JP2006007184A - Method and apparatus for treating ballast water - Google Patents

Method and apparatus for treating ballast water Download PDF

Info

Publication number
JP2006007184A
JP2006007184A JP2004192116A JP2004192116A JP2006007184A JP 2006007184 A JP2006007184 A JP 2006007184A JP 2004192116 A JP2004192116 A JP 2004192116A JP 2004192116 A JP2004192116 A JP 2004192116A JP 2006007184 A JP2006007184 A JP 2006007184A
Authority
JP
Japan
Prior art keywords
ballast water
water
ultrasonic
irradiated
ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004192116A
Other languages
Japanese (ja)
Other versions
JP4431872B2 (en
Inventor
Sadao Kitagawa
定夫 北川
Akira Akaho
章 赤穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KI SYSTEM KK
Original Assignee
KI SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KI SYSTEM KK filed Critical KI SYSTEM KK
Priority to JP2004192116A priority Critical patent/JP4431872B2/en
Publication of JP2006007184A publication Critical patent/JP2006007184A/en
Application granted granted Critical
Publication of JP4431872B2 publication Critical patent/JP4431872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating ballast water capable of carrying out extinction treatment of a microbe in the ballast water simply and in a short time, and making a call at any harbor without polluting the environment. <P>SOLUTION: The ballast water in a ship is removed through a deliver pipe, the ballast water in the deliver pipe is irradiated with an ultrasonic wave (preferably 28 to 200 KHz) and the microbe present in the ballast water is destroyed to be extinct by a shock wave of the ultrasonic wave generated in water. In the method for treating the ballast water, it is also preferable to load and mix hydrogen peroxide, chlorine, or the like, beforehand, and irradiate the ultrasonic wave into the water. A large number of ultrasonic vibrators are mounted on the pipe wall of a square or a circular ballast water deliver pipe in linear arrangement or plane arrangement, the ballast water containing the microbe in the deliver pipe is introduced and the ballast water in the deliver pipe is irradiated with the ultrasonic wave, thus a large amount of ballast water can be treated in a short time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バラスト水の処理方法に係り、特にバラスト水中に存在する微生物を死滅させて海水等の環境汚染を防止するためのバラスト水の処理方法に関する。   The present invention relates to a method for treating ballast water, and more particularly, to a method for treating ballast water for killing microorganisms present in ballast water to prevent environmental pollution such as seawater.

貨物船やタンカーなどが空荷で航行する際、船体を安定させるため、タンクにバラスト水(海水)を積み込むが、寄港先で荷物を積む際、外部に捨てられるので、その水に入っていた生物が本来の生息地でない環境中に広がり、世界各地で移入生物である貝や魚、海草類が繁殖し大きな問題となっている。
従来一般的に水中の微生物を死滅させようとしてとられている技術は、以下のごときものである。
[1]細菌類への対策として塩素滅菌処理がとられているが、滅菌対策としては有効であるが塩素と有機物が結びついて新たにトリハロメタンが生成されることが研究の結果わかってきた。トリハロメタンは発ガン性物質とされているので、この方法はベストの方法ではない。
[2]微生物には水中に浮遊しているSS分(固形分)に付着していることが多いので、凝集剤を用いて沈殿させ脱水処理する方法。
[3]多数の連通細孔を有する膜を使用し、微生物を濾過・除去する方法。
[4]オゾンによる酸化分解、紫外線による酸化分解。
When cargo ships or tankers navigate with empty cargo, ballast water (seawater) is loaded into the tank in order to stabilize the hull, but when loading cargo at the port of call, it was discarded outside, so it was in the water Living organisms spread in environments where they are not native habitats, and shellfish, fish, and seaweeds that are migratory organisms breed throughout the world, creating a major problem.
Conventionally, techniques generally used for killing microorganisms in water are as follows.
[1] Chlorine sterilization treatment has been taken as a countermeasure against bacteria, but it has been found as a result of research that trihalomethane is newly produced by combining chlorine and organic substances, although effective as a sterilization countermeasure. Since trihalomethane is considered a carcinogen, this method is not the best method.
[2] A method in which microorganisms often adhere to the SS content (solid content) floating in water, so that they are precipitated using a flocculant and dehydrated.
[3] A method of filtering and removing microorganisms using a membrane having many communicating pores.
[4] Oxidative decomposition by ozone, oxidative decomposition by ultraviolet rays.

これらの方法については、上記[1]は塩素の使用に対する拒否反応は、ますます高まっており、トリハロメタン生成は避けられない。
[2]、[3]、[4]についてはいずれも大量処理には向かない。
With regard to these methods, the above [1] has increasingly increased the rejection reaction to the use of chlorine, and the generation of trihalomethane is inevitable.
[2], [3], and [4] are all not suitable for mass processing.

この船舶の目的地への航行中、海水中には微生物が生息しており、それにより船舶が航行中に繁殖を繰り返し、バラスト水は汚染される。
こうして汚染されたバラスト水を目的地で、そのまま海域等へ廃棄すると寄港地の海水、土壌等を汚染し、生態系を破壊することになる。
そのため、国際海事機関(IMO)は生態系の破壊防止のため国際条約を採択したが、この条約に基づく処理規準は発表され、それによれば動物プランクトン、植物プランクトン、コレラ菌、大腸菌、腸球菌他あらゆる微生物が処理の対象とされている。
すなわち、IMOによるバラスト水処理装置の処理能力基準は、(1)50μm以上の生物(動物プランクトン):10個/m3未満、(2)10〜50μm未満の生物(植物プランクトン):10個/ml未満、(3)コレラ菌:1cfu/100ml未満、大腸菌:250cfu/100ml未満、(4)腸球菌:100cfu/100ml未満、である。
(cfu:colony forming unitの略称:細菌検査の結果に使用される単位で、培地で培養した菌がつくる集団(コロニー)の数。例えば「200cfu/ml以下」とは、「1ml中に200コロニー以下」という意味)
上記基準を達成するバラスト水の処理としては、バラスト水の廃棄処分が寄港地で短時間(1日以内位)にて大量(10万t程度)行われることから、短時間にて大量の処理ができる処理システムを採用しなければならないし、また確実に微生物を死滅させる処理システムでなければならない。
While the ship is sailing to its destination, microorganisms inhabit the seawater, so that the ship repeats breeding while navigating, and the ballast water is contaminated.
If the polluted ballast water is discarded to the sea area as it is, the seawater, soil, etc. of the port of call will be contaminated and the ecosystem will be destroyed.
Therefore, the International Maritime Organization (IMO) has adopted an international treaty to prevent the destruction of ecosystems, but the standards for treatment based on this treaty have been announced, according to which zooplankton, phytoplankton, cholera, Escherichia coli, enterococci All microorganisms are targeted for treatment.
That is, the treatment capacity standard of the ballast water treatment apparatus by IMO is (1) organisms of 50 μm or more (zooplankton): less than 10 / m 3 , (2) organisms of less than 10-50 μm (phytoplankton): 10 / Less than ml, (3) Vibrio cholerae: less than 1 cfu / 100 ml, E. coli: less than 250 cfu / 100 ml, (4) Enterococci: less than 100 cfu / 100 ml.
(Cfu: abbreviation of colony forming unit: the number of colonies formed by bacteria cultured in a medium, which is a unit used for the results of bacterial tests. For example, “200 cfu / ml or less” means “200 colonies in 1 ml” Meaning "
As for the treatment of ballast water that achieves the above standards, disposal of ballast water is carried out in a short time (less than one day) at the port of call in a short time (about 100,000 tons). It must be able to adopt a treatment system that can perform the process, and must be a treatment system that reliably kills microorganisms.

本発明は、前記課題を解決するものであって、下記方法によりバラスト水の微生物を死滅させるバラスト水の処理方法である。
(1)船舶のバラスト水を導出管を介して取り出し、その導出管内のバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在する微生物を破壊せしめて死滅することを特徴とするバラスト水の処理方法。
(2)船舶のバラスト水を導出管を介して取り出し、その導出管内のバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在する微生物を破壊せしめて死滅する前項(1)記載のバラスト水の処理方法において、予めバラスト水に過酸化水素を添加混合し、その水中に超音波を照射することを特徴とする方法。
This invention solves the said subject, Comprising: It is the processing method of the ballast water which kills the microorganisms of ballast water by the following method.
(1) Taking out the ballast water of the ship through the outlet pipe, irradiating the ballast water in the outlet pipe with ultrasonic waves, destroying the microorganisms existing in the ballast water by the ultrasonic shock wave generated in the water and killing them. A characteristic ballast water treatment method.
(2) The item described above, in which the ballast water of the ship is taken out through the outlet pipe, the ballast water in the outlet pipe is irradiated with ultrasonic waves, and the microorganisms existing in the ballast water are destroyed by ultrasonic shock waves generated in the water. 1) The method for treating ballast water according to 1), wherein hydrogen peroxide is added to and mixed with ballast water in advance, and ultrasonic waves are irradiated into the water.

(3)船舶のバラスト水に10ppm〜1,000ppmの次亜塩素酸ソーダ又は/及び塩素を添加し、その水中に超音波を照射することを特徴とする前記(1)記載のバラスト水の処理方法。
(4)角型又は丸型のバラスト水導出管の管壁に多数個の超音波振動子を線状配置又は面状配置に取り付け、その導出管中に微生物を含むバラスト水を導入し、導出管の管内のバラスト水中に超音波を照射することにより、水中で生じる超音波の衝撃波により微生物を破壊せしめて死滅することを特徴とするバラスト水の処理方法。
(5)28〜200KHzの範囲から選ばれる各種周波数の複数種を同時にバラスト水中に照射することを特徴とすることを特徴とする前記(1)〜(4)のいずれか1項に記載のバラスト水の処理方法。
(6)28〜200KHzの範囲から選ばれる各種周波数を経時的に切り替えて複数種の周波数の超音波を水中に照射することを特徴とする前記(1)〜(4)のいずれか1項に記載のバラスト水の処理方法。
(7)28〜200KHzの周波数に代えて1〜10MHzの周波数の超音波をバラスト水中に照射することを特徴とすることを特徴とする前記(1)〜(5)のいずれか1項に記載のバラスト水の処理方法。
(8)前記(1)〜(6)いずれか1項に記載の処理されたバラスト水に、1〜10MHzの周波数の超音波を照射することを特徴とするバラスト水の処理方法。
(9)振動子から発生した振動エネルギーをホーンによって収束させ、振動変位を大きくさせた後、微生物を含むバラスト水に超音波を照射することを特徴とする前記(1)〜(8)のいずれか1項に記載のバラスト水の処理方法。
(10)バラスト水を多数の導出管を束ねて構成したハニカム構造の導出管に導き、その中でバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在ずる微生物を破壊せしめて死滅することを特徴とする前記(1)〜(9)のいずれか1項に記載のバラスト水の処理方法。
(3) The treatment of ballast water according to (1) above, wherein 10 ppm to 1,000 ppm of sodium hypochlorite or / and chlorine is added to the ballast water of the ship, and ultrasonic waves are irradiated into the water. Method.
(4) A large number of ultrasonic vibrators are attached in a linear arrangement or a planar arrangement on the tube wall of a square or round ballast water outlet tube, and the ballast water containing microorganisms is introduced into the outlet tube and led out. A method for treating ballast water, comprising: irradiating ultrasonic waves into ballast water in a pipe of a pipe to destroy and kill microorganisms by an ultrasonic shock wave generated in the water.
(5) The ballast according to any one of (1) to (4), wherein a plurality of types of various frequencies selected from a range of 28 to 200 KHz are simultaneously irradiated into the ballast water. Water treatment method.
(6) In any one of the above (1) to (4), various frequencies selected from the range of 28 to 200 KHz are switched over time, and ultrasonic waves of a plurality of types of frequencies are irradiated into water. The method for treating ballast water as described.
(7) The ultrasonic wave having a frequency of 1 to 10 MHz is irradiated into the ballast water instead of the frequency of 28 to 200 KHz, and any one of the above (1) to (5) is characterized. Ballast water treatment method.
(8) A method for treating ballast water, comprising irradiating the treated ballast water according to any one of (1) to (6) with an ultrasonic wave having a frequency of 1 to 10 MHz.
(9) Any one of the above (1) to (8), wherein the vibration energy generated from the vibrator is converged by a horn and the vibration displacement is increased, and then ultrasonic waves are applied to the ballast water containing microorganisms. The method for treating ballast water according to claim 1.
(10) Ballast water is guided to a honeycomb-structured lead-out pipe configured by bundling a large number of lead-out pipes, in which the ballast water is irradiated with ultrasonic waves, and microorganisms that are present in the ballast water by ultrasonic shock waves generated in the water. The method for treating ballast water according to any one of (1) to (9), wherein the ballast water is killed by being destroyed.

(11)管壁に多数個の超音波振動子を線状配置又は面状配置に取り付けてなる角型又は丸型の管体であって、一端に被処理バラスト水の導入口を有し、他端に処理済みバラスト水の取り出し口を有してなることを特徴とするバラスト水の微生物死滅処理装置。
(12)管壁に多数個の超音波振動子を線状配置又は面状配置に取り付けてなる角型又は丸型の管体であって、一端に被処理バラスト水の導入口を有し、他端に処理済みバラスト水の取り出し口を有してなるバラスト水の微生物死滅処理装置の多数本を束ねてハニカム構造状に配置してなることを特徴とするバラスト水の微生物死滅処理装置。
(11) A square or round tube body in which a large number of ultrasonic transducers are attached to a tube wall in a linear arrangement or a planar arrangement, and has an inlet for treated ballast water at one end, A ballast water microbial killing apparatus characterized by having a treated ballast water outlet at the other end.
(12) A square or round tube body in which a large number of ultrasonic transducers are attached to a tube wall in a linear arrangement or a planar arrangement, and has an inlet for treated ballast water at one end, A microbial killing apparatus for ballast water, characterized in that a plurality of microbial killing apparatuses for ballast water having an outlet for treated ballast water at the other end are bundled and arranged in a honeycomb structure.

バラスト水を簡単かつ短時間に微生物死滅処理ができるので、如何なる港にも寄港することができ、環境汚染することがない。   Since ballast water can be easily killed in a short period of time, it can be called at any port without causing environmental pollution.

本発明の実施の形態について説明する。
まず、超音波について説明すると、(1)超音波は水中や金属などによく伝わる音波などである。音波は波動であり、周波数と振幅によって決まる。振幅は音の強さに関係し、音圧で表される。
(2)超音波の大きな特長の一つにキャビテーション効果がある。50KHzの超音波を水中に照射したとき即1気圧(10万パスカル)以上になり、圧力が小さくなる負圧の時は真空(ゼロ気圧の空洞)になり、媒質が気化し、気泡が発生し、このような激しい正圧と負圧のはげしい繰り返しにより、媒質が引きちぎられ空洞が発生し、空洞がつぶれる時、衝撃波が発生し、その圧力は数百〜数千気圧になり、温度も4000℃以上といわれているが、気泡発生からつぶれる迄の時間は0.1マイクロ秒(1000万分の1秒)程度である。この時50キロヘルツの場合1秒間に50,000回上下の方向に振動し、その振動の距離は0.02mm(20μm)となり、上側に10μm、下側に10μm動き、この時の最大速度は、3.14m/秒となる。
振幅は、数十ミクロン(μm)と小さいが、加速度が大きくエネルギー密度は非常に大きい。圧電振動子が往復運動折り返し地点での加速度は重力加速度Gの約10万倍となる。
振幅は数10ミクロンと小さくても加速度が大きいので、音響エネルギー密度は非常に高いものになる。
(3)超音波を水中に照射する場合、水中でのエネルギーの減衰は空気に比べてはるかに小さいが、それでも水中にて減衰するので減衰を小さくし音響エネルギー密度を一定以上保持するためには径が30cm以下の角又は円状のパイプに多くの振動子を取り付け、そのパイプの中に微生物を含む水を通し、水が超音波の照射を受けている時間を10秒以上とすれば、キャビテーションが十分に働き、水に含まれる微生物のプランクトン、原虫、真菌、細菌、ウィルスは、破壊され分解・殺菌されて死滅する。
このパイプに取り付ける振動子の周波数は、例えば28KHz、50KHz、100KHz、200KHzの4種類とし、周波数によりその効果がおよぶ定在波を移動させるには、これらの異なる周波数のものを高速で切り替える方法が必要になる。
なお、微生物の種類によりエネルギーが大きい28KHzのみで超音波照射を行うこともある。また、必要により振動エネルギーをホーンによって収束させ、振幅を大きくさせ強力なエネルギーを照射する方法がある。
(4)過酸化水素水・次亜塩素酸ソーダ・塩素等はいずれも、酸化剤としての力をもっているが、超音波との併用により、僅かの添加量にて高い効果が可能となる。
Embodiments of the present invention will be described.
First, ultrasonic waves will be described. (1) Ultrasonic waves are sound waves that are often transmitted to water and metals. Sound waves are waves and are determined by frequency and amplitude. Amplitude is related to sound intensity and is represented by sound pressure.
(2) One of the major features of ultrasonic waves is the cavitation effect. When the ultrasonic wave of 50KHz is irradiated into water, the pressure immediately becomes 1 atm (100,000 Pascal) or more, and when the pressure is low, the pressure becomes vacuum (zero-pressure cavity), the medium is vaporized, and bubbles are generated. By such intense repetition of positive pressure and negative pressure, the medium is torn and a cavity is generated, and when the cavity is collapsed, a shock wave is generated, the pressure becomes several hundred to several thousand atmospheres, and the temperature is 4000 ° C. It is said that the time from the generation of bubbles to the collapse is about 0.1 microsecond (one tenth of a millionth of a second). At this time, in the case of 50 kilohertz, it vibrates up and down 50,000 times per second, the vibration distance is 0.02 mm (20 μm), 10 μm on the upper side, 10 μm on the lower side, the maximum speed at this time is 3.14 m / sec.
The amplitude is as small as several tens of microns (μm), but the acceleration is large and the energy density is very large. The acceleration at the point where the piezoelectric vibrator turns back and forth is about 100,000 times the gravitational acceleration G.
Since the acceleration is large even if the amplitude is as small as several tens of microns, the acoustic energy density is very high.
(3) When irradiating ultrasonic waves into water, the attenuation of energy in water is much smaller than that of air, but it still attenuates in water, so to reduce attenuation and maintain acoustic energy density above a certain level. If many vibrators are attached to a square or circular pipe with a diameter of 30 cm or less, water containing microorganisms is passed through the pipe, and the time that the water is irradiated with ultrasonic waves is 10 seconds or more, Cavitation works well, and microbial plankton, protozoa, fungi, bacteria, and viruses contained in water are destroyed, decomposed, sterilized, and killed.
The frequency of the vibrator attached to this pipe is, for example, four types of 28 KHz, 50 KHz, 100 KHz, and 200 KHz, and in order to move the standing wave whose effect depends on the frequency, there is a method of switching these different frequencies at high speed. I need it.
In addition, ultrasonic irradiation may be performed only at 28 KHz having a large energy depending on the type of microorganism. Further, there is a method of irradiating strong energy by converging vibration energy with a horn if necessary, increasing the amplitude.
(4) Hydrogen peroxide solution, sodium hypochlorite, chlorine, etc. all have power as oxidizing agents, but when used in combination with ultrasonic waves, a high effect can be achieved with a small amount of addition.

本発明の実施例のバラスト水超音波処理装置の一例を図1により説明する。
すなわち、図1の断面図に示すごとく、ステンレス製の角パイプ1の壁面に超音波振動子2a、2b、2c・・を上下に、かつ間隔を置いて多数個取り付ける。
なお、超音波振動子2aは28KHz発振のもの、2bは50KHz発振のもの、2cは100KHz発振のものを示す。
この超音波照射処理パイプ100の入口10からバラスト水を導入し、超音波照射を行った後、出口20から微生物が死滅処理されたバラスト水が放出される。
本装置では、種々の周波数の超音波が照射されるので、大小各種微生物を効率的に死滅させることができる。
An example of a ballast water ultrasonic treatment apparatus according to an embodiment of the present invention will be described with reference to FIG.
That is, as shown in the cross-sectional view of FIG. 1, a plurality of ultrasonic transducers 2a, 2b, 2c,... Are attached to the wall surface of a stainless steel square pipe 1 vertically and spaced apart.
The ultrasonic transducer 2a is of 28 KHz oscillation, 2b is of 50 KHz oscillation, and 2c is of 100 KHz oscillation.
Ballast water is introduced from the inlet 10 of the ultrasonic irradiation processing pipe 100 and subjected to ultrasonic irradiation. Then, the ballast water from which the microorganisms are killed is discharged from the outlet 20.
In this apparatus, since ultrasonic waves of various frequencies are irradiated, various large and small microorganisms can be efficiently killed.

図2に示すものは、限られた時間内に大量の処理を行うためのもので、その仕様をハニカム構造型としたものである。
図2(正面図)におけるハニカム構造のバラスト水超音波処理装置Aは、超音波照射処理パイプ100a、100b、100c・・が支持フレーム3に挿入されて上下左右に隣接・集束されてなるものである。
振動子2a、2b、2c・・を取り付けた角又は丸パイプにおいて、微生物を含む水が本パイプの中を通過する場合、10秒以上の時間を保持することとする。
図1に示す装置を用いるバラスト水の処理においては、その仕様を下記により算定設計した。
〈バラスト水処理能力50,000t/8h〉とすると、
・50,000t/8h→1.736t/秒の処理となる。
・ステンレス製角パイプ径を300mmとすると
0.3m×0.3m=0.09m2 (断面積)
角パイプの長さを6mとすると
0.09m2×6m=0.54m3 (容積)
・水の容量は1.736t/秒であり10秒間保持する場合は17.36tとなる。
17.36t÷0.54m3=32本/パイプの数
図2のパイプの数は36本であるので、この図の装置の容量で処理は可となる。
・よって、1秒間に1.736tの水をこのパイプに流せば10秒後には処理が終わり、このパイプから同じ量の処理後の水が排出されることとなる。
・振動子は28KHz〜200KHz迄を長さ6mの角パイプに12個取り付け、高周波電流により振動させるセラミック製のものを使用する。
上記図2のハニカム構造のバラスト水超音波処理装置によるバラスト水の処理結果によれば、前記国際海事機関(IMO)基準を十分に満たす微生物が死滅処理されたバラスト水が得られた。
なお、バラスト水への過酸化水素、塩素等の添加は、本装置に入る前に事前に添加し、攪拌した後本装置に導入して、超音波を照射する。
The one shown in FIG. 2 is for performing a large amount of processing within a limited time, and its specification is a honeycomb structure type.
The honeycomb structure ballast water ultrasonic treatment apparatus A in FIG. 2 (front view) is formed by inserting ultrasonic irradiation treatment pipes 100a, 100b, 100c,. is there.
In the square or round pipe to which the vibrators 2a, 2b, 2c,... Are attached, when water containing microorganisms passes through the pipe, a time of 10 seconds or more is maintained.
In the treatment of ballast water using the apparatus shown in FIG. 1, the specifications were calculated and designed as follows.
<Ballast water treatment capacity 50,000t / 8h>
・ The processing is 50,000 t / 8 h → 1.736 t / sec.
・ Stainless steel square pipe diameter 300mm 0.3m × 0.3m = 0.09m 2 (Cross sectional area)
If the length of the square pipe is 6m, 0.09m 2 × 6m = 0.54m 3 (volume)
-The capacity | capacitance of water is 1.736t / sec, and when it hold | maintains for 10 seconds, it will be 17.36t.
17.36 t ÷ 0.54 m 3 = 32 pipes / number of pipes Since the number of pipes in FIG. 2 is 36, processing is possible with the capacity of the apparatus in this figure.
-Therefore, if 1.736 t of water is flowed through this pipe per second, the treatment ends after 10 seconds, and the same amount of treated water is discharged from this pipe.
-Use 12 ceramic vibrators that are attached to a square pipe with a length of 6 m from 28 KHz to 200 KHz and vibrate with a high-frequency current.
According to the result of the ballast water treatment by the honeycomb structured ballast water ultrasonic treatment device of FIG. 2, ballast water in which microorganisms that sufficiently satisfy the International Maritime Organization (IMO) standards were killed was obtained.
Note that hydrogen peroxide, chlorine, and the like are added to the ballast water in advance before entering the apparatus, and after stirring, introduced into the apparatus and irradiated with ultrasonic waves.

バラスト水の廃棄による環境汚染が防止できるので、寄港地を選ばず何処へでも自由に寄港できる。   Since environmental pollution due to the disposal of ballast water can be prevented, it is possible to call anywhere regardless of the port of call.

バラスト水超音波照射処理装置の一例の断面図。Sectional drawing of an example of a ballast water ultrasonic irradiation processing apparatus. ハニカム構造型としたバラスト水超音波処理装置の正面図。The front view of the ballast water ultrasonic treatment apparatus made into the honeycomb structure type.

符号の説明Explanation of symbols

1:ステンレス製の角パイプ、
2(2a、2b、2c・・):超音波振動子、
3:支持フレーム、
10:バラスト水の入口、
20:超音波照射処理されたバラスト水の出口、
100(100a、100b、100c・・):超音波照射処理パイプ、
A:ハニカム構造のバラスト水超音波処理装置、
1: Stainless steel square pipe,
2 (2a, 2b, 2c...): Ultrasonic transducer,
3: Support frame,
10: Ballast water entrance,
20: outlet of ballast water treated with ultrasonic irradiation,
100 (100a, 100b, 100c...): Ultrasonic irradiation processing pipe,
A: Ballast water ultrasonic treatment device having a honeycomb structure,

Claims (12)

船舶のバラスト水を導出管を介して取り出し、その導出管内のバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在する微生物を破壊せしめて死滅することを特徴とするバラスト水の処理方法。 It is characterized by taking out the ballast water of the ship through the outlet pipe, irradiating the ballast water in the outlet pipe with ultrasonic waves, destroying the microorganisms existing in the ballast water by the ultrasonic shock wave generated in the water and killing them. Ballast water treatment method. 船舶のバラスト水を導出管を介して取り出し、その導出管内のバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在する微生物を破壊せしめて死滅する請求項1記載のバラスト水の処理方法において、予めバラスト水に過酸化水素を添加混合し、その水中に超音波を照射することを特徴とする方法。 The ballast water of a ship is taken out through a lead-out pipe, the ballast water in the lead-out pipe is irradiated with ultrasonic waves, and microorganisms existing in the ballast water are destroyed by the ultrasonic shock wave generated in the water to die. A method for treating ballast water, comprising adding hydrogen peroxide to ballast water in advance and irradiating the water with ultrasonic waves. 船舶のバラスト水に10ppm〜1,000ppmの次亜塩素酸ソーダ又は/及び塩素を添加し、その水中に超音波を照射することを特徴とする請求項1記載のバラスト水の処理方法。 2. The ballast water treatment method according to claim 1, wherein 10 ppm to 1,000 ppm of sodium hypochlorite or / and chlorine is added to the ballast water of the ship, and ultrasonic waves are irradiated into the water. 角型又は丸型のバラスト水導出管の管壁に多数個の超音波振動子を線状配置又は面状配置に取り付け、その導出管中に微生物を含むバラスト水を導入し、導出管の管内のバラスト水中に超音波を照射することにより、水中で生じる超音波の衝撃波により微生物を破壊せしめて死滅することを特徴とするバラスト水の処理方法。 A large number of ultrasonic transducers are mounted in a linear or planar arrangement on the tube wall of a square or round ballast water outlet tube, and ballast water containing microorganisms is introduced into the outlet tube, and the inside of the outlet tube A method for treating ballast water, comprising: irradiating an ultrasonic wave in the ballast water of the water to destroy and kill microorganisms by an ultrasonic shock wave generated in the water. 28〜200KHzの範囲から選ばれる各種周波数の複数種を同時にバラスト水中に照射することを特徴とする請求項1〜4のいずれか1項に記載のバラスト水の処理方法。 The ballast water treatment method according to any one of claims 1 to 4, wherein a plurality of types of various frequencies selected from a range of 28 to 200 KHz are simultaneously irradiated into the ballast water. 28〜200KHzの範囲から選ばれる各種周波数を経時的に切り替えて複数種の周波数の超音波を水中に照射することを特徴とする請求項1〜4のいずれか1項に記載のバラスト水の処理方法。 The treatment of ballast water according to any one of claims 1 to 4, wherein various frequencies selected from a range of 28 to 200 KHz are switched over time and ultrasonic waves of a plurality of frequencies are irradiated into water. Method. 28〜200KHzの周波数に代えて1〜10MHzの周波数の超音波をバラスト水中に照射することを特徴とする請求項1〜5のいずれか1項に記載のバラスト水の処理方法。 The ballast water treatment method according to any one of claims 1 to 5, wherein the ballast water is irradiated with ultrasonic waves having a frequency of 1 to 10 MHz instead of a frequency of 28 to 200 KHz. 請求項1〜6いずれか1項に記載の処理されたバラスト水に、1〜10MHzの周波数の超音波を照射することを特徴とするバラスト水の処理方法。 A method for treating ballast water, wherein the treated ballast water according to any one of claims 1 to 6 is irradiated with ultrasonic waves having a frequency of 1 to 10 MHz. 振動子から発生した振動エネルギーをホーンによって収束させ、振動変位を大きくさせた後、微生物を含むバラスト水に超音波を照射することを特徴とする請求項1〜8のいずれか1項に記載のバラスト水の処理方法。 The ultrasonic energy is applied to the ballast water containing microorganisms after converging the vibration energy generated from the vibrator with a horn to increase the vibration displacement, according to any one of claims 1 to 8. Ballast water treatment method. バラスト水を多数の導出管を束ねて構成したハニカム構造の導出管に導き、その中でバラスト水に超音波を照射し、水中で生じる超音波の衝撃波によりバラスト水中に存在ずる微生物を破壊せしめて死滅することを特徴とする請求項1〜9のいずれか1項に記載のバラスト水の処理方法。 The ballast water is led to a honeycomb-structured lead-out pipe composed of many lead-out pipes, in which the ballast water is irradiated with ultrasonic waves, and the microorganisms present in the ballast water are destroyed by ultrasonic shock waves generated in the water. The method for treating ballast water according to any one of claims 1 to 9, wherein the ballast water is killed. 管壁に多数個の超音波振動子を線状配置又は面状配置に取り付けてなる角型又は丸型の管体であって、一端に被処理バラスト水の導入口を有し、他端に処理済みバラスト水の取り出し口を有してなることを特徴とするバラスト水の微生物死滅処理装置。 It is a square or round tube with a large number of ultrasonic transducers attached to the tube wall in a linear arrangement or a planar arrangement, and has an inlet for treated ballast water at one end and the other end. A microbial killing apparatus for ballast water, characterized by having an outlet for treated ballast water. 管壁に多数個の超音波振動子を線状配置又は面状配置に取り付けてなる角型又は丸型の管体であって、一端に被処理バラスト水の導入口を有し、他端に処理済みバラスト水の取り出し口を有してなるバラスト水の微生物死滅処理装置の多数本を束ねてハニカム構造状に配置してなることを特徴とするバラスト水の微生物死滅処理装置。 It is a square or round tube with a large number of ultrasonic transducers attached to the tube wall in a linear arrangement or a planar arrangement, and has an inlet for treated ballast water at one end and the other end. A microbial killing apparatus for ballast water, characterized in that a large number of microbial killing apparatuses for ballast water having an outlet for treated ballast water are bundled and arranged in a honeycomb structure.
JP2004192116A 2004-06-29 2004-06-29 Ballast water treatment method and apparatus Expired - Fee Related JP4431872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192116A JP4431872B2 (en) 2004-06-29 2004-06-29 Ballast water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004192116A JP4431872B2 (en) 2004-06-29 2004-06-29 Ballast water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2006007184A true JP2006007184A (en) 2006-01-12
JP4431872B2 JP4431872B2 (en) 2010-03-17

Family

ID=35775000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192116A Expired - Fee Related JP4431872B2 (en) 2004-06-29 2004-06-29 Ballast water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4431872B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088156A1 (en) * 2005-02-18 2006-08-24 Katayama Chemical, Inc. Method of treating ship ballast water
WO2009129670A1 (en) 2008-04-23 2009-10-29 青岛海德威船舶科技有限公司 A micro-current electrolysis sterilization algaecide device and method
JPWO2008069341A1 (en) * 2006-12-09 2010-03-25 国立大学法人横浜国立大学 Ship buoyancy control system
CN101781043A (en) * 2010-02-10 2010-07-21 青岛海德威科技有限公司 Novel ballast water treatment method and device
JP2011057048A (en) * 2009-09-09 2011-03-24 Shin Kurushima Dockyard Co Ltd Structure for arranging ballast water processing apparatus in tanker
WO2011120250A1 (en) 2010-03-30 2011-10-06 青岛海德威科技有限公司 Method and system for ship ballast water treatment
JP2011214999A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Target substance detecting method and target substance detecting apparatus
KR101153725B1 (en) 2010-04-12 2012-06-14 한국기계연구원 Sterilization apparatus using ultrasonics sterilization apparatus using ultrasonics
JP2012183999A (en) * 2012-05-14 2012-09-27 Shin Kurushima Dockyard Co Ltd Arrangement structure of ballast water treatment device in tanker
JP2013523449A (en) * 2010-04-12 2013-06-17 フローデザイン ソニックス, インコーポレイテッド Ultrasonic and acoustophoretic techniques for water-oil separation for use in producing water
JP2013223437A (en) * 2012-04-20 2013-10-31 Bio Map Co Creature extinction system
KR20150048138A (en) * 2012-08-30 2015-05-06 셈바왕 쉽야드 피티이 엘티디 System and method of ballast water treatment with continuous biofouling control
KR101567577B1 (en) 2014-07-10 2015-11-20 한국기계연구원 ballast water treating apparatus using squeeze effect
CN110844968A (en) * 2019-12-16 2020-02-28 无锡蓝天电子股份有限公司 Detachable vibrating plate type ultrasonic treatment device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123958B2 (en) 2005-02-18 2012-02-28 Katayama Chemical, Inc. Method for treating ship ballast water
JP2006224030A (en) * 2005-02-18 2006-08-31 Katayama Chem Works Co Ltd Method for treating ballast water for ship
JP4699774B2 (en) * 2005-02-18 2011-06-15 株式会社片山化学工業研究所 Ship ballast water treatment method
WO2006088156A1 (en) * 2005-02-18 2006-08-24 Katayama Chemical, Inc. Method of treating ship ballast water
JPWO2008069341A1 (en) * 2006-12-09 2010-03-25 国立大学法人横浜国立大学 Ship buoyancy control system
JP4505613B2 (en) * 2006-12-09 2010-07-21 国立大学法人横浜国立大学 Ship buoyancy control system
US7921790B2 (en) 2006-12-09 2011-04-12 National University Corporation Yokohama National University Ship buoyancy control system
WO2009129670A1 (en) 2008-04-23 2009-10-29 青岛海德威船舶科技有限公司 A micro-current electrolysis sterilization algaecide device and method
JP2011057048A (en) * 2009-09-09 2011-03-24 Shin Kurushima Dockyard Co Ltd Structure for arranging ballast water processing apparatus in tanker
CN101781043A (en) * 2010-02-10 2010-07-21 青岛海德威科技有限公司 Novel ballast water treatment method and device
WO2011120250A1 (en) 2010-03-30 2011-10-06 青岛海德威科技有限公司 Method and system for ship ballast water treatment
JP2011214999A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Target substance detecting method and target substance detecting apparatus
KR101153725B1 (en) 2010-04-12 2012-06-14 한국기계연구원 Sterilization apparatus using ultrasonics sterilization apparatus using ultrasonics
JP2013523449A (en) * 2010-04-12 2013-06-17 フローデザイン ソニックス, インコーポレイテッド Ultrasonic and acoustophoretic techniques for water-oil separation for use in producing water
JP2016106026A (en) * 2010-04-12 2016-06-16 フローデザイン ソニックス, インコーポレイテッド Ultrasound and acoustophoresis technology for separation of oil and water, with application to produce water
JP2013223437A (en) * 2012-04-20 2013-10-31 Bio Map Co Creature extinction system
JP2012183999A (en) * 2012-05-14 2012-09-27 Shin Kurushima Dockyard Co Ltd Arrangement structure of ballast water treatment device in tanker
KR20150048138A (en) * 2012-08-30 2015-05-06 셈바왕 쉽야드 피티이 엘티디 System and method of ballast water treatment with continuous biofouling control
KR101955750B1 (en) * 2012-08-30 2019-03-07 셈코프 머린 리패어즈 앤드 업그래이즈 피티이. 엘티디. System and method of ballast water treatment with continuous biofouling control
KR101567577B1 (en) 2014-07-10 2015-11-20 한국기계연구원 ballast water treating apparatus using squeeze effect
CN110844968A (en) * 2019-12-16 2020-02-28 无锡蓝天电子股份有限公司 Detachable vibrating plate type ultrasonic treatment device

Also Published As

Publication number Publication date
JP4431872B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4431872B2 (en) Ballast water treatment method and apparatus
KR100947558B1 (en) Water treatment system for ballast water
US7595003B2 (en) On-board water treatment and management process and apparatus
JP4261955B2 (en) Water purification method and apparatus
Tran et al. Sonochemical techniques to degrade pharmaceutical organic pollutants
KR100963351B1 (en) Apparatus for treating ballast water and method for treating ballast water
WO2000058824A1 (en) Method and system for consistent cluster operational data in a server cluster using a quorum of replicas
US7384563B2 (en) Method for purifying water with ozone and ultrasonic energy
JP2011505247A (en) Method and apparatus for treating ballast water
JP4209728B2 (en) Ballast water treatment method and apparatus
JP2002172389A (en) Ultrasonic treatment apparatus for organic waste liquid
JP2009028569A (en) Ballast water treatment apparatus and ballast water treatment method
JP2005342626A (en) Method and device for treating ballast water and vessel mounted with the device
Dehghani et al. Investigation and evaluation of ultrasound reactor for reduction of fungi from sewage
KR101494678B1 (en) Ballast water treatment apparatus
KR200339736Y1 (en) Apparatus for activating energy and water treatment using ultrasonic vibration
JP2007105666A (en) Ballast water treating apparatus and water treating apparatus
JP4694553B2 (en) Water treatment apparatus and water treatment method
JP2007021287A (en) Ballast water treatment method
KR101217167B1 (en) Apparatus for mixing chemicals using ultrasonic waves
WO2000058224A1 (en) Reactor for cleaning and disinfection of aquatic media
US20200360890A1 (en) Acoustic waves treatment device and method
KR101656529B1 (en) Advanced electrolysis system using ultrasonic effects as enhancement equipments for ballast water treatment
JP4658000B2 (en) Cavitation sterilizer
RU2325329C2 (en) Method of liquid mediums sterilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees