JP2006016671A - Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR - Google Patents

Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2006016671A
JP2006016671A JP2004196349A JP2004196349A JP2006016671A JP 2006016671 A JP2006016671 A JP 2006016671A JP 2004196349 A JP2004196349 A JP 2004196349A JP 2004196349 A JP2004196349 A JP 2004196349A JP 2006016671 A JP2006016671 A JP 2006016671A
Authority
JP
Japan
Prior art keywords
based alloy
alloy member
welding
blade
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196349A
Other languages
Japanese (ja)
Inventor
Shinya Konno
晋也 今野
Hiroyuki Doi
裕之 土井
Kunihiro Ichikawa
国弘 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004196349A priority Critical patent/JP2006016671A/en
Publication of JP2006016671A publication Critical patent/JP2006016671A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Ni-based alloy member having improved intercrystalline crack resistance of a weld metal and having high fatigue strength; a manufacturing method therefor; turbine engine parts; a welding material; and a manufacturing method therefor. <P>SOLUTION: The Ni-based alloy member includes a non-treated region made from a Ni-based alloy, and a weld-restored region, wherein the restored region is made from a Ni-based alloy which contains Ti and has a laminar η-phase (a Ni-Ti compound) precipitated therein. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なNi基合金部材とその製造法及びタービンエンジン部品並びに溶接材料とその製造法に関する。   The present invention relates to a novel Ni-based alloy member and a manufacturing method thereof, a turbine engine component, a welding material, and a manufacturing method thereof.

ガスタービン高温部品では、1000℃以上の高温ガスに曝されるため、熱疲労によるクラックや酸化・エロージョン等による減肉が発生する。ガスタービン高温部品に用いられているNi基超合金は、高温強度に優れているものの、溶接性が悪い。特に高い強度を有する動翼材は、補修不可能とされてきたが、近年、特許文献1及び2に記載の溶接材料の改良により、その補修が可能となっている。   Gas turbine high-temperature parts are exposed to high-temperature gas at 1000 ° C. or higher, and cracks due to thermal fatigue, and thinning due to oxidation / erosion occur. Ni-base superalloys used for gas turbine high-temperature parts have excellent high-temperature strength but poor weldability. In particular, it has been impossible to repair a moving blade material having a high strength, but in recent years, the welding material described in Patent Documents 1 and 2 can be repaired.

特許文献1には、重量で、Cr 18〜22%、Al 0.2〜0.7%、Ta、Mo及びWから選ばれた耐火性元素15〜28%、C 0.09%以下、B 0.015%以下、Mn 0.4〜1.2%、Si 0.2〜0.45%、残部がNiであるNi基合金の溶接材料が示されている。   In Patent Document 1, by weight, Cr 18-22%, Al 0.2-0.7%, refractory element selected from Ta, Mo and W 15-28%, C 0.09% or less, B 0.015% or less, Mn 0.4 Shown is a Ni-base alloy welding material with ~ 1.2%, Si 0.2-0.45%, the balance being Ni.

又、特許文献2には、重量で、Co 10〜15%、Cr 18〜22%、Al 0.5〜1.3%、Ta 3.54.5%、Mo 1〜2%、W 13.5〜17%、Zr 0.06%以下、C 0.08%以下、B 0.015%以下、Mn 0.4〜1.2%、Si 0.1〜0.3%、残部がNiであるNi基合金の溶接材料が示されている。   In Patent Document 2, Co 10-15%, Cr 18-22%, Al 0.5-1.3%, Ta 3.54.5%, Mo 1-2%, W 13.5-17%, Zr 0.06% by weight. Hereinafter, a welding material of a Ni-based alloy in which C is 0.08% or less, B 0.015% or less, Mn 0.4 to 1.2%, Si 0.1 to 0.3%, and the balance is Ni is shown.

特開2001-158929号公報Japanese Patent Laid-Open No. 2001-158929 特開2001-123237号公報JP 2001-123237 A

ガスタービン動翼で補修が必要となる部位はもともと過酷な環境に曝される部位であり、溶接金属の特性が基材と同等以上でなければ、補修後の寿命が極めて短くなってしまう。しかし、溶接金属の高温強度は精密鋳造材より低いのが一般的である。   The part of the gas turbine blade that requires repair is originally a part that is exposed to a harsh environment, and if the characteristics of the weld metal are not equal to or higher than those of the base material, the life after repair is extremely shortened. However, the high temperature strength of the weld metal is generally lower than that of the precision cast material.

本発明者らは、高強度Ni基超合金の溶接材料の金属組織について詳細な調査を行い以下の知見を得た。溶接金属では凝固速度が精密鋳造で作製される動翼材と比べて速いため、組織が異なる。   The present inventors have conducted a detailed investigation on the metal structure of the welding material of the high-strength Ni-base superalloy and obtained the following knowledge. The weld metal has a different structure because the solidification rate is higher than that of the blade material produced by precision casting.

凝固速度が遅い精密鋳造材では、デンドライト境界や結晶粒界にCやTa、Nb、Tiなどが偏析する。偏析部には、Tiにより安定化されるγ'相(Ni3(Al、Ti))やMC炭化物((Ta、Ti)C)が析出する。結晶粒界に析出したこれらの析出物は、粒界破壊におけるクラック進展の抵抗となる。また、高温に曝された際の結晶粒界の移動の抵抗となり、凝固時に形成されたデンドライト状(樹枝状)の結晶粒界を維持する。デンドライト状の結晶粒界は、直線的な結晶粒界と比較して、粒界破壊に対して高いクラック進展抵抗を示す。 In precision castings with a slow solidification rate, C, Ta, Nb, Ti, etc. segregate at the dendritic boundaries and grain boundaries. A γ ′ phase (Ni 3 (Al, Ti)) or MC carbide ((Ta, Ti) C) that is stabilized by Ti precipitates in the segregated portion. These precipitates precipitated at the crystal grain boundaries serve as resistance to crack propagation in the grain boundary fracture. In addition, it becomes resistance to movement of crystal grain boundaries when exposed to high temperatures, and maintains dendritic (dendritic) crystal grain boundaries formed during solidification. A dendrite-like grain boundary exhibits higher crack propagation resistance against grain boundary fracture than a linear grain boundary.

これに対して、溶接材料では、凝固速度が速いため、凝固偏析が小さく、結晶粒界における安定な析出物が出にくく、粒界破壊の抵抗となるものがない。また、高温に曝されると結晶粒界が容易に移動し、直線化するため、精密鋳造材と比較すると粒界破壊におけるクラック進展は非常に容易となる。以上の要因から、特許文献1及び2のいずれにおいても、溶接金属では精密鋳造材と比較して、高温で粒界割れが発生しやすく、疲労強度も低いものである。   On the other hand, in the welding material, since the solidification rate is fast, the solidification segregation is small, and stable precipitates at the grain boundaries are difficult to be generated, and there is no resistance to grain boundary fracture. In addition, when exposed to high temperatures, the crystal grain boundaries easily move and straighten, and therefore, crack growth in grain boundary fracture is very easy as compared with precision cast materials. From the above factors, in both Patent Documents 1 and 2, the weld metal is likely to cause intergranular cracking at a high temperature and has low fatigue strength as compared with the precision cast material.

本発明の目的は、溶接金属の粒界割れ抵抗を向上させ、疲労強度の高いNi基合金部材とその製造法及びタービンエンジン部品並びに溶接材料とその製造法を提供することにある。   An object of the present invention is to provide a Ni-base alloy member having high fatigue strength, a method for manufacturing the same, a turbine engine component, a welding material, and a method for manufacturing the same, which improve the intergranular cracking resistance of the weld metal.

本発明者らは、Tiを多く含むNi基超合金が本来は有害相とされているη相[Ni(Ti・Ta)]を結晶粒界から析出させることにより、溶接金属の粒界割れ抵抗を向上させることを試み、その結果、耐クラック性及び疲労特性に優れた溶接材料を見出したものである。 The inventors of the present invention have reported that intergranular cracking of a weld metal is caused by precipitating a η phase [Ni 3 (Ti · Ta)], which is originally a harmful phase of a Ni-based superalloy containing a large amount of Ti, from a grain boundary. Attempts were made to improve resistance, and as a result, a welding material having excellent crack resistance and fatigue characteristics has been found.

即ち、Tiを多く含むNi基超合金は長時間使用した際に有害相として知られているη相(Ni・Ti)が析出する場合がある。η相は、Ni基超合金の析出強化相であるγ'相と成分が類似しているため、η相が析出するとγ'相が消失し、そのため強度が低下するが、延性や靭性、疲労強度の低下は見られず、これらの特性をむしろ向上する傾向を有するものである。そして、η相は、結晶粒界から不連続析出により層状に析出し、そのために、結晶粒界がジグザグ化した構造となる。特に、本発明の溶接材料は、被溶接材料に対して、Ti及びTaがより多く含有させているもので、Tiが1%以上、Taが2%以上多く含有させること、Alは反対に1%以下低く含有させるのが好ましい。   That is, when a Ni-based superalloy containing a large amount of Ti is used for a long time, a η phase (Ni · Ti) known as a harmful phase may precipitate. Since the η phase is similar in composition to the γ 'phase, which is the precipitation strengthening phase of Ni-base superalloys, when the η phase precipitates, the γ' phase disappears, and therefore the strength decreases, but ductility, toughness, fatigue There is no decrease in strength, but rather a tendency to improve these properties. The η phase is deposited in a layered manner from the grain boundaries by discontinuous precipitation, and therefore the crystal grain boundaries have a zigzag structure. In particular, the welding material of the present invention contains Ti and Ta more than the material to be welded. Ti contains 1% or more and Ta contains 2% or more. It is preferable to make it contain less than%.

又、η相自身は耐酸化性が悪いが、η相を層状に広範囲に析出させることにより、従来合金で見られる粒界の選択的な酸化が起こらないため、耐粒界酸化割れ特性にも優れている。   In addition, the η phase itself has poor oxidation resistance. However, by precipitating the η phase in a layered manner in a wide range, selective oxidation of the grain boundaries found in conventional alloys does not occur. Are better.

本発明材は、従来は超合金の有害相とされてきたη相[Ni(Ti・Ta)]が900℃以上で安定に析出することであり、最も適切な化学成分範囲は、重量で、Cr 13〜15%、Al 1.5〜2.5%、Co 5〜15%、Ti 4.5〜5.5%、Ta 4.5〜5.5%、W 3〜5%、B O.O05〜O.03%、C O.02〜O.15%以下を含むNi基超合金である。 The material of the present invention is that the η phase [Ni 3 (Ti · Ta)], which has conventionally been regarded as a harmful phase of superalloys, is stably precipitated at 900 ° C. or higher, and the most appropriate chemical component range is by weight. , Cr 13-15%, Al 1.5-2.5%, Co 5-15%, Ti 4.5-5.5%, Ta 4.5-5.5%, W 3-5%, B O.O05-O.03%, C O. Ni-base superalloy containing 02 to O.15% or less.

本発明材は、η相が900℃以上の高温で安定に析出することであり、η相析出を抑制する成分設計を行っている従来の超合金とは異なる。また、一般的な動翼材料と成分が類似していることも特徴であり、動翼材との整合性が良く、希釈部や拡散層において有害相の生成が無く、連続的な組織となる。前述のように、η相は、耐酸化性が悪く、全面酸化となるため酸化量の絶対量は多いが、粒界酸化割れが起こらず、温度の高い部位に使用する際は、セラミック遮熱コーティングを併用することが効果的である。   The material of the present invention is that the η phase precipitates stably at a high temperature of 900 ° C. or higher, which is different from the conventional superalloys in which the component design is performed to suppress the η phase precipitation. It is also characterized by the fact that its components are similar to those of general blade materials, and it has good consistency with the blade material, and no harmful phase is generated in the dilution zone or diffusion layer, resulting in a continuous structure. . As mentioned above, the η phase has poor oxidation resistance and is entirely oxidized, so the absolute amount of oxidation is large, but it does not cause grain boundary oxidation cracking. It is effective to use a coating in combination.

動翼及び静翼材の適切な化学成分範囲は、重量で、Cr 14〜18%、Al 2.5〜4.5%、Co 7〜11%、Mo 1.0〜2.5、Ti 2.5〜6.0%、Ta 1.0〜4.0%、B O.O05〜O.003%、C O.05〜O.15%以下を含むNi基超合金である。本発明における動翼は、全体が翼部長手方向に沿って形成された柱状晶からなるものが好ましい。   Suitable chemical composition ranges for blades and stator blades are, by weight, Cr 14-18%, Al 2.5-4.5%, Co 7-11%, Mo 1.0-2.5, Ti 2.5-6.0%, Ta 1.0-4.0 %, B O.O05 to O.003%, C O.05 to O.15% or less Ni-base superalloy. The rotor blade in the present invention is preferably composed of columnar crystals formed entirely along the longitudinal direction of the blade portion.

セラミック遮熱コーティングは、温度の絶対値を下げると共に、酸化減肉を抑える効果があるが、温度分布に起因する熱応力を下げるには必ずしも有効ではない。酸化特性は劣るものの耐クラック性に優れた本発明材とセラミック遮熱コーティングの組み合わせは、酸化減肉と疲労によるクラックを抑制する上で極めて効果的である。セラミック遮熱コーティングは、ZrO2系粉末をプラズマ溶射によって動翼及び静翼の翼部に0.2〜0.4mmの厚さに形成するのが好ましい。 Ceramic thermal barrier coatings have the effect of lowering the absolute value of temperature and suppressing oxidative thinning, but are not necessarily effective in reducing thermal stress due to temperature distribution. The combination of the material of the present invention, which is inferior in oxidation characteristics but excellent in crack resistance, is extremely effective in suppressing cracking due to oxidation thinning and fatigue. The ceramic thermal barrier coating is preferably formed by plasma spraying ZrO 2 based powder on the blades of the moving blade and the stationary blade to a thickness of 0.2 to 0.4 mm.

本発明は、Ni基合金部材の一部を、Tiを含むNi基合金によって肉盛溶接した後、1100〜1150℃で時効処理を行い、次いで825〜875℃で時効処理を行うことを特徴とするNi基合金部材の製造法にある。その溶接補修法としては、特に、入熱量が小さく、凝固速度が速くなる粉末を用いたPTA(Plasma Transfer Arc)溶接法や加熱源としてレーザー光による溶接法が効果的である。いずれの溶接法においても、溶接材となる本発明に係る合金粉末を非酸化性雰囲気中で補修すべき部分に供給しながらプラズマアーク又はレーザー光によってその粉末を溶融することにより肉盛形成するものである。非酸化性雰囲気として、Ar、He等の不活性ガスが用いられ、レーザー光においては減圧下で形成することができる。Ni基合金部材の一部を、除去した後、該除去した部分を前記肉盛溶接によって補修する。   The present invention is characterized by performing a aging treatment at 1100 to 1150 ° C. and then performing an aging treatment at 825 to 875 ° C. after overlay welding a part of the Ni-based alloy member with a Ni-based alloy containing Ti. There is a method for manufacturing a Ni-based alloy member. As the welding repair method, in particular, a PTA (Plasma Transfer Arc) welding method using a powder having a small heat input and a high solidification rate and a laser beam welding method as a heating source are effective. In any welding method, the alloy powder according to the present invention, which is a welding material, is supplied to a portion to be repaired in a non-oxidizing atmosphere, and is formed by melting the powder by plasma arc or laser light. It is. An inert gas such as Ar or He is used as the non-oxidizing atmosphere, and the laser light can be formed under reduced pressure. After removing a part of the Ni-based alloy member, the removed part is repaired by the overlay welding.

本発明は、前述のNi基合金部材からなるタービンエンジン部品にあり、具体的には、前記Ni基合金部材が翼部と植え込み部を有する発電ガスタービン用ブレードであり、前記修復領域が前記翼部の先端であること、前記翼部から植え込み部に亘って一方向凝固された柱状晶を有することが好ましい。又、前記Ni基合金部材が翼部と該翼部の両端に設けられたサイドウォールとを有する発電用ガスタービン用ノズルであり、前記修復領域が前記翼部の前縁領域であること、発電用ガスタービン用ブレード及びノズルの少なくとも一方は、少なくとも前記翼部にセラミック遮熱コーティングを有することが好ましい。   The present invention resides in a turbine engine component comprising the aforementioned Ni-based alloy member, specifically, the Ni-based alloy member is a blade for a power generation gas turbine having a blade portion and an implanted portion, and the repair region is the blade. It is preferable to have a columnar crystal that is solidified in one direction from the wing portion to the implanted portion. The Ni-based alloy member is a power generation gas turbine nozzle having a blade portion and sidewalls provided at both ends of the blade portion, and the repair region is a leading edge region of the blade portion, It is preferable that at least one of the blade for a gas turbine and the nozzle has a ceramic thermal barrier coating on at least the blade portion.

本発明は、重量で、Cr 13〜15%、Al 1.5〜2.5%、Co 5〜15%、Ti 4.5〜5.5%、Ta 4.5〜5.5%、W 3〜5%、B O.O05〜O.03%、C O.02〜O.15%以下を含み、主成分がNiであるNi基合金からなることを特徴とする溶接材料にあり、粒径が5〜200μmである粉末からなることが好ましい。   The present invention, by weight, Cr 13-15%, Al 1.5-2.5%, Co 5-15%, Ti 4.5-5.5%, Ta 4.5-5.5%, W 3-5%, B O.O05-O. It is a welding material characterized by comprising a Ni-based alloy containing Ni of 03% and CO.02 to O.15%, the main component of which is made of a powder having a particle size of 5 to 200 μm. preferable.

又、前述のNi基合金粉末を真空ガスアトマイズ法によって形成することを特徴とする溶接材料の製造法にある。   Further, the present invention is a method for producing a welding material, characterized in that the aforementioned Ni-base alloy powder is formed by a vacuum gas atomizing method.

次に、本発明に係る耐クラック性及び疲労特性に優れたNi基超合金からなる溶接材料の限定理由及び好ましい範囲について説明する。
Cr:13.0〜15.0重量%
Crは、合金の高温における耐食性を改善するのに有効な元素であり、その効果がより顕著に現れるのは13.0重量%を超過する添加からである。そして、Cr含有量の増加に伴ってその効果は大きくなるが、多くなると固溶強化元素の固溶限度を下げるとともに、脆化相であるTCP相が析出して高温強度を害するため、その上限を15.0重量%とする。この組成範囲に於いて、強度と耐食性において高いバランスが得られる。
Next, the reason for limitation and the preferred range of the welding material made of the Ni-base superalloy excellent in crack resistance and fatigue characteristics according to the present invention will be described.
Cr: 13.0 to 15.0% by weight
Cr is an element effective for improving the corrosion resistance of the alloy at a high temperature, and the effect appears more remarkably from addition exceeding 13.0% by weight. And as the Cr content increases, the effect increases, but if it increases, the solid solution strengthening element lowers the solid solution limit, and the embrittled TCP phase precipitates and harms the high temperature strength, so the upper limit Is 15.0% by weight. In this composition range, a high balance is obtained in strength and corrosion resistance.

Co:5〜15.0重量%
Coは、γ'相(NiとAlの金属間化合物Ni3Al)の固溶温度を低下させて溶体化処理を容易にするほか、γ相を固溶強化しクリープ強度を高めると共に高温耐食性を向上させる効果を有する。そのような効果が現れるのは、Coの含有量が5重量%以上である。一方、Coの含有量が15.0%を越えると、析出強化相であるγ'相の析出を抑制し、高温強度を低下させてしまうため、15.0重量%以下にする。この組成範囲に於いて、溶体化熱処理の容易性と強度とのバランスを考慮した場合、好ましくは8.5〜10.5重量%の範囲、より好ましくは9〜10重量%の範囲である。
Co: 5 to 15.0% by weight
Co lowers the solid solution temperature of the γ 'phase (Ni 3 Al intermetallic compound of Ni and Al) to facilitate solution treatment, and strengthens the γ phase by solid solution strengthening to increase creep strength and high temperature corrosion resistance. Has the effect of improving. Such an effect appears when the Co content is 5% by weight or more. On the other hand, if the Co content exceeds 15.0%, precipitation of the γ 'phase, which is a precipitation strengthening phase, is suppressed and the high-temperature strength is reduced, so the content is made 15.0% by weight or less. In this composition range, when considering the balance between the ease of solution heat treatment and the strength, the range is preferably 8.5 to 10.5% by weight, more preferably 9 to 10% by weight.

W:3〜5重量%
Wは、マトリックスであるγ相と析出相であるγ'相に固溶し、固溶強化によりクリープ強度を高めるのに有効な元素である。そして、このような効果を十分に得るためには3重量%以上の含有量である。しかし、Wは比重が大きく、合金の重量を増大するばかりでなく、合金の高温における耐食性を低下させる。また、5重量%を越えると針状のα―Wが析出し、クリープ強度、高温耐食性及び靭性を低下させるため、その上限を5重量%とする。この組成範囲に於いて、高温における強度、耐食性及び高温での組織安定性のバランスを考慮した場合、好ましくは3.5〜4.5重量%の範囲である。
W: 3-5% by weight
W is an element effective for increasing the creep strength by solid solution strengthening by solid solution in the matrix γ phase and the precipitation phase γ ′ phase. In order to obtain such an effect sufficiently, the content is 3% by weight or more. However, W has a large specific gravity, which not only increases the weight of the alloy, but also reduces the corrosion resistance of the alloy at high temperatures. On the other hand, when the amount exceeds 5% by weight, acicular α-W precipitates and lowers the creep strength, high temperature corrosion resistance and toughness, so the upper limit is made 5% by weight. In this composition range, when considering the balance of strength at high temperature, corrosion resistance, and structure stability at high temperature, it is preferably in the range of 3.5 to 4.5% by weight.

Ta:4.5〜5.5重量%
Taは、η相[Ni(Ti・Ta)]を形成させる元素で、粒界に層状形成させるので、粒界クラックの進展を抑制するものである。この効果を十分に得るためには、4.5重量%以上の含有量であり、5.5重量%を超えると過飽和になって針状のδ相[Ni、Ta]が析出し、クリープ強度を低下させる。従って、その上限を5.5重量%とする。
Ti:4.5〜5.5重量%
Tiは、Taと同様にη相[Ni(Ti・Ta)] を形成させる元素で、粒界に層状形成させるので、粒界クラックの進展を抑制するが、Taよりその効果は小さい。むしろ、Tiは合金の高温における耐食性を改善する効果があるので、4.5重量%以上の含有量とする。しかし、5.5重量%を越えて添加すると、耐酸化特性が劣化するため、その上限を5.5重量%とする。
Al:1.5〜2.5重量%
Alは、析出強化相であるγ'相[Ni3Al]の構成元素であり、これによりクリープ強度が向上する。また、耐酸化特性の向上にも大きく寄与する。それらの効果が十分発揮されるためには、1.5重量%以上の含有量が必要であるが、2.5重量%を超えると、η相[Ni(Ti・Ta)]が不安定になり、粒界クラック進展の抑制が得られないことから、1.5〜2.5重量%の範囲とする。
C:0.02〜0.15重量%以下及びB:0.005〜0.03重量%以下
これらの元素は従来の普通鋳造合金及び一方向凝固柱状晶合金において粒界強化元素として用いられた元素である。しかし、単結晶合金では、これらの粒界強化元素は必要なく、むしろその製造の際には有害元素となるが、その後の表面への被覆処理には有効である。そして、これらの元素の含有を避けられないこともあり、極めて僅か含有される。
Ta: 4.5-5.5% by weight
Ta is an element that forms an η phase [Ni 3 (Ti · Ta)], and is formed in a layered manner at the grain boundary, and therefore suppresses the development of grain boundary cracks. In order to sufficiently obtain this effect, the content is 4.5% by weight or more. When the content exceeds 5.5% by weight, supersaturation occurs and acicular δ phase [Ni, Ta] precipitates to lower the creep strength. Therefore, the upper limit is set to 5.5% by weight.
Ti: 4.5-5.5% by weight
Ti, like Ta, is an element that forms an η phase [Ni 3 (Ti · Ta)], and is formed in layers at grain boundaries, so it suppresses the development of grain boundary cracks, but its effect is smaller than Ta. Rather, Ti has the effect of improving the corrosion resistance of the alloy at high temperatures, so the content is 4.5% by weight or more. However, if it exceeds 5.5% by weight, the oxidation resistance deteriorates, so the upper limit is made 5.5% by weight.
Al: 1.5-2.5% by weight
Al is a constituent element of the γ ′ phase [Ni 3 Al], which is a precipitation strengthening phase, which improves the creep strength. It also greatly contributes to the improvement of oxidation resistance. A content of 1.5% by weight or more is necessary in order for these effects to be fully exerted. However, if the content exceeds 2.5% by weight, the η phase [Ni 3 (Ti · Ta)] becomes unstable and the grains Since suppression of boundary crack progress cannot be obtained, the range is 1.5 to 2.5% by weight.
C: 0.02 to 0.15 wt% or less and B: 0.005 to 0.03 wt% or less These elements are elements used as grain boundary strengthening elements in conventional ordinary cast alloys and unidirectionally solidified columnar crystal alloys. However, in the single crystal alloy, these grain boundary strengthening elements are not necessary, but rather become harmful elements in the production thereof, but are effective for the subsequent coating treatment on the surface. And it may be unavoidable to contain these elements, and it is contained very little.

Cは、炭化物(TiC、TaC等)を形成し、塊状に析出する。この炭化物は、合金の融点に比べ溶融温度が低く、合金の融点直下で行う溶体化処理では局部溶融を起こすため、溶体化処理温度を上げることができず、溶体化温度範囲を狭くする。さらに固溶強化元素であるTaと炭化物を形成することにより、固溶強化のためのTaのみかけの含有量が少なくなり、高温でのクリープ強度を低下させる。そこで、Cの上限を0.15重量%とした。特に、0.02〜0.08%が好ましい。   C forms carbides (TiC, TaC, etc.) and precipitates in a lump shape. This carbide has a lower melting temperature than the melting point of the alloy, and in the solution treatment performed immediately below the melting point of the alloy, local melting occurs. Therefore, the solution treatment temperature cannot be increased, and the solution temperature range is narrowed. Furthermore, by forming carbide with Ta, which is a solid solution strengthening element, the apparent content of Ta for solid solution strengthening is reduced, and the creep strength at high temperature is reduced. Therefore, the upper limit of C is set to 0.15% by weight. In particular, 0.02 to 0.08% is preferable.

Bは、ホウ化物[(Cr、Ni、Ti、Mo)3B2]を形成し、合金の粒界に析出する。このホウ化物も炭化物と同様に合金の融点に比べ低融点であり、溶体化処理温度を低下させ、溶体化処理温度範囲を狭くする。そこで、Bの上限を0.03重量%とした。特に、0.0005〜0.001%が好ましい。 B forms boride [(Cr, Ni, Ti, Mo) 3 B 2 ] and precipitates at the grain boundaries of the alloy. This boride has a lower melting point than the melting point of the alloy like the carbide, lowers the solution treatment temperature, and narrows the solution treatment temperature range. Therefore, the upper limit of B is set to 0.03% by weight. In particular, 0.0005 to 0.001% is preferable.

本発明においては、希土類元素を添加することが好ましく、高温での耐食、耐酸化性を向上させるために、合金表面に形成される保護皮膜(例えば、Cr2O3、AlO3)の密着性を向上させることが可能である。保護皮膜の密着性を向上させるためには1ppm以上の添加が必要であるが、500ppmを越えるとNi基耐熱超合金の融点を著しく下げてしまい、溶体化処理温度を狭くするため、500ppm以下にすることが好ましい。この組成範囲に於いて、耐食性、耐酸化特性、合金鋳型との反応性、及び合金の熱処理温度範囲のバランスを考慮した場合、より好ましくは10〜50ppmの範囲である。尚、希土類元素はどの元素でも保護皮膜の密着性向上に効果があるが、特にCe、Yの効果が著しい。 In the present invention, it is preferable to add a rare earth element, and in order to improve corrosion resistance and oxidation resistance at high temperature, a protective film (for example, Cr 2 O 3 , Al 2 O 3 ) formed on the alloy surface is used. Adhesion can be improved. In order to improve the adhesion of the protective film, it is necessary to add 1ppm or more. However, if it exceeds 500ppm, the melting point of the Ni-base heat-resistant superalloy will be lowered significantly, and the solution treatment temperature will be narrowed. It is preferable to do. In this composition range, when considering the balance of corrosion resistance, oxidation resistance, reactivity with the alloy mold, and the heat treatment temperature range of the alloy, the range is more preferably 10 to 50 ppm. Note that any rare earth element is effective in improving the adhesion of the protective film, but the effects of Ce and Y are particularly remarkable.

本発明によれば、溶接金属の粒界割れ抵抗を向上させ、高温強度の高いNi基合金部材とその製造法及びタービンエンジン部品並びに溶接材料とその製造法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the intergranular cracking resistance of a weld metal can be improved, Ni base alloy member with high high temperature strength, its manufacturing method, turbine engine components, welding material, and its manufacturing method can be provided.

表1は本発明材及び比較材A〜Cに係るNi基超合金の供試材の成分である。供試材は、真空ガスアトマイズ法により粒径50〜200μmの合金粉末とし、動翼材の表面にPTA溶接法により肉盛施工した。PTA溶接法は、動翼材を800℃以上に予熱し、合金粉末を供給しながらArガスによるプラズマアークによって加熱溶融し、肉盛り施工後、1125℃において2時間加熱保持した後、引き続き850℃において24時間加熱の2段時効処理を行った。このような熱処理は、基材である動翼材の強度を引き出すために不可欠な熱処理である。動翼材の組成は比較材Aと同じ組成を有する鋳物である。   Table 1 shows the components of the Ni-base superalloy specimens according to the present invention material and the comparative materials A to C. The test material was made into an alloy powder having a particle size of 50 to 200 μm by the vacuum gas atomization method, and overlaying was performed on the surface of the moving blade material by the PTA welding method. The PTA welding method preheats the blade material to 800 ° C or higher, heats and melts it by plasma arc with Ar gas while supplying alloy powder, and after heat build-up, heats and holds at 1125 ° C for 2 hours, then continues to 850 ° C The two-stage aging treatment was performed for 24 hours. Such a heat treatment is an indispensable heat treatment in order to bring out the strength of the rotor blade material as the base material. The composition of the rotor blade material is a casting having the same composition as that of the comparative material A.

Figure 2006016671
Figure 2006016671

図1は、1125℃の時効処理を行った後の供試材の金属組織を示す模式図である。比較材A〜Cでは、1125℃までの高温熱処理により、結晶粒界が移動し直線化している。本発明材では、η相の析出により結晶粒界の移動が阻止され、デンドライト組織が崩れていないのに加え、結晶粒界がジグザグ化している。このような本発明材の組織形態は、以下に述べる機械的性質だけでなく、溶接、熱処理プロセス中の粒界割れの発生率にも影響を及ぼし、溶接、熱処理プロセス中の割れが殆ど発生しないものであった。   FIG. 1 is a schematic diagram showing a metal structure of a test material after aging treatment at 1125 ° C. In the comparative materials A to C, the crystal grain boundaries move and are linearized by high-temperature heat treatment up to 1125 ° C. In the material of the present invention, the movement of the crystal grain boundary is prevented by the precipitation of the η phase, the dendrite structure is not broken, and the crystal grain boundary is zigzag. Such a structure of the material of the present invention affects not only the mechanical properties described below, but also the incidence of intergranular cracking during welding and heat treatment processes, and almost no cracks occur during welding and heat treatment processes. It was a thing.

図2は、1050℃のクリープ試験によるクラック密度と試験時間/破断時間との関係を示す線図である。クリープ試験は、溶接部から板状試験片を採取し、板状で試験を行った。又、クリープ試験は、適時中断し、表面のクラック密度を測定した。従来材では、試験時間の経過と共に、クラック密度が増加している。これらのクラックは、結晶粒界に沿って発生しており、高温において粒界割れが発生していることが明らかである。これに対して、本発明材では、クリープ破断直前の0.88まで、クラックの発生が見られなかった。   FIG. 2 is a diagram showing the relationship between the crack density and the test time / rupture time in a creep test at 1050 ° C. In the creep test, a plate-shaped test piece was collected from the welded portion, and the test was performed in a plate shape. In addition, the creep test was interrupted in a timely manner and the surface crack density was measured. In the conventional material, the crack density increases as the test time elapses. These cracks are generated along the crystal grain boundaries, and it is clear that the grain boundary cracks are generated at a high temperature. On the other hand, in the material of the present invention, no crack was observed up to 0.88 immediately before creep rupture.

図3は、溶接部から採取した試験片を用いて、低サイクル疲労試験を行ったひずみ範囲と破断回数との関係を示す線図である。試験温度は900℃とした。本発明材の疲労強度は、比較材B、Cと比較して高くなっている。しかし、動翼材の典型的な成分である比較材Aは本発明材と同程度の疲労強度を示したが、溶接性がかなり低いものである。また、比較材A〜Cでは、粒界破壊であったが、本発明材では、粒内破壊となっていた。以上の結果から本発明材は、高温における耐クラック性に優れていることが明らかである。   FIG. 3 is a diagram showing the relationship between the strain range and number of breaks in which a low cycle fatigue test was performed using a test piece collected from a weld. The test temperature was 900 ° C. The fatigue strength of the material of the present invention is higher than that of the comparative materials B and C. However, the comparative material A, which is a typical component of the rotor blade material, showed a fatigue strength comparable to that of the material of the present invention, but the weldability was considerably low. In Comparative Materials A to C, the grain boundary fracture occurred, but in the present invention material, intragranular fracture occurred. From the above results, it is clear that the material of the present invention is excellent in crack resistance at high temperatures.

図4は、本発明材を用いて、発電ガスタービン用ブレードの翼先端に発生したクラックを補修した斜視図である。翼部8の先端の前縁側に疲労クラックが発生しており、このクラックの部位をグラインダ、放電加工等により削除した後、そのブレードを800℃以上に予熱し、翼部8の削除した部分にレーザー光を照射し、表1に示す本発明材の合金粉末を供給しながら加熱溶融することによる本発明材の複数層の肉盛溶接を施工した。この施工によって数層が一方向凝固していた。溶接後、1125℃において2時間加熱保持した後、引き続き850℃において24時間加熱の2段時効処理を行い、次いで、所定の形状に切削加工を行った。本実施例の発電ガスタービン用ブレードは前述の比較材Aの合金組成を有するものを用い、翼部8からダブテイル10側へと一方向凝固によって形成した柱状晶を有するものであり、補修部を複数層の肉盛層によって形成したものである。又、本実施例の発電ガスタービン用ブレードは内部にダブテイルから翼部の長手方向に沿ってM字型に4本の空気冷却孔が形成され、冷却空気はダブテイルから翼部に入ってダブテイルに戻るようにクローズになっている。   FIG. 4 is a perspective view in which a crack generated at the blade tip of a blade for a power generation gas turbine is repaired using the material of the present invention. Fatigue cracks have occurred on the leading edge of the tip of the wing part 8, and after removing the crack part with a grinder, electric discharge machining, etc., preheat the blade to 800 ° C or higher and Overlay welding of a plurality of layers of the present invention material was performed by irradiating laser light and heating and melting while supplying the alloy powder of the present invention material shown in Table 1. Several layers were solidified in one direction by this construction. After welding, after heating and holding at 1125 ° C. for 2 hours, a two-stage aging treatment of heating at 850 ° C. for 24 hours was subsequently performed, and then cutting into a predetermined shape was performed. The blade for the power generation gas turbine of this example has a columnar crystal formed by unidirectional solidification from the wing portion 8 to the dovetail 10 side using the alloy composition of the comparative material A described above. It is formed by a plurality of overlay layers. Also, the blade for the power generation gas turbine of this embodiment has four air cooling holes formed in an M shape along the longitudinal direction of the blade from the dovetail, and the cooling air enters the blade from the dovetail to the dovetail. Closed to return.

図5は、本発明材を用いて、発電ガスタービン用ブレードの翼先端に発生した酸化減肉部を補修した斜視図である。酸化により翼部8の先端部の角部に深い減肉が発生しており、この部位については、グラインダ、放電加工等により削除した後、そのブレードを800℃以上に予熱し、表1に示す本発明材の合金粉末を供給しながらArガスによるプラズマアークによって加熱溶融するPTA溶接法により複数層の肉盛溶接を施工した。溶接後、1125℃において2時間加熱保持した後、引き続き850℃において24時間加熱の2段時効処理を行い、次いで、所定の形状に切削加工を行った。又、酸化減肉が発生した部位の温度は極めて高いため、本発明材の肉盛溶接では再度減肉が発生するので、施工部が曝される温度を下げる目的で、ZrO2系粉末をプラズマ溶射によってセラミック遮熱コーティングを施工した。本実施例の発電ガスタービン用ブレードにおいても、前述の比較材Aを用い、翼部8からダブテイル10側へと一方向凝固によって形成した柱状晶を有するものであり、複数層の肉盛層によって形成したものであり、その冷却構造は前述と同様である。 FIG. 5 is a perspective view in which an oxidized thinning portion generated at the blade tip of a blade for a power generation gas turbine is repaired using the material of the present invention. Oxidation has resulted in deep thinning at the corners of the tip of the wing 8, and after removing this part by grinder, electric discharge machining, etc., the blade was preheated to 800 ° C or higher and shown in Table 1. Overlay welding of a plurality of layers was performed by a PTA welding method in which an alloy powder of the present invention was supplied and heated and melted by a plasma arc using Ar gas. After welding, after heating and holding at 1125 ° C. for 2 hours, a two-stage aging treatment of heating at 850 ° C. for 24 hours was subsequently performed, and then cutting into a predetermined shape was performed. Further, since the temperature of the site where the oxidation thickness reduction occurs it is extremely high, since the thinning occurs again in the overlay welding of the present invention material, the purpose of lowering the temperature at which the construction part is exposed, plasma ZrO 2 system powder A ceramic thermal barrier coating was applied by thermal spraying. Also in the blade for power generation gas turbine of this example, using the above-mentioned comparative material A, it has columnar crystals formed by unidirectional solidification from the wing part 8 to the dovetail 10 side, The cooling structure is the same as described above.

又、翼部と、翼部の両端に設けられたサイドウォールとを有する発電用ガスタービン用ノズルに対しても、翼部の前縁領域に、クラック又は減肉が発生するが、これらについても前述と同様にレーザー溶接又はPTA溶接による肉盛溶接によって補修を行うことができる。   Moreover, cracks or thinning occurs in the leading edge region of the wing part even for the nozzle for a gas turbine for power generation having the wing part and sidewalls provided at both ends of the wing part. As described above, repair can be performed by overlay welding by laser welding or PTA welding.

以上、本実施例によれば、溶接金属の粒界割れ抵抗を向上させ、耐クラック性に優れたNi基合金部材とその製造法及びタービンエンジン部品並びに溶接材料とその製造法を提供することができる。   As described above, according to the present embodiment, it is possible to improve the intergranular cracking resistance of the weld metal and provide a Ni-based alloy member excellent in crack resistance, a manufacturing method thereof, a turbine engine component, a welding material, and a manufacturing method thereof. it can.

本発明材及び比較材の溶接金属の顕微鏡組織を示す模式図。The schematic diagram which shows the microstructure of the weld metal of this invention material and a comparison material. 本発明材及び比較材の溶接金属のクリープ試験によるクラック密度と試験時間/破断時間との関係を示す線図。The diagram which shows the relationship between the crack density by the creep test of the weld metal of this invention material and a comparison material, and test time / rupture time. 本発明材及び比較材の溶接金属の低サイクル疲労試験結果を示す線図。The diagram which shows the low cycle fatigue test result of the weld metal of this invention material and a comparison material. 発電ガスタービン用ブレードのクラック補修部位を示す斜視図。The perspective view which shows the crack repair site | part of the blade for power generation gas turbines. 発電ガスタービン用ブレードの酸化減肉補修部位を示す斜視図。The perspective view which shows the oxidation thinning repair site | part of the blade for power generation gas turbines.

符号の説明Explanation of symbols

8…翼部、9…シャンク、10…ダブテイル、11…フィン。
8 ... Wings, 9 ... Shank, 10 ... Dovetail, 11 ... Fins.

Claims (15)

Ni基合金からなる無処理領域と溶接修復領域とを含み、前記修復領域が層状のη相(Ni-Ti化合物)が析出したTiを含有するNi基合金からなることを特徴とするNi基合金部材。   A Ni-based alloy comprising a Ni-based alloy containing a non-treated region made of a Ni-based alloy and a weld repair region, wherein the repair region is made of Ti in which a layered η phase (Ni-Ti compound) is precipitated. Element. 請求項1において、前記修復領域が、重量で、Cr 13〜15%、Al 1.5〜2.5%、Co 5〜15%、Ti 4.5〜5.5%、Ta 4.5〜5.5%、W 3〜5%、B O.O05〜O.03%、C O.02〜O.15%以下を含み、主成分がNiであることを特徴とするNi基合金部材。   In Claim 1, the said repair area | region is Cr 13-15%, Al 1.5-2.5%, Co 5-15%, Ti 4.5-5.5%, Ta 4.5-5.5%, W 3-5%, B by weight. A Ni-based alloy member comprising O.O05 to O.03% and C O.02 to O.15% or less, the main component being Ni. 請求項1又は2において、前記無処理領域が、重量で、Cr 14〜18%、Al 2.5〜4.5%、Co 7〜11%、Mo 1.0〜2.5、Ti 2.5〜6.0%、Ta 1.0〜4.0%、B O.O05〜O.003%及びC O.05〜O.15%以下を含み、主成分がNiであることを特徴とするNi基合金部材。   3. The untreated region according to claim 1 or 2, wherein the untreated region is 14 to 18% Cr, 2.5 to 4.5% Al, 7 to 11% Co, Mo 1.0 to 2.5, Ti 2.5 to 6.0%, Ta 1.0 to 4.0% by weight. , B O.O05 to O.003% and C O.05 to O.15% or less, a Ni-based alloy member characterized in that the main component is Ni. Ni基合金部材の一部に、Tiを含むNi基合金によって肉盛溶接層を形成した後、1100〜1150℃で時効処理を行い、次いで825〜875℃で時効処理を行うことを特徴とするNi基合金部材の製造法。   A build-up weld layer is formed on a part of a Ni-based alloy member with a Ni-based alloy containing Ti, and then an aging treatment is performed at 1100 to 1150 ° C, and then an aging treatment is performed at 825 to 875 ° C. Manufacturing method for Ni-based alloy members. 請求項4において、前記Ni基合金部材を予熱し、次いで前記肉盛溶接層を形成することを特徴とするNi基合金部材の製造法。   5. The method for producing a Ni-based alloy member according to claim 4, wherein the Ni-based alloy member is preheated and then the build-up weld layer is formed. 請求項4又は5において、前記溶接は、プラズマアーク溶接又はレーザー溶接であることを特徴とするNi基合金部材の製造法。   6. The method for producing a Ni-based alloy member according to claim 4, wherein the welding is plasma arc welding or laser welding. 請求項4〜6のいずれかにおいて、Ni基合金部材の一部を除去した後、該除去した部分を前記肉盛溶接によって補修することを特徴とするNi基合金部材の製造法。   7. The method for producing a Ni-based alloy member according to claim 4, wherein after removing a part of the Ni-based alloy member, the removed portion is repaired by the build-up welding. 請求項1〜4のいずれかに記載のNi基合金部材からなることを特徴とするタービンエンジン部品。   A turbine engine component comprising the Ni-based alloy member according to claim 1. 請求項8において、前記Ni基合金部材が翼部と植え込み部を有する発電ガスタービン用ブレードであり、前記修復領域が前記翼部の先端であることを特徴とするタービンエンジン部品。   9. The turbine engine component according to claim 8, wherein the Ni-based alloy member is a blade for a power generation gas turbine having a wing portion and an implanted portion, and the repair region is a tip of the wing portion. 請求項8又は9において、前記Ni基合金部材は、前記翼部から植え込み部に亘って一方向凝固された柱状晶を有することを特徴とするタービンエンジン部品。   10. The turbine engine component according to claim 8, wherein the Ni-based alloy member has columnar crystals solidified in one direction from the wing portion to the implanted portion. 請求7において、前記Ni基合金部材が翼部と該翼部の両端に設けられたサイドウォールとを有する発電用ガスタービン用ノズルであり、前記修復領域が前記翼部の前縁領域であることを特徴とするタービンエンジン部品。   8. The power generation gas turbine nozzle according to claim 7, wherein the Ni-based alloy member has a blade portion and sidewalls provided at both ends of the blade portion, and the repair region is a leading edge region of the blade portion. Turbine engine parts characterized by 請求項8〜11のいずれかにおいて、前記発電用ガスタービン用ブレード及びノズルの少なくとも一方は、少なくとも前記翼部にセラミック遮熱コーティングを有することを特徴とするタービンエンジン部品。   12. The turbine engine component according to claim 8, wherein at least one of the blade for power generation gas turbine and the nozzle has a ceramic thermal barrier coating on at least the blade portion. 重量で、Cr 13〜15%、Al 1.5〜2.5%、Co 5〜15%、Ti 4.5〜5.5%、Ta 4.5〜5.5%、W 3〜5%、B O.O05〜O.03%、C O.02〜O.15%以下を含み、主成分がNiであるNi基合金からなることを特徴とする溶接材料。   By weight, Cr 13-15%, Al 1.5-2.5%, Co 5-15%, Ti 4.5-5.5%, Ta 4.5-5.5%, W 3-5%, B O.O05-O.03%, C A welding material comprising a Ni-based alloy containing O.02 to O.15% or less and having Ni as a main component. 請求項13において、前記Ni基合金は、粒径が5〜200μmである粉末からなることを特徴とする溶接材料。   The welding material according to claim 13, wherein the Ni-based alloy is made of a powder having a particle size of 5 to 200 μm. 重量で、Cr 13〜15%、Al 1.5〜2.5%、Co 5〜15%、Ti 4.5〜5.5%、Ta 4.5〜5.5%、W 3〜5%、B O.O05〜O.03%、C O.02〜O.15%以下を含み、主成分がNiであるNi基合金粉末を真空ガスアトマイズ法によって形成することを特徴とする溶接材料の製造法。
By weight, Cr 13-15%, Al 1.5-2.5%, Co 5-15%, Ti 4.5-5.5%, Ta 4.5-5.5%, W 3-5%, B O.O05-O.03%, C A method for producing a welding material, characterized in that a Ni-base alloy powder containing O.02 to O.15% or less and containing Ni as a main component is formed by a vacuum gas atomization method.
JP2004196349A 2004-07-02 2004-07-02 Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR Pending JP2006016671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196349A JP2006016671A (en) 2004-07-02 2004-07-02 Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004196349A JP2006016671A (en) 2004-07-02 2004-07-02 Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2006016671A true JP2006016671A (en) 2006-01-19

Family

ID=35791209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196349A Pending JP2006016671A (en) 2004-07-02 2004-07-02 Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2006016671A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038100A (en) * 2008-08-07 2010-02-18 Toshiba Corp Method for thermally treating gas turbine component, method for repairing gas turbine component, and gas turbine component
WO2014141755A1 (en) * 2013-03-13 2014-09-18 三菱重工業株式会社 Steam turbine vane manufacturing method
WO2015068227A1 (en) * 2013-11-06 2015-05-14 川崎重工業株式会社 Turbine blade and manufacturing method therefor
JP2015135099A (en) * 2013-12-17 2015-07-27 株式会社東芝 Turbine component and turbine component overlay method
WO2015156182A1 (en) * 2014-04-07 2015-10-15 三菱日立パワーシステムズ株式会社 Rotor blade, erosion shield forming method and rotor blade manufacturing method
EP2933608A1 (en) 2014-04-16 2015-10-21 Fuji Electric Co., Ltd. Sensitivity inspection system and sensitivity inspection method
KR101785333B1 (en) 2015-11-18 2017-11-15 한국기계연구원 Ni base superalloy and Method of manufacturing thereof
CN108866387A (en) * 2017-05-16 2018-11-23 中国科学院金属研究所 A kind of gas turbine high-strength corrosion and heat resistant nickel base superalloy and its preparation process and application
CN112872652A (en) * 2020-12-25 2021-06-01 南昌航空大学 Ni-based high-temperature alloy welding wire with high Al, Ti and Ta contents and preparation method and application thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038100A (en) * 2008-08-07 2010-02-18 Toshiba Corp Method for thermally treating gas turbine component, method for repairing gas turbine component, and gas turbine component
WO2014141755A1 (en) * 2013-03-13 2014-09-18 三菱重工業株式会社 Steam turbine vane manufacturing method
US10107113B2 (en) 2013-03-13 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine vane manufacturing method
CN105008674B (en) * 2013-03-13 2018-01-12 三菱日立电力***株式会社 Steam turbine blade manufacture method
CN105008674A (en) * 2013-03-13 2015-10-28 三菱日立电力***株式会社 Steam turbine vane manufacturing method
JPWO2015068227A1 (en) * 2013-11-06 2017-03-09 川崎重工業株式会社 Turbine blade and method for manufacturing the same
WO2015068227A1 (en) * 2013-11-06 2015-05-14 川崎重工業株式会社 Turbine blade and manufacturing method therefor
JP2015135099A (en) * 2013-12-17 2015-07-27 株式会社東芝 Turbine component and turbine component overlay method
JP2015200218A (en) * 2014-04-07 2015-11-12 三菱日立パワーシステムズ株式会社 Rotor blade, method for forming erosion shield, rotor blade manufacturing method
WO2015156182A1 (en) * 2014-04-07 2015-10-15 三菱日立パワーシステムズ株式会社 Rotor blade, erosion shield forming method and rotor blade manufacturing method
US10907483B2 (en) 2014-04-07 2021-02-02 Mitsubishi Power, Ltd. Turbine blade, erosion shield forming method, and turbine blade manufacturing method
EP2933608A1 (en) 2014-04-16 2015-10-21 Fuji Electric Co., Ltd. Sensitivity inspection system and sensitivity inspection method
KR101785333B1 (en) 2015-11-18 2017-11-15 한국기계연구원 Ni base superalloy and Method of manufacturing thereof
CN108866387A (en) * 2017-05-16 2018-11-23 中国科学院金属研究所 A kind of gas turbine high-strength corrosion and heat resistant nickel base superalloy and its preparation process and application
CN112872652A (en) * 2020-12-25 2021-06-01 南昌航空大学 Ni-based high-temperature alloy welding wire with high Al, Ti and Ta contents and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3842717B2 (en) Welding material, welded structure, gas turbine rotor blade, and gas turbine rotor blade or stationary blade repair method
JP4546318B2 (en) Ni-based alloy member and manufacturing method thereof, turbine engine component, welding material and manufacturing method thereof
JP6931545B2 (en) Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model
JP6983666B2 (en) Alloy melting and refining methods
JP6767155B2 (en) Articles and methods of forming articles
JP3629920B2 (en) Nozzle for gas turbine, gas turbine for power generation, Co-base alloy and welding material
TW527251B (en) Weld repair of directionally solidified articles
JP6875430B2 (en) High gamma prime nickel-based superalloys, their use, and methods for making turbine engine components
JP4417977B2 (en) Gas turbine blade and method for manufacturing the same
CN105163898A (en) Precipitation strengthened nickel based welding material for fusion welding of superalloys
JP2013129880A (en) Ni-BASED FORGED ALLOY AND GAS TURBINE USING THE SAME
EP2677053B1 (en) Ni-based alloy for welding material and welding wire, rod and powder
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
JP2007191791A (en) Nickel-based superalloy composition
JP7233422B2 (en) Highly oxidation resistant alloy for gas turbine applications
JP2006016671A (en) Ni-BASED ALLOY MEMBER, MANUFACTURING METHOD THEREFOR, TURBINE ENGINE PARTS, WELDING MATERIAL AND MANUFACTURING METHOD THEREFOR
EP2169087A2 (en) Nickel-based superalloy and gas turbine blade using the same
Gontcharov et al. Weldability and Properties of Newly Developed LW4280 High Gamma Prime Nickel Based Superalloy for 3D AM and Repair of Turbine Engine Components
JP2000210789A (en) Welding wire and repair method
WO2023157438A1 (en) Fe-Ni-Cr BASED ALLOY PRODUCT
JP3246376B2 (en) Columnar crystal Ni-base heat-resistant alloy large casting with excellent high-temperature intergranular corrosion resistance
EP4275814A1 (en) Cobalt-based alloy for additive manufacturing
JP2023018394A (en) Ni-BASED SUPERALLOY, AND TURBINE WHEEL
JP2018104766A (en) Ni-BASED ALLOY UNIDIRECTIONAL SOLIDIFICATION MEMBER AND MANUFACTURING METHOD OF UNIDIRECTIONAL SOLIDIFICATION MEMBER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507