JP2006005601A - Injecting device and bypass device of transmission signal - Google Patents

Injecting device and bypass device of transmission signal Download PDF

Info

Publication number
JP2006005601A
JP2006005601A JP2004179107A JP2004179107A JP2006005601A JP 2006005601 A JP2006005601 A JP 2006005601A JP 2004179107 A JP2004179107 A JP 2004179107A JP 2004179107 A JP2004179107 A JP 2004179107A JP 2006005601 A JP2006005601 A JP 2006005601A
Authority
JP
Japan
Prior art keywords
transmission signal
magnetic core
magnetic
power line
signal injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004179107A
Other languages
Japanese (ja)
Inventor
Yuichiro Murata
雄一郎 村田
Tetsuro Shimomura
哲朗 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004179107A priority Critical patent/JP2006005601A/en
Publication of JP2006005601A publication Critical patent/JP2006005601A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a transmission signal injecting device which can inject a transmission signal which does not contain a harmonic wave noise into a power line without waveform distortion of the injected high frequency signal. <P>SOLUTION: The transmission signal injecting device includes a magnetic core having a plurality of magnetic core pieces constituted of a plurality of ferrites of arcuate cross-section divided into a plurality from a cylindrical member in a circumferential direction so that the divided side faces of the plurality of the magnetic core pieces are opposed, a gap forming member is inserted between the opposed side faces and a cylindrical gap, and a signal injection coil for injecting/extracting the transmission signal to/from the power line. The opposed side faces of the magnetic core pieces are finished and constituted to the surface roughness of 50 μm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電力が供給される電力線を利用して通信を行う電力線搬送通信システムにおいて、電力線への伝送信号の注入・取り出しを行う伝送信号注入装置、および通信区域内の通信経路となる電力線に直列に設置された電気機器に接続された部分に配置し、伝送された伝送信号が電気機器をバイパスして伝送する伝送信号バイパス装置に関するものである。   In a power line carrier communication system that performs communication using a power line to which power is supplied, the present invention provides a transmission signal injection device that injects and extracts a transmission signal to and from a power line, and a power line that is a communication path in a communication area. The present invention relates to a transmission signal bypass device that is disposed in a portion connected to an electric device installed in series and that transmits a transmission signal that bypasses the electric device.

電力線搬送通信(以下PLCという。 PLC=Power Line Communication)システムは、電力線に2MHz〜40MHzの伝送信号を重畳させてデータ通信するものであり、そのPLCシステムにおいて、電力線に伝送信号を注入・取り出しする伝送信号注入装置は、磁気コアを用いたインダクティブカプラで構成されている。このインダクティブカプラに用いる磁気コアを設計するには、商用周波数(50/60Hz)の交流電流で飽和することなく、2〜40MHzの伝送信号を効率よく注入することができる磁気回路を設計する必要がある。
PLCシステムに使用される磁気コアの磁気飽和を回避する例として、特許文献1に、PLCシステムに使用されるフィルタ装置の磁気コアが示されている。この構成は、材質をMn−Zn系フェライトとし、円筒状部材を円周方向に2分割した形状の断面がC字状の2個の磁気コア片を形成し、2個の磁気コア片の分割した側面を対向させ対向した側面の間にギャップ材として0.2mm厚さのポリイミドシートを間挿して接合し、円筒状に形成したギャップを備えた磁気コアである。このようにギャップ材を間挿して接合した場合と、ギャップ材を間挿しないで接合した場合のインダクタンスの電流依存性を調べた結果、ギャップ材を間挿した場合にインダクタンスの電流依存性がフラットとなり、磁気飽和が回避されることが示されている。
Power line carrier communication (hereinafter referred to as PLC: PLC = Power Line Communication) system performs data communication by superimposing a transmission signal of 2 MHz to 40 MHz on a power line. In the PLC system, a transmission signal is injected into and taken out from the power line. The transmission signal injection device is composed of an inductive coupler using a magnetic core. In order to design a magnetic core used for this inductive coupler, it is necessary to design a magnetic circuit capable of efficiently injecting a transmission signal of 2 to 40 MHz without saturating with an alternating current of commercial frequency (50/60 Hz). is there.
As an example of avoiding magnetic saturation of a magnetic core used in a PLC system, Patent Document 1 discloses a magnetic core of a filter device used in a PLC system. In this configuration, the material is Mn—Zn-based ferrite, the cylindrical member is divided into two in the circumferential direction, two magnetic core pieces having a C-shaped cross section are formed, and the two magnetic core pieces are divided. The magnetic core is provided with a gap formed in a cylindrical shape by interposing and joining a polyimide sheet having a thickness of 0.2 mm as a gap material between the opposed side surfaces. As a result of examining the current dependency of the inductance when the gap material is joined and when the gap material is not joined, the current dependency of the inductance is flat when the gap material is inserted. It is shown that magnetic saturation is avoided.

PLCシステムにおける伝送信号注入装置は、2〜40MHzの伝送信号を電力線に高調波ノイズが発生することなく、高い注入効率で注入できることが必要であるが、磁気コアに電力線電流による磁気飽和があると、伝送信号を入力した場合に、伝送信号の波形に歪みが発生する。磁気コアに磁気飽和がある状態で、例えば、3MHzの伝送信号を入力すると、2次高調波の6MHz、3次高調波の9MHzの高調波ノイズが発生し、3MHzの伝送信号とともに、6MHzおよび9MHzの高調波ノイズが電力線に注入される。注入された高調波ノイズは、6MHzのチャンネル、9MHzのチャンネルに対して通信障害を与えることとなる。
磁気コアの電力線電流による磁気飽和は、その磁路に適正なギャップ長のギャップを設けることにより回避できるが、ギャップ長が長くなると、磁気コアの磁気抵抗が大きくなり、伝送信号の信号注入効率が低下する。
The transmission signal injection device in the PLC system needs to be able to inject a transmission signal of 2 to 40 MHz with high injection efficiency without generating harmonic noise in the power line, but when there is magnetic saturation due to the power line current in the magnetic core When a transmission signal is input, distortion occurs in the waveform of the transmission signal. For example, when a 3 MHz transmission signal is input in a state where there is magnetic saturation in the magnetic core, 6 MHz of the second harmonic and 9 MHz harmonic noise of the third harmonic are generated, and 6 MHz and 9 MHz together with the 3 MHz transmission signal. Harmonic noise is injected into the power line. The injected harmonic noise gives a communication failure to the 6 MHz channel and the 9 MHz channel.
Magnetic saturation due to the power line current of the magnetic core can be avoided by providing a gap with an appropriate gap length in the magnetic path. However, as the gap length increases, the magnetic resistance of the magnetic core increases and the signal injection efficiency of the transmission signal increases. descend.

また、PLCシステムにおいては、通信区域内の通信経路となる電力線に、変圧器等の電磁誘導機器や開閉機器等の電気機器が接続された部分では、伝送信号が通過できないので、電気機器の両側のそれぞれの接続部の電力線に伝送信号注入器を装着し、伝送信号注入器の相互間を信号バイパス回路で接続した伝送信号バイパス装置が設置される。伝送信号バイパス装置を設置すると、電気機器の設置部分では、電力線に伝送された伝送信号が、入力側の電力線から入力側の伝送信号注入器、信号バイパス回路、出力側の伝送信号注入器を経由して出力側の電力線に至る経路で伝送され、電気機器をバイパスして伝送される。伝送方向が逆方向の場合も同様にして電気機器をバイパスして伝送される。   In addition, in a PLC system, transmission signals cannot pass through a portion where an electromagnetic induction device such as a transformer or an electrical device such as a switchgear is connected to a power line serving as a communication path in a communication area. A transmission signal bypass device is installed in which transmission signal injectors are attached to the power lines of the respective connection portions, and the transmission signal injectors are connected to each other by a signal bypass circuit. When the transmission signal bypass device is installed, the transmission signal transmitted to the power line is transferred from the input side power line to the input side transmission signal injector, signal bypass circuit, and output side transmission signal injector in the installation part of the electrical equipment. Then, the signal is transmitted through a route to the power line on the output side, and is transmitted by bypassing the electric device. Similarly, when the transmission direction is the reverse direction, transmission is performed by bypassing the electrical device.

この伝送信号バイパス装置を構成する伝送信号注入器は、上記の伝送信号の注入取り出しを行う伝送信号注入装置と同様に、磁気コアに磁気飽和があると、伝送信号を入力した場合に、伝送信号の波形に歪みが発生して高調波ノイズを含む波形が出力側に誘導されて通信障害を与えることとなる。したがって、伝送信号バイパス装置を構成する伝送信号注入器も、電力線電流による磁気飽和が生じない磁気コアを使用する必要がある。   The transmission signal injector constituting the transmission signal bypass device is similar to the transmission signal injection device for injecting and extracting the transmission signal described above, and when the transmission signal is input if the magnetic core is magnetically saturated, As a result, distortion occurs and a waveform including harmonic noise is induced to the output side, causing communication failure. Therefore, the transmission signal injector constituting the transmission signal bypass device also needs to use a magnetic core that does not cause magnetic saturation due to the power line current.

特開2002−305422号公報JP 2002-305422 A

PLCシステムの伝送信号注入装置では、電力線電流による磁気飽和があると、伝送信号を注入したときに、伝送信号の波形が歪み、2次高調波、3次高調波の高調波ノイズを含む誘導波形が電力線に注入され、2次高調波ノイズ、3次高調波ノイズの周波数チャンネルに対して通信障害を与える問題がある。
磁気コアの磁気飽和は、その磁路に適正なギャップ長のギャップを設けることにより回避できるが、ギャップ長を長くすると、磁気コアの磁気抵抗が大きくなり、伝送信号の信号注入効率が低下する問題がある。
また、磁気コアを円筒状部材を円周方向に2分割し、分割した部分の側面に必要なギャップ長が確保できるギャップ形成部材を間挿して磁気コア部分に磁気飽和が生じない構成としても、なお伝送信号の波形歪みが発生する問題がある。
In the transmission signal injection device of the PLC system, when there is magnetic saturation due to the power line current, the waveform of the transmission signal is distorted when the transmission signal is injected, and the induction waveform includes the second harmonic and the third harmonic noise. Is injected into the power line, and there is a problem of causing a communication failure to the frequency channel of the second harmonic noise and the third harmonic noise.
Magnetic saturation of the magnetic core can be avoided by providing a gap with an appropriate gap length in the magnetic path. However, if the gap length is increased, the magnetic resistance of the magnetic core increases and the signal injection efficiency of the transmission signal decreases. There is.
In addition, the magnetic core is divided into two cylindrical members in the circumferential direction, and a gap forming member that can secure a necessary gap length on the side surface of the divided part is inserted so that magnetic saturation does not occur in the magnetic core part. There is a problem that the waveform distortion of the transmission signal occurs.

この発明は、上記問題点を解消するためになされたものであり、注入した伝送信号の波形歪みが小さく、高調波ノイズを含まない伝送信号を電力線に注入できる伝送信号注入装置および伝送信号バイパス装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a transmission signal injection device and a transmission signal bypass device that can inject a transmission signal having a small waveform distortion of an injected transmission signal and not including harmonic noise into a power line. The purpose is to provide.

この発明に係る伝送信号注入装置は、円筒状部材を円周方向に複数に分割した形状の断面円弧状のフェライトで構成された複数の磁気コア片を形成し、この複数の磁気コア片の分割した部分の側面を対向させ、対向する側面の間にギャップ形成部材を間挿し、円筒状に形成したギャップを有する磁気コアと、この磁気コアに巻回し、電力線への伝送信号の注入・取り出しを行う信号注入コイルとを備え、磁気コア片の対向する側面は、面粗さ50μm以下に仕上げた構成としたものである。   The transmission signal injection device according to the present invention forms a plurality of magnetic core pieces made of ferrite having an arc-shaped cross section obtained by dividing a cylindrical member into a plurality of portions in the circumferential direction, and dividing the plurality of magnetic core pieces. The gap forming member is inserted between the opposite side faces, a magnetic core having a gap formed in a cylindrical shape, and wound around this magnetic core to inject and take out transmission signals to and from the power line And the opposite side surface of the magnetic core piece has a surface roughness of 50 μm or less.

この発明によれば、磁気コアの磁気コア片のギャップ形成部材を間挿する対向する側面の面粗さを50μm以下に仕上げ、対向する側面の間に所要厚さのギャップ形成部材を間挿したことにより、信号注入効率が改善され、磁気コアの電力線電流による磁気飽和が回避されて伝送信号の波形歪みがなくなり、高調波ノイズを含まない伝送信号が電力線に注入できる伝送信号注入装置が得られる。   According to the present invention, the surface roughness of the opposing side surface that interposes the gap forming member of the magnetic core piece of the magnetic core is finished to 50 μm or less, and the gap forming member having the required thickness is inserted between the opposing side surfaces. As a result, the signal injection efficiency is improved, the magnetic saturation due to the power line current of the magnetic core is avoided, the waveform distortion of the transmission signal is eliminated, and the transmission signal injection device that can inject the transmission signal without harmonic noise into the power line is obtained. .

実施の形態1.
図1は実施の形態1の伝送信号注入装置の構成図である。PLCシステムにおける磁気コアの材料はフェライトが使用される。図1の伝送信号注入装置は、円筒状部材を円周方向に2分割して2個の断面円弧状の磁気コア片11、12を形成し、この磁気コア片11、12の分割した側面を対向させ、対向した側面の間にギャップ形成部材13を間挿して円筒状に形成したギャップを有する磁気コア10と、この磁気コア10に巻回した伝送信号の注入・取り出しを行う信号注入コイル2とを備えた構成である。磁気コア片11、12の分割した側面は、面粗さを50μm以下に仕上げている。磁気コア10のギャップ長Gは、電力線電流による磁気飽和が発生しない長さに設定されるが、通常は0.2〜1mmに設定される。
ギャップ形成部材13の材料は、ポリイミド、テトラフルオロエチレン(商品名:テフロン(登録商標))等のフッ素樹脂、エポキシ系樹脂等のフィルム状部材や、アルミナ等のセラミック材料が使用される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a transmission signal injection device according to the first embodiment. Ferrite is used as the material of the magnetic core in the PLC system. The transmission signal injection device of FIG. 1 divides a cylindrical member into two in the circumferential direction to form two cross-sectional arc-shaped magnetic core pieces 11 and 12, and the divided side surfaces of the magnetic core pieces 11 and 12 are formed. A magnetic core 10 having a gap formed in a cylindrical shape by interposing a gap forming member 13 between the opposed side surfaces, and a signal injection coil 2 for injecting / extracting a transmission signal wound around the magnetic core 10 It is the structure provided with. The divided side surfaces of the magnetic core pieces 11 and 12 have a surface roughness of 50 μm or less. The gap length G of the magnetic core 10 is set to a length that does not cause magnetic saturation due to the power line current, but is usually set to 0.2 to 1 mm.
As the material of the gap forming member 13, a film member such as a fluorine resin such as polyimide or tetrafluoroethylene (trade name: Teflon (registered trademark)), an epoxy resin, or a ceramic material such as alumina is used.

図2は磁気コア10の磁路およびギャップの状態を示す模式図であり、図2(a)は端面から見た磁路およびギャップの状態を示す図であり、図2(b)はギャップ部分の正面から見た図である。磁気コア10は、円筒状部材を円周方向に2分割した形状の断面が円弧状の磁気コア片11、12の分割した側面を対向させて円筒状になるように配置し、対向した側面の間に間隔Gのギャップが形成されるようにギャップ形成部材13を間挿している。磁気コア片11、12のギャップ形成部材13を間挿する対向する側面は、必要な面粗さおよび平行度が確保されるように研磨等により仕上げられる。   FIG. 2 is a schematic diagram showing the state of the magnetic path and gap of the magnetic core 10, FIG. 2 (a) is a view showing the state of the magnetic path and gap as seen from the end face, and FIG. 2 (b) is the gap portion. It is the figure seen from the front. The magnetic core 10 is arranged such that a cylindrical member is divided into two in the circumferential direction so that the cross-section of the magnetic core pieces 11 and 12 having an arcuate shape is opposed to form a cylindrical shape. A gap forming member 13 is inserted so that a gap having a gap G is formed therebetween. Opposing side surfaces where the gap forming members 13 of the magnetic core pieces 11 and 12 are inserted are finished by polishing or the like so as to ensure the required surface roughness and parallelism.

磁気コア10に使用されるフェライトは、脆く欠けやすい材料であり、機械的応力が加わると磁気特性が変化しやすい材料でもある。また、加工した場合には、加工面に加工変質層11d、12dが形成される。この加工変質層11d、12dでは透磁率μが小さくなる。この加工変質層11d、12dの厚さDは、加工方法により差はあるが、仕上げる面粗さとほぼ比例関係にあると考えられる。通常、フェライトの透磁率μは、100〜1000程度の値を示すものであるが、加工変質層11d、12dの透磁率μは20程度になる。   The ferrite used for the magnetic core 10 is a material that is brittle and easily chipped, and is also a material that easily changes its magnetic properties when mechanical stress is applied. In the case of processing, the work-affected layers 11d and 12d are formed on the processed surface. In the work-affected layers 11d and 12d, the magnetic permeability μ becomes small. The thickness D of the work-affected layers 11d and 12d is considered to be substantially proportional to the finished surface roughness, although there are differences depending on the processing method. Usually, the permeability μ of ferrite shows a value of about 100 to 1000, but the permeability μ of the work-affected layers 11d and 12d is about 20.

次に、磁気コア10における高周波信号の信号注入効率Nについて説明する。
信号注入効率Nは、信号注入コイル2に流れる電流をI、電力線1に誘導される電流をIとすると、N=I/Iであり、磁気コア片11、12の加工変質層11d、12dを含まない部分の磁気抵抗をRc、ギャップ部分の磁気抵抗をRg、加工変質層11d、12dの磁気抵抗をRtとすると、磁気コア10の磁気抵抗Rmは、Rc+Rg+Rtとなり、信号注入効率Nは(式1)で与えられる。
N∝1/Rm・・・・・・・・・・・・・・・・・・・・・・・・・(式1)
磁気ギャップが2箇所存在する場合の磁気コア片11、12の加工変質層11d、12dを含まない磁路長をKとすると、磁気コア片11、12の部分の磁路長Lcは2・Kであり、磁気ギャップ部分の磁路長Lgは2・Gであり、加工変質層11d、12dの磁路長Ltは4・Dである。磁気コア片11、12の透磁率をμc、加工変質層11d、12dの透磁率をμt、ギャップの透磁率をμg、磁気コア11、12の断面積をSとすると、Rc=Lc/μc、Rg=Lg/μg、Rt=Lt/μtとなり、磁気コア10の磁気抵抗Rmは(式2)で与えられる。
Rm=(Lc/μc+Lg/μg+Lt/μt)/S ・・・・・・(式2)
また、信号注入効率Nは(式1)および(式2)から(式3)のようになる。
Next, the signal injection efficiency N of the high frequency signal in the magnetic core 10 will be described.
Signal injection efficiency N is, I 1 the current flowing through the signal injection coil 2, when the current induced in the power line 1 and I 2, a N = I 2 / I 1, the damaged layer of the magnetic core pieces 11, 12 If the magnetic resistance of the portion not including 11d and 12d is Rc, the magnetic resistance of the gap portion is Rg, and the magnetic resistance of the work-affected layers 11d and 12d is Rt, the magnetic resistance Rm of the magnetic core 10 is Rc + Rg + Rt, and the signal injection efficiency N is given by (Equation 1).
N∝1 / Rm (1)
When the magnetic path length not including the work-affected layers 11d and 12d of the magnetic core pieces 11 and 12 when there are two magnetic gaps is K, the magnetic path length Lc of the magnetic core pieces 11 and 12 is 2 · K. The magnetic path length Lg of the magnetic gap portion is 2 · G, and the magnetic path length Lt of the work-affected layers 11d and 12d is 4 · D. When the magnetic permeability of the magnetic core pieces 11 and 12 is μc, the magnetic permeability of the work-affected layers 11d and 12d is μt, the magnetic permeability of the gap is μg, and the cross-sectional area of the magnetic cores 11 and 12 is S, Rc = Lc / μc, Rg = Lg / μg, Rt = Lt / μt, and the magnetic resistance Rm of the magnetic core 10 is given by (Equation 2).
Rm = (Lc / μc + Lg / μg + Lt / μt) / S (Equation 2)
Further, the signal injection efficiency N is expressed by (Expression 1) and (Expression 2) to (Expression 3).

Figure 2006005601
Figure 2006005601

(式3)の分母の第1項はRc、第2項はRg、第3項はRtに対応する。
磁気コア片11、12の対向する側面は、通常の加工を行うと加工変質層11d、12dの厚さは、0.5mm程度と想定されるので、加工変質層11d、12dの厚さを0.5mmとし、例えば、磁気コア10の寸法が、外径:95mm、内径:55mmの場合の信号注入効率Nについて試算すると次のようになる。
磁気コア片11、12の磁路長Kは118mm、ギャップ部分の磁路長Gは0.5mm、加工変質層11d、12dの厚さDは0.5mmであり、磁気コア片11、12の透磁率μcは500、ギャップ部分の透磁率μgは1、加工変質層11d、12d部分の透磁率μtは20のとして計算すると、(式3)の分母の各項はつぎのようになる。
(式3)の分母の第1項は、Lc/μc=2・K/μc=0.48
第2項は、Lg/μg=2・G/μg=1
第3項は、Lt/μt=4・D/μt=0.1
信号注入効率Nは分母の第1項(コア部分)と第2項(ギャップ部分)によって決まり、第3項(加工変質層)はほとんど影響を及ぼさないといえる。すなわち、伝送信号の信号注入効率Nを議論する場合には、加工変質層11d、12dの磁気抵抗Rtは、磁気コア10の磁気抵抗値Rmにはほとんど影響を与えない。磁気コアの対向する側面は、面粗さを50μm以下加工することにより、加工変質層11d、12dの厚さDは、0.5mm以下になり、上記の計算から加工変質層11d、12dの存在は、信号注入効率Nに対して実質的に影響せず、信号注入効率Nの低下にむすびつかない。
The first term of the denominator of (Formula 3) corresponds to Rc, the second term corresponds to Rg, and the third term corresponds to Rt.
Since the thickness of the work-affected layers 11d and 12d is assumed to be about 0.5 mm when the normal processing is performed on the opposite side surfaces of the magnetic core pieces 11 and 12, the thickness of the work-affected layers 11d and 12d is set to 0. The signal injection efficiency N when the dimensions of the magnetic core 10 are, for example, an outer diameter of 95 mm and an inner diameter of 55 mm is calculated as follows.
The magnetic path length K of the magnetic core pieces 11 and 12 is 118 mm, the magnetic path length G of the gap portion is 0.5 mm, and the thickness D of the work-affected layers 11 d and 12 d is 0.5 mm. When the magnetic permeability μc is 500, the magnetic permeability μg of the gap portion is 1, and the magnetic permeability μt of the work-affected layers 11d and 12d is 20, the respective terms of the denominator of (Expression 3) are as follows.
The first term of the denominator of (Expression 3) is Lc / μc = 2 · K / μc = 0.48.
The second term is Lg / μg = 2 · G / μg = 1
The third term is Lt / μt = 4 · D / μt = 0.1
The signal injection efficiency N is determined by the first term (core portion) and the second term (gap portion) of the denominator, and it can be said that the third term (work-affected layer) has little influence. That is, when discussing the signal injection efficiency N of the transmission signal, the magnetoresistance Rt of the work-affected layers 11d and 12d hardly affects the magnetoresistance value Rm of the magnetic core 10. When the opposite side surfaces of the magnetic core are processed to have a surface roughness of 50 μm or less, the thickness D of the work-affected layers 11d and 12d becomes 0.5 mm or less, and the presence of the work-affected layers 11d and 12d is found from the above calculation. Does not substantially affect the signal injection efficiency N and does not lead to a decrease in the signal injection efficiency N.

次に、伝送信号注入装置が電力線に装着された磁気コア10に加工変質層11d、12dが存在する場合と、加工変質層11d、12dが存在しない場合の波形歪みについて説明する。
図3(a)、図3(b)は信号注入コイル2に入力される入力波形と電力線1に誘導される誘導波形の関係を説明する説明図である。図3(a)は加工変質層11d、12dが存在しない通常の磁気コアの場合の説明図であり、図3(b)は加工変質層11d、12dが存在する磁気コアの場合の説明図である。
信号注入コイル2に入力される入力波形に対して、電力線1に誘導される誘導波形は、フェライトのマイナーループと呼ばれるBH特性によって決まる。
図3(a)の磁気コア10のマイナーループはHcが小さく、図3(b)の加工変質層11d、12dがある場合の磁気コア10はマイナーループのHcが大きくなっている。入力波形の(ア)→(イ)および(エ)→(オ)のプラス勾配の部分については、マイナーループのHcを通る(カ)→(キ)→(ク)をたどる部分によって誘導波形が決まり、(イ)→(ウ)→(エ)のマイナス勾配の部分については、マイナーループの−Hcを通る(ク)→(ケ)→(カ)をたどる部分で誘導波形が決まる。
磁気コア10に加工変質層11d、12dがない場合にはマイナーループの保持力であるHcが小さいので歪みのない誘導波形となり、図3(b)の場合のように、保持力Hcが大きく、マイナーループがプラス勾配とマイナス勾配が非対称になっていると、波形歪みの状態が非対称な歪み(T1<T2)となり、2次高調波に代表される偶数高調波歪みとなる。これに対して、磁気コア部分に電力線電流による磁気飽和によって波形歪みが生じる場合は、マイナーループが左右対称となるので、3次高調波に代表される奇数次高調波歪みになる。
Next, a description will be given of waveform distortion in the case where the processing-affected layers 11d and 12d are present in the magnetic core 10 in which the transmission signal injection device is attached to the power line, and in the case where the processing-affected layers 11d and 12d are not present.
FIGS. 3A and 3B are explanatory diagrams for explaining the relationship between the input waveform input to the signal injection coil 2 and the induction waveform induced in the power line 1. FIG. 3A is an explanatory diagram in the case of a normal magnetic core in which the work-affected layers 11d and 12d are not present, and FIG. 3B is an explanatory diagram in the case of a magnetic core in which the work-affected layers 11d and 12d are present. is there.
In contrast to the input waveform input to the signal injection coil 2, the induction waveform induced in the power line 1 is determined by the BH characteristic called a minor loop of ferrite.
The minor loop of the magnetic core 10 in FIG. 3A has a small Hc, and the magnetic core 10 having the work-affected layers 11d and 12d in FIG. 3B has a large minor loop Hc. As for the positive slopes of (a) → (b) and (d) → (e) in the input waveform, the induced waveform depends on the part that passes through (c) → (ki) → (ku) through Hc of the minor loop. As for the negative slope portion of (A) → (U) → (D), the induction waveform is determined by the portion following (K) → (K) → (K) passing through −Hc of the minor loop.
When the magnetic core 10 does not have the work-affected layers 11d and 12d, the minor loop holding force Hc is small, so that an induction waveform without distortion is obtained, and the holding force Hc is large as in the case of FIG. If the minor loop has a plus slope and a minus slope asymmetric, the waveform distortion state becomes asymmetric distortion (T1 <T2), and even harmonic distortion represented by the second harmonic. On the other hand, when the waveform distortion occurs in the magnetic core due to the magnetic saturation due to the power line current, the minor loop becomes left-right symmetric, resulting in odd-order harmonic distortion represented by the third-order harmonic.

伝送信号注入装置の信号注入コイル2に注入される入力波形の周波数と電力線1に誘導される誘導波形の周波数成分の関係を図4に示す。図4(a)は入力波形の周波数成分f、図4(b)は入力した入力波形に対して電力線に誘導される誘導波形の周波数成分を示すものである。
伝送信号注入装置には、信号注入コイル2に入力される図4(a)の周波数fの入力波形に対して、電力線1には図4(b)のように信号波f、2次高調波f、3次高調波f成分を含む波形が誘導される。波形歪みは信号波の周波数fの成分と高調波成分f、fの成分の強度差をdBで表示する。
The relationship between the frequency of the input waveform injected into the signal injection coil 2 of the transmission signal injection device and the frequency component of the induction waveform induced in the power line 1 is shown in FIG. 4A shows the frequency component f 1 of the input waveform, and FIG. 4B shows the frequency component of the induction waveform induced in the power line with respect to the input waveform.
In the transmission signal injection device, the input waveform of the frequency f 1 in FIG. 4A input to the signal injection coil 2 is compared with the signal wave f 1 , secondary in the power line 1 as shown in FIG. 4B. A waveform including a harmonic f 2 and a third harmonic f 3 component is induced. For the waveform distortion, the intensity difference between the component of the frequency f 1 of the signal wave and the components of the harmonic components f 2 and f 3 is displayed in dB.

PLCシステムでは、電力線に2MHz〜40MHzの伝送信号を入力してデータ通信を行うものであり、実際のデータ通信は、帯域幅が1MHz程度の多数のチャンネルにて伝送するものであり、例えば、2MHz〜3MHzで第1チャンネル、3MHz〜4MHzで第2チャンネル・・・というようになっている。
例えば、2MHzの伝送信号の波形が歪んで2次高調波の4MHzの周波数成分が発生すると、4MHzを使用するチャンネルのS/N比が低下し、このチャンネルはデータ伝送に使用できなくなる通信障害が発生する。
In the PLC system, data communication is performed by inputting a transmission signal of 2 MHz to 40 MHz to the power line, and actual data communication is performed using a large number of channels having a bandwidth of about 1 MHz. The first channel at ˜3 MHz, the second channel at 3 MHz to 4 MHz, and so on.
For example, if the waveform of a 2 MHz transmission signal is distorted and a 4 MHz frequency component of the second harmonic is generated, the S / N ratio of the channel using 4 MHz is lowered, and this channel is not usable for data transmission. appear.

また、実際の通信においては、通信距離が長くなると信号波形が減衰するが、PLCシステムでは、信号が60dB(数値倍率では1/1000)減衰しても、通信に支障がないように構成されているので、歪みによる2次高調波の強度も伝送信号に対して−60dBよりも小さくしておく必要がある。   In actual communication, the signal waveform attenuates as the communication distance increases. However, the PLC system is configured so that communication is not hindered even if the signal is attenuated by 60 dB (1/1000 in terms of numerical magnification). Therefore, it is necessary to make the intensity of the second harmonic due to distortion smaller than −60 dB with respect to the transmission signal.

次に面粗さと波形歪みの関係について説明する。加工変質層11d、12dでは、加工によって変質しているので透磁率が小さく、マイナーループの保持力Hcが大きくなっている。この加工変質層11d、12dにおいて入力波形に対する誘導波形の歪みは、磁気コア10の磁気コア片11、12の体積に対する加工変質層11d、12dの体積の割合に依存する。
例えば、外径:95mm、内径:55mmの磁気コアでは、平均磁路長Lcは約236mmであり、加工変質層11d、12dの厚さDを0.5mmとすると、加工変質層11d、12dの磁路長Ltは4×Dであり、2mmとなり、体積比では、2/236=8.4e−3となる。この体積比に比例して誘導波形の歪みが発生するとして、歪み率を表示すると、−41dBとなる。したがって、2次高調波ノイズを60dB以下にするには、磁気コア10の磁路長Lcに対して加工変質層11d、12dの磁路長Ltを2mmよりさらに小さくする必要がある。
Next, the relationship between surface roughness and waveform distortion will be described. In the work-affected layers 11d and 12d, since they have been altered by processing, the magnetic permeability is small and the holding power Hc of the minor loop is large. The distortion of the induced waveform with respect to the input waveform in the work-affected layers 11d and 12d depends on the ratio of the volume of the work-affected layers 11d and 12d to the volume of the magnetic core pieces 11 and 12 of the magnetic core 10.
For example, in a magnetic core having an outer diameter of 95 mm and an inner diameter of 55 mm, the average magnetic path length Lc is about 236 mm, and the thickness D of the work-affected layers 11d and 12d is 0.5 mm. The magnetic path length Lt is 4 × D, 2 mm, and the volume ratio is 2/236 = 8.4e−3. When the distortion rate is displayed on the assumption that distortion of the induction waveform is generated in proportion to the volume ratio, −41 dB is obtained. Therefore, in order to reduce the second harmonic noise to 60 dB or less, it is necessary to make the magnetic path length Lt of the work-affected layers 11d and 12d smaller than 2 mm with respect to the magnetic path length Lc of the magnetic core 10.

磁気コア片11および12の対向する側面を研磨加工により必要とする面粗さに仕上げるには、工具側の砥石の目を細かくし、機械的応力が加わらないように研削することで実現できる。研磨加工、研削加工のどちらを用いても、面粗さに対する加工変質層11d、12dの厚さの関係は変わらない。
実際の磁気コアの加工変質層11d、12dの厚さを測定することはできないが、加工された磁気コア片11、12の対向する側面の面粗さを実測することで、加工変質層11d、12dの厚さDの評価に代えることができる。
実際の磁気コア片11、12の対向する側面の加工は、フェライトが脆く欠けやすい材料であるため、細かな目の研磨材(または研磨工具)を使用する。これにより、磁気コア片11、12の加工時に対向する側面に加わる機械的応力を小さくすることができ、加工変質層11d、12dの厚さDを薄くすることができる。
磁気コア片11、12の対向する側面の面粗さと実際の信号注入装置における誘導波形の波形歪みの関係を図5に示す。
この結果から、磁気コア片11d、12dの対向する側面の面粗さを50μm以下にすると波形歪みが−60dB近くになる結果が得られている。
Finishing the opposing side surfaces of the magnetic core pieces 11 and 12 to have the required surface roughness by polishing can be achieved by making the tool side grindstone fine and grinding so that no mechanical stress is applied. Regardless of whether polishing or grinding is used, the relationship between the thickness of the work-affected layers 11d and 12d with respect to the surface roughness does not change.
Although the actual thickness of the work-affected layers 11d, 12d of the magnetic core cannot be measured, the work-affected layer 11d, It can be replaced with the evaluation of the thickness D of 12d.
The actual processing of the opposing side surfaces of the magnetic core pieces 11 and 12 uses a fine-grained abrasive (or polishing tool) because ferrite is a brittle material that tends to chip. Thereby, the mechanical stress added to the side surface which opposes at the time of the process of the magnetic core pieces 11 and 12 can be made small, and the thickness D of the work-affected layers 11d and 12d can be made thin.
FIG. 5 shows the relationship between the surface roughness of the opposing side surfaces of the magnetic core pieces 11 and 12 and the waveform distortion of the induced waveform in the actual signal injection device.
From this result, when the surface roughness of the opposing side surfaces of the magnetic core pieces 11d and 12d is 50 μm or less, the waveform distortion is close to −60 dB.

以上のことから、磁気コア10の材料をフェライトとして、対向する側面の面粗さを50μm以下とすることで、注入信号の波形歪みが生じないPLCシステムの伝送信号注入装置が得られる。   From the above, by setting the material of the magnetic core 10 as ferrite and setting the surface roughness of the opposing side surfaces to 50 μm or less, a transmission signal injection device of the PLC system in which the waveform distortion of the injection signal does not occur can be obtained.

実施の形態2.
実施の形態1では、PLCシステムの伝送信号注入装置の磁気コアを2分割し、ギャップを設ける部分の対向する側面の面粗さを50μm以下とすることで、伝送信号の注入による波形の歪みが抑えられることについて説明したが、実施の形態2では、磁気コアの磁性材料の種類に対して、磁気コアの分割数を多くしてギャップ数を多くした場合のギャップ数と信号注入効率Nの関係を調べ、その結果に基づき、最適な伝送信号注入装置の構成を示すものである。
図6にいくつかの磁性材料についてギャップの合計した値を1mmとしてギャップ数を変えた場合のギャップ数と信号注入効率Nの関係を示す。
磁性材料としては珪素鋼板、圧粉鉄心等の鉄系の磁性材料、Ni−Znフェライト、Mn−Znフェライトについて調べた。
その結果、鉄系磁性材料ではギャップ数が増加すると、信号注入効率Nが低下するが、Ni−Znフェライト、Mn−Znフェライトでは、ギャップ数の増加に対して信号注入効率Nは低下しない。
Embodiment 2. FIG.
In the first embodiment, the magnetic core of the transmission signal injection device of the PLC system is divided into two parts, and the surface roughness of the opposite side surfaces of the portion where the gap is provided is 50 μm or less, so that the waveform distortion due to the transmission signal injection is reduced In the second embodiment, the relationship between the number of gaps and the signal injection efficiency N when the number of divisions of the magnetic core is increased and the number of gaps is increased with respect to the type of magnetic material of the magnetic core has been described. The optimal transmission signal injection device configuration is shown based on the results.
FIG. 6 shows the relationship between the number of gaps and the signal injection efficiency N when the number of gaps is changed by setting the total value of gaps to 1 mm for several magnetic materials.
As the magnetic material, an iron-based magnetic material such as a silicon steel plate and a dust core, Ni—Zn ferrite, and Mn—Zn ferrite were examined.
As a result, when the gap number increases in the iron-based magnetic material, the signal injection efficiency N decreases, but in the Ni—Zn ferrite and the Mn—Zn ferrite, the signal injection efficiency N does not decrease as the gap number increases.

このように、Ni−Znフェライト、Mn−Znフェライトを使用すると、ギャップの合計した値を1mmとした場合に、ギャップ数を多くしても、信号注入効率Nの変化がない特性を示しており、PLCシステムの伝送信号注入装置の磁気コアとして適している。特にNi−Znフェライトを使用することにより、信号注入効率Nの高い信号注入装置が得られることがわかる。   As described above, when Ni—Zn ferrite and Mn—Zn ferrite are used, the signal injection efficiency N does not change even when the number of gaps is increased when the total gap value is 1 mm. It is suitable as a magnetic core for transmission signal injection device of PLC system. In particular, it can be seen that a signal injection device having a high signal injection efficiency N can be obtained by using Ni—Zn ferrite.

実施の形態3.
実施の形態3では、伝送信号注入装置にフェライト系の磁気コアを使用する場合の周囲温度を考慮した材質選択について説明する。フェライト系の磁性材料は、温度が高くなると飽和磁束密度が低下する。磁気コアの飽和磁束密度が低下すると、電力線の電流が少ない状態でも磁気飽和することとなり、飽和状態では透磁率μcが小さくなる。そうすると磁気コア部分の磁気抵抗Rcが大きくなり、伝送信号注入装置の磁気抵抗Rmが大きくなる。
信号注入効率Nは、(式3)に示すとおり、磁気抵抗Rmに逆比例するので、信号注入効率Nは低下することとなる。
図7にフェライトの飽和磁束密度がフェライトの材質に依存して減少するネール温度と信号注入効率Nの関係を示す。伝送信号注入装置が設置される位置は、通常は電気機器の内部であり、その設置位置の温度は80℃にもなることがある。周囲温度が80℃で信号注入装置を使用する場合、図7に示すようにネール温度が150℃以上のフェライトを使用すれば信号注入効率Nが低下しない。
Embodiment 3 FIG.
In the third embodiment, material selection in consideration of ambient temperature when a ferrite magnetic core is used for a transmission signal injection device will be described. Ferrite-based magnetic materials have a lower saturation magnetic flux density as the temperature increases. When the saturation magnetic flux density of the magnetic core decreases, magnetic saturation occurs even when the power line current is small, and the permeability μc decreases in the saturation state. As a result, the magnetic resistance Rc of the magnetic core portion increases, and the magnetic resistance Rm of the transmission signal injection device increases.
Since the signal injection efficiency N is inversely proportional to the magnetic resistance Rm as shown in (Equation 3), the signal injection efficiency N is reduced.
FIG. 7 shows the relationship between the Neel temperature at which the saturation magnetic flux density of ferrite decreases depending on the ferrite material and the signal injection efficiency N. The position where the transmission signal injection device is installed is usually inside the electrical equipment, and the temperature of the installation position may be as high as 80 ° C. When the signal injection device is used at an ambient temperature of 80 ° C., the signal injection efficiency N does not decrease if ferrite having a Neel temperature of 150 ° C. or higher is used as shown in FIG.

実施の形態4.
PLCシステムの通信区域内の信号伝送路となる電力線には、変圧器等の電磁誘導機器や開閉機器が直列接続されているが、変圧器等の電磁誘導機器は、高周波信号が通過しないし、開閉機器では、開極されているときには伝送信号が通過できない。したがって、PLCシステムの通信区域内の信号伝送路となる電力線の電気機器が接続された部分には、伝送信号が電気機器をバイパスして伝送されるように伝送信号バイパス装置が設置される。実施の形態4は、伝送信号バイパス装置に関するものである。
Embodiment 4 FIG.
Inductive devices such as transformers and switchgear are connected in series to the power lines that serve as signal transmission paths in the communication area of the PLC system, but electromagnetic induction devices such as transformers do not pass high-frequency signals, In a switchgear, a transmission signal cannot pass when it is opened. Accordingly, a transmission signal bypass device is installed in a portion where a power line electric device serving as a signal transmission path in the communication area of the PLC system is connected so that the transmission signal is transmitted by bypassing the electric device. Embodiment 4 relates to a transmission signal bypass device.

伝送信号バイパス装置は、図8に示すように、電力線1に接続された電気機器21の前後の電力線1に伝送信号注入器20を装着し、前後の伝送信号注入器20の相互間を信号バイパス回路22で接続した構成である。
この伝送信号バイパス装置では、一方の電力線1に伝送された伝送信号は、一方の伝送信号注入器20、伝送信号バイパス回路22、他方の伝送信号注入器20を経由し、他方の電力線1に至る経路で伝送される。高周波信号の伝送方向が逆方向の場合も伝送信号は同様にして電気機器21をバイパスして伝送される。
As shown in FIG. 8, the transmission signal bypass device attaches a transmission signal injector 20 to the power line 1 before and after the electrical equipment 21 connected to the power line 1, and performs signal bypass between the front and rear transmission signal injectors 20. The circuit 22 is connected.
In this transmission signal bypass device, the transmission signal transmitted to one power line 1 passes through one transmission signal injector 20, the transmission signal bypass circuit 22, and the other transmission signal injector 20 to reach the other power line 1. It is transmitted on the route. Even when the transmission direction of the high-frequency signal is reverse, the transmission signal is transmitted by bypassing the electrical device 21 in the same manner.

この伝送信号バイパス装置を構成する伝送信号注入器20は、高調波ノイズの発生がなく、信号注入効率も低下しないことが条件となり、電力線1の電流による磁気飽和がなく、高調波ノイズが発生しないように構成する必要がある。この条件を満足するものとして、上記の実施の形態1〜3に示した伝送信号注入装置を使用することができる。   The transmission signal injector 20 constituting this transmission signal bypass device is free from the generation of harmonic noise, and the signal injection efficiency is not reduced. There is no magnetic saturation due to the current of the power line 1, and no harmonic noise is generated. It is necessary to configure as follows. In order to satisfy this condition, the transmission signal injection device described in the first to third embodiments can be used.

伝送信号注入器20に、実施の形態1または実施の形態2の伝送信号注入装置を使用することにより、電力線電流による磁気飽和がなく、高調波ノイズの発生が抑えられ、信号注入効率も低下しない伝送信号バイパス装置が構成できる。
また、実施の形態3の周囲温度を考慮した磁気コアを使用した構成にすれば、通常想定される設置位置での周囲温度でも、信号注入効率の低下および伝送信号の高調波ノイズを抑えることができる伝送信号バイパス装置が構成できる。
By using the transmission signal injection device of the first or second embodiment for the transmission signal injector 20, there is no magnetic saturation due to the power line current, the generation of harmonic noise is suppressed, and the signal injection efficiency is not lowered. A transmission signal bypass device can be configured.
Further, if the configuration using the magnetic core in consideration of the ambient temperature of the third embodiment is used, it is possible to suppress the decrease in signal injection efficiency and the harmonic noise of the transmission signal even at the ambient temperature at the installation position normally assumed. A possible transmission signal bypass device can be configured.

電力線搬送通信システム用の伝送信号注入装置の構成図である。It is a block diagram of the transmission signal injection apparatus for power line carrier communication systems. 伝送信号注入装置に使用される磁気コアの磁路およびギャップの状態を示す模式図である。It is a schematic diagram which shows the state of the magnetic path and gap of a magnetic core used for a transmission signal injection apparatus. 注入コイルに入力される入力波形と電力線に誘導される誘導波形の関係を説明する説明図である。It is explanatory drawing explaining the relationship between the input waveform input into an injection | pouring coil, and the induction | guidance | derivation waveform induced | guided | derived to a power line. 入力波形の周波数と電力線に誘導された誘導波形の高調波ノイズの関係を示す図である。It is a figure which shows the relationship between the frequency of an input waveform, and the harmonic noise of the induction waveform induced | guided | derived to the power line. 磁気コアの対向する側面の面粗さと波形歪みの関係を示す図である。It is a figure which shows the relationship between the surface roughness of the side surface which a magnetic core opposes, and waveform distortion. 磁性材料ごとのギャップ長を一定としてギャップ数を多くした場合のギャップ数と信号注入効率の関係図である。FIG. 5 is a relationship diagram between the number of gaps and signal injection efficiency when the number of gaps is increased with the gap length for each magnetic material being constant. フェライトの飽和磁束密度がフェライトの材質に依存して減少するネール温度と信号注入効率との関係図である。FIG. 5 is a diagram showing the relationship between the Neel temperature at which the saturation magnetic flux density of ferrite decreases depending on the ferrite material and the signal injection efficiency. 電力線の電気機器の設置部分に設けられる伝送信号バイパス装置の構成図である。It is a block diagram of the transmission signal bypass apparatus provided in the installation part of the electric equipment of a power line.

符号の説明Explanation of symbols

1 電力線、2 注入コイル、10 磁気コア、11,12 磁気コア片、
11d,12d 加工変質層、13 ギャップ形成部材、20 伝送信号注入器、
21 電気機器、22 信号バイパス回路。
1 power line, 2 injection coil, 10 magnetic core, 11, 12 magnetic core piece,
11d, 12d work-affected layer, 13 gap forming member, 20 transmission signal injector,
21 Electrical equipment, 22 Signal bypass circuit.

Claims (4)

円筒状部材を円周方向に複数に分割した形状の断面円弧状のフェライトで構成された複数の磁気コア片を形成し、該複数の磁気コア片の側面を対向させ、対向する側面の間にギャップ形成部材を間挿し、円筒状に形成したギャップを有する磁気コアと、該磁気コアに巻回し、電力線への伝送信号の注入・取り出しを行う信号注入コイルとを備え、上記磁気コア片の対向する側面は、面粗さ50μm以下に仕上げたことを特徴とする伝送信号注入装置。 A plurality of magnetic core pieces made of ferrite having an arc-shaped cross section formed by dividing a cylindrical member into a plurality of parts in the circumferential direction are formed, and the side surfaces of the plurality of magnetic core pieces are opposed to each other, and between the opposed side surfaces. A magnetic core having a gap formed by inserting a gap forming member and having a cylindrical shape, and a signal injection coil wound around the magnetic core and injecting / extracting a transmission signal to / from a power line. The transmission signal injection device is characterized in that the side surface to be finished has a surface roughness of 50 μm or less. 上記磁気コアを形成する材料は、Ni−Zn系フェライトとしたことを特徴とする請求項1記載の伝送信号注入装置。 The transmission signal injection device according to claim 1, wherein the material forming the magnetic core is Ni-Zn ferrite. 上記磁気コアを形成する材料は、飽和磁束密度の低下が始まるネール温度が150℃以上のフェライトとしたことを特徴とする請求項1記載の伝送信号注入装置。 2. The transmission signal injection device according to claim 1, wherein the material forming the magnetic core is ferrite having a Neel temperature of 150 [deg.] C. or more at which the saturation magnetic flux density starts to decrease. 通信区域内の伝送路となる電力線に直列接続された電気機器の両側の接続部のそれぞれの電力線にそれぞれ装着された伝送信号注入器と、該伝送信号注入器の相互間を接続した信号バイパス回路とからなり、上記電力線に伝送される伝送信号が上記電気機器をバイパスして伝送される伝送信号バイパス装置において、上記伝送信号注入器は、請求項1〜請求項3のいずれかに記載の伝送信号注入装置を用いたことを特徴とする伝送信号バイパス装置。 Transmission signal injectors respectively attached to the respective power lines of the connecting portions on both sides of the electrical equipment connected in series to the power lines that serve as transmission paths in the communication area, and signal bypass circuits connecting the transmission signal injectors to each other A transmission signal bypass device in which a transmission signal transmitted to the power line is transmitted by bypassing the electrical device, wherein the transmission signal injector is the transmission according to any one of claims 1 to 3. A transmission signal bypass device using a signal injection device.
JP2004179107A 2004-06-17 2004-06-17 Injecting device and bypass device of transmission signal Pending JP2006005601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179107A JP2006005601A (en) 2004-06-17 2004-06-17 Injecting device and bypass device of transmission signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179107A JP2006005601A (en) 2004-06-17 2004-06-17 Injecting device and bypass device of transmission signal

Publications (1)

Publication Number Publication Date
JP2006005601A true JP2006005601A (en) 2006-01-05

Family

ID=35773619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179107A Pending JP2006005601A (en) 2004-06-17 2004-06-17 Injecting device and bypass device of transmission signal

Country Status (1)

Country Link
JP (1) JP2006005601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300364A (en) * 2006-04-28 2007-11-15 Toyo Networks & System Integration Co Ltd Power line communication system
KR100996139B1 (en) * 2008-12-08 2010-11-24 한국전기연구원 non-intrusive blocking filter for power line communication and control method thereof
WO2019051448A1 (en) 2017-09-11 2019-03-14 Antronix Inc. Power passing directional coupler having a split ferrite element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300364A (en) * 2006-04-28 2007-11-15 Toyo Networks & System Integration Co Ltd Power line communication system
JP4706044B2 (en) * 2006-04-28 2011-06-22 ネッツエスアイ東洋株式会社 Power line communication system
KR100996139B1 (en) * 2008-12-08 2010-11-24 한국전기연구원 non-intrusive blocking filter for power line communication and control method thereof
WO2019051448A1 (en) 2017-09-11 2019-03-14 Antronix Inc. Power passing directional coupler having a split ferrite element
EP3682503A4 (en) * 2017-09-11 2021-06-16 Antronix Inc. Power passing directional coupler having a split ferrite element
US11152679B2 (en) 2017-09-11 2021-10-19 Antronix Inc. Power passing directional coupler having a split ferrite element

Similar Documents

Publication Publication Date Title
EP2529380B1 (en) Magnetic core
KR20020020265A (en) Inductance component in which a permanent magnet for applying a magnetic bias is arranged outside an excitation coil
JP5619163B2 (en) Magnetic field sensor and magnetic field sensor manufacturing method
KR101642610B1 (en) Coil component and method of manufacturing the same
KR20100054839A (en) High power inductors using a magnetic bias
US20150213944A1 (en) Reactor
EP1207540A1 (en) Inductor component having a permanent magnet in the vicinity of magnetic gap
TW200807459A (en) Wave-filtering inductor
Nakano et al. Improvements of single sheet testers for measurement of 2-D magnetic properties up to high flux density
US2774935A (en) Inductance assembly such as a transformer for the transmission of pulses
US2498475A (en) Saturable magnetic core
JP2006005601A (en) Injecting device and bypass device of transmission signal
JP5407936B2 (en) Electromagnetic noise suppressor
EP0228883A1 (en) Magnetic field generating device for electromagnetic flowmeter of residual magnetization type
US20230368959A1 (en) Magnetic core and magnetic device
Brockmeyer et al. Frequency dependence of the ferrite-loss increase caused by premagnetization
JP2015141976A (en) reactor
JPH11219832A (en) Choke coil for noise filter
JP4291566B2 (en) Composite core
JP7171026B2 (en) Noise filter
EA008971B1 (en) Controllable inductive device
JP3648425B2 (en) Ring core
Ito Basics of ferrite and noise countermeasures
CN102368419A (en) Magnetic core used for differential-mode coil
Slavkova Application of current transformers in power electronics converters with voltage feedback