JP2006005161A - Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner - Google Patents

Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner Download PDF

Info

Publication number
JP2006005161A
JP2006005161A JP2004179990A JP2004179990A JP2006005161A JP 2006005161 A JP2006005161 A JP 2006005161A JP 2004179990 A JP2004179990 A JP 2004179990A JP 2004179990 A JP2004179990 A JP 2004179990A JP 2006005161 A JP2006005161 A JP 2006005161A
Authority
JP
Japan
Prior art keywords
electromagnetic coil
insulating substrate
hole
conductive film
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004179990A
Other languages
Japanese (ja)
Inventor
Junji Nakamura
潤二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004179990A priority Critical patent/JP2006005161A/en
Publication of JP2006005161A publication Critical patent/JP2006005161A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily and reliably allow a pair of coils formed opposingly on both the surfaces of an insulating substrate to conduct electricity without using soldering regarding a method for manufacturing the electromagnetic coil plate that uses charged particle rays, such as electron rays and ions, and is suitable for a charged particle beam device, the electromagnetic coil plate, a toroidal type coil structure, and a charged particle beam projection aligner. <P>SOLUTION: The method for manufacturing the electromagnetic coil plate comprises a through hole formation process for forming a through hole at a position that becomes the interconnection section of the insulating substrate; a conductive film formation process for forming a conductive film on both the surfaces of the insulating substrate and at both the sides of the inner surface of the through hole; a conductive film continuity process for allowing a conductive film on both the surfaces of the insulating substrate to conduct electricity by forcing a conductive member into the thorough hole; and a coil formation process for forming coils opposingly via the conductive film on both the surfaces of the insulating substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子線やイオン等の荷電粒子線を用いた荷電粒子線装置に好適な電磁コイル板の製造方法および電磁コイル板に関する。また、この電磁コイル板を用いたトロイダル型コイル構造体、このトロイダル型コイル構造体を用いた荷電粒子線露光装置に関する。   The present invention relates to an electromagnetic coil plate manufacturing method and an electromagnetic coil plate suitable for a charged particle beam apparatus using charged particle beams such as electron beams and ions. The present invention also relates to a toroidal coil structure using the electromagnetic coil plate and a charged particle beam exposure apparatus using the toroidal coil structure.

一般に、荷電粒子線装置は、電子銃等の荷電粒子源から感応基板等の試料に向かう、電子等の軌道を制御するために複数の偏向器を用いている。そして、この偏向器として、ベーンと呼ばれる電磁コイル板を複数用いたトロイダル型の偏向器が知られている。この偏向器は、光軸を中心にして配置される円筒型のシリンダーに複数の電磁コイル板を放射状に配置して構成されている。   In general, a charged particle beam apparatus uses a plurality of deflectors to control the trajectory of electrons and the like from a charged particle source such as an electron gun to a sample such as a sensitive substrate. As this deflector, a toroidal deflector using a plurality of electromagnetic coil plates called vanes is known. This deflector is configured by arranging a plurality of electromagnetic coil plates radially in a cylindrical cylinder arranged around the optical axis.

従来、このような偏向器に用いられる電磁コイル板として、例えば、特開2002−33232号公報に開示されるものが知られている。
この公報に開示される電磁コイル板では、絶縁性基板の両面にコイルが対向して形成されており、対向して形成されるコイルが、インターコネクト部において相互に電気的に導通されている。そして、一対のコイルの導通は、インターコネクト部に形成される貫通穴に導電性のワイヤを挿通し、ワイヤとコイルとをはんだ付けすることにより行われている。
特開2002−33232号公報
Conventionally, what is disclosed by Unexamined-Japanese-Patent No. 2002-33332 is known as an electromagnetic coil board used for such a deflector, for example.
In the electromagnetic coil plate disclosed in this publication, coils are formed on both sides of an insulating substrate so as to face each other, and the coils formed so as to face each other are electrically connected to each other at an interconnect portion. The pair of coils are electrically connected by inserting a conductive wire into a through hole formed in the interconnect portion and soldering the wire and the coil.
JP 2002-333232 A

しかしながら、従来の電磁コイル板では、一対のコイルの導通を、インターコネクト部に形成される貫通穴に導電性のワイヤを挿通し、ワイヤとコイルとをはんだ付けすることにより行っているため、はんだ付けの作業中に飛散する所謂ソルダーボールがコイルの隙間に入り込むという問題があった。
すなわち、このようにソルダーボールがコイルの隙間に入り込むと、コイルがショートしてしまうため、はんだ付け作業後の検査や洗浄に多大な時間が必要になる。
However, in the conventional electromagnetic coil plate, the conduction of a pair of coils is performed by inserting a conductive wire into a through hole formed in the interconnect portion and soldering the wire and the coil. There was a problem that so-called solder balls scattered during the work entered the gaps in the coil.
That is, when the solder ball enters the gap between the coils as described above, the coil is short-circuited, so that a great amount of time is required for inspection and cleaning after the soldering operation.

本発明は、かかる従来の問題を解決するためになされたもので、絶縁性基板の両面に対向して形成される一対のコイルの導通をはんだ付けを用いることなく容易,確実に行うことができる電磁コイル板の製造方法および電磁コイル板を提供することを目的とする。また、この電磁コイル板を用いたトロイダル型コイル構造体、このトロイダル型コイル構造体を用いた荷電粒子線露光装置を提供することを目的とする。   The present invention has been made to solve such a conventional problem, and can easily and reliably conduct a pair of coils formed opposite to both surfaces of an insulating substrate without using soldering. An object of the present invention is to provide an electromagnetic coil plate manufacturing method and an electromagnetic coil plate. Another object of the present invention is to provide a toroidal coil structure using the electromagnetic coil plate and a charged particle beam exposure apparatus using the toroidal coil structure.

請求項1の電磁コイル板の製造方法は、絶縁性基板のインターコネクト部となる位置に貫通穴を形成する貫通穴形成工程と、前記絶縁性基板の両面および前記貫通穴の内面両側に導電膜を形成する導電膜形成工程と、前記貫通穴に導電部材を圧入し前記絶縁性基板の両面の導電膜を導通させる導電膜導通工程と、前記絶縁性基板の両面に前記導電膜を介してコイルを対向して形成するコイル形成工程とを有することを特徴とする。   According to a first aspect of the present invention, there is provided the electromagnetic coil plate manufacturing method comprising: a through hole forming step of forming a through hole at a position to be an interconnect portion of the insulating substrate; and a conductive film on both sides of the insulating substrate and both inner surfaces of the through hole A conductive film forming step to be formed; a conductive film conduction step in which a conductive member is press-fitted into the through hole to conduct the conductive film on both surfaces of the insulating substrate; and a coil is formed on both surfaces of the insulating substrate via the conductive film. And a coil forming step formed to face each other.

請求項2の電磁コイル板の製造方法は、請求項1記載の電磁コイル板の製造方法において、前記コイル形成工程におけるコイルの形成を、リソグラフィー法および電鋳法を用いて行うことを特徴とする。
請求項3の電磁コイル板の製造方法は、請求項1記載の電磁コイル板の製造方法において、前記導電部材は、銅パイプからなることを特徴とする。
The electromagnetic coil plate manufacturing method according to claim 2 is the electromagnetic coil plate manufacturing method according to claim 1, wherein the coil is formed in the coil forming step by using a lithography method and an electroforming method. .
The electromagnetic coil plate manufacturing method according to claim 3 is the electromagnetic coil plate manufacturing method according to claim 1, wherein the conductive member is made of a copper pipe.

請求項4の電磁コイル板は、絶縁性基板の両面に導電膜を介してコイルを対向して形成し、前記絶縁性基板の両面の前記コイルを貫通穴が形成されるインターコネクト部で導通してなる電磁コイル板において、前記貫通穴に、前記導電膜を導通させる導電部材を圧入するとともに、前記導電部材の両側を前記コイルにより覆ってなることを特徴とする。
請求項5の電磁コイル板は、請求項4記載の電磁コイル板において、前記コイルは、リソグラフィー法および電鋳法により形成されていることを特徴とする。
The electromagnetic coil plate according to claim 4 is formed such that the coils are opposed to each other on both surfaces of the insulating substrate via a conductive film, and the coils on both surfaces of the insulating substrate are electrically connected to each other at an interconnect portion where a through hole is formed. In the electromagnetic coil plate, the conductive member for conducting the conductive film is press-fitted into the through hole, and both sides of the conductive member are covered with the coil.
The electromagnetic coil plate according to claim 5 is the electromagnetic coil plate according to claim 4, wherein the coil is formed by a lithography method and an electroforming method.

請求項6の電磁コイル板は、請求項4または請求項5記載の電磁コイル板において、前記導電部材の両端を、前記貫通穴の内側に位置させてなることを特徴とする。
請求項7のトロイダル型コイル構造体は、請求項4ないし請求項6のいずれか1項記載の電磁コイル板を有することを特徴とする。
請求項8の荷電粒子線露光装置は、請求項7に記載のトロイダル型コイル構造体を有することを特徴とする。
The electromagnetic coil plate according to claim 6 is the electromagnetic coil plate according to claim 4 or 5, wherein both ends of the conductive member are located inside the through hole.
A toroidal coil structure according to a seventh aspect includes the electromagnetic coil plate according to any one of the fourth to sixth aspects.
A charged particle beam exposure apparatus according to an eighth aspect includes the toroidal coil structure according to the seventh aspect.

本発明の電磁コイル板の製造方法および電磁コイル板では、絶縁性基板のインターコネクト部に形成される貫通穴に導電部材を圧入して一対のコイルを導通するようにしたので、絶縁性基板の両面に対向して形成される一対のコイルの導通をはんだ付けを用いることなく容易,確実に行うことができる。
また、本発明のトロイダル型コイル構造体および荷電粒子線露光装置では本発明の電磁コイル板を用いることで、信頼性の高いトロイダル型コイル構造体と、これを用いた荷電粒子線露光装置を得ることができる。
In the electromagnetic coil plate manufacturing method and electromagnetic coil plate according to the present invention, the conductive member is press-fitted into the through-hole formed in the interconnect portion of the insulating substrate so that the pair of coils are conducted. The pair of coils formed opposite to each other can be easily and reliably conducted without using soldering.
Further, the toroidal coil structure and the charged particle beam exposure apparatus of the present invention use the electromagnetic coil plate of the present invention to obtain a highly reliable toroidal coil structure and a charged particle beam exposure apparatus using the same. be able to.

以下、本発明の実施形態を図面を用いて詳細に説明する。
(電磁コイル板の実施形態)
図1は、本発明の電磁コイル板の一実施形態を示している。
この実施形態の電磁コイル板は、絶縁性基板11と、この絶縁性基板11の両面に対向して形成されるコイル13とを有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment of electromagnetic coil plate)
FIG. 1 shows an embodiment of the electromagnetic coil plate of the present invention.
The electromagnetic coil plate of this embodiment includes an insulating substrate 11 and a coil 13 formed to face both surfaces of the insulating substrate 11.

絶縁性基板11は、石英、マシナブルセラミックス、ファインセラミックス等の絶縁体で形成されている。
絶縁性基板11の両面に形成されるコイル13のパターンは、絶縁性基板11の表側(あるいは裏側)で右巻き、絶縁性基板11の裏側(あるいは表側)で左巻きの対称形状をなしている。コイル13は、絶縁性基板11を隔ててコイル13のパターンが背中合わせに合致するように絶縁性基板11の両面に対向して形成されている。コイル13の外側端には、配線用のパッド部13aが形成されている。また、コイル13の内側端には、絶縁性基板11の両面のコイル13を導通するインターコネクト部15が形成されている。
The insulating substrate 11 is formed of an insulator such as quartz, machinable ceramics or fine ceramics.
The pattern of the coil 13 formed on both surfaces of the insulating substrate 11 is a right-handed symmetrical shape on the front side (or back side) of the insulating substrate 11 and a left-handed shape on the back side (or front side) of the insulating substrate 11. The coil 13 is formed to face both surfaces of the insulating substrate 11 so that the pattern of the coil 13 matches back to back with the insulating substrate 11 interposed therebetween. A wiring pad portion 13 a is formed at the outer end of the coil 13. In addition, an interconnect portion 15 is formed at the inner end of the coil 13 for conducting the coils 13 on both sides of the insulating substrate 11.

図2は、インターコネクト部15およびこの近傍の詳細を示している。
この実施形態では、絶縁性基板11の両面には、導電膜17を介してコイル13が形成されている。
インターコネクト部15には、絶縁性基板11を貫通して貫通穴11aが形成されている。この貫通穴11aの両側の内面には、導電膜17が延存して形成されている。そして、貫通穴11aには、導電部材19が圧入され、導電部材19により両側の導電膜17が導通されている。この実施形態では、導電部材19には、銅パイプが用いられている。また、導電部材19の両端が、貫通穴11aの内側に位置されている。そして、導電部材19の両側がコイル13により覆われている。
FIG. 2 shows details of the interconnect unit 15 and the vicinity thereof.
In this embodiment, the coil 13 is formed on both surfaces of the insulating substrate 11 via the conductive film 17.
A through hole 11 a is formed in the interconnect portion 15 so as to penetrate the insulating substrate 11. A conductive film 17 is formed to extend on the inner surfaces on both sides of the through hole 11a. The conductive member 19 is press-fitted into the through hole 11 a, and the conductive film 17 on both sides is conducted by the conductive member 19. In this embodiment, the conductive member 19 is a copper pipe. Further, both ends of the conductive member 19 are positioned inside the through hole 11a. Then, both sides of the conductive member 19 are covered with the coil 13.

上述した電磁コイル板は、本発明の電磁コイル板の製造方法の一実施形態により、以下述べるようにして製造される。
この実施形態の製造方法は、貫通穴形成工程、導電膜形成工程、導電膜導通工程およびコイル形成工程を有している。
先ず、貫通穴形成工程では、図3の(a)に示すように、絶縁性基板11のインターコネクト部15となる位置に円形状の貫通穴11aを形成する。この実施形態では、貫通穴11aを、レーザー加工により形成する。
The electromagnetic coil plate described above is manufactured as described below by an embodiment of the method for manufacturing an electromagnetic coil plate of the present invention.
The manufacturing method of this embodiment has a through-hole formation process, a conductive film formation process, a conductive film conduction process, and a coil formation process.
First, in the through hole forming step, as shown in FIG. 3A, a circular through hole 11 a is formed at a position to be the interconnect portion 15 of the insulating substrate 11. In this embodiment, the through hole 11a is formed by laser processing.

次に、導電膜形成工程では、図3の(b)に示すように、平面状の絶縁性基板11の両面に蒸着等により薄膜の導電膜17を形成する。この薄膜の導電膜17はその後の電鋳工程での電極となる。そして、この導電膜形成工程により、絶縁性基板11の両面だけでなく、貫通穴11aの両側の内面に延存して導電膜17が形成される。
次に、導電膜導通工程では、図3の(c)に示すように、貫通穴11aに、銅パイプからなる導電部材19を圧入する。この導電部材19の圧入により両側の導電膜17が導通する。この実施形態では、導電部材19の全長は、導電部材19の両端が、貫通穴11aの内側に位置する長さとしている。
Next, in the conductive film forming step, as shown in FIG. 3B, a thin conductive film 17 is formed on both surfaces of the planar insulating substrate 11 by vapor deposition or the like. The thin film conductive film 17 becomes an electrode in the subsequent electroforming process. By this conductive film forming step, the conductive film 17 is formed not only on both surfaces of the insulating substrate 11 but also on the inner surfaces on both sides of the through hole 11a.
Next, in the conductive film conduction step, as shown in FIG. 3C, a conductive member 19 made of a copper pipe is press-fitted into the through hole 11a. By the press-fitting of the conductive member 19, the conductive films 17 on both sides are conducted. In this embodiment, the total length of the conductive member 19 is such that both ends of the conductive member 19 are located inside the through hole 11a.

次に、コイル形成工程により絶縁性基板11の両面にコイル13を形成する。
この実施形態では、コイル形成工程は、リソグラフィ工程と電鋳工程とを有している。
リソグラフィ工程では、図3の(d)に示すように、絶縁性基板11の両面にコイル13の厚さに相当する厚さのレジスト21を塗布する。そして、コイル13のパターンに相当する形状を露光した後、レジスト21を現像することにより、コイル13のパターンに相当する部分のレジスト21を除去して所定のコイルパターンを形成する。このレジスト21のコイルパターンは以後の電鋳工程で、電鋳の成長方向を絶縁性基板11から垂直方向に制限する役割を果たす。
Next, the coil 13 is formed on both surfaces of the insulating substrate 11 by a coil forming process.
In this embodiment, the coil formation process includes a lithography process and an electroforming process.
In the lithography process, as shown in FIG. 3D, a resist 21 having a thickness corresponding to the thickness of the coil 13 is applied to both surfaces of the insulating substrate 11. Then, after exposing the shape corresponding to the pattern of the coil 13, the resist 21 is developed to remove the portion of the resist 21 corresponding to the pattern of the coil 13 to form a predetermined coil pattern. The coil pattern of the resist 21 serves to limit the growth direction of electroforming from the insulating substrate 11 to the vertical direction in the subsequent electroforming process.

電鋳工程では、図3の(e)に示すように、絶縁性基板11を銅の電鋳液中に浸漬し、電鋳により銅を導電膜17上に析出させていく。これによりコイル13が形成され、また、導電部材19の両側がコイル13により覆われる。なお、図3の(e)は、銅の析出途中の状態を示している。
そして、この後、レジスト21を取り去り、最後に、コイル13以外の部分の薄膜の導電膜17をエッチング等により除去して、図1に示したような電磁コイル板が得られる。
In the electroforming process, as shown in FIG. 3E, the insulating substrate 11 is immersed in a copper electroforming solution, and copper is deposited on the conductive film 17 by electroforming. Thus, the coil 13 is formed, and both sides of the conductive member 19 are covered with the coil 13. In addition, (e) of FIG. 3 has shown the state in the middle of copper precipitation.
Thereafter, the resist 21 is removed, and finally the thin film conductive film 17 other than the coil 13 is removed by etching or the like to obtain an electromagnetic coil plate as shown in FIG.

上述した本発明の電磁コイル板の製造方法および電磁コイル板の実施形態では、絶縁性基板11のインターコネクト部15に形成される貫通穴11aに導電部材19を圧入して一対のコイル13を導通するようにしたので、絶縁性基板11の両面に対向して形成される一対のコイル13の導通をはんだ付けを用いることなく容易,確実に行うことができる。   In the electromagnetic coil plate manufacturing method and the electromagnetic coil plate embodiment of the present invention described above, the conductive member 19 is press-fitted into the through hole 11 a formed in the interconnect portion 15 of the insulating substrate 11 to conduct the pair of coils 13. Since it did in this way, conduction | electrical_connection of a pair of coil 13 formed facing both surfaces of the insulating board | substrate 11 can be performed easily and reliably without using soldering.

そして、導電部材19に銅パイプを用いたので、導電部材19が変形し易くなり、貫通穴11aへの圧入が容易になる。また、導電膜17に導電部材19を確実に密着させることができる。
そして、導電部材19の両端を、貫通穴11aの内側に位置させたので、電鋳工程においてコイル13が貫通穴11aの内部に延存して形成され、所謂アンカー効果によりインターコネクト部15にコイル13を強固に固定することができる。
And since the copper pipe was used for the electrically-conductive member 19, the electrically-conductive member 19 becomes easy to deform | transform and the press injection to the through-hole 11a becomes easy. In addition, the conductive member 19 can be reliably adhered to the conductive film 17.
Since both ends of the conductive member 19 are positioned inside the through hole 11a, the coil 13 is formed to extend inside the through hole 11a in the electroforming process, and the coil 13 is connected to the interconnect portion 15 by a so-called anchor effect. Can be firmly fixed.

なお、上述した実施形態では、リソグラフィ法および電鋳法を用いてコイル13を形成した例について説明したが、例えば、スクリーン印刷等により形成しても良い。
(トロイダル型コイル構造体の実施形態)
図4および図5は、本発明のトロイダル型コイル構造体の一実施形態を示している。
このトロイダル型コイル構造体は、図1に示した電磁コイル板23と、円筒部材25と、フランジ部材27とを有している。
In the above-described embodiment, the example in which the coil 13 is formed using the lithography method and the electroforming method has been described. However, for example, the coil 13 may be formed by screen printing or the like.
(Embodiment of toroidal coil structure)
4 and 5 show an embodiment of the toroidal coil structure of the present invention.
This toroidal coil structure has the electromagnetic coil plate 23 shown in FIG. 1, a cylindrical member 25, and a flange member 27.

円筒部材25の外周面には、複数の縦溝25aが、円筒部材25の軸長方向に延長して形成されている。
フランジ部材27は、円環状をしており、その内周が円筒部材25の端部に嵌合されている。フランジ部材27の内側面には、フランジ部材27の中心から放射状に広がる複数の横溝27aが形成されている。
A plurality of vertical grooves 25 a are formed on the outer peripheral surface of the cylindrical member 25 so as to extend in the axial length direction of the cylindrical member 25.
The flange member 27 has an annular shape, and an inner periphery thereof is fitted to an end portion of the cylindrical member 25. A plurality of lateral grooves 27 a radiating from the center of the flange member 27 are formed on the inner surface of the flange member 27.

そして、図1に示した複数の電磁コイル板23が、円筒部材25の軸を中心に放射状に配置されている。各電磁コイル板23は、円筒部材25の縦溝25aとフランジ部材27の横溝27aに、各電磁コイル板23の外周部を嵌合した状態で接着剤等により固定されている。
このトロイダル型コイル構造体は、電磁コイル板23のコイル13に流す電流を制御することにより、電子線等の荷電粒子線の軌道軸上に軌道軸と垂直な方向の合成磁界を発生させ、その磁界と荷電粒子線との相互作用によるローレンツ力で荷電粒子線を偏向させる。そして、このトロイダル型コイル構造体は、例えば、荷電粒子線露光装置の偏向器,非点補正器等として用いられる。
A plurality of electromagnetic coil plates 23 shown in FIG. 1 are arranged radially about the axis of the cylindrical member 25. Each electromagnetic coil plate 23 is fixed by an adhesive or the like in a state where the outer peripheral portion of each electromagnetic coil plate 23 is fitted in the vertical groove 25 a of the cylindrical member 25 and the horizontal groove 27 a of the flange member 27.
This toroidal coil structure generates a combined magnetic field in a direction perpendicular to the orbital axis on the orbital axis of a charged particle beam such as an electron beam by controlling the current flowing through the coil 13 of the electromagnetic coil plate 23. The charged particle beam is deflected by the Lorentz force generated by the interaction between the magnetic field and the charged particle beam. The toroidal coil structure is used, for example, as a deflector or astigmatism corrector of a charged particle beam exposure apparatus.

この実施形態のトロイダル型コイル構造体では、本発明の電磁コイル板23を用いたので、信頼性の高いトロイダル型コイル構造体を得ることができる。
(荷電粒子線露光装置の実施形態)
図6は、本発明の荷電粒子線露光装置の一実施形態である電子線露光装置を示している。
In the toroidal type coil structure of this embodiment, since the electromagnetic coil plate 23 of the present invention is used, a highly reliable toroidal type coil structure can be obtained.
(Embodiment of charged particle beam exposure apparatus)
FIG. 6 shows an electron beam exposure apparatus which is an embodiment of the charged particle beam exposure apparatus of the present invention.

この電子線露光装置は、電子銃30と、照明光学系31と、レチクルステージ32と、投影レンズ33,34と、ウエハステージ35とを有している。
この実施形態の電子線露光装置では、電子銃30より電子線が放出され、放出された電子線が照明光学系31を通過して、レチクルステージ32上のレチクル36に照射される。レチクル36面を照射した電子線のうち、レチクル36に形成されたパターンを通過した電子線は、投影レンズ33,34によりパターン像をウエハステージ35上のウエハ37面に縮小転写する。
The electron beam exposure apparatus includes an electron gun 30, an illumination optical system 31, a reticle stage 32, projection lenses 33 and 34, and a wafer stage 35.
In the electron beam exposure apparatus of this embodiment, an electron beam is emitted from the electron gun 30, and the emitted electron beam passes through the illumination optical system 31 and is irradiated onto the reticle 36 on the reticle stage 32. Of the electron beams irradiating the surface of the reticle 36, the electron beams that have passed through the pattern formed on the reticle 36 reduce and transfer the pattern image onto the surface of the wafer 37 on the wafer stage 35 by the projection lenses 33 and 34.

そして、この実施形態では、本発明のトロイダル型コイル構造体41は、投影レンズ33,34において、電子線の軌道を制御する偏向器として設けられている。
この実施形態の電子線露光装置では、本発明のトロイダル型コイル構造体41を用いたので、信頼性の高い電子線露光装置を得ることができる。
なお、この実施形態では、トロイダル型コイル構造体41を全ての個所に用いたが、必ずしも、トロイダル型コイル構造体41を全ての個所に用いる必要はない。更に、偏向器と磁気レンズの両方の機能を持つトロイダル型コイル構造体を用いても構わない。また、以上の例は投影光学系に関するものであったが、照明光学系にも同様に本発明のトロイダル型コイル構造体を用いることができる。さらに、この実施形態では、電子線露光装置に本発明を適用したが、イオン等の荷電粒子線を用いた荷電粒子線露光装置に広く適用することができる。
In this embodiment, the toroidal coil structure 41 of the present invention is provided as a deflector for controlling the trajectory of the electron beam in the projection lenses 33 and 34.
In the electron beam exposure apparatus of this embodiment, since the toroidal coil structure 41 of the present invention is used, a highly reliable electron beam exposure apparatus can be obtained.
In this embodiment, the toroidal coil structure 41 is used at all locations, but the toroidal coil structure 41 is not necessarily used at all locations. Furthermore, you may use the toroidal type coil structure which has the function of both a deflector and a magnetic lens. Moreover, although the above example was related to the projection optical system, the toroidal coil structure of the present invention can be similarly used for the illumination optical system. Furthermore, in this embodiment, the present invention is applied to the electron beam exposure apparatus, but can be widely applied to charged particle beam exposure apparatuses using charged particle beams such as ions.

本発明の電磁コイル板の一実施形態を示す正面図である。It is a front view which shows one Embodiment of the electromagnetic coil board of this invention. 図1のインターコネクト部およびこの近傍の詳細を示す断面図である。It is sectional drawing which shows the detail of the interconnect part of FIG. 1, and this vicinity. 本発明の電磁コイル板の製造方法の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the manufacturing method of the electromagnetic coil board of this invention. 本発明のトロイダル型コイル構造体の一実施形態を示す上面図である。It is a top view which shows one Embodiment of the toroidal type coil structure of this invention. 図4のトロイダル型コイル構造体を示す分解斜視図である。It is a disassembled perspective view which shows the toroidal type coil structure of FIG. 本発明の荷電粒子線露光装置の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the charged particle beam exposure apparatus of this invention.

符号の説明Explanation of symbols

11 絶縁性基板
11a 貫通穴
13 コイル
15 インターコネクト部
17 導電膜
19 導電部材
21 レジスト
23 電磁コイル板
41 トロイダル型コイル構造体
DESCRIPTION OF SYMBOLS 11 Insulating board | substrate 11a Through-hole 13 Coil 15 Interconnect part 17 Conductive film 19 Conductive member 21 Resist 23 Electromagnetic coil board 41 Toroidal type coil structure

Claims (8)

絶縁性基板のインターコネクト部となる位置に貫通穴を形成する貫通穴形成工程と、
前記絶縁性基板の両面および前記貫通穴の内面両側に導電膜を形成する導電膜形成工程と、
前記貫通穴に導電部材を圧入し前記絶縁性基板の両面の導電膜を導通させる導電膜導通工程と、
前記絶縁性基板の両面に前記導電膜を介してコイルを対向して形成するコイル形成工程と、
を有することを特徴とする電磁コイル板の製造方法。
A through hole forming step of forming a through hole at a position to be an interconnect part of the insulating substrate;
A conductive film forming step of forming a conductive film on both sides of the insulating substrate and on both sides of the inner surface of the through hole;
A conductive film conduction step in which a conductive member is press-fitted into the through hole and the conductive films on both surfaces of the insulating substrate are conducted;
A coil forming step of forming coils facing each other on both surfaces of the insulating substrate via the conductive film;
The manufacturing method of the electromagnetic coil board characterized by having.
請求項1記載の電磁コイル板の製造方法において、
前記コイル形成工程におけるコイルの形成を、リソグラフィー法および電鋳法を用いて行うことを特徴とする電磁コイル板の製造方法。
In the manufacturing method of the electromagnetic coil board of Claim 1,
A method for manufacturing an electromagnetic coil plate, wherein a coil is formed in the coil forming step using a lithography method and an electroforming method.
請求項1記載の電磁コイル板の製造方法において、
前記導電部材は、銅パイプからなることを特徴とする電磁コイル板の製造方法。
In the manufacturing method of the electromagnetic coil board of Claim 1,
The method of manufacturing an electromagnetic coil plate, wherein the conductive member is made of a copper pipe.
絶縁性基板の両面に導電膜を介してコイルを対向して形成し、前記絶縁性基板の両面の前記コイルを貫通穴が形成されるインターコネクト部で導通してなる電磁コイル板において、
前記貫通穴に、前記導電膜を導通させる導電部材を圧入するとともに、前記導電部材の両側を前記コイルにより覆ってなることを特徴とする電磁コイル板。
In the electromagnetic coil plate formed by opposing the coils on both surfaces of the insulating substrate through a conductive film, and conducting the coils on both surfaces of the insulating substrate at an interconnect portion in which a through hole is formed,
An electromagnetic coil plate, wherein a conductive member for conducting the conductive film is press-fitted into the through hole, and both sides of the conductive member are covered with the coil.
請求項4記載の電磁コイル板において、
前記コイルは、リソグラフィー法および電鋳法により形成されていることを特徴とする電磁コイル板。
The electromagnetic coil plate according to claim 4, wherein
The electromagnetic coil plate, wherein the coil is formed by a lithography method and an electroforming method.
請求項4または請求項5記載の電磁コイル板において、
前記導電部材の両端を、前記貫通穴の内側に位置させてなることを特徴とする電磁コイル板。
In the electromagnetic coil plate according to claim 4 or 5,
An electromagnetic coil plate, wherein both ends of the conductive member are positioned inside the through hole.
請求項4ないし請求項6のいずれか1項記載の電磁コイル板を有することを特徴とするトロイダル型コイル構造体。   A toroidal coil structure comprising the electromagnetic coil plate according to any one of claims 4 to 6. 請求項7に記載のトロイダル型コイル構造体を有することを特徴とする荷電粒子線露光装置。   A charged particle beam exposure apparatus comprising the toroidal coil structure according to claim 7.
JP2004179990A 2004-06-17 2004-06-17 Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner Withdrawn JP2006005161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179990A JP2006005161A (en) 2004-06-17 2004-06-17 Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179990A JP2006005161A (en) 2004-06-17 2004-06-17 Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner

Publications (1)

Publication Number Publication Date
JP2006005161A true JP2006005161A (en) 2006-01-05

Family

ID=35773275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179990A Withdrawn JP2006005161A (en) 2004-06-17 2004-06-17 Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner

Country Status (1)

Country Link
JP (1) JP2006005161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527135A (en) * 2007-05-15 2010-08-05 シーイービーティー・カンパニー・リミティッド Magnetic deflector for electronic column
JP2011119101A (en) * 2009-12-02 2011-06-16 Shin Nippon Denko Kk Manufacturing method of electrostatic multipole deflector/lens, and electrostatic multipole deflector/lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527135A (en) * 2007-05-15 2010-08-05 シーイービーティー・カンパニー・リミティッド Magnetic deflector for electronic column
JP2011119101A (en) * 2009-12-02 2011-06-16 Shin Nippon Denko Kk Manufacturing method of electrostatic multipole deflector/lens, and electrostatic multipole deflector/lens

Similar Documents

Publication Publication Date Title
EP3411901A1 (en) Field curvature correction for multi-beam inspection systems
JP2008027686A (en) Deflector array, exposure device, and device manufacturing method
TWI408508B (en) Charged-particle beam lithography apparatus and device manufacturing method
US5994704A (en) Electromagnetic deflector
TWI634583B (en) High throughput scan deflector and method of manufacturing thereof
JP2001203150A (en) Hollow aperture, charged particle beam exposure apparatus, method of aligning beam position in charged particle beam exposure apparatus, method of adjusting charged particle beam dose, method of adjusting generation source of charged particle beam, and method of manufacturing semiconductor device
JP2000173889A (en) Electron beam exposure system, electron lens, and manufacturing method of device
JP2007019248A (en) Deflector, electrically-charged particle beam exposure device and device manufacturing method
JP2006005161A (en) Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner
WO2008140273A2 (en) Magnetic deflector for an electron column
JP2001210540A (en) Method of manufacturing electromagnetic coil, charged particle beam exposure system using the same, and method of manufacturing semiconductor device
JP3782692B2 (en) Electron beam apparatus and semiconductor device manufacturing method using the apparatus
JP2006054240A (en) Method of manufacturing device for multi-electron beam lithographic equipment
JP2006005160A (en) Electromagnetic coil plate, manufacturing method thereof, toroidal type coil structure, and charged particle beam projection aligner
JP2007019242A (en) Deflector, charged particle beam exposure apparatus, and device manufacturing method
WO2019063561A1 (en) Sample pre-charging methods and apparatuses for charged particle beam inspection
JP2005158333A (en) Toroidal coil structure and charged particle-beam exposure device
JP2005032574A (en) Plate-like coil, toroidal coil structure, and charged particle beam exposure apparatus
US6627899B2 (en) Magnetic lenses, charged-particle-beam optical systems, and charged-particle-beam pattern-transfer apparatus
JP3929873B2 (en) Electron beam apparatus and device manufacturing method using the apparatus
WO2002061813A1 (en) Electron beam exposure device, electron beam forming member, and method of manufacturing the electron beam forming member
JP2003323860A (en) Electron beam equipment and manufacturing method of device using the same
JP3895992B2 (en) Electron beam apparatus and semiconductor device manufacturing method using the apparatus
WO2002063662A1 (en) Method for making slit, slit, and electron beam exposure system
JP2007019192A (en) Charged particle beam lens and charged particle beam aligner

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904