JP2006009605A - Vertical shaft windmill - Google Patents

Vertical shaft windmill Download PDF

Info

Publication number
JP2006009605A
JP2006009605A JP2004184531A JP2004184531A JP2006009605A JP 2006009605 A JP2006009605 A JP 2006009605A JP 2004184531 A JP2004184531 A JP 2004184531A JP 2004184531 A JP2004184531 A JP 2004184531A JP 2006009605 A JP2006009605 A JP 2006009605A
Authority
JP
Japan
Prior art keywords
support member
windmill
shape
peripheral edge
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004184531A
Other languages
Japanese (ja)
Inventor
Masahiro Mino
野 正 洋 三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2004184531A priority Critical patent/JP2006009605A/en
Publication of JP2006009605A publication Critical patent/JP2006009605A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft windmill suppressing aerodynamic resistance generated by the rotating speed increase of the windmill and easily and rapidly changeable in the number and shape of blades according to the magnitude of wind force. <P>SOLUTION: The vertical shaft windmill has a rotating shaft 1 extended in a vertical direction, a plurality of blades extended in the vertical direction, and support members 3, 3A, 3B, 3E for supporting the blades 2 to the rotating shaft 1. The support members 3, 3A, 3B, 3E are formed in plate shape, and the peripheral edge parts of the support members 3, 3A, 3B, 3E of plate shape are projected in a direction of the rotating shaft (to form rim-like members 3b). The blades are attachable to and detachable from the peripheral edge parts (the rim-like members 3b) of the support members. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回転軸方向が概略垂直な垂直軸風車に関する。   The present invention relates to a vertical axis wind turbine whose rotation axis direction is substantially vertical.

垂直軸風車には、ダリウス、サボニウス、垂直翼型等の種類がある。
垂直翼型の風車は、図19に示すように、垂直翼(2)を腕木式の支持棒(スポーク3)或いは支柱によって支えられている。
There are various types of vertical axis wind turbines such as Darius, Savonius, and vertical airfoil.
In the vertical wing type windmill, as shown in FIG. 19, the vertical wing (2) is supported by a brace-type support rod (spoke 3) or a support.

このため、翼2の数は、支持棒3の数によって決定されてしまい、後に変更することは困難である。   For this reason, the number of the blades 2 is determined by the number of the support rods 3 and is difficult to change later.

さらに、翼2を腕木式の支持棒(スポーク)3或いは支柱によって支えられている風車では、回転数の上昇に伴い、支持棒3の空気力学的な抵抗が増大し、この空気力学的抵抗の増大が風車の効率を低下させている。   Furthermore, in the wind turbine in which the wing 2 is supported by the brace-type support rod (spoke) 3 or the support, the aerodynamic resistance of the support rod 3 increases as the rotational speed increases, and this aerodynamic resistance is reduced. The increase is reducing the efficiency of the windmill.

その他の従来技術として、向かい風に対しても風の抵抗を受け難い羽根を有する垂直軸風車が提案されている(例えば特許文献1参照)。
しかし、かかる従来技術では、上述した問題点を解消することは出来ない。
特開2003−343414号公報
As another conventional technique, a vertical axis wind turbine having blades that are difficult to receive wind resistance even against a head wind has been proposed (see, for example, Patent Document 1).
However, this conventional technique cannot solve the above-described problems.
JP 2003-343414 A

本発明の目的は、風車の回転数の上昇に伴う空気力学的抵抗を抑制し、風力の大小に応じて、翼の数及び翼の形状を簡単、且つ迅速に変更可能とする垂直軸風車を提供することである。   An object of the present invention is to provide a vertical axis wind turbine that can suppress aerodynamic resistance accompanying an increase in the rotational speed of the wind turbine and can easily and quickly change the number of blades and the shape of the blades according to the magnitude of the wind force. Is to provide.

本発明の垂直軸風車(50、50B、50C、30E)は、垂直方向に延在する回転軸(1)と、垂直方向に延在する複数の翼(2)と、翼(2)を回転軸(1)に支持する支持部材(3、3A、3B、3E)とを有し、該支持部材(3、3A、3B、3E)は平板形状をしており、平板形状の支持部材(3、3A、3B、3E)の周縁部が回転軸方向に突出して(リム状部材3bを形成して)おり、支持部材の周縁部(リム状部材3b)に前記翼(2)を取り付け及び取り外し自在に構成したことを特徴としている(請求項1)。   The vertical axis wind turbine (50, 50B, 50C, 30E) of the present invention rotates a rotating shaft (1) extending in the vertical direction, a plurality of blades (2) extending in the vertical direction, and the blade (2). A support member (3, 3A, 3B, 3E) supported on the shaft (1), the support member (3, 3A, 3B, 3E) has a flat plate shape, and a flat plate-shaped support member (3 3A, 3B, 3E) projecting in the direction of the rotation axis (forming the rim-shaped member 3b), and attaching and removing the blade (2) to the peripheral edge (rim-shaped member 3b) of the support member It is characterized by being freely configured (claim 1).

本発明において、支持部材の前記周縁部(リム状部材3b)は回転軸方向上側に突出しており、該突出した部分には切り欠き(排水溝)及び/又は貫通孔(排水孔3c)が形成されているのが好ましい(請求項2)。   In the present invention, the peripheral edge portion (rim-like member 3b) of the support member protrudes upward in the rotational axis direction, and a notch (drainage groove) and / or a through hole (drainage hole 3c) is formed in the protruding portion. (Claim 2).

ここで、前記支持部材の平面形状は円形が好ましいが、非円形(例えば、図12の第3実施形態で示す様な八角形、或いは六角形、その他の形状)とすることも可能である。   Here, the planar shape of the support member is preferably circular, but may be non-circular (for example, octagonal, hexagonal, or other shapes as shown in the third embodiment of FIG. 12).

上述した様な構成を具備する本発明の垂直軸風車(50A、50B、50C、50E)によれば、平板形状の支持部材(3)の周縁部が回転軸方向に突出して(リム状部材3aを形成して)おり、支持部材の周縁部(3a)に前記翼(2)を取り付け及び取り外し自在に構成しているため、季節によって強さの異なる風力には、翼(2)の数及び翼(2)の形状を任意に選ぶことで、効率的且つ安全に回転力が得られる。   According to the vertical axis wind turbine (50A, 50B, 50C, 50E) of the present invention having the above-described configuration, the peripheral edge of the flat plate-shaped support member (3) protrudes in the rotation axis direction (the rim-shaped member 3a). And the wings (2) can be attached to and detached from the peripheral edge (3a) of the support member. By arbitrarily selecting the shape of the wing (2), a rotational force can be obtained efficiently and safely.

ここで、翼数を増加すれば、風速が遅い場合においても、風車は確実に回転することが出来る。また、翼数が多ければ、回転している風車が偏芯してしまうことが抑制され、その回転を円滑にすることが出来る。   Here, if the number of blades is increased, the windmill can reliably rotate even when the wind speed is slow. Moreover, if there are many wing | blade numbers, it will be suppressed that the rotating windmill will be eccentric, and the rotation can be made smooth.

また、本発明の垂直軸風車(50A、50B、50C、50E)によれば、支持部材(3、3A、3B、3E)が平板形状をしているために、風車の回転数が上昇しても、空気力学的抵抗が急激に増加してしまうことが無い。従って、強風時に空気力学的抵抗が増加してしまうことを抑制できる。   Further, according to the vertical axis wind turbine (50A, 50B, 50C, 50E) of the present invention, since the support member (3, 3A, 3B, 3E) has a flat plate shape, the rotational speed of the wind turbine is increased. However, the aerodynamic resistance does not increase rapidly. Therefore, it can suppress that aerodynamic resistance increases at the time of a strong wind.

また、平板形状の支持部材(3、3A、3B、3E)としたので、平板形状の支持部材(3、3A、3B、3E)自体の慣性質量が確保される。そのため、風車が回転した後に風速が低下して微風になったとしても、風車の回転を保持することが可能であり、或いは、風車の回転速度が急激に減少することがなくなる。
換言すれば、支持部材(3、3A、3B、3E)を平板形状に構成した本発明によれば、風車を用いて発電を行っている場合に、風速の低下に伴い、風車発電出力が急激に低下してしまうことが防止され、安定した発電出力が確保される。
Moreover, since it was set as the flat support member (3, 3A, 3B, 3E), the inertial mass of flat support member (3, 3A, 3B, 3E) itself is ensured. For this reason, even if the wind speed decreases after the windmill rotates and the wind becomes a breeze, the rotation of the windmill can be maintained, or the rotational speed of the windmill does not decrease rapidly.
In other words, according to the present invention in which the support members (3, 3A, 3B, 3E) are configured in a flat plate shape, when the wind turbine is used to generate power, the wind turbine power output suddenly increases as the wind speed decreases. Is prevented, and a stable power output is ensured.

本発明の垂直軸風車(50A、50B、50C、50E)において、回転軸方向上側に突出して形成した支持部材(3、3A、3B、3E)の前記周縁部(リム状部材3b)に、切り欠き(排水溝)及び/又は貫通孔(排水孔3c)を形成すれば(請求項2)、平板形状の支持部材上に溜まった雨水は、その切り欠き(排水溝)及び/又は貫通孔(排水孔3c)から円滑に排出される。従って、平板形状の支持部材上に雨水が貯留して風車の回転が妨げられてしまう事態が、完全に防止される。
尚、本発明の垂直軸風車において、支持部材(3、3A、3B、3E)の前記周縁部(リム状部材3b)が回転軸方向下側に突出して形成され、回転軸方向上側は周縁部が突出していない平坦な形状に構成されていれば、雨水が貯留することは無い。
In the vertical axis wind turbine (50A, 50B, 50C, 50E) of the present invention, the peripheral portion (rim-like member 3b) of the support member (3, 3A, 3B, 3E) formed to protrude upward in the rotational axis direction is cut. If a notch (drainage groove) and / or a through hole (drainage hole 3c) is formed (Claim 2), the rainwater accumulated on the flat plate-shaped support member is notched (drainage groove) and / or through hole ( It is smoothly discharged from the drain hole 3c). Therefore, a situation in which rainwater is stored on the flat support member and rotation of the windmill is prevented is completely prevented.
In the vertical axis wind turbine of the present invention, the peripheral portion (rim-like member 3b) of the support member (3, 3A, 3B, 3E) is formed to protrude downward in the rotational axis direction, and the upper side in the rotational axis direction is the peripheral portion. If it is comprised in the flat shape which does not protrude, rainwater will not accumulate.

本発明において、支持部材(3)の平板形状をしている部分には貫通孔(肉盗み部分)を形成すれば、支持部材(3)の重量を軽減して、風車全体を軽量化することが出来る。   In the present invention, if a through hole (a meat stealing portion) is formed in the flat plate-shaped portion of the support member (3), the weight of the support member (3) is reduced and the entire windmill is reduced in weight. I can do it.

また、本発明において、支持部材(3)の平板形状部に太陽電池を貼付する、或いは円筒部材を設けるなどによって微風・弱風時の起動性を向上するためのフラップを付加するなどの応用形態が容易に実施できる。   Further, in the present invention, an application mode such as adding a flap for improving the startability in a light wind or a light wind by attaching a solar cell to the flat plate-shaped portion of the support member (3) or providing a cylindrical member. Can be easily implemented.

添付図面を参照して本発明の実施形態を以下に説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

先ず、図1〜図11を参照して、第1実施形態を説明する。
図1〜図11の第1実施形態は、支持部材が円盤状に形成された実施形態である。
First, a first embodiment will be described with reference to FIGS.
1st Embodiment of FIGS. 1-11 is embodiment by which the supporting member was formed in disk shape.

図1において、当該垂直軸風車50Aは、回転軸1と、回転軸に係合され複数の翼(回転翼)2を支持する円盤状の支持部材3とを有し、回転軸1は例えば発電機4を回転駆動するように構成されている。   In FIG. 1, the vertical axis wind turbine 50 </ b> A includes a rotating shaft 1 and a disk-shaped support member 3 that is engaged with the rotating shaft and supports a plurality of blades (rotating blades) 2. It is comprised so that the machine 4 may be rotationally driven.

図2で示す垂直軸風車の他の例50Bは、翼2が長大の場合であって、円盤状の支持部材3を2個設けて、翼2の両端で支持する様に構成した実施例である。   Another example 50B of the vertical axis wind turbine shown in FIG. 2 is an example in which the blade 2 is long, and two disk-like support members 3 are provided and supported at both ends of the blade 2. is there.

前記支持部材3は、円盤(平板)形状部3aと、その円盤形状部3aの周縁部3bとで構成されている。
さらに図3をも参照して詳述すれば、支持部材3は、円盤形状部3aの周縁部3bが、垂直上方にリム状(円環状)に突出し、盆のような形状に構成されている。
The support member 3 includes a disk (flat plate) shaped portion 3a and a peripheral edge portion 3b of the disk shaped portion 3a.
Further, with reference to FIG. 3 as well, the support member 3 is configured in a tray-like shape, with the peripheral edge portion 3b of the disk-shaped portion 3a protruding vertically upward in a rim shape (annular shape). .

その周縁部3bには、翼2を取付けるための取付孔3eが全周を等分割する様に形成されている。また、円盤形状部3aと周縁部3bとの境界部(コーナー)には、図示の例では、部分円弧状の切欠き(水抜き孔)3cが形成されている。   An attachment hole 3e for attaching the blade 2 is formed in the peripheral edge portion 3b so as to equally divide the entire circumference. Further, in the illustrated example, a partial arc-shaped notch (drainage hole) 3c is formed at the boundary (corner) between the disk-shaped portion 3a and the peripheral edge portion 3b.

図4は、図3に対する支持部材の変形例3Aを示しており、支持部材3Aは盆を伏せたような形状である。従って、図3における切欠き(水抜き孔)3cは不要となる。   FIG. 4 shows a modification 3A of the support member with respect to FIG. 3, and the support member 3A has a shape like a basin. Therefore, the notch (drain hole) 3c in FIG. 3 is not necessary.

さらに、図5に示すように、垂直軸風車50Cの支持部材3の円盤形状部3aの上面に、複数のアモルファス太陽電池6を貼り付けてもよい。   Further, as shown in FIG. 5, a plurality of amorphous solar cells 6 may be attached to the upper surface of the disk-shaped portion 3a of the support member 3 of the vertical axis windmill 50C.

本実施形態では、風車の回転によって発電機4を駆動し、電力を発生させている。
電力の用途としては、例えば、LEDを用いた交差点の信号機の供給電力等が考えられる。LEDを用いた信号機では、特に信号機のレンズ表面に西日等の直射日光が当たる場合等では、LEDへの供給電力は増加する。
そのような場合、図5に示した様に、アモルファス太陽電池6を支持部材3に貼り付けておけば、増加する電力供給量に即座に対処出来る。そうした意味では、支持部材の円盤状部材3aのみならず、周縁部3bの外周面、または、翼2の表面にアモルファス太陽電池を貼り付けておくことも、特に西日の当たる際には、有効である。
In the present embodiment, the generator 4 is driven by the rotation of the windmill to generate electric power.
As an application of power, for example, supply power of traffic lights at intersections using LEDs can be considered. In a traffic light using an LED, the power supplied to the LED increases particularly when direct sunlight such as western sunlight hits the lens surface of the traffic light.
In such a case, as shown in FIG. 5, if the amorphous solar cell 6 is attached to the support member 3, it is possible to immediately cope with the increasing power supply amount. In that sense, it is effective to attach an amorphous solar cell not only to the disk-shaped member 3a of the support member but also to the outer peripheral surface of the peripheral edge 3b or the surface of the wing 2, particularly when the sun hits. It is.

図6〜図11は、実施形態に用いられる翼2の各種形状の例(図6〜図9)、及び風向と風車の回転方向との関係(図10、図11)を示したものである。   FIGS. 6 to 11 show examples of various shapes of the blade 2 used in the embodiment (FIGS. 6 to 9) and the relationship between the wind direction and the rotation direction of the windmill (FIGS. 10 and 11). .

図6の例では、翼2の長手方向の二面2a、2bが非対称の雫(ティアードロップ)状に形成されている。   In the example of FIG. 6, the two longitudinal surfaces 2 a and 2 b of the wing 2 are formed in an asymmetrical tear drop shape.

図7は、前記図6に対する変形例で、図6の翼2の非対称で曲率半径の小さな側の面2aのプロフィルのみの均一厚みに形成された翼2Aの形状例を示す。   FIG. 7 is a modification of FIG. 6 and shows an example of the shape of the blade 2A formed to have a uniform thickness only on the profile 2a on the side of the blade 2 of FIG.

図8は、一端2BaがL字状に折り曲げられた平板状の翼2Bである。   FIG. 8 shows a flat blade 2B in which one end 2Ba is bent in an L shape.

図9は、前記図7と図8とを合成した翼2Cの断面形状を示している。   FIG. 9 shows a cross-sectional shape of a blade 2C obtained by synthesizing FIG. 7 and FIG.

図7の例では、プレス成形及びトリムカット(輪郭成形)が1ショットで出来るため、非常に生産性が高い。   In the example of FIG. 7, since press molding and trim cutting (contour molding) can be performed in one shot, the productivity is very high.

図8の例では、板端近傍を単に折り曲げるだけであり、生産性は非常に高い。   In the example of FIG. 8, the vicinity of the plate end is simply bent, and the productivity is very high.

図9の例では、プレスで曲面を成形した後、端部を折り曲げればよく、生産性は高い。   In the example of FIG. 9, after the curved surface is formed with a press, the end may be bent, and the productivity is high.

図10は、図6の翼2の断面形状の場合の風向(矢印)Yと回転方向(矢印)Rとの関係を示した図である。   FIG. 10 is a diagram showing the relationship between the wind direction (arrow) Y and the rotation direction (arrow) R in the case of the cross-sectional shape of the blade 2 of FIG.

図11は、図8の翼2Bの断面形状の場合の(矢印)Yと回転方向(矢印)Rとの関係を示した図である。先端のL字状の折り曲げ角度α及び折り返し長さLは、設置した地域での風力に基づき、適宜設定すればよい。
尚、折り曲げ角度αは鋭角であり、鋭角とすることで、風向きに開放する位置での空力抵抗を最小限に抑制することが出来る。
図11において、矢印Y1は、翼2Bの折り曲げた端部2Baで風の向きが円滑に変化する様子を示している。
FIG. 11 is a diagram showing the relationship between (arrow) Y and rotation direction (arrow) R in the case of the cross-sectional shape of blade 2B of FIG. The L-shaped bending angle α and the folding length L at the tip may be appropriately set based on the wind power in the installed area.
Note that the bending angle α is an acute angle, and by setting it to an acute angle, aerodynamic resistance at a position opened in the wind direction can be minimized.
In FIG. 11, an arrow Y1 indicates a state in which the wind direction smoothly changes at the bent end 2Ba of the wing 2B.

上述した構成の第1実施形態によれば、リム状部材(周縁部)3bが存在するので、翼2の取り付け、取り外しが容易である。また、その周縁部3bには、翼2の取付孔3eの数が最大限に設けてあり、さらに、翼2の形状も、例えば、図6〜図9に示したような複数の種類が選択可能に設定されている。
従って、季節によって強さの異なる風力には、翼2の数及び翼2の形状を任意に選ぶことで、効率的且つ安全に回転力が得られる。
According to 1st Embodiment of the structure mentioned above, since the rim-like member (peripheral part) 3b exists, attachment and removal of the wing | blade 2 are easy. Further, the peripheral edge 3b is provided with the maximum number of attachment holes 3e of the blade 2, and the shape of the blade 2 is selected from a plurality of types as shown in FIGS. 6 to 9, for example. It is set to be possible.
Therefore, for wind power having different strengths depending on the season, a rotational force can be obtained efficiently and safely by arbitrarily selecting the number of blades 2 and the shape of the blades 2.

図1〜図3に示す例では、周縁部3bが上方に突出して雨水の溜まるような形状でも、切欠き(水抜き孔)3cが設けてあるため、雨水は常に排出され、支持部材3上に溜まることはない。
勿論、周縁部3bを下方に突出させ、支持部材3の上面を平坦に構成すれば、雨水は支持部材3上に貯留することは無い。
In the example shown in FIGS. 1 to 3, even if the peripheral edge portion 3 b protrudes upward and accumulates rainwater, the notch (drainage hole) 3 c is provided. Don't get stuck in.
Of course, if the peripheral edge part 3b protrudes downward and the upper surface of the support member 3 is configured to be flat, rainwater will not be stored on the support member 3.

翼2が長大の場合には、図2に示す様に、支持部材3を2個設け、翼2の両端を支持することによって風車の強度及び剛性を保障することが出来る。
尚、支持部材による翼2の支持箇所は、中央部、上下両端部以外の場所を指示しても良い。
When the blade 2 is long, the strength and rigidity of the wind turbine can be ensured by providing two support members 3 and supporting both ends of the blade 2 as shown in FIG.
In addition, you may instruct | indicate locations other than a center part and an up-and-down both ends part as the support location of the wing | blade 2 by a supporting member.

翼2の支持部材3への取り付けは、緩み止め機構を有する締結部材、例えば緩み止めボルトとナットの組を使用するようにすれば、翼2の組換えや増設に対しても迅速に工事が進められる。   The wing 2 is attached to the support member 3 by using a fastening member having a locking mechanism, for example, a set of locking bolts and nuts. It is advanced.

また、上述した第1実施形態によれば、一旦、回転を開始すれば、風速が急激に弱まったとしても、平板状の支持部材3それ自体の慣性質量が存在するので、風車の回転速度が急激に減少するようなことはない。そのため、風車自体の回転が安定する、という作用効果を有している。   Further, according to the first embodiment described above, once the rotation is started, the inertial mass of the plate-like support member 3 itself exists even if the wind speed suddenly weakens. There is no sudden decrease. Therefore, it has the effect that the rotation of the windmill itself is stabilized.

次に、図12を参照して、第2実施形態を説明する。   Next, a second embodiment will be described with reference to FIG.

図12の第2実施形態の垂直軸風車50Eは、支持部材3Eの円盤状部材(平面形状)3Eaが、非円形形状である正8角形で構成された実施形態である。そして、図12の第2実施形態の垂直軸風車50Eは、支持部材3Eの平面形状が非円形であると言う点において、図1〜図11で示す第1実施形態の支持部材3、3A、3Bの平面形状が円形であるのと相違している。
支持部材3Eの形状を正8角形で構成した点以外は、第2実施形態の構成及び作用効果は、図1〜図11の第1実施形態と同様である。
The vertical axis windmill 50E of the second embodiment of FIG. 12 is an embodiment in which the disk-like member (planar shape) 3Ea of the support member 3E is configured as a regular octagon that is a non-circular shape. And the vertical axis windmill 50E of 2nd Embodiment of FIG. 12 is the support member 3, 3A of 1st Embodiment shown in FIGS. 1-11 in the point that the planar shape of the support member 3E is non-circular. The planar shape of 3B is different from a circular shape.
Except that the shape of the support member 3E is a regular octagon, the configuration and operational effects of the second embodiment are the same as those of the first embodiment of FIGS.

次に、図13〜図16を参照し、第3実施形態を説明する。この実施形態は上記の各実施形態に対し、微風・弱風時の起動性を向上するための起動性向上手段10を付加したものである。   Next, a third embodiment will be described with reference to FIGS. This embodiment is obtained by adding startability improving means 10 for improving the startability at the time of light winds and light winds to the above embodiments.

図13を参照し、起動性向上手段10は、フラップ11、押しばね12、ヒンジ13、及び遠心おもり14で構成し、支持部材3の中央に円筒部材7を立設してその外周部に複数個(図では1個のみ示し他は省略)を対称位置に設けている。
その組み立て構成は、上方から見た図14〜図16をも参照し、回転軸方向(上下方向)に延びるフラップ11を円筒部材7にヒンジ13を介して回動可能に取り付け、回転方向前端部Aに棒状の遠心おもり14を固設し、後端部Bは押しばね12で円筒部材6から離れる方向に付勢している。
尚、フラップ11は、図示例に限らずスロット翼、スポイラなどでも良い。また、フラップ11の断面形状を非対称(例えば、おもりの部分を厚肉)にして遠心おもり14を省略することもできる。
Referring to FIG. 13, the startability improving means 10 includes a flap 11, a push spring 12, a hinge 13, and a centrifugal weight 14. (Only one is shown in the figure and others are omitted) are provided at symmetrical positions.
14 to 16 as viewed from above, the assembly structure is attached to the cylindrical member 7 via the hinge 13 so that the flap 11 extending in the rotation axis direction (vertical direction) can be rotated, and the front end in the rotation direction. A rod-shaped centrifugal weight 14 is fixed to A, and the rear end B is urged by a push spring 12 in a direction away from the cylindrical member 6.
The flap 11 is not limited to the illustrated example, and may be a slot blade, a spoiler, or the like. Further, the cross-sectional shape of the flap 11 can be asymmetric (for example, the weight portion is thick), and the centrifugal weight 14 can be omitted.

従って、図14に示す微風状態での起動時は、符号Wで示す風は、フラップ11を押して抗力として風車を強い力で回転させる。
一旦、風車が回り始めると支持部材3の周縁に取り付けた垂直の翼2に揚力が働き、それによって次第に回転が速まるがフラップ11は抗力で押され抵抗となる。しかし、回転の上昇に伴い、フラップ11は端部Aの遠心おもり14の遠心力によって図15に示すように回転軸と同心円を描く形となり、フラップ11と円筒部材6との間に隙間が生じて抗力による抵抗は大幅に減少する。また、風速が弱まるとばね12の力の方がまさり、再びフラップ11の効果が現れる。
Therefore, at the time of start-up in the light wind state shown in FIG. 14, the wind indicated by the symbol W pushes the flap 11 and rotates the windmill with a strong force as a drag force.
Once the windmill begins to rotate, lift acts on the vertical wings 2 attached to the periphery of the support member 3, thereby gradually rotating, but the flap 11 is pushed by resistance and becomes resistance. However, as the rotation increases, the flap 11 draws a concentric circle with the rotating shaft as shown in FIG. 15 due to the centrifugal force of the centrifugal weight 14 at the end A, and a gap is generated between the flap 11 and the cylindrical member 6. Therefore, drag resistance is greatly reduced. Further, when the wind speed is weakened, the force of the spring 12 is greater and the effect of the flap 11 appears again.

そして、例えば台風のような強風による過回転時には、図16に示すように、遠心おもり14の遠心力が急激に大きくなって押しばね14の付勢力を上回り、フラップ11の傾角は負になって大きな抵抗として風車の回転を抑制するように働く。すなわち、押しばね12が例えばコイルばねであれば、ばね12による反力は変位の1次関数であり、一方、遠心力は回転速度の2次の関数であって確実に作動する。
かかる起動性向上手段によれば、電子的な制御を必要とせずに自動的に作動させることができる。尚、上記実施形態では支持部材3の中央に円筒部材7を設けてフラップ11を取り付けたが、支持部材周縁部3bに取り付けてもよい。例えば、周縁の垂直翼を9枚構成とし、その6枚を通常の翼2、そして3枚をこのフラップ11として構成してもよい。
Then, at the time of excessive rotation due to strong wind such as typhoon, for example, as shown in FIG. 16, the centrifugal force of the centrifugal weight 14 suddenly increases and exceeds the urging force of the push spring 14, and the inclination angle of the flap 11 becomes negative. As a large resistance, it works to suppress the rotation of the windmill. That is, if the push spring 12 is a coil spring, for example, the reaction force by the spring 12 is a linear function of displacement, while the centrifugal force is a quadratic function of the rotational speed and operates reliably.
Such startability improving means can be automatically operated without requiring electronic control. In the above embodiment, the cylindrical member 7 is provided at the center of the support member 3 and the flap 11 is attached. However, the support member 3 may be attached to the peripheral portion 3b of the support member. For example, nine peripheral vertical wings may be configured, six of which may be configured as normal wings 2, and three may be configured as the flaps 11.

さらに、前記第3実施形態において起動性向上手段のフラップ11の傾角を特定の位置に制御する手段を付加してもよい。図17に示すように、形状記憶合金で作成した押しばね12Aを用い、例えばヒータなどの加熱手段によりその形状記憶合金製ばね12Aを復元する復元手段15を併設し、その復元手段15を制御する制御手段16を設ける。
このような構成により、回転数に基づく遠心おもり14の遠心力とばね力とで規定されるフラップ11の傾角を制御手段16の操作によって回転数に関係なく図18に示すように所定角度θに制御することができる。
Further, in the third embodiment, means for controlling the inclination angle of the flap 11 of the startability improving means to a specific position may be added. As shown in FIG. 17, a pressing spring 12A made of a shape memory alloy is used, a restoring means 15 for restoring the shape memory alloy spring 12A by a heating means such as a heater is provided, and the restoring means 15 is controlled. Control means 16 is provided.
With such a configuration, the inclination angle of the flap 11 defined by the centrifugal force and the spring force of the centrifugal weight 14 based on the rotational speed is set to a predetermined angle θ as shown in FIG. Can be controlled.

尚、図示した各実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。
例えば、図示の実施形態では、支持部材の平面形状は円形(第1実施形態)或いは正8角形(第2実施形態)であるが、その他の平面形状を採用することも可能である。
It should be noted that the illustrated embodiments are merely examples, and are not descriptions that limit the technical scope of the present invention.
For example, in the illustrated embodiment, the planar shape of the support member is circular (first embodiment) or regular octagon (second embodiment), but other planar shapes may be employed.

本発明の第1実施形態に係る垂直軸風車を示す斜視図。The perspective view which shows the vertical axis windmill which concerns on 1st Embodiment of this invention. 第1実施形態に係る垂直軸風車の他の例を示す斜視図。The perspective view which shows the other example of the vertical axis windmill which concerns on 1st Embodiment. 本発明の第1実施形態における支持部材の一実施例を示す斜視図。The perspective view which shows one Example of the supporting member in 1st Embodiment of this invention. 本発明の第1実施形態における支持部材の第1変形例を示す斜視図。The perspective view which shows the 1st modification of the supporting member in 1st Embodiment of this invention. 第1実施形態に係る垂直軸風車の別の例を示す斜視図。The perspective view which shows another example of the vertical axis windmill which concerns on 1st Embodiment. 翼の形状の一例を示した断面図。Sectional drawing which showed an example of the shape of a wing | blade. 翼の形状の一例に対する変形例を示した断面図。Sectional drawing which showed the modification with respect to an example of the shape of a wing | blade. 翼の形状における他の例を示した断面図。Sectional drawing which showed the other example in the shape of a wing | blade. 図8の例に対する変形例を示した断面図。Sectional drawing which showed the modification with respect to the example of FIG. 本発明の実施形態における翼の断面形状の一例と回転方向の関係を示した平面図。The top view which showed the example of the cross-sectional shape of the wing | blade in embodiment of this invention, and the relationship of a rotation direction. 図10とは断面形状が異なる翼と回転方向の関係を示した平面図。The top view which showed the relationship between the wing | blade from which cross-sectional shape differs from FIG. 10, and a rotation direction. 本発明の第2実施形態に係る垂直軸風車を示す平面図。The top view which shows the vertical axis windmill which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る垂直軸風車を示す斜視図。The perspective view which shows the vertical axis windmill which concerns on 3rd Embodiment of this invention. 第3実施形態の起動時のフラップの状態を示す平面図。The top view which shows the state of the flap at the time of starting of 3rd Embodiment. 同じく高速定常回転時のフラップの状態を示す平面図。The top view which similarly shows the state of the flap at the time of a high-speed steady rotation. 同じく過回転時のフラップの状態を示す平面図。The top view which similarly shows the state of the flap at the time of excessive rotation. フラップ傾角を制御する手段を付加した実施形態を示す平面図。The top view which shows embodiment which added the means to control a flap inclination angle. 図17の作用を説明する図。The figure explaining the effect | action of FIG. 従来技術における垂直軸風車を示す斜視図。The perspective view which shows the vertical axis windmill in a prior art.

符号の説明Explanation of symbols

1・・・軸
2・・・翼
3、3A、3B、3C・・・支持部材
3a・・・円盤状部材
3b・・・円環状部材(リム部材)
3c・・・切欠き(水抜き孔)
3d・・・軽量孔
3e・・・取付孔
4・・・発電機
6・・・太陽電池
50A、50B、50C、50D・・・垂直軸風車
7・・・円筒部材
11・・・フラップ
12・・・押しばね
12A・・・形状合金製押しばね
13・・・ヒンジ
14・・・遠心おもり
15・・・復元手段
16・・・制御手段
DESCRIPTION OF SYMBOLS 1 ... Shaft 2 ... Wings 3, 3A, 3B, 3C ... Support member 3a ... Disk-shaped member 3b ... Ring member (rim member)
3c ... Notch (drain hole)
3d ... lightweight hole 3e ... mounting hole 4 ... generator 6 ... solar cells 50A, 50B, 50C, 50D ... vertical axis windmill 7 ... cylindrical member 11 ... flap 12 ..Push spring 12A ... Shape alloy push spring 13 ... Hinge 14 ... Centrifugal weight 15 ... Restoring means 16 ... Control means

Claims (2)

垂直方向に延在する回転軸と、垂直方向に延在する複数の翼と、翼を回転軸に支持する支持部材とを有し、該支持部材は平板形状をしており、平板形状の支持部材の周縁部が回転軸方向に突出しており、支持部材の周縁部に前記翼を取り付け及び取り外し自在に構成したことを特徴とする垂直軸風車。   A rotating shaft extending in the vertical direction, a plurality of wings extending in the vertical direction, and a supporting member that supports the wings on the rotating shaft. The supporting member has a flat plate shape, and has a flat plate shape. A vertical axis wind turbine characterized in that a peripheral edge portion of the member protrudes in the direction of the rotation axis, and the blade is attached to and detached from the peripheral edge portion of the support member. 支持部材の前記周縁部は回転軸方向上側に突出しており、該突出した部分には切り欠き及び/又は貫通孔が形成されている請求項1の垂直軸風車。   The vertical axis wind turbine according to claim 1, wherein the peripheral edge of the support member protrudes upward in the rotational axis direction, and a notch and / or a through hole is formed in the protruding portion.
JP2004184531A 2004-06-23 2004-06-23 Vertical shaft windmill Pending JP2006009605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184531A JP2006009605A (en) 2004-06-23 2004-06-23 Vertical shaft windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184531A JP2006009605A (en) 2004-06-23 2004-06-23 Vertical shaft windmill

Publications (1)

Publication Number Publication Date
JP2006009605A true JP2006009605A (en) 2006-01-12

Family

ID=35777130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184531A Pending JP2006009605A (en) 2004-06-23 2004-06-23 Vertical shaft windmill

Country Status (1)

Country Link
JP (1) JP2006009605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026143A1 (en) * 2009-07-09 2011-05-05 Voigt, Ernst Dieter, Dr.med. Vertical axis rotor
KR101248408B1 (en) 2011-03-31 2013-03-28 주식회사 웨스텍 Hanger type windpower and hybrid type street light using solar power and the windpower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026143A1 (en) * 2009-07-09 2011-05-05 Voigt, Ernst Dieter, Dr.med. Vertical axis rotor
KR101248408B1 (en) 2011-03-31 2013-03-28 주식회사 웨스텍 Hanger type windpower and hybrid type street light using solar power and the windpower

Similar Documents

Publication Publication Date Title
US9284944B2 (en) Vertical shaft type darius windmill
JP3451085B1 (en) Windmill for wind power generation
JP4041838B2 (en) Wind turbine and wind power generator for wind power generation
JP2009074447A (en) Vertical shaft type windmill
EP2647835B1 (en) Flexible flap arrangement for a wind turbine rotor blade
US20060257240A1 (en) Helical wind turbine
US9057358B2 (en) Wind turbine with variable blade pitch for wind power electrical generator
JP2006046306A (en) Windmill for wind power generation, and power generator driving method
CN102007291A (en) Wind turbine blade and wind power generator using the same
JP2010522847A (en) Multistage wind turbine with variable blade displacement
EP3805554B1 (en) Vertical axis wind turbine, and wind power generating device and lighting facility comprising same
JP5351682B2 (en) Vertical rotating shaft type wind turbine and wind power generator using the same
US9506453B2 (en) Actuation of distributed load management devices on aerodynamic blades
JP2012215148A (en) Lift-type vertical axis wind turbine
JP2013245564A (en) Blade for vertical axial wind turbine and vertical axial wind turbine
JP4254773B2 (en) Vertical windmill
JP5110550B1 (en) Propeller windmill for small generator
JP2005090332A (en) Darrieus wind turbine
JP2006009605A (en) Vertical shaft windmill
JP2009191744A (en) Vertical shaft wind turbine
JP5543385B2 (en) Floating wind power generator
JP2011169267A (en) Vertical axis wind turbine
JP5941899B2 (en) Vertical axis windmill
KR101700157B1 (en) Vertical shaft windmill
KR20090051669A (en) Wind-collecting type windmill for wind power generation