JP2006017218A - Sliding device - Google Patents

Sliding device Download PDF

Info

Publication number
JP2006017218A
JP2006017218A JP2004195585A JP2004195585A JP2006017218A JP 2006017218 A JP2006017218 A JP 2006017218A JP 2004195585 A JP2004195585 A JP 2004195585A JP 2004195585 A JP2004195585 A JP 2004195585A JP 2006017218 A JP2006017218 A JP 2006017218A
Authority
JP
Japan
Prior art keywords
sliding
sliding member
shaft
sliding device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004195585A
Other languages
Japanese (ja)
Other versions
JP4710263B2 (en
Inventor
Yosuke Hizuka
洋輔 肥塚
Toshikazu Nanbu
俊和 南部
Yoshiteru Yasuda
芳輝 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004195585A priority Critical patent/JP4710263B2/en
Publication of JP2006017218A publication Critical patent/JP2006017218A/en
Application granted granted Critical
Publication of JP4710263B2 publication Critical patent/JP4710263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding device in which sliding face is well adapted and which can exert an effect of low friction. <P>SOLUTION: In the sliding device 1 comprising a shaft 10 and a plain bearing 11 relatively sliding via oil, a process to form recessed parts 10a for oil reservoir is applied to the shaft 10, and skewness Rsk of an inner face 11a of the plain bearing 11 is negative. Due to this structure, at the time of sliding, an effect of the oil reservoir is exerted, and the sliding face is well adapted such that an effect of reduction in friction generated in the sliding device is exerted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、摺動装置に関する。   The present invention relates to a sliding device.

従来から、摺動装置は、例えば、エンジンに設けられるクランクシャフトおよび該クランクシャフトを支持する軸受メタルなどに用いられ、クランクシャフトが軸受メタル上を摺動する際に摺動面に発生する摩擦を低減するために、軸の表面に、長手方向が摺動方向と直交する凹部を、軸表面の部位に応じて溝深さを変えて設けたものがある(特許文献1参照)。軸と軸受メタルとの間に介在する潤滑油を摺動面に満遍なく潤させるために、凹部は、潤滑油を保持し、かつ摺動時に凹部近傍の摺動面に潤滑油を提供する機能(以下、潤滑油を保持する機能)を発揮することに基づく。   Conventionally, a sliding device has been used, for example, for a crankshaft provided in an engine and a bearing metal that supports the crankshaft, and the friction generated on the sliding surface when the crankshaft slides on the bearing metal. In order to reduce this, there is one in which a concave portion whose longitudinal direction is orthogonal to the sliding direction is provided on the surface of the shaft with the groove depth changed according to the portion of the shaft surface (see Patent Document 1). In order to evenly lubricate the sliding surface with the lubricating oil interposed between the shaft and the bearing metal, the concave portion holds the lubricating oil and provides the lubricating oil to the sliding surface near the concave portion during sliding ( Hereinafter, it is based on exhibiting the function of retaining lubricating oil.

しかしながら、従来の摺動部材は、クランクシャフトのような回転運動する軸の摺動面上の形状に関して、凹部の深さなどを規定するものであり、相手面であるメタル表面の粗さに関して言及するものではない。   However, the conventional sliding member regulates the depth of the concave portion with respect to the shape on the sliding surface of the rotating shaft such as the crankshaft, and refers to the roughness of the metal surface as the mating surface. Not what you want.

例えば、マスクドブラスト工法を用いて凹部を形成したクランクシャフトと該クランクシャフトを支持する軸受メタルとの摺動において、軸受メタル表面のスキューネスRskが正であり、表面に突起部分が多く存在している場合、摺動初期において、この突起部分によって相手面であるクランクシャフトの表面が荒れてしまい、摺動面のなじみ性が悪化し、摩擦が増加するという問題がある。
特開2002−235852号公報
For example, in sliding between a crankshaft in which a recess is formed using a masked blasting method and a bearing metal that supports the crankshaft, the skewness Rsk on the surface of the bearing metal is positive, and there are many protrusions on the surface. In this case, there is a problem that in the initial stage of sliding, the surface of the crankshaft, which is the mating surface, is roughened by this protruding portion, the conformability of the sliding surface is deteriorated, and friction is increased.
JP 2002-235852 A

そこで、本発明は上記従来技術の有する問題点に鑑みなされたものであり、本発明の目的は、摺動面が良好になじみ、低摩擦という効果を発揮し得る摺動装置を提供することである。   Accordingly, the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a sliding device that can be well adapted to the sliding surface and exhibit the effect of low friction. is there.

本発明の目的は、下記の手段により達成される。
(1)油を介して相対的に摺動する第1の摺動部材と第2の摺動部材とから構成される摺動装置であって、第1の摺動部材は、油溜りのための凹部を形成する処理が施され、第2の摺動部材は、表面のスキューネスRskが負であることを特徴とする摺動装置。
The object of the present invention is achieved by the following means.
(1) A sliding device composed of a first sliding member and a second sliding member that slide relative to each other via oil, the first sliding member being an oil reservoir The sliding device is characterized in that the second sliding member has a negative surface skewness Rsk.

本発明によれば、油を介して相対的に摺動する第1の摺動部材と第2の摺動部材とから構成される摺動装置において、第1の摺動部材は、油溜りのための凹部を形成する処理が施され、第2の摺動部材は、表面のスキューネスRskが負であることによって、摺動時において、油溜りの効果が発揮されるとともに、摺動面が良好になじみ、摺動装置に発生する摩擦の低減効果を発揮する。   According to the present invention, in the sliding device constituted by the first sliding member and the second sliding member that slide relative to each other through the oil, the first sliding member is an oil reservoir. For this reason, the second sliding member has a negative surface skewness Rsk, so that the effect of oil accumulation is exhibited and the sliding surface is good when sliding. Familiarity, it shows the effect of reducing the friction generated in the sliding device.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態における摺動装置1の概略図である。図には、軸心aを中心に方向Aに向けて回転する円柱状の軸10と、これを支える円筒からなるすべり軸受11とから構成される摺動装置1が示されている。なお、軸10の長さの寸法は、図に示すものから適宜延長されても良い。さらに、軸10の表面とすべり軸受け11の内面11aとの間には、図示しない潤滑油が供給される。この潤滑油が、軸10とすべり軸受11との摺動面に発生する摩擦を低減するために、摺動面に適量に存在していることが重要である。そのため、本実施形態において、複数の凹部10aが、軸10の表面に設けられている。   FIG. 1 is a schematic view of a sliding device 1 according to an embodiment of the present invention. FIG. 1 shows a sliding device 1 including a columnar shaft 10 that rotates in the direction A about an axis a and a slide bearing 11 that is a cylinder that supports the shaft 10. In addition, the dimension of the length of the axis | shaft 10 may be suitably extended from what is shown in a figure. Further, lubricating oil (not shown) is supplied between the surface of the shaft 10 and the inner surface 11 a of the sliding bearing 11. In order to reduce the friction generated on the sliding surface between the shaft 10 and the slide bearing 11, it is important that the lubricating oil is present in an appropriate amount on the sliding surface. Therefore, in this embodiment, a plurality of recesses 10 a are provided on the surface of the shaft 10.

図2は、軸10とすべり軸受け11との摺動面における拡大図を示している。矢印Aは、軸10の摺動方向である。   FIG. 2 shows an enlarged view of the sliding surface between the shaft 10 and the sliding bearing 11. An arrow A is the sliding direction of the shaft 10.

ここで、軸10が回転摺動する際に、すべり軸受け11の内面11aのRskが正である場合は、図3に示すように、すべり軸受け11の内面11a上に突起部分11bが多く存在することとなり、突起部分11bと、軸10の凹部10a以外の表面との直接接触が起こりやすくなる。また軸10の表面とすべり軸受け11の内面11aとの隙間が小さいなど摺動条件が厳しい場合には、凹部10aによるすべり軸受け11の内面11a表面への攻撃性が懸念される。   Here, when the shaft 10 rotates and slides, if the Rsk of the inner surface 11a of the sliding bearing 11 is positive, as shown in FIG. 3, there are many protruding portions 11b on the inner surface 11a of the sliding bearing 11. Thus, direct contact between the protruding portion 11b and the surface of the shaft 10 other than the concave portion 10a is likely to occur. Further, when the sliding condition is severe such as a gap between the surface of the shaft 10 and the inner surface 11a of the sliding bearing 11 is small, there is a concern that the recess 10a may attack the inner surface 11a of the sliding bearing 11.

そこで、本実施形態において、図2に示すように、スキューネスRskが負であるように、すべり軸受け11の内面11aを形成することとした。スキューネスRskは、通常、次の式に基づいて測定される。   Therefore, in this embodiment, as shown in FIG. 2, the inner surface 11a of the slide bearing 11 is formed so that the skewness Rsk is negative. The skewness Rsk is usually measured based on the following equation.

Figure 2006017218
Figure 2006017218

式中、nは測定データのサンプル数、Rqは二乗平均平方根粗さ、Yiはi番目の測定データの粗さ曲線の中心線からの高さである(JISB0601参照)。   In the equation, n is the number of samples of measurement data, Rq is the root mean square roughness, and Yi is the height from the center line of the roughness curve of the i-th measurement data (see JISB0601).

すべり軸受け11の内面11aのスキューネスRskを負とすることによって、図2に示すように、すべり軸受け11の内面11aにおいて表面から窪んだ部分の分布が増加し、突起部分11bが減少するため、凹部10aを有した軸10の表面との摺動に関して、摺動面が良好になじみ、摩擦低減効果が十分に得られることとなる。   By making the skewness Rsk of the inner surface 11a of the sliding bearing 11 negative, as shown in FIG. 2, in the inner surface 11a of the sliding bearing 11, the distribution of the recessed portion from the surface increases and the protruding portion 11b decreases. With respect to sliding with the surface of the shaft 10 having 10a, the sliding surface is well adapted and a friction reducing effect is sufficiently obtained.

また、すべり軸受け11において、内面11aの平均粗さRaは、0.05μm以下であることが好ましい。すべり軸受け11の内面11aの粗さを上記の範囲まで小さくすることによって、軸10の表面との直接接触による摩擦の増加を抑えることができる。特に摺動条件が厳しく、凹部10aが存在する場合には、すべり軸受け11の内面11aの粗さが大きいと、摩擦初期に凹部10aが、すべり軸受け11の突起部分11bを大きく削り、内面11aの表面をあらしてしまい、摺動面が良好になじまず、摩擦低減効果が十分に発揮できない。   In the sliding bearing 11, the average roughness Ra of the inner surface 11a is preferably 0.05 μm or less. By reducing the roughness of the inner surface 11a of the sliding bearing 11 to the above range, an increase in friction due to direct contact with the surface of the shaft 10 can be suppressed. In particular, when the sliding conditions are severe and the recess 10a is present, if the roughness of the inner surface 11a of the slide bearing 11 is large, the recess 10a greatly scrapes the protruding portion 11b of the slide bearing 11 at the initial stage of friction, and the inner surface 11a The surface is exposed, the sliding surface does not adapt well, and the friction reducing effect cannot be sufficiently exhibited.

また、軸10においても、凹部10a以外の表面の平均粗さRaは、0.05μm以下であることが好ましい。これによって、油は凹部10a以外の表面が滑らかになることによって、油がより確実に凹部10aへ滞留することとなり、凹部10aによる油の閉じ込め効果が増加する。これにより、摺動面において十分に油膜を保持できる。また、上記の平均粗さRaが小さくなることにより、凹部10a以外の表面における突起部分は減少し、すべり軸受け11の内面11aとの直接接触による摩擦の増加を抑えることが出来る。   Also in the shaft 10, the average roughness Ra of the surface other than the recess 10a is preferably 0.05 μm or less. As a result, the surface of the oil other than the recess 10a becomes smooth, so that the oil stays in the recess 10a more reliably, and the oil confinement effect by the recess 10a increases. As a result, the oil film can be sufficiently retained on the sliding surface. Further, since the average roughness Ra is reduced, the number of protrusions on the surface other than the recess 10a is reduced, and an increase in friction due to direct contact with the inner surface 11a of the sliding bearing 11 can be suppressed.

また、軸10において、凹部10aが表面に開口する面積の合計は、軸10の表面積の0.3%以上10%以下とすることが好ましい。0.3%より小さい場合には凹部10aの油閉じ込め効果が十分でなく摩擦低減効果が十分発現されない。逆に10%を超えると、負荷容量の低下を招き、その結果、金属接触が発生しやすくなり、十分な摩擦低減が発現できない。   In addition, in the shaft 10, the total area of the recesses 10 a opening on the surface is preferably 0.3% or more and 10% or less of the surface area of the shaft 10. When it is less than 0.3%, the oil confinement effect of the recess 10a is not sufficient, and the friction reduction effect is not sufficiently exhibited. On the other hand, if it exceeds 10%, the load capacity is reduced. As a result, metal contact is likely to occur, and sufficient friction reduction cannot be realized.

さらに、凹部10aの最大深さは、0.5μm以上20μm以下であることが好ましい。凹部10aの深さが0.5μmより小さい場合、油閉じ込め効果が十分でなく、摩擦低減効果が十分に発現されない。20μmを超えると負荷容量の低下を招き、金属接触が発生しやすくなり、十分な摩擦低減が発現できない。   Further, the maximum depth of the recess 10a is preferably 0.5 μm or more and 20 μm or less. When the depth of the recess 10a is smaller than 0.5 μm, the oil confinement effect is not sufficient, and the friction reducing effect is not sufficiently exhibited. If it exceeds 20 μm, the load capacity is reduced, metal contact is likely to occur, and sufficient friction reduction cannot be realized.

また、凹部10aは、長手方向が摺動方向に対して直交する方向に向いていることが好ましい。これにより接触部に多くの油を流入させることが出来、摩擦の低減が図られる。   Moreover, it is preferable that the recessed part 10a is suitable for the direction where the longitudinal direction is orthogonal to a sliding direction. Thereby, much oil can be made to flow into a contact part, and reduction of friction is achieved.

さらに、凹部10aの短辺の長さは、50μm以上150μm以下であり、且つ長辺の長さは、短辺の長さの2倍以上10倍以下であることが好ましい。凹部10aの短辺が50μmより小さい場合、油の凹部10aへの流入保持が十分に行われず、また150μmを超える場合には、負荷容量が低下し、金属接触が起こりやすくなる。また、長辺の長さを短辺の2倍から10倍にすることによって、接触部に多くの油を流入させ、また接触域からの油の側方漏れを抑制し、摩擦特性を向上できる。   Further, the length of the short side of the recess 10a is preferably 50 μm or more and 150 μm or less, and the length of the long side is preferably 2 times or more and 10 times or less of the length of the short side. When the short side of the concave portion 10a is smaller than 50 μm, the inflow and retention of oil into the concave portion 10a is not sufficiently performed, and when it exceeds 150 μm, the load capacity decreases and metal contact is likely to occur. In addition, by making the length of the long side twice to 10 times that of the short side, a large amount of oil can flow into the contact portion, and side leakage of oil from the contact area can be suppressed to improve the friction characteristics. .

<実施例>
次に、本発明の実施例として、すべり軸受け11の内面11aのRskが負であること、および表面の平均粗さRaが0.05μm未満であることが、摩擦の低減に効果を発揮することを確認することを目的として、実際に摺動装置1を製作し、摩擦試験を行った。
<Example>
Next, as an example of the present invention, the fact that Rsk of the inner surface 11a of the slide bearing 11 is negative and that the average roughness Ra of the surface is less than 0.05 μm is effective in reducing friction. In order to confirm the above, a sliding device 1 was actually manufactured and a friction test was performed.

具体的には、円筒状の円柱軸10(軸10)と、スキューネスRskおよび平均粗さRaにおいて様々な形態を有する軸受メタル11(すべり軸受け11)とから構成される摺動装置1の試験体を製作し、円柱軸10を軸受メタル11の円筒内で回転させて、摺動面に発生する摩擦係数を算出する摩擦試験を行った。   Specifically, a test body of the sliding device 1 including a cylindrical columnar shaft 10 (shaft 10) and a bearing metal 11 (sliding bearing 11) having various forms in skewness Rsk and average roughness Ra. Was manufactured, and the cylinder shaft 10 was rotated within the cylinder of the bearing metal 11, and a friction test was performed to calculate the coefficient of friction generated on the sliding surface.

試験に用いた試験体の製作過程について、下記に具体的に説明する。   The manufacturing process of the test body used for the test will be specifically described below.

図4は、試験に用いた摺動装置1の垂直および水平断面図である。軸受メタル11は外径φ60の鋼製円筒に内径φ45mmのアルミメタル11cを圧入したものである。一方、円柱軸10は円筒状を呈し、外径がφ43、軸方向曲率半径R700mmの鋼鉄(SCM420H鋼)の浸炭焼き入れ焼き戻し材である。円柱軸10および軸受メタル11の幅厚10b、11dは、ともに20mmである。   FIG. 4 is a vertical and horizontal sectional view of the sliding device 1 used in the test. The bearing metal 11 is obtained by press-fitting an aluminum metal 11c having an inner diameter of 45 mm into a steel cylinder having an outer diameter of φ60. On the other hand, the column shaft 10 is a carburizing and tempering material of steel (SCM420H steel) having a cylindrical shape, an outer diameter of φ43, and an axial curvature radius of R700 mm. The widths 10b and 11d of the cylindrical shaft 10 and the bearing metal 11 are both 20 mm.

円柱軸10の表面には、凹部10aを、マイクロブラスト加工により形成した。マイクロブラスト加工では、光リソグラフィ技術を利用し、樹脂製マスクに凹部微細形状を形成し、その樹脂マスクを円筒表面に貼り付けた後、平均粒径20μmのアルミナ砥粒を、投射ノズルからワークまでの距離を100mmとし、投射流量100g/min、投射圧0.4Mpaの条件下で投射し、凹部10aを得た。   A recess 10a was formed on the surface of the cylindrical shaft 10 by microblasting. In microblasting, photolithographic technology is used to form concave fine shapes on a resin mask, and after the resin mask is attached to a cylindrical surface, alumina abrasive grains having an average particle size of 20 μm are applied from the projection nozzle to the workpiece. Was projected under the conditions of a projection flow rate of 100 g / min and a projection pressure of 0.4 Mpa to obtain a recess 10a.

凹部10aを形成後、凹部10aのエッジ部にできた盛り上がりを粒径9μmのテープラップフィルムにより除去し、試験に供した。   After forming the recess 10a, the bulge formed at the edge of the recess 10a was removed with a tape wrap film having a particle size of 9 μm and used for the test.

表1に、上記により製作し、各試験体の円柱軸10の表面に設けられた凹部10aの形態と、後述する試験結果を示す。   Table 1 shows the form of the recess 10a produced as described above and provided on the surface of the cylindrical shaft 10 of each test specimen, and the test results described later.

Figure 2006017218
Figure 2006017218

まず、比較例1における軸受メタル11の内面11aは、スキューネスRskが5.799であって正であり、平均粗さRaが0.065であって0.05以上であるため、両者において好ましい形態に設けられていない。これに対して、実施例1〜4の軸受メタル11の内面11aは、スキューネスRskと平均粗さRaとのいずれもが、本実施形態における好ましい形態に設けられている。   First, the inner surface 11a of the bearing metal 11 in Comparative Example 1 has a skewness Rsk of 5.799 and is positive, and an average roughness Ra is 0.065 and is 0.05 or more. Not provided. On the other hand, as for the inner surface 11a of the bearing metal 11 of Examples 1-4, both skewness Rsk and average roughness Ra are provided in the preferable form in this embodiment.

また、各試験体の円柱軸10においては、凹部10aの開口部の短辺は50〜150μmであり、長辺は、短辺の2倍以上10倍以下であり、前述した好ましい範囲内に形成されている。   Moreover, in the cylindrical axis | shaft 10 of each test body, the short side of the opening part of the recessed part 10a is 50-150 micrometers, and a long side is 2 times or more and 10 times or less of a short side, and forms in the preferable range mentioned above. Has been.

また、凹部10aが軸10の表面に開口する面積の合計は、軸10の表面積の0.3%以上10%以下となるように形成され、前述した好ましい範囲内に形成されている。   Further, the total area where the recesses 10a open on the surface of the shaft 10 is formed to be 0.3% or more and 10% or less of the surface area of the shaft 10, and is formed within the above-described preferable range.

また、前記凹部以外の表面の平均粗さRaは、0.05μm未満であり、前述した好ましい範囲内に形成されている。   Further, the average roughness Ra of the surface other than the concave portion is less than 0.05 μm, and is formed within the above-described preferable range.

次に、試験に用いた装置について説明する。   Next, the apparatus used for the test will be described.

図5は、試験に用いた内接2円筒試験機の概略図である。車のエンジンのクランクシャフトなどに用いられる軸とすべり軸受とから構成される摺動装置において、通常、すべり軸受は固定され、軸のみが回転する。本実施例においては、クランクシャフトなどに用いられる軸の回転速度を再現するために、円柱軸10を軸受メタル11の円筒内で回転方向Aに向けて回転させるとともに、すべり軸受け11も軸10の回転方向Aと反対の方向Bへ回転させて、両者の回転速度の絶対値を合算した相対回転速度が、クランクシャフトにおける軸の回転数と同程度となるようにした。よって、円柱軸10および軸受メタル11にはそれぞれ図示しないACサーボモータを取り付け、独立に回転制御できるようにしている。そして、5W30の潤滑油を入れた図示しない油浴内にこの円柱軸10および軸受メタル11を浸すことで、円柱軸10と軸受メタル11との間に油膜を形成した。そして、相対回転運動中に発生する摩擦トルクを、円柱軸10に取り付けた図示しないトルクセンサにより計測して、摩擦係数の算出を可能としている。   FIG. 5 is a schematic view of an inscribed two-cylinder testing machine used for the test. In a sliding device composed of a shaft used for a crankshaft or the like of a car engine and a slide bearing, the slide bearing is usually fixed and only the shaft rotates. In this embodiment, in order to reproduce the rotational speed of a shaft used for a crankshaft or the like, the cylindrical shaft 10 is rotated in the rotational direction A within the cylinder of the bearing metal 11, and the sliding bearing 11 is also connected to the shaft 10. By rotating in the direction B opposite to the rotational direction A, the relative rotational speed obtained by adding together the absolute values of both rotational speeds was set to be approximately the same as the rotational speed of the shaft in the crankshaft. Therefore, an AC servo motor (not shown) is attached to each of the cylindrical shaft 10 and the bearing metal 11 so that the rotation can be controlled independently. An oil film was formed between the cylindrical shaft 10 and the bearing metal 11 by immersing the cylindrical shaft 10 and the bearing metal 11 in an oil bath (not shown) containing 5W30 of lubricating oil. The frictional torque generated during the relative rotational motion is measured by a torque sensor (not shown) attached to the cylindrical shaft 10 so that the friction coefficient can be calculated.

次に、表2に、本実施例における試験条件について示す。   Next, Table 2 shows test conditions in this example.

Figure 2006017218
Figure 2006017218

本試験における円柱軸10の材質はSCM420H−CQTであり、軸受けメタル11の材質はA17Xである。試験は、ラジアル荷重20kgの荷重条件下で行い、使用した潤滑油は5W30SJであり、油温度は80℃である。   The material of the cylindrical shaft 10 in this test is SCM420H-CQT, and the material of the bearing metal 11 is A17X. The test is performed under a load condition of a radial load of 20 kg, the lubricating oil used is 5W30SJ, and the oil temperature is 80 ° C.

円柱軸10の転がり速度U1は、矢印Aの方向を正として5m/sであり、軸受メタル11の転がり速度U2は、同じく矢印Aの方向を正として−1m/sである。すなわち、円柱軸10が軸受メタル11よりも速い速度で回転し、相対転がり速度(|U1−U2|)が6m/sであり、平均転がり速度((U1+U2)/2)が2m/sである条件下において試験を行った。この条件下において油膜は厚くなる。   The rolling speed U1 of the cylindrical shaft 10 is 5 m / s when the direction of the arrow A is positive, and the rolling speed U2 of the bearing metal 11 is −1 m / s when the direction of the arrow A is also positive. That is, the cylindrical shaft 10 rotates at a higher speed than the bearing metal 11, the relative rolling speed (| U1-U2 |) is 6 m / s, and the average rolling speed ((U1 + U2) / 2) is 2 m / s. The test was performed under conditions. Under this condition, the oil film becomes thick.

次に、試験の評価方法について説明する。   Next, a test evaluation method will be described.

各試験体の摺動面に発生する摩擦の評価は、試験機により求められる摩擦係数により行うが、比較の基準とする試験体を比較例1と定め、この比較例1における摩擦係数と、実施例1〜4における摩擦係数とを比較する。なお、表1には、各試験体の摩擦係数を、比較例1の摩擦係数で除した比率に変えて示している。   The evaluation of the friction generated on the sliding surface of each test specimen is performed based on the friction coefficient obtained by a testing machine. The test specimen used as a reference for comparison is defined as Comparative Example 1, and the friction coefficient in this Comparative Example 1 is measured. The friction coefficient in Examples 1 to 4 is compared. In Table 1, the friction coefficient of each specimen is changed to a ratio divided by the friction coefficient of Comparative Example 1.

次に、試験結果について説明する。   Next, test results will be described.

試験の結果、実施例1〜4は、摩擦係数の比率が比較例1に対して、いずれも下回っており、実施例1〜4の各項目における値より、スキューネスRskを負とすること、および平均粗さRaを0.05以下とすることが、摩擦を低減させるために好ましいことと確認される。   As a result of the test, in Examples 1 to 4, the ratio of the friction coefficient is lower than that of Comparative Example 1, and the skewness Rsk is set to be negative from the values in the items of Examples 1 to 4, and It is confirmed that the average roughness Ra is preferably 0.05 or less in order to reduce friction.

本発明は、上述した実施形態のみに限定されるものではなく、特許請求の範囲内において、種々改変することができる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims.

また、軸10とすべり軸受け11とにおいて、いずれか一方を、上述したクランクシャフトのみならず、エンジンに用いられるカムシャフト、バランサーシャフトにも適用可能である。   Further, any one of the shaft 10 and the sliding bearing 11 can be applied not only to the crankshaft described above but also to a camshaft and a balancer shaft used in an engine.

本発明の実施形態における摺動装置の概略図である。It is the schematic of the sliding apparatus in embodiment of this invention. 軸とすべり軸受けとの摺動面における拡大図である。It is an enlarged view in the sliding surface of a shaft and a sliding bearing. 比較例として示す軸とすべり軸受けとの摺動面における拡大図である。It is an enlarged view in the sliding surface of the axis | shaft shown as a comparative example and a slide bearing. 本発明の実施例における試験に用いた摺動装置の垂直および水平断面図である。It is the vertical and horizontal sectional drawing of the sliding apparatus used for the test in the Example of this invention. 本発明の実施例における試験に用いた内接2円筒試験機の概略図である。It is the schematic of the inscribed 2 cylinder test machine used for the test in the Example of this invention.

符号の説明Explanation of symbols

1 摺動装置、
10 軸(第1の摺動部材)、
10a 凹部、
11 すべり軸受(第2の摺動部材)。
1 sliding device,
10 axis (first sliding member),
10a recess,
11 Sliding bearing (second sliding member).

Claims (11)

油を介して相対的に摺動する第1の摺動部材と第2の摺動部材とから構成される摺動装置であって、
第1の摺動部材は、油溜りのための凹部を形成する処理が施され、
第2の摺動部材は、表面のスキューネスRskが負であることを特徴とする摺動装置。
A sliding device composed of a first sliding member and a second sliding member that slide relative to each other through oil,
The first sliding member is subjected to a process for forming a recess for an oil reservoir,
The second sliding member has a surface skewness Rsk which is negative.
前記第1の摺動部材における前記凹部以外の表面の平均粗さRaは、0.05μm未満であることを特徴とする請求項1に記載の摺動装置。   2. The sliding device according to claim 1, wherein an average roughness Ra of a surface other than the concave portion in the first sliding member is less than 0.05 μm. 前記第2の摺動部材における表面の平均粗さRaは、0.05μm未満であることを特徴とする請求項1または2に記載の摺動装置。   3. The sliding device according to claim 1, wherein an average surface roughness Ra of the second sliding member is less than 0.05 μm. 前記第1の摺動部材における前記凹部が表面に開口する面積の合計は、当該第1の摺動部材の表面積の0.3%以上10%以下であることを特徴とする請求項1〜3のいずれか1つに記載の摺動装置。   The total area of the first sliding member in which the recesses open to the surface is 0.3% or more and 10% or less of the surface area of the first sliding member. The sliding device according to any one of the above. 前記凹部の最大深さは、0.5μm以上20μm以下であることを特徴とする請求項1〜4のいずれか1つに記載の摺動装置。   5. The sliding device according to claim 1, wherein a maximum depth of the recess is 0.5 μm or more and 20 μm or less. 前記凹部は、長手方向が摺動方向に対して直交する方向に向いていることを特徴とする請求項1〜5のいずれか1つに記載の摺動装置。   The sliding device according to any one of claims 1 to 5, wherein the concave portion has a longitudinal direction oriented in a direction orthogonal to the sliding direction. 前記凹部の開口部の短辺の長さは、50μm以上150μm以下であり、且つ長辺の長さは、短辺の長さの2倍以上10倍以下であることを特徴とする請求項1〜6のいずれか1つに記載の摺動装置。   The length of the short side of the opening of the concave portion is 50 μm or more and 150 μm or less, and the length of the long side is 2 to 10 times the length of the short side. The sliding apparatus as described in any one of -6. 前記第1の摺動部材と前記第2の摺動部材とのうち、いずれか一方を、軸心を中心に回転可能である軸に適用し、他方を、当該軸を支持する軸受メタルに適用したことを特徴とする請求項1〜3のいずれか1つに記載の摺動装置。   One of the first sliding member and the second sliding member is applied to a shaft that can rotate around an axis, and the other is applied to a bearing metal that supports the shaft. The sliding device according to any one of claims 1 to 3, wherein: 前記第1の摺動部材と前記第2の摺動部材とのうち、いずれか一方を、エンジンに用いられるクランクシャフトに適用したことを特徴とする請求項1〜8のいずれか1つに記載の摺動装置。   Either one of the first sliding member and the second sliding member is applied to a crankshaft used in an engine. Sliding device. 前記第1の摺動部材と前記第2の摺動部材とのうち、いずれか一方を、エンジンに用いられるカムシャフトに適用したことを特徴とする請求項1〜8のいずれか1つに記載の摺動装置。   Either one of the first sliding member and the second sliding member is applied to a camshaft used in an engine. Sliding device. 前記第1の摺動部材と前記第2の摺動部材とのうち、いずれか一方を、エンジンに用いられるバランサーシャフトに適用したことを特徴とする請求項1〜8のいずれか1つに記載の摺動装置。     9. The device according to claim 1, wherein one of the first sliding member and the second sliding member is applied to a balancer shaft used in an engine. Sliding device.
JP2004195585A 2004-07-01 2004-07-01 Sliding device Active JP4710263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195585A JP4710263B2 (en) 2004-07-01 2004-07-01 Sliding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195585A JP4710263B2 (en) 2004-07-01 2004-07-01 Sliding device

Publications (2)

Publication Number Publication Date
JP2006017218A true JP2006017218A (en) 2006-01-19
JP4710263B2 JP4710263B2 (en) 2011-06-29

Family

ID=35791690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195585A Active JP4710263B2 (en) 2004-07-01 2004-07-01 Sliding device

Country Status (1)

Country Link
JP (1) JP4710263B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269091A (en) * 2006-03-30 2007-10-18 Jtekt Corp Hub unit and method of manufacturing the same
JP2008023596A (en) * 2006-06-23 2008-02-07 Nissan Motor Co Ltd Method for processing minute concave portion
WO2008108248A1 (en) * 2007-03-02 2008-09-12 Ntn Corporation Thrust bearing
JP2009079602A (en) * 2007-09-25 2009-04-16 Daido Metal Co Ltd Plain bearing
JP2010009026A (en) * 2008-05-28 2010-01-14 Konica Minolta Business Technologies Inc Image forming method
JP2011506855A (en) * 2007-12-28 2011-03-03 日産自動車株式会社 Sliding device with sliding bearing
JP2012115869A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Die for plastic working and method of manufacturing the same, and method of forging aluminum material
JP2012189223A (en) * 2012-06-18 2012-10-04 Nissan Motor Co Ltd Low friction slide member
CN103154537A (en) * 2010-01-07 2013-06-12 马勒国际有限公司 Profiled connecting rod bore with micro-dimples
WO2016072305A1 (en) * 2014-11-07 2016-05-12 日産自動車株式会社 Rotational sliding bearing
US10837543B2 (en) 2016-09-21 2020-11-17 Seiko Epson Corporation Robot, gear device, and manufacturing method of gear device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291823A (en) * 1995-04-20 1996-11-05 Asmo Co Ltd Oil impregnated metal powder sintered bearing and rotation shaft
JP2000281427A (en) * 1999-03-26 2000-10-10 Toshiba Corp Ceramic sintered compact and wear-proofing member and member for electronic part using the sintered compact
JP2001159423A (en) * 1999-12-01 2001-06-12 Honda Motor Co Ltd Member with sliding surface
JP2002168256A (en) * 2000-11-28 2002-06-14 Nsk Ltd Rolling bearing and manufacturing method therefor
JP2002276666A (en) * 2001-03-21 2002-09-25 Ntn Corp Dynamic pressure type bearing unit
JP2003013710A (en) * 2001-07-02 2003-01-15 Nissan Motor Co Ltd Sliding device, and valve system of internal combustion engine
JP2003184883A (en) * 2001-12-20 2003-07-03 Nissan Motor Co Ltd Bearing sliding member
JP2003247551A (en) * 2001-12-21 2003-09-05 Nsk Ltd Rolling bearing
JP2003314561A (en) * 2002-04-18 2003-11-06 Nsk Ltd Ball bearing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291823A (en) * 1995-04-20 1996-11-05 Asmo Co Ltd Oil impregnated metal powder sintered bearing and rotation shaft
JP2000281427A (en) * 1999-03-26 2000-10-10 Toshiba Corp Ceramic sintered compact and wear-proofing member and member for electronic part using the sintered compact
JP2001159423A (en) * 1999-12-01 2001-06-12 Honda Motor Co Ltd Member with sliding surface
JP2002168256A (en) * 2000-11-28 2002-06-14 Nsk Ltd Rolling bearing and manufacturing method therefor
JP2002276666A (en) * 2001-03-21 2002-09-25 Ntn Corp Dynamic pressure type bearing unit
JP2003013710A (en) * 2001-07-02 2003-01-15 Nissan Motor Co Ltd Sliding device, and valve system of internal combustion engine
JP2003184883A (en) * 2001-12-20 2003-07-03 Nissan Motor Co Ltd Bearing sliding member
JP2003247551A (en) * 2001-12-21 2003-09-05 Nsk Ltd Rolling bearing
JP2003314561A (en) * 2002-04-18 2003-11-06 Nsk Ltd Ball bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269091A (en) * 2006-03-30 2007-10-18 Jtekt Corp Hub unit and method of manufacturing the same
JP2008023596A (en) * 2006-06-23 2008-02-07 Nissan Motor Co Ltd Method for processing minute concave portion
WO2008108248A1 (en) * 2007-03-02 2008-09-12 Ntn Corporation Thrust bearing
JP2009079602A (en) * 2007-09-25 2009-04-16 Daido Metal Co Ltd Plain bearing
JP2011506855A (en) * 2007-12-28 2011-03-03 日産自動車株式会社 Sliding device with sliding bearing
US9109627B2 (en) 2007-12-28 2015-08-18 Nissan Motor Co., Ltd. Sliding device including sliding bearing
JP2010009026A (en) * 2008-05-28 2010-01-14 Konica Minolta Business Technologies Inc Image forming method
CN103154537A (en) * 2010-01-07 2013-06-12 马勒国际有限公司 Profiled connecting rod bore with micro-dimples
JP2012115869A (en) * 2010-11-30 2012-06-21 Kobe Steel Ltd Die for plastic working and method of manufacturing the same, and method of forging aluminum material
US8822027B2 (en) 2010-11-30 2014-09-02 Kobe Steel, Ltd. Mold for plastic forming and a method for producing the same, and method for forging aluminum material
JP2012189223A (en) * 2012-06-18 2012-10-04 Nissan Motor Co Ltd Low friction slide member
WO2016072305A1 (en) * 2014-11-07 2016-05-12 日産自動車株式会社 Rotational sliding bearing
US10837543B2 (en) 2016-09-21 2020-11-17 Seiko Epson Corporation Robot, gear device, and manufacturing method of gear device

Also Published As

Publication number Publication date
JP4710263B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4710263B2 (en) Sliding device
JP6076971B2 (en) Sliding parts
CN104956105B (en) Multi-contact ball bearing
JP2008095721A (en) Sliding member
JP2002048146A (en) Roller bearing
JP2007002989A (en) Slide member, cylinder using the slide member, and internal combustion engine using the cylinder
JP2001032843A (en) Roller bearing
JP5831131B2 (en) Roller bearing and manufacturing method thereof
JP2006226403A (en) Rolling bearing
JP4655609B2 (en) Sliding member
JP3459484B2 (en) Ball for ball bearing
JP5974532B2 (en) Roller bearing and manufacturing method thereof
JP4702186B2 (en) Low friction sliding member
JP2006017259A (en) Sliding device
JP5163873B2 (en) Rotating shaft, sliding device using the same, rotating shaft machining device, rotating shaft machining method, crankshaft, camshaft, and engine
JP2006349014A (en) Tapered roller bearing
JP2597975Y2 (en) Needle roller cage with cage
JP2008095722A (en) Sliding method
EP2225474A1 (en) Sliding device including sliding bearing
JP2005249127A (en) Shaft of low friction sliding device, crank shaft, cam shaft, and engine
JP2008025828A (en) Sliding member
Etsion Laser surface texturing and applications
WO2016072305A1 (en) Rotational sliding bearing
JP3069713B2 (en) Roller bearing cage
JP2006349015A (en) Tapered roller bearing and method of designing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150