JP2006013219A - Chip-type electronic component and method for manufacturing the same - Google Patents

Chip-type electronic component and method for manufacturing the same Download PDF

Info

Publication number
JP2006013219A
JP2006013219A JP2004189773A JP2004189773A JP2006013219A JP 2006013219 A JP2006013219 A JP 2006013219A JP 2004189773 A JP2004189773 A JP 2004189773A JP 2004189773 A JP2004189773 A JP 2004189773A JP 2006013219 A JP2006013219 A JP 2006013219A
Authority
JP
Japan
Prior art keywords
electronic component
glass
chip
type electronic
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004189773A
Other languages
Japanese (ja)
Other versions
JP4574246B2 (en
Inventor
Yoichi Yamazaki
洋一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004189773A priority Critical patent/JP4574246B2/en
Publication of JP2006013219A publication Critical patent/JP2006013219A/en
Application granted granted Critical
Publication of JP4574246B2 publication Critical patent/JP4574246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/252Terminals the terminals being coated on the capacitive element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip type electronic component for reducing the adhesion failure of external electrodes, and for strengthening the adhesiveness of metallic components configuring the external electrodes with a conductor layer formed in the electronic component main body. <P>SOLUTION: Conductive paste containing metallic powder and glass powder is applied to the end of an electronic component main body 1 having a conductor layer 1c inside a ceramic layered product 1b, so that a chip type electronic component can be formed by two or more baking processes. This chip type electronic component is provided with an external electrode 3 in which the rates of metallic components, glass components and voids range from 80 to 85%, 10 to 15% and 0 to 5% by a mass ratio (volume ratio), respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チップ型電子部品およびその製法に関し、特に、積層セラミックコンデンサ、積層インダクタおよび抵抗体等、金属粉末とガラス粉末とを含む導体ペーストを塗布し、焼付けて形成される外部電極を具備するチップ型電子部品およびその製法に関する。   The present invention relates to a chip-type electronic component and a method for manufacturing the same, and particularly includes an external electrode formed by applying and baking a conductive paste containing metal powder and glass powder, such as a multilayer ceramic capacitor, a multilayer inductor, and a resistor. The present invention relates to a chip-type electronic component and a manufacturing method thereof.

一般に、積層セラミックコンデンサ、インダクタおよび抵抗体等のチップ型電子部品は、セラミック積層体と導体層とからなる電子部品本体の端部に一対の外部電極を形成した形状となっている。   In general, chip-type electronic components such as a multilayer ceramic capacitor, an inductor, and a resistor have a shape in which a pair of external electrodes is formed at the end of an electronic component main body composed of a ceramic multilayer body and a conductor layer.

このような外部電極は、通常、金属粉末とガラス粉末と有機樹脂とを含む導体ペーストを、電子部品本体の端面に塗布し焼付けて形成される。   Such external electrodes are usually formed by applying and baking a conductive paste containing metal powder, glass powder, and organic resin on the end face of the electronic component body.

ところで、上記のような外部電極形成工程においては、外部電極中に含まれるガラス粉末が焼付け時に軟化流動するために、一度に焼付け処理される多数のチップ型電子部品の外部電極同士が接触部分でくっつき合い、製造歩留まりを低下させるという問題があった。   By the way, in the external electrode formation process as described above, since the glass powder contained in the external electrode softens and flows during baking, the external electrodes of a large number of chip-type electronic components that are baked at a time are contact portions. There was a problem of sticking together and lowering the manufacturing yield.

そこで、このような外部電極形成時のくっつき不良を低減するために、ガラス粉末の種類と溶融温度に着目したものが知られている(例えば、特許文献1)。この場合、ガラス粉末として結晶化ガラスを用いた際に、外部電極の焼付け温度を、そのガラス粉末の結晶化温度と再溶融温度との間に設定することにより、ガラス成分の軟化流動を抑制して、くっつき不良を低減するというものである。
特開2001−345231号公報
Thus, in order to reduce such sticking failure during external electrode formation, there is known one that focuses on the type of glass powder and the melting temperature (for example, Patent Document 1). In this case, when crystallized glass is used as the glass powder, the softening flow of the glass component is suppressed by setting the baking temperature of the external electrode between the crystallization temperature and the remelting temperature of the glass powder. In other words, it reduces sticking defects.
JP 2001-345231 A

上記公報に示した方法によれば、外部電極の焼結開始温度がガラス粉末の再溶融温度よりも低く設定されているために、くっつき不良は低減できるものの、このような焼付け処理では、外部電極を構成する金属成分と電子部品本体に形成されている導体層との接合性は不十分であり、特に、薄層化された導体層を有する積層セラミックコンデンサなどにおいては容量抜けが発生するという問題があった。   According to the method shown in the above publication, since the sintering start temperature of the external electrode is set lower than the remelting temperature of the glass powder, the sticking failure can be reduced. The bonding property between the metal component constituting the conductor and the conductor layer formed on the electronic component body is insufficient, and in particular, there is a problem that capacity loss occurs in a multilayer ceramic capacitor having a thinned conductor layer. was there.

従って、本発明は、外部電極同士のくっつき不良を低減すると同時に、外部電極を構成する金属成分と電子部品本体に形成されている導体層との接合性を強固にしたチップ型電子部品を提供することを目的とする。   Therefore, the present invention provides a chip-type electronic component in which the bonding between the metal component constituting the external electrode and the conductor layer formed in the electronic component body is strengthened while reducing the sticking failure between the external electrodes. For the purpose.

本発明のチップ型電子部品は、(1)セラミック積層体の内部に導体層を有する電子部品本体の端部に、金属粉末とガラス粉末とを含む導体ペーストを塗布して、2回以上の焼付工程を経て形成され、金属成分、ガラス成分および空隙の割合が、体積比で、それぞれ80〜85%、10〜15%、0〜5%である外部電極を具備することを特徴とする。特に、上記チップ型電子部品では、(2)ガラス成分が結晶化ガラスであることが望ましい。   The chip-type electronic component of the present invention is (1) a conductor paste containing metal powder and glass powder is applied to the end of an electronic component body having a conductor layer inside a ceramic laminate, and baking is performed twice or more. It is formed through a process, and includes an external electrode in which the ratio of the metal component, the glass component, and the void is 80 to 85%, 10 to 15%, and 0 to 5%, respectively, in volume ratio. In particular, in the chip-type electronic component, it is desirable that (2) the glass component is crystallized glass.

即ち本発明によれば、外部電極の焼付けを2回以上行うことにより、外部電極同士のくっつき不良を低減し、かつ電子部品本体に形成された導体層と外部電極との接合性を高めることができる。即ち、外部電極の焼付けを一回で行おうとすると、焼付け温度をガラス成分の結晶化開始温度以上、再溶融温度以下に抑えなければならないために、焼付け温度が制限され、より高い温度が必要となる前記導体層と外部電極との接合が保たれないが、焼付け工程を二回以上行うことにより以下の改善ができる。つまり、一回目の焼付けを結晶化開始温度以上で行うことで、ガラスの結晶化を高めかつ外部電極を固くできる。これによりガラス成分の軟化流動を抑制でき、また外部電極の構造を安定化させることで、くっつき不良を抑制できる。次に、2回目以降の焼付けは、ガラス成分が結晶化し固定化されているために焼付けを高い温度で行うことができ、これにより内部電極と外部電極の接合性を向上できる。   That is, according to the present invention, the external electrodes are baked twice or more, thereby reducing the sticking failure between the external electrodes and improving the bondability between the conductor layer formed on the electronic component body and the external electrodes. it can. That is, if the external electrode is baked at a time, the baking temperature must be kept above the crystallization start temperature of the glass component and below the remelting temperature, so the baking temperature is limited and a higher temperature is required. Although the bonding between the conductor layer and the external electrode is not maintained, the following improvements can be made by performing the baking process twice or more. That is, by performing the first baking at the crystallization start temperature or higher, crystallization of the glass can be enhanced and the external electrode can be hardened. Thereby, the softening flow of the glass component can be suppressed, and the sticking failure can be suppressed by stabilizing the structure of the external electrode. Next, the second and subsequent bakings can be performed at a high temperature because the glass component is crystallized and fixed, thereby improving the bondability between the internal electrode and the external electrode.

また、こうして得られた外部電極は、金属成分、ガラス成分および空隙の割合が、体積比で、それぞれ80〜85%、10〜15%、0〜5%であり緻密化されているために、この後行うメッキ処理においてもメッキ液の浸入を防止でき、チップ型電子部品の絶縁信頼性を向上できる。特に、本発明によれば、外部電極の焼付け温度は、(3)1回目の焼付温度が、ガラス成分の結晶化開始温度よりも0〜50℃高く、2回目以降が150〜200℃高いことがより好ましく、さらには、(4)導体層の厚みが1μm以下であり、(5)電子部品本体のサイズは1mm以下であることがさらに望ましい。 Moreover, since the external electrode obtained in this way has a metal component, a glass component, and a void ratio of 80 to 85%, 10 to 15%, and 0 to 5% in volume ratio, respectively, In the subsequent plating process, the infiltration of the plating solution can be prevented, and the insulation reliability of the chip-type electronic component can be improved. Particularly, according to the present invention, the baking temperature of the external electrode is (3) the first baking temperature is 0 to 50 ° C. higher than the crystallization start temperature of the glass component, and the second and subsequent times are 150 to 200 ° C. higher. More preferably, (4) the thickness of the conductor layer is 1 μm or less, and (5) the size of the electronic component body is further preferably 1 mm 3 or less.

そして、本発明のチップ型電子部品の製法は、(6)グリーンシート上に内部導体パターンとを複数積層した電子部品本体成形体を形成し、焼成して端面に導体層が露出した電子部品本体を形成する工程と、該電子部品本体の前記導体層が露出した端部に、金属粉末とガラス粉末とを含む導体ペーストを塗布して、2回以上の熱処理を行い外部電極を形成する工程と、を具備することを特徴とし、(7)2回以上の焼付け工程において、後の焼付け温度が前の焼付け温度より高いことが望ましい。こうして外部電極に含まれるガラス成分の焼結および金属成分の焼結性を容易に高めることができる。   And the manufacturing method of the chip-type electronic component of the present invention is as follows: (6) An electronic component main body in which a plurality of internal conductor patterns are laminated on a green sheet and then fired to expose the conductor layer on the end face And a step of applying a conductive paste containing metal powder and glass powder to the exposed end of the conductive layer of the electronic component main body, and forming an external electrode by performing heat treatment twice or more. (7) In two or more baking processes, it is desirable that the subsequent baking temperature is higher than the previous baking temperature. Thus, the sintering of the glass component and the sinterability of the metal component contained in the external electrode can be easily enhanced.

本発明のチップ型電子部品について積層セラミックコンデンサを例として詳細に説明する。図1は本発明のチップ型電子部品を示す断面図である。   The chip-type electronic component of the present invention will be described in detail by taking a multilayer ceramic capacitor as an example. FIG. 1 is a sectional view showing a chip-type electronic component of the present invention.

本発明のチップ型電子部品は、電子部品本体1の端部に一対の外部電極3が形成されている。電子部品本体1は、セラミック層1aが複数積層されたセラミック積層体1bの内部の前記セラミック層1a間に導体層1cを挟持するように配置されるとともに、その導体層1cはセラミック積層体1bの端部に露出するように形成されている。   In the chip-type electronic component of the present invention, a pair of external electrodes 3 are formed at the end of the electronic component main body 1. The electronic component body 1 is disposed so as to sandwich the conductor layer 1c between the ceramic layers 1a inside the ceramic laminate 1b in which a plurality of ceramic layers 1a are laminated, and the conductor layer 1c is formed of the ceramic laminate 1b. It is formed so as to be exposed at the end.

ここで本発明にかかる外部電極3は、金属粉末とガラス粉末とを含む導体ペーストを塗布して、2回以上の焼付工程を経て形成されることを特徴とするものであり、金属成分、ガラス成分および空隙の割合が、体積比で、それぞれ80〜85%、10〜15%、0〜5%であることが重要である。   Here, the external electrode 3 according to the present invention is formed by applying a conductive paste containing a metal powder and a glass powder and performing a baking process two or more times. It is important that the proportions of the components and voids are 80 to 85%, 10 to 15%, and 0 to 5%, respectively, by volume ratio.

導体ペーストに含まれる金属粉末は、Ag、Ag/Pd、Cu、Cu/Niの群から選ばれる少なくとも1種が好ましく、一方、ガラス粉末は、ホウ珪酸ガラス、ホウ珪酸亜鉛ガラス、リチウム珪酸ガラス、希土類添加ガラス、チタン添加ガラスの群から選ばれる少なくと1種が好ましい。なお、導体層を構成する金属成分は、外部電極に合わせて上記金属粉末の中から卑金属もしくは貴金属を選択することが好ましい。そして、金属粉末の焼結開始温度がガラス粉末の結晶化開始温度より高く、かつ前記結晶化ガラスの再溶融温度よりも低いことが望ましい。   The metal powder contained in the conductor paste is preferably at least one selected from the group of Ag, Ag / Pd, Cu, and Cu / Ni, while the glass powder is borosilicate glass, zinc borosilicate glass, lithium silicate glass, At least one selected from the group of rare earth-added glass and titanium-added glass is preferred. In addition, it is preferable that the metal component which comprises a conductor layer selects a base metal or a noble metal from the said metal powder according to an external electrode. It is desirable that the sintering start temperature of the metal powder is higher than the crystallization start temperature of the glass powder and lower than the remelting temperature of the crystallized glass.

前記金属粉末の焼結開始温度は700〜750℃、前記ガラス粉末の結晶化温度は600〜700℃、再溶融温度は750〜900℃であることが望ましく、このため、本発明にかかる外部電極の焼付け温度は、ガラス成分の結晶化開始温度に対し、1回目の焼付温度が、ガラス成分の結晶化開始温度よりも0〜50℃高く、2回目以降が150〜200℃高いことがより好ましい。   The sintering start temperature of the metal powder is preferably 700 to 750 ° C., the crystallization temperature of the glass powder is preferably 600 to 700 ° C., and the remelting temperature is preferably 750 to 900 ° C. Therefore, the external electrode according to the present invention is used. As for the baking temperature of the glass component, it is more preferable that the first baking temperature is 0 to 50 ° C. higher than the crystallization starting temperature of the glass component and the second and subsequent times are 150 to 200 ° C. higher than the crystallization starting temperature of the glass component. .

そして、くっつき不良を低減でき、かつ導体層1cとの接合も強固にできる外部電極3を具備する本発明にかかるチップ型電子部品によれば、(4)導体層の厚みが1μm以下であるような極めて薄層化した導体層1cを有する電子部品本体1や、この電子部品本体1の面積に対して外部電極3の占める面積の比率が特に高くなるとされる、電子部品本体のサイズが1mm以下の電子部品本体に対して特に有効である。この場合、セラミック層1aの厚みは高容量化という点で3μm以下、特に2μm以下がより好ましい。 According to the chip-type electronic component according to the present invention including the external electrode 3 that can reduce the sticking failure and can be firmly joined to the conductor layer 1c, (4) the thickness of the conductor layer is 1 μm or less. The electronic component main body 1 having the extremely thin conductor layer 1c, and the ratio of the area occupied by the external electrode 3 to the area of the electronic component main body 1 is particularly high. The size of the electronic component main body is 1 mm 3. This is particularly effective for the following electronic component bodies. In this case, the thickness of the ceramic layer 1a is preferably 3 μm or less, more preferably 2 μm or less in terms of increasing the capacity.

これに対して外部電極3を1回の焼付工程により形成する場合には、金属粉末の焼結開始温度をガラス粉末の結晶化開始温度より高く、かつ前記結晶化ガラスの再溶融温度よりも低くしたとしても外部電極3と電子部品本体1中の導体層1cとの接合が弱くなり容量抜けが多くなり、また、金属成分、ガラス成分および空隙の割合が、上記本発明の範囲からはずれる場合には、外部電極3が緻密化せずメッキ時にメッキ液が浸入して絶縁不良となる恐れがある。   On the other hand, when the external electrode 3 is formed by a single baking process, the sintering start temperature of the metal powder is higher than the crystallization start temperature of the glass powder and lower than the remelting temperature of the crystallized glass. Even when the external electrode 3 and the conductor layer 1c in the electronic component body 1 are weakened, capacity loss is increased, and the ratio of the metal component, the glass component, and the void is out of the scope of the present invention. If the external electrode 3 is not densified, a plating solution may enter during plating, resulting in poor insulation.

本発明にかかる試料として積層セラミックコンデンサを作製した。先ず、焼成後にセラミック層となる厚み3μmのグリーンシートを作製した。このグリーンシートは、例えば、BaTiO原料粉末に対して、副成分としてSi,Liおよびアルカリ土類金属を含むガラス粉末を混合したものである。 A multilayer ceramic capacitor was produced as a sample according to the present invention. First, a green sheet having a thickness of 3 μm, which becomes a ceramic layer after firing, was produced. For example, the green sheet is obtained by mixing glass powder containing Si, Li, and an alkaline earth metal as subcomponents with a BaTiO 3 raw material powder.

次に、このグリーンシート上に、Ni粉末と有機樹脂とからなる内部導体ペーストを用いてスクリーン印刷した。その際、内部導体の有効面積は0.40mmとした。次に、この内部導体ペーストを印刷したグリーンシートを100枚積層し、さらにその上下面に、内部導体ペーストを印刷していないグリーンシートをそれぞれ20枚積層し、ホットプレスして一体化し、所定寸法に切断してコンデンサ本体成形体を作製した。 Next, screen printing was performed on the green sheet using an internal conductor paste made of Ni powder and an organic resin. At that time, the effective area of the inner conductor was set to 0.40 mm 2 . Next, 100 green sheets printed with the internal conductor paste are stacked, and 20 green sheets not printed with the internal conductor paste are stacked on the upper and lower surfaces of the green sheets and integrated by hot pressing, with predetermined dimensions. The capacitor main body molded body was produced by cutting into pieces.

次に、このコンデンサ本体成形体を大気中で400℃にて脱脂処理を行い、その後、1250℃(酸素分圧10−11atm)で2時間焼成し、続いて大気雰囲気中1000℃で再酸化処理をして焼成体であるコンデンサ本体を作製した。こうしてサイズが1mm、または1.5mm、導体層厚みが1μmまたは1.5μmのコンデンサ本体を得た。 Next, the capacitor body molded body is degreased at 400 ° C. in the atmosphere, then fired at 1250 ° C. (oxygen partial pressure 10 −11 atm) for 2 hours, and then reoxidized at 1000 ° C. in the air atmosphere. The capacitor body, which was a fired body, was prepared by processing. Thus, a capacitor body having a size of 1 mm 3 or 1.5 mm 3 and a conductor layer thickness of 1 μm or 1.5 μm was obtained.

外部電極用の導体ペーストは、金属粉末として平均粒径が1μmのCu粉末(焼結開始温度が720℃)を用い、また、ガラス粉末として結晶性のリチウム珪酸ガラスおよび非結晶性のチタン添加ガラスを用い、これらの混合粉末100質量部に対して有機樹脂(溶剤を含む)を25質量部添加して調製した。   The conductor paste for the external electrode uses Cu powder having an average particle diameter of 1 μm (sintering start temperature: 720 ° C.) as the metal powder, and crystalline lithium silicate glass and non-crystalline titanium-added glass as the glass powder. And 25 parts by mass of an organic resin (including a solvent) was added to 100 parts by mass of these mixed powders.

次に、外部電極を形成するために、まず焼成したコンデンサ本体をバレル研磨した後、このコンデンサ本体の両端部に前記導体ペーストを塗布し、焼付け処理を行った。ガラスの結晶化開始温度は650℃であった。   Next, in order to form an external electrode, the fired capacitor body was first barrel-polished, and then the conductor paste was applied to both ends of the capacitor body, followed by baking treatment. The crystallization onset temperature of the glass was 650 ° C.

そして、窒素中において1回目の焼付けを表1に示すように650〜700℃で行い、2回目の焼付けを800〜850℃で行い、電子部品本体の端部に本発明の外部電極を形成した。焼付け処理する数量は1回分を10,000個とし、焼付け後に外部電極同士が接合されたものをくっつき不良としてその割合を評価した。また外部電極表面のガラス浮きも実体顕微鏡を用いて観察した。ガラス浮きは0.2μm以下を良とした。その後、不良でないものを選別し、その外部電極上に順にNiメッキ層およびSnメッキ層を順に施した。   Then, the first baking in nitrogen was performed at 650 to 700 ° C. as shown in Table 1, the second baking was performed at 800 to 850 ° C., and the external electrode of the present invention was formed at the end of the electronic component body. . The quantity to be baked was set to 10,000 per batch, and the ratio of the bonded external electrodes after baking was evaluated as sticking failure. The glass float on the external electrode surface was also observed using a stereomicroscope. The glass float was determined to be 0.2 μm or less. Thereafter, non-defective ones were selected, and Ni plating layer and Sn plating layer were sequentially applied on the external electrodes.

次に、これらの積層セラミックコンデンサ各100個の静電容量(C)、誘電損失および絶縁抵抗(R)を測定した。測定は、基準温度25℃で行い、静電容量は、周波数1.0kHz、入力信号レベル0.5Vrmsの条件で測定し容量抜けを評価した。絶縁抵抗は10V、1分の条件にて測定し、10Ω以下を不良とした。

Figure 2006013219
Next, the capacitance (C), dielectric loss, and insulation resistance (R) of each of these multilayer ceramic capacitors were measured. The measurement was performed at a reference temperature of 25 ° C., and the capacitance was measured under the conditions of a frequency of 1.0 kHz and an input signal level of 0.5 Vrms to evaluate capacity loss. The insulation resistance was measured under the condition of 10 V for 1 minute, and 10 8 Ω or less was regarded as defective.
Figure 2006013219

表1の結果から明らかなように、本発明によれば、2回以上の焼付け工程を施し、外部電極の金属成分、ガラス成分、および空隙の割合がいずれも80〜85%、10〜15%、0〜5%とした試料では、くっつき不良は1%以下、容量抜けが0.1%、絶縁抵抗不良も1%以下であった。さらには、導体層厚みが1μm以下であり、コンデンサ本体のサイズが1mm以下であっても、くっつき不良は1%以下、容量抜けが0.1%、絶縁抵抗不良も1%以下に維持できた。 As is clear from the results in Table 1, according to the present invention, the baking process is performed twice or more, and the ratio of the metal component, the glass component, and the voids of the external electrode is 80 to 85%, 10 to 15%. In the sample of 0 to 5%, the sticking failure was 1% or less, the capacity loss was 0.1%, and the insulation resistance failure was 1% or less. Furthermore, even when the conductor layer thickness is 1 μm or less and the size of the capacitor body is 1 mm 3 or less, the sticking failure can be maintained at 1% or less, the capacity loss is 0.1%, and the insulation resistance failure can be maintained at 1% or less. It was.

これに対して、本発明外の試料として外部電極を1回の焼付工程により形成した場合、あるいは外部電極の金属成分、ガラス成分、空隙の割合が本発明の範囲外であった試料では、いずれかの試料で特性が劣り、最高値で、くっつき不良率が1.2%、容量抜け不良率が2.2%、絶縁抵抗不良率が7.7%であった。   On the other hand, when the external electrode is formed by a single baking process as a sample outside the present invention, or in a sample in which the ratio of the metal component, glass component, and void of the external electrode is outside the scope of the present invention, The characteristics of these samples were inferior, and at the highest value, the sticking failure rate was 1.2%, the capacity loss failure rate was 2.2%, and the insulation resistance failure rate was 7.7%.

本発明のチップ型電子部品を示す断面図である。It is sectional drawing which shows the chip type electronic component of this invention.

符号の説明Explanation of symbols

1 電子部品本体
1a セラミック層
1b セラミック積層体
1c 導体層
3 外部電極
DESCRIPTION OF SYMBOLS 1 Electronic component main body 1a Ceramic layer 1b Ceramic laminated body 1c Conductor layer 3 External electrode

Claims (7)

セラミック積層体の内部に導体層を有する電子部品本体の端部に、金属粉末とガラス粉末とを含む導体ペーストを塗布して、2回以上の焼付工程を経て形成され、金属成分、ガラス成分および空隙の割合が、体積比で、それぞれ80〜85%、10〜15%、0〜5%である外部電極を具備することを特徴とするチップ型電子部品。 A conductor paste containing a metal powder and a glass powder is applied to the end of an electronic component body having a conductor layer inside the ceramic laminate, and is formed through two or more baking steps. A chip-type electronic component comprising external electrodes whose void ratios are 80 to 85%, 10 to 15%, and 0 to 5%, respectively, by volume. ガラス成分が結晶化ガラスである請求項1記載のチップ型電子部品。 The chip-type electronic component according to claim 1, wherein the glass component is crystallized glass. 1回目の焼付温度が、ガラス成分の結晶化開始温度よりも0〜50℃高く、2回目以降が150〜200℃高い請求項1または2に記載のチップ型電子部品。 The chip-type electronic component according to claim 1 or 2, wherein the first baking temperature is 0 to 50 ° C higher than the crystallization start temperature of the glass component, and the second and subsequent times are 150 to 200 ° C higher. 導体層の厚みが1μm以下である請求項1乃至3のうちいずれか記載のチップ型電子部品。 The chip-type electronic component according to claim 1, wherein the conductor layer has a thickness of 1 μm or less. 電子部品本体のサイズが1mm以下である請求項1乃至4のうちいずれか記載のチップ型電子部品。 The chip-type electronic component according to any one of claims 1 to 4, wherein the size of the electronic component main body is 1 mm 3 or less. グリーンシートと、内部導体パターンとを複数積層した電子部品本体成形体を形成し、焼成して端面に導体層が露出した電子部品本体を形成する工程と、該電子部品本体の前記導体層が露出した端部に、金属粉末とガラス粉末とを含む導体ペーストを塗布して、2回以上の焼付けを行い外部電極を形成する工程と、を具備することを特徴とするチップ型電子部品の製法。 Forming an electronic component body molded body in which a green sheet and a plurality of internal conductor patterns are laminated, and firing to form an electronic component body having a conductor layer exposed on an end surface; and exposing the conductor layer of the electronic component body And a step of applying a conductive paste containing a metal powder and a glass powder to the end portion and baking it twice or more to form an external electrode. 2回以上の焼付け工程において、後の焼付け温度が前の焼付け温度より高い請求項6記載のチップ型電子部品の製法。 The method for producing a chip-type electronic component according to claim 6, wherein, in the two or more baking steps, the subsequent baking temperature is higher than the previous baking temperature.
JP2004189773A 2004-06-28 2004-06-28 Chip-type electronic component and its manufacturing method Expired - Fee Related JP4574246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189773A JP4574246B2 (en) 2004-06-28 2004-06-28 Chip-type electronic component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189773A JP4574246B2 (en) 2004-06-28 2004-06-28 Chip-type electronic component and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006013219A true JP2006013219A (en) 2006-01-12
JP4574246B2 JP4574246B2 (en) 2010-11-04

Family

ID=35780082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189773A Expired - Fee Related JP4574246B2 (en) 2004-06-28 2004-06-28 Chip-type electronic component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4574246B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188261A (en) * 2008-02-07 2009-08-20 Tdk Corp Method for manufacturing laminated electronic component
JP2009200363A (en) * 2008-02-22 2009-09-03 Koa Corp Laminated chip varistor
JP2010073780A (en) * 2008-09-17 2010-04-02 Murata Mfg Co Ltd Ceramic electronic component, and method for manufacturing the same
JP2011204778A (en) * 2010-03-24 2011-10-13 Murata Mfg Co Ltd Method of manufacturing laminated ceramic electronic component
JP2012079862A (en) * 2010-09-30 2012-04-19 Tdk Corp Ceramic electronic component
US20130009515A1 (en) * 2011-07-07 2013-01-10 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
WO2014175034A1 (en) * 2013-04-25 2014-10-30 株式会社村田製作所 Multi-layer ceramic capacitor and method for manufacturing same
WO2015045625A1 (en) * 2013-09-24 2015-04-02 株式会社村田製作所 Laminated ceramic electronic component
JPWO2013118891A1 (en) * 2012-02-08 2015-05-11 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same
US20170345570A1 (en) * 2016-05-31 2017-11-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326503A (en) * 1991-04-25 1992-11-16 Tokin Corp Multilayered ceramic capacitor
JP2000232031A (en) * 1999-02-12 2000-08-22 Murata Mfg Co Ltd Conductive paste and multilayer ceramic capacitor using conductive paste
JP2000331866A (en) * 1999-03-17 2000-11-30 Hitachi Metals Ltd Laminated ceramic electronic component
JP2001345231A (en) * 2000-05-31 2001-12-14 Murata Mfg Co Ltd Conductive paste and ceramic electronic part
JP2003217969A (en) * 2002-01-24 2003-07-31 Nec Tokin Corp Manufacturing method of laminated ceramic capacitor
JP2003289001A (en) * 2002-03-28 2003-10-10 Koa Corp Thick film electronic part
JP2003347146A (en) * 2002-05-29 2003-12-05 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326503A (en) * 1991-04-25 1992-11-16 Tokin Corp Multilayered ceramic capacitor
JP2000232031A (en) * 1999-02-12 2000-08-22 Murata Mfg Co Ltd Conductive paste and multilayer ceramic capacitor using conductive paste
JP2000331866A (en) * 1999-03-17 2000-11-30 Hitachi Metals Ltd Laminated ceramic electronic component
JP2001345231A (en) * 2000-05-31 2001-12-14 Murata Mfg Co Ltd Conductive paste and ceramic electronic part
JP2003217969A (en) * 2002-01-24 2003-07-31 Nec Tokin Corp Manufacturing method of laminated ceramic capacitor
JP2003289001A (en) * 2002-03-28 2003-10-10 Koa Corp Thick film electronic part
JP2003347146A (en) * 2002-05-29 2003-12-05 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188261A (en) * 2008-02-07 2009-08-20 Tdk Corp Method for manufacturing laminated electronic component
JP2009200363A (en) * 2008-02-22 2009-09-03 Koa Corp Laminated chip varistor
JP2010073780A (en) * 2008-09-17 2010-04-02 Murata Mfg Co Ltd Ceramic electronic component, and method for manufacturing the same
JP2011204778A (en) * 2010-03-24 2011-10-13 Murata Mfg Co Ltd Method of manufacturing laminated ceramic electronic component
JP2012079862A (en) * 2010-09-30 2012-04-19 Tdk Corp Ceramic electronic component
US20130009515A1 (en) * 2011-07-07 2013-01-10 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for internal electrodes and multilayer ceramic electronic component including the same
JPWO2013118891A1 (en) * 2012-02-08 2015-05-11 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same
WO2014175034A1 (en) * 2013-04-25 2014-10-30 株式会社村田製作所 Multi-layer ceramic capacitor and method for manufacturing same
JP5904305B2 (en) * 2013-04-25 2016-04-13 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
JPWO2014175034A1 (en) * 2013-04-25 2017-02-23 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
US9842698B2 (en) 2013-04-25 2017-12-12 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and manufacturing method therefor
WO2015045625A1 (en) * 2013-09-24 2015-04-02 株式会社村田製作所 Laminated ceramic electronic component
JPWO2015045625A1 (en) * 2013-09-24 2017-03-09 株式会社村田製作所 Multilayer ceramic electronic components
US9978519B2 (en) 2013-09-24 2018-05-22 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
US20170345570A1 (en) * 2016-05-31 2017-11-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
US10522291B2 (en) * 2016-05-31 2019-12-31 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4574246B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
KR100812077B1 (en) Electronic component and manufacturing method thereof
JPH0992983A (en) Manufacture of ceramic multilayer board
JP2010045209A (en) Method of manufacturing laminated ceramic electronic component
JP4574246B2 (en) Chip-type electronic component and its manufacturing method
JP4182009B2 (en) Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP5293605B2 (en) Ceramic multilayer substrate and manufacturing method thereof
JPH053131A (en) Multilayer ceramic capacitor and manufacture thereof
JP3897472B2 (en) Passive component built-in multilayer wiring board and manufacturing method thereof
JP2002008938A (en) Laminated electronic component and method of manufacturing the same
JP2020072263A (en) Multilayer ceramic electronic component and manufacturing method thereof
JPH06100377A (en) Production of multilayer ceramic board
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
JP2002203736A (en) Method of manufacturing laminated ceramic capacitor
JP4867948B2 (en) Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP5015550B2 (en) Glass ceramic circuit board and manufacturing method thereof
JP2002343674A (en) Manufacturing method of laminated ceramic capacitor
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method
JP3981270B2 (en) Conductor pattern incorporated in multilayer substrate, multilayer substrate incorporating conductor pattern, and method of manufacturing multilayer substrate
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP4688460B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2005285968A (en) Capacitor built-in glass ceramic multilayer wiring board
JP2004083373A (en) High thermal expansion porcelain formulation, high thermal expansion porcelain, its manufacturing method, multilayered wiring board, and its mounting structure
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2000058375A (en) Laminated ceramic electronic component and manufacture thereof
JP2003026472A (en) Method for producing multilayer ceramic electronic parts, multilayer ceramic electronic parts and raw composite multilayer body for producing multilayer ceramic electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees