出方法及びすべり検出方法 Download PDF

Info

Publication number
JP2006017671A
JP2006017671A JP2004198255A JP2004198255A JP2006017671A JP 2006017671 A JP2006017671 A JP 2006017671A JP 2004198255 A JP2004198255 A JP 2004198255A JP 2004198255 A JP2004198255 A JP 2004198255A JP 2006017671 A JP2006017671 A JP 2006017671A
Authority
JP
Japan
Prior art keywords
pressure
shear force
sensitive elements
shearing force
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004198255A
Other languages
English (en)
Inventor
Toru Kuga
融 空閑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004198255A priority Critical patent/JP2006017671A/ja
Publication of JP2006017671A publication Critical patent/JP2006017671A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】せん断力検出構造を持たない簡単な構造の分布型センサを用いてせん断力を検出できるようにする。
【解決手段】複数の感圧素子1が分布された分布型感圧センサSを物体に接触させ、その接触物体Tとの間に圧力のみが働く状態で複数の感圧素子1の全ての出力状態を記録しておき、外界の幾何学的拘束などにより実際の接触位置が動いていないことを確認しつつ、複数の感圧素子1の全ての出力を周期的に観測し、その周期的に観測している感圧素子1の出力と先に記録している出力状態とを比較して出力領域の変化を調べ、その出力領域が移動または一方向に広がっている場合にせん断力τが発生していると判定すると同時に、そのせん断力τの方向を判定する。
【選択図】図3

Description

本発明は、分布型感圧センサを用いてせん断力を検出するせん断力検出方法及びそのせん断力の検出情報に基づいてすべりを検出するすべり検出方法に関する。
分布型感圧センサの1つとして、圧力分布と摩擦力分布とを一度に測るセンサが提案されている(例えば、特許文献1参照。)。
この特許文献1に記載の分布型感圧センサは、相互に嵌合する形状の多数の凹凸を対向面に有する一対の圧板と、それらの圧板の対向面間に挟まれたシート状の感圧導電性素材とを備えており、上記圧板の対向面の凹凸の頂面、底面及びそれらの中間平面にそれぞれ対向する電極を配設して検出部を構成し、その各検出部における電極間の導電性を検出する検出手段を設けている。そして、検出した導電性に基づいて圧板の外側面であるセンサ面に垂直方向に作用する圧力分布及びセンサ面と平行に作用する摩擦力(せん断力)分布を測定する構造となっている。
特開2003−98022号公報
ところで、上記した特許文献1に記載の分布型感圧センサによれば、センサを曲げて小径の略円筒面に当てはめた場合、上下の傾斜面同士の平行性が半径の差によってずれたり、曲げによる内部応力が傾斜面のセンサ出力に現れたりして、そのままでは使えない可能性がある。また、特許文献1に記載の分布型感圧センサを含む従来の触覚センサにおいて、せん断力やすべりを検出する場合、同一センサ内にせん断力検出用の素子を追加するという方法が採られており、センサ構造が複雑になっている。さらに、検出素子数が多くなるため、信号処理負荷の増大、センサやセンサを搭載するロボットフィンガやハンドの大型化が問題となってきている。
本発明はそのような実情に鑑みてなされたもので、せん断力検出構造を持たない簡単な構造の分布型感圧センサを用いてせん断力を容易に検出することが可能なせん断力検出方法を提供すること、及び、そのようなせん断力検出方法の検出情報に基づいてすべりを検出するすべり検出方法を提供することを目的とする。
本発明のせん断力検出方法は、円筒面などの凸曲面上に複数の感圧素子が分布され、それら感圧素子の全体が表面層で覆われてなる分布型感圧センサを用いてせん断力を検出する方法であって、前記分布型感圧センサを物体に接触させ、その接触物体との間に圧力のみが働く状態で前記複数の感圧素子の全ての出力状態を記録しておき、前記接触物体との接触位置が変化しない条件のもとで前記複数の感圧素子の全ての出力を周期的に観測し、その周期的に観測している感圧素子の出力と先に記録している出力状態とを比較して出力領域の変化を調べ、その出力領域が移動または一方向に広がっている場合にせん断力が発生していると判定すると同時に、そのせん断力の方向(向き)を判定することを特徴としている。
本発明の検出方法をより具体的に説明する。
まず、円筒面などの凸曲面上に複数の感圧素子が分布され、それら感圧素子の全体が表面層で覆われてなる分布型感圧センサを用い、その分布型感圧センサを物体に押し付けたとき、接触位置の感圧素子に出力が現れる。さらに、物体から剪断力を受けると、表面層が剪断力方向に微動し、物体と非接触な位置にある非接触領域の感圧素子にも圧力が加わって出力が現れる。従って、接触時点で全感圧素子の出力を記憶装置に記録しておき、その後、外界の幾何学的拘束などにより実際の接触位置が動いていないことを確認しつつ、周期的に全感圧素子の出力を観測して先に記録した記録値と比較し、出力領域が変化した場合に剪断力が発生したと判定し、同時に剪断力の方向(向き)を判定する。さらに、剪断力の方向が一定で強度(非接触領域の感圧素子の出力)が時間とともに振動変化をしている場合、すべりが起きていると判定する。
本発明のせん断力検出方法において、接触物体との間に圧力のみが働く状態での複数の感圧素子を多段階のデジタル値に変換して記録しておき、周期的に観測している複数の感圧素子の出力を多段階のデジタル値に変換して重心を求め、その重心位置と前記記録のデジタル値の重心位置とを比較して、重心の位置ずれがある場合にせん断力が発生していると判定すると同時に、そのせん断力の方向(向き)を判定するようにしてもよい。
また、接触物体との間に圧力のみが働く状態での複数の感圧素子を2段階のデジタル値に変換して記録しておき、周期的に観測している複数の感圧素子の出力を2段階のデジタル値に変換して図心を求め、その図心位置と前記記録のデジタル値の図心位置とを比較して、図心の位置ずれがある場合にせん断力が発生していると判定すると同時に、そのせん断力の方向(向き)を判定するようにしてもよい。
本発明のすべり検出方法は、上記した特徴を有するせん断力検出方法によって判定されたせん断力の方向が一定でそのせん断力の強度が時間とともに振動変化している場合にすべりが発生していると判定することを特徴としている。
本発明によれば、分布型感圧センサを物体に接触させ、その接触物体との間に圧力のみが働く状態で複数の感圧素子の全ての出力状態を記録しておき、接触物体との接触位置が変化しない条件のもとで複数の感圧素子の全ての出力を周期的に観測し、その周期的に観測している感圧素子の出力と先に記録している出力状態とを比較して出力領域の変化を調べ、その出力領域が移動または一方向に広がっている場合にせん断力が発生していると判定すると同時に、そのせん断力の方向を判定するようにしているので、せん断力検出構造を持たない分布型感圧センサを用いてせん断力を検出することができる。また、せん断力の検出情報に基づいてすべりの発生も検出することできる。
このように、法線方向の力のみを検出する感圧素子配置を用いた分布型感圧センサでせん断力及びすべりを検出することができるので、小径の略円筒面上に複数の感圧素子を分布した分布型センサであっても、せん断力及びすべりの検出が可能となり、ロボットの指先などの小型略円筒部分での検出に有効に利用することができる。また、全ての感圧素子を圧力検出専用の素子として使用するので、せん断力検出構造を有するものに比べて、圧力検出の位置分解能を高めることができる。
以下、本発明の実施形態を図面に基づいて説明する。
−分布型感圧センサ−
図1は本発明のせん断力検出方法に用いる分布型感圧センサの構造を模式的に示す図である。
図1に示す分布型感圧センサSは、円筒面分布型感圧センサであって、複数の感圧素子1・・1と、外周面が円筒面であるコア2とを有し、そのコア2の外周面に感圧素子1・・1が配列されている。感圧素子1・・1の全体は表面層3にて覆われており、その表面層3はコア2に結合部4を介して結合されている。なお、この例の分布型感圧センサSには、図1の紙面と直交する方向(奥行き方向)にも複数の感圧素子1が配列されている。
感圧素子1は、コア2の法線方向に作用する力を検出して出力する。感圧素子1の具体的な例としては、例えば、導電性ゴムや導電性インクなどの感圧導電性材料に、マトリクス配置の電極または個別ペアの正負電極を組み合わせた構造のもの、あるいは、圧電素子が利用可能である。
コア2は、円柱形状の部材であって、その外周面が円筒面となっている。なお、コア2の外周面は円筒面に限られることなく、円筒面(真円)に近い曲率の略円筒面であってもよいし、他の曲率の凸曲面であってもよい。
表面層3は複数の感圧素子1・・1の全体を覆うように配置されている。表面層3を構成する材料は、感圧素子1の検出領域を分散・均一化すること、及び、対象物体Tとの摩擦を大きくする等の観点から、柔軟性のある材料が適している。なお、せん断力検出の観点からは硬い材質でも構わない。
結合部4は、表面層3がコア2から離れること、及び、コア2に対して際限なくすべり移動することを防ぐために設けられている。なお、感圧素子1と表面層3とは結合されておらず、表面層3が感圧素子1に対してすべり移動が可能である。また、表面層3は、感圧素子1が配置されていない領域で結合部4を介してコア2に結合されている。
以上の分布型感圧センサSの各感圧素子1の出力は、図2に示すように、検出処理装置10に入力される。検出処理装置10は、CPU等の計算装置11と半導体メモリ等の記憶装置12とを備えている。
<実施例1>
次に、以上の分布型感圧センサSを用いてせん断力及びすべりを検出する方法の実施例を説明する。
まず、図3(a)に示すように、分布型感圧センサSに対象物体Tから圧力Pだけが加えられた状態(基準状態)で、分布型感圧センサSの全ての感圧素子1・・1の出力を計算装置11にて多段階のデジタル値に変換して記憶装置12に基準出力状態として記録する。
このような基準出力状態の記録が完了した後、検出処理装置10の計算装置11によって分布型感圧センサSの全ての感圧素子1・・1の出力を周期的に観測する。このとき、実際の接触位置が動いていないことを、周囲の幾何学的拘束条件などで確認しておく。例えば、この例の分布型感圧センサSをロボットの指に使用する場合、対象物体Tを複数の指で保持し物***置を拘束して、接触位置が固定された条件とする。
次に、周期的に観測している感圧素子1・・1の出力を多段階のデジタル値に順次変換し、そのデジタル変換後の圧力データの重心を求めるとともに、その重心位置と記憶装置12に記録しているデジタル値(圧力データ)の重心位置とを順次比較して、重心の位置ずれがある場合にせん断力が発生していると判定する。
具体的には、例えば図3(b)に示すように、図中下方向へのせん断力τが加わると、分布型感圧センサSの表面層3が下向きに引っ張られ、分布型感圧センサSの上側の非接触領域Bの感圧素子1にも力が加わって出力が現れるので、観測しているセンサ出力の出力領域が基準出力状態に対して上側に広がって重心位置が上方向にずれる。このような重心位置のずれが生じた場合、せん断力τが発生していると判定する。さらに、重心位置のずれが上向きであるので、せん断力τが下向きにかかったものと判定する。また、このような検出処理にて判定されたせん断力τの方向が一定であり、そのせん断力τの強度つまり非接触領域Bの感圧素子1の出力が時間とともに振動変化している場合にすべりが発生していると判定する。
以上のように、この実施例によれば、感圧素子1のみを用いた分布型感圧センサ(円筒面分布型感圧センサ)Sを使用してせん断力及びすべりを検出することができるので、ロボットの指先などの小型略円筒部分での検出に有効に利用することができる。
ここで、以上の例では、分布型感圧センサSの全ての感圧素子1・・1の出力を多段階のデジタル値に変換して重心を求めているが、感圧素子1・・1の出力を2段階のデジタル値に変換して図心を求め、その図心の位置ずれに基づいてせん断力及びすべりを検出するようにしてもよい。この場合のせん断力・すべりの検出処理も重心の場合と同様な手法で行うことができる。
また、2段階のデジタル変換を行って判定を行う場合(2値観測)、基本検出状態(図3(a))で出力領域Aに存在する感圧素子1の上端及び下端の位置(素子端部位置)を記録しておき、出力を発生する感圧素子1が、記録している素子端部位置から移動した場合にせん断力が発生していると判定し、さらにその移動の向きが上側である(図3(b))、せん断力が下向きにかかったものと判定するようにしてもよい。
ここで、この例に用いる分布型感圧センサSにおいては、表面層3の材質により、せん断力の伝わり方が異なる。その具体的な例を以下に説明する。
まず、表面層3の材質として、比較的曲げやすいが伸びにくい材質を用いた場合、図4に示すように、対象物体Tとの接触位置でのせん断力τにより、表面層3が下方向へ引っ張られ、コア2に対してすべり移動することにより上側の隙間が狭まり、非接触領域Bの感圧素子1に圧力が加わる構造となる(実施例2−1)。
また、表面層3の材質を硬い材質とした場合、表面層3は剛体と見なせるので、図3(b)に示すように、対象物体Tとの接触位置での圧力とせん断力の合力によって表面層3の全体が微小移動して、非接触領域Bの感圧素子1に圧力が加わる構造となる(実施例2−2)。
さらに、図1の分布型感圧センサSにおいて、感圧素子1の外面と表面層3との間に柔軟材料を挟んで感圧素子1と表面層3とを結合した構造とした場合、感圧素子1と表面層3はすべり移動が不可能となるので、表面層3には硬い材質を用いた上記実施例2−2と同様の原理で、非接触領域Bの感圧素子1に圧力が加わる構造となる(実施例2−3)。
<実施例3>
図5は本発明の他の実施例の説明図である。
この例では、2つの分布型感圧センサS,Sを用いてせん断力を検出する点に特徴がある。具体的には、2つの分布型感圧センサS,Sによって柱状の物体T1を両側から挟んでせん断力を検出する。このとき、2つの分布型感圧センサS,Sによる幾何学的拘束から、接触位置が変化しないことが分かっているので、2つの分布型感圧センサS,Sで物体T1を挟んだ時点で接触位置の感圧素子1の出力を記録しておき、その後、感圧素子1の出力が変化したときには、2つの分布型感圧センサS,Sに加わったせん断力の方向を総合することで、並進力F1(図5(a))、あるいは、ねじり力F2(図5(b))が加わったことを判定することができる。この例において、各分布型感圧センサS,Sによるせん断力の検出は前記した<実施例1>と同じ処理にて判定する。
なお、複数の分布型感圧センサS,Sを用いて物体を挟んだ場合、各センサ同士の内力によるせん断力が発生する可能性があるが、その発生したせん断力は本発明の方法では検出することができないので、このような場合は、物体を挟んだ際に外力が無い状態での感圧素子1の出力を記録して基準とすることで、物体への外力によるせん断力を検出することが可能になる。
ここで、本発明の検出方法によれば、せん断力検出構造を持たない簡単な構造の分布型感圧センサを用いてせん断力及びすべりを検出することができるので、複数の指機構部で物体の把持を行うロボットハンドの指先などの小型略円筒部分での検出に有効に利用することができる。本発明の検出方法を適用するロボットハンドについて以下に説明する。
まず、人の手と同様の構造を有するロボットハンドは、手のひらに相当するベースに複数の指機構部が装着され、その各指機構部は複数の関節部を介して複数のフレーム部を順次連結させて構成されている。そして、各関節部を作動させるアクチュエータが、適宜の箇所に設けられている。このようなロボットハンドは、複数の指機構部で物体の把持を行うだけでなく、上記した実施例の分布型感圧センサ(円筒面分布型センサ)Sを搭載し、上記検出処理によりせん断力やすべりを判定することで、硬度・材質・形状・表面状態等の異なる多種多様な物体の把持を実現することができる。
図6〜図9は、ロボットハンドの一例を示しており、図6はロボットハンドを手の甲側から見た平面図(上面図)、図7は親指側から見た側面図、図8は小指側から見た側面図、図9は手のひら側から見た平面図(下面図)である。
ロボットハンドは、手のひらに相当するベース101と、ベース101に装着されている複数本(この例では人間の指と同じ5本)の指機構部102,103,104,105,106と、各指機構部102,103,104,105,106を駆動する駆動部とを備えている。駆動部は、アクチュエータとしての複数のモータと、各モータの駆動力を指機構部102,103,104,105,106に伝達する動力伝達部としてワイヤー(図示せず)とを備えている。
駆動部であるモータは、ベース101部分において3平面に納められている。第1の平面上に親指用指機構部102を駆動する親指用モータ112,113,114が配置されており、第2の平面上に人差指用指機構部103を駆動する人差指用モータ116,117,118と、薬指用指機構部104及び小指用指機構部105を駆動する薬指・小指用モータ121とが配置されている。また、第3平面上に、親指用指機構部102を手のひらと平行に駆動するモータ111と、人差指用指機構部103を手のひらと平行に駆動するモータ115とが配置されているとともに、中指用指機構部104を駆動する中指用モータ119,120が配置されている。
各指機構部102,103,104,105,106は、3つの関節部123,124,125と、この関節部123,124,125によって連結された2つのフレーム部126,127及び1つの指先部128とからなり、各関節部123,124,125はそれぞれ上記の対応するモータで駆動される。
このような構造のロボットハンドにおいて、上記した実施例の分布型感圧センサ(円筒面分布型センサ)Sを指先部128などに装着し、上記検出処理によりせん断力やすべりを検出することで、硬度・材質・形状・表面状態などが異なる多種多様な物体のスムーズな把持が可能となる。
本発明は、せん断力検出構造を持たない分布型感圧センサを用いてせん断力及びすべりを検出することができるので、例えば、複数の指機構部で物体の把持を行うロボットハンドの指などの小型略円筒部分での検出に有効に利用することができる。
本発明に用いる分布型感圧センサの構造を模式的に示す図である。 本発明のせん断力検出方法を実施する装置の構成を示すブロック図である。 図1の分布型感圧センサに圧力を負荷したときの状態(a)と圧力とせん断力を負荷したときの状態(b)を併記して示す図である。 図1の分布型感圧センサの結合部の説明図である。 2つの分布型感圧センサを用いて並進力を検出する場合の例(a)とねじり力を検出する場合の例(b)を併記して示す図である。 ロボットハンドを手の甲側から見た上面図である。 ロボットハンドを親指側から見た側面図である。 ロボットハンドを小指側から見た側面図である。 ロボットハンドを手のひら側からみた下面図である。
符号の説明
S 分布型感圧センサ
1 感圧素子
2 コア
3 表面層
4 結合部
10 検出処理装置
11 計算装置
12 記憶装置
T 対象物体
T1 柱状の物体
P 圧力
τ せん断力
F1 並進力
F2 ねじり力

Claims (4)

  1. 凸曲面上に複数の感圧素子が分布され、それら感圧素子の全体が表面層で覆われてなる分布型感圧センサを用いてせん断力を検出する方法であって、
    前記分布型感圧センサを物体に接触させ、その接触物体との間に圧力のみが働く状態で前記複数の感圧素子の全ての出力状態を記録しておき、前記接触物体との接触位置が変化しない条件のもとで前記複数の感圧素子の全ての出力を周期的に観測し、その周期的に観測している感圧素子の出力と先に記録している出力状態とを比較して出力領域の変化を調べ、その出力領域が移動または一方向に広がっている場合にせん断力が発生していると判定すると同時に、そのせん断力の方向を判定することを特徴とするせん断力検出方法。
  2. 請求項1記載のせん断力検出方法において、接触物体との間に圧力のみが働く状態での複数の感圧素子を多段階のデジタル値に変換して記録しておき、周期的に観測している複数の感圧素子の出力を多段階のデジタル値に変換して重心を求め、その重心位置と前記記録のデジタル値の重心位置とを比較して、重心の位置ずれがある場合にせん断力が発生していると判定すると同時に、そのせん断力の方向を判定することを特徴とするせん断力検出方法。
  3. 請求項1記載のせん断力検出方法において、接触物体との間に圧力のみが働く状態での複数の感圧素子を2段階のデジタル値に変換して記録しておき、周期的に観測している複数の感圧素子の出力を2段階のデジタル値に変換して図心を求め、その図心位置と前記記録のデジタル値の図心位置とを比較して、図心の位置ずれがある場合にせん断力が発生していると判定すると同時に、そのせん断力の方向を判定することを特徴とするせん断力検出方法。
  4. 請求項1〜3のいずれかに記載のせん断力検出方法によって得られたせん断力の情報に基づいてすべりを検出する方法であって、前記せん断力検出方法によって判定されたせん断力の方向が一定でそのせん断力の強度が時間とともに振動変化している場合にすべりが発生していると判定することを特徴とするすべり検出方法。

JP2004198255A 2004-07-05 2004-07-05 せん断力検出方法及びすべり検出方法 Pending JP2006017671A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198255A JP2006017671A (ja) 2004-07-05 2004-07-05 せん断力検出方法及びすべり検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198255A JP2006017671A (ja) 2004-07-05 2004-07-05 せん断力検出方法及びすべり検出方法

Publications (1)

Publication Number Publication Date
JP2006017671A true JP2006017671A (ja) 2006-01-19

Family

ID=35792089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198255A Pending JP2006017671A (ja) 2004-07-05 2004-07-05 せん断力検出方法及びすべり検出方法

Country Status (1)

Country Link
JP (1) JP2006017671A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384349A (zh) * 2016-09-20 2017-02-08 广州肖宁道路工程技术研究事务所有限公司 轮胎与路面的接触应力分布及应力集中的检测方法
CN112334746A (zh) * 2018-06-22 2021-02-05 索尼公司 滑动检测装置
CN112469982A (zh) * 2018-06-22 2021-03-09 索尼公司 控制装置、控制方法和程序

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384349A (zh) * 2016-09-20 2017-02-08 广州肖宁道路工程技术研究事务所有限公司 轮胎与路面的接触应力分布及应力集中的检测方法
CN106384349B (zh) * 2016-09-20 2018-12-07 广州肖宁道路工程技术研究事务所有限公司 轮胎与路面的接触应力分布及应力集中的检测方法
CN112334746A (zh) * 2018-06-22 2021-02-05 索尼公司 滑动检测装置
CN112469982A (zh) * 2018-06-22 2021-03-09 索尼公司 控制装置、控制方法和程序
CN112469982B (zh) * 2018-06-22 2022-08-19 索尼公司 控制装置、控制方法和程序
US11981026B2 (en) 2018-06-22 2024-05-14 Sony Corporation Slip detecting device

Similar Documents

Publication Publication Date Title
Russell Robot tactile sensing
US8573069B2 (en) Stress sensing device, tactile sensor, and grasping apparatus
JP5267213B2 (ja) 多指ハンドおよびロボット
US8640551B2 (en) Shear force detection device, tactile sensor and grasping apparatus
JP4896198B2 (ja) 触覚センサシステム
JP5187856B2 (ja) 触覚センサ
Feng et al. Slip and roughness detection of robotic fingertip based on FBG
Noda et al. Stretchable liquid tactile sensor for robot-joints
Kampmann et al. Integration of fiber-optic sensor arrays into a multi-modal tactile sensor processing system for robotic end-effectors
KR101449410B1 (ko) 전도성 나노 또는 마이크로 기둥의 맞물림을 이용한 촉각 센서
TW201113130A (en) Sheet-like touch sensor system
FR2796149A1 (fr) Detecteur de forces a six axes monte sur le bout d'un doigt
Dvorak et al. Ultrathin tactile sensors with directional sensitivity and a high spatial resolution
JP2006017671A (ja) せん断力検出方法及びすべり検出方法
Obinata et al. Vision based tactile sensor using transparent elastic fingertip for dexterous handling
US10365717B2 (en) Tactile sensation providing apparatus
Böse et al. Wearable operation device with different types of dielectric elastomer sensors
Nacy et al. A novel fingertip design for slip detection under dynamic load conditions
US20230003590A1 (en) Piezoelectric Sensor And Robot Hand
JP2013064681A (ja) 検出装置、電子機器、及びロボット
JP4888375B2 (ja) ロボットハンド
JP2008175836A (ja) 点字読み取り用センサを備えた点字読み取り用装置
JPH02236101A (ja) 誘起振動式動的タッチセンサシステム用高温センサ
Jung et al. Shape-adaptive electrostatic soft gripper with transform mechanism for multifunctional grips
JP2009198475A (ja) 弾性体特性を利用した3次元触覚センサ及び3次元触覚センシング方法