JP2006004688A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2006004688A
JP2006004688A JP2004177911A JP2004177911A JP2006004688A JP 2006004688 A JP2006004688 A JP 2006004688A JP 2004177911 A JP2004177911 A JP 2004177911A JP 2004177911 A JP2004177911 A JP 2004177911A JP 2006004688 A JP2006004688 A JP 2006004688A
Authority
JP
Japan
Prior art keywords
active material
lead
fiber
electrode plate
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004177911A
Other languages
Japanese (ja)
Other versions
JP4556506B2 (en
Inventor
Michiko Honbo
享子 本棒
Masanori Sakai
政則 酒井
Yasuo Kondo
保夫 近藤
Takayuki Kimura
隆之 木村
Takeo Sakamoto
剛生 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004177911A priority Critical patent/JP4556506B2/en
Publication of JP2006004688A publication Critical patent/JP2006004688A/en
Application granted granted Critical
Publication of JP4556506B2 publication Critical patent/JP4556506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery capable of improving the utilization ratio of an active material and of increasing capacity of the battery. <P>SOLUTION: This lead-acid battery is composed by stacking a paste type positive electrode plate 2, a retainer or separator 3 and a paste type negative electrode plate 1. The lead-acid battery is characterized by that the paste type positive electrode plate and/or the paste type negative electrode plate contains a hydrophilic short fiber such as a rayon fiber or a vinylon fiber; and 0.15-1.0 wt.% of the hydrophilic short fiber is included in a lead material being an active material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、安価で信頼性が高いという特徴を有するために、自動車用のバッテリ、ゴルフカート等の電動車両の動力源、更には無停電電源装置等の産業機器用の電池として広く使用されている。一般に鉛蓄電池用極板には、集電体にペースト式活物質層が形成されたもので構成されている。この種の鉛蓄電池用極板は、活物質の脱落を防ぐために長さ1〜10mmのガラス繊維、ポリプロピレン樹脂繊維、ポリエステル樹脂繊維等の補強用短繊維をペースト式活物質層内に分散して含有させている。   Lead-acid batteries are widely used as batteries for automobiles, power sources for electric vehicles such as golf carts, and batteries for industrial equipment such as uninterruptible power supplies because of their low cost and high reliability. Yes. In general, the electrode plate for a lead storage battery is configured by a paste-type active material layer formed on a current collector. In order to prevent the active material from falling off, this type of lead-acid battery electrode plate is obtained by dispersing reinforcing fibers such as glass fibers, polypropylene resin fibers, and polyester resin fibers having a length of 1 to 10 mm in a paste type active material layer. It is included.

しかしながら、ポリプロピレン樹脂繊維、ポリエステル樹脂繊維は、疎水性を有しているため、電解液を保持する能力がほとんどない。また、ガラス繊維は親水性を有するものの、表面が平滑なため、電解液保持量が少ない。そのため、極板の活物質利用率が上がらないといった問題点を生ずる。これに対して、ポリプロピレン樹脂繊維を、親水基を有するモノマー(アクリル酸)を含有する水溶液に浸漬してポリプロピレン樹脂の表面を科学修飾した補強用短繊維を作り、これを添加する方法が(特許文献1参照。)開示されている。   However, since polypropylene resin fibers and polyester resin fibers have hydrophobicity, they have almost no ability to hold an electrolytic solution. Moreover, although glass fiber has hydrophilicity, since the surface is smooth, there is little electrolyte solution holding amount. Therefore, there arises a problem that the active material utilization rate of the electrode plate does not increase. On the other hand, there is a method in which polypropylene resin fibers are immersed in an aqueous solution containing a monomer having a hydrophilic group (acrylic acid) to produce reinforcing short fibers in which the surface of the polypropylene resin is chemically modified, and this is added (patent) Reference 1).

また、従来から極板の活物質利用率を向上させるために、極板、特に正極において活物質の多孔度を増加させることが行われている。具体的な方法として、活物質成型用のペーストを調整するときに体積の大きい硫酸鉛の含有率を上げ、この硫酸鉛が化成後に体積の小さな活物質である二酸化鉛になるのを利用して活物質層内に細孔を発生させる方法や、ペースト中に水分量を増加して水分の占有体積を利用して高多孔度化を図る方法が提案されている。これらの方法は活物質層の密度を低くして疎な活物質層を形成する方法であり、電池使用初期は活物質利用率が高いものの、その後の活物質利用率の低下が著しく、極板寿命が短くて実用的ではなかった。これに対する対策として、鉛化合物の微細粒子と耐酸性および耐酸化性を有する細繊維とを凝集してできる多孔質の凝集粒を活物質中に添加する方法が(特許文献2参照。)開示されている。   Conventionally, in order to improve the active material utilization of the electrode plate, the porosity of the active material has been increased in the electrode plate, particularly the positive electrode. As a specific method, when preparing a paste for molding an active material, the content of lead sulfate with a large volume is increased, and this lead sulfate is converted into lead dioxide, which is an active material with a small volume after chemical conversion. There have been proposed a method for generating pores in the active material layer and a method for increasing the amount of moisture in the paste to increase the porosity by utilizing the occupied volume of moisture. These methods are methods of forming a sparse active material layer by lowering the density of the active material layer. Although the active material utilization rate is high at the initial stage of battery use, the active material utilization rate subsequently decreases significantly. The lifetime was short and not practical. As a countermeasure against this, a method of adding porous aggregate particles formed by agglomerating fine particles of a lead compound and fine fibers having acid resistance and oxidation resistance into an active material is disclosed (see Patent Document 2). ing.

特開平10−241673号公報Japanese Patent Laid-Open No. 10-241673

特開平4−229556号公報JP-A-4-229556

ポリプロピレン樹脂繊維を、親水基を有するモノマー(アクリル酸)を含有する水溶液に浸漬して補強用短繊維を作り、これを添加する前者の方法では、ポリプロピレン樹脂繊維の表面が親水性のポリマーで被覆されるため、電池使用初期では極板の活物質利用率が高くなる。しかしながら、被覆されているポリマー層が薄く、且つ、耐酸化性に劣るために時間の経過とともに酸化分解され、被覆効果が低下して、活物質利用率が低下することから実用的ではなかった。   In the former method, the surface of the polypropylene resin fiber is coated with a hydrophilic polymer by immersing the polypropylene resin fiber in an aqueous solution containing a monomer (acrylic acid) having a hydrophilic group to make a reinforcing short fiber. Therefore, the active material utilization rate of the electrode plate is high at the initial stage of battery use. However, since the coated polymer layer is thin and inferior in oxidation resistance, it is not practical because it is oxidatively decomposed with the passage of time, the covering effect is lowered, and the active material utilization rate is lowered.

さらに、鉛化合物の微細粒子と耐酸性および耐酸化性を有する細繊維とを凝集してできる多孔質の凝集粒を活物質中に添加する後者の方法では、予め、二酸化鉛とアクリル繊維とを結着剤を含む水溶液中に分散し沈降、圧延、乾燥、粉砕の工程を経て凝集粒を作製する第一段階と、これを通常の活物質ペーストの中に添加する第二段階とから成立っている。   Furthermore, in the latter method in which porous aggregates formed by agglomerating fine particles of lead compounds and fine fibers having acid resistance and oxidation resistance are added to the active material, lead dioxide and acrylic fibers are previously added. It consists of a first stage in which it is dispersed in an aqueous solution containing a binder and then agglomerated particles are produced through the steps of sedimentation, rolling, drying and grinding, and a second stage in which this is added to a normal active material paste. ing.

この方法は、工程が複雑であることからコスト高となることや、生産性や均一性に劣るなどの製造面での問題点を生ずる。さらに、第一段階で製造した多孔質の凝集粒が疎らに分散した構造をとるため、活物質利用率が高い多孔質の部分と、活物質利用率が低い緻密な部分とが混在し、電極内での均一反応が進行し難いことから、サイクルの経過と共に活物質利用率の低下が著しく、極板寿命が短くて実用的ではなかった。活物質利用率を向上させるために、多孔度を上げたペースト式活物質を使用した場合には、粒子間の密着力が低いため、粒子の脱落や泥状化を引き起こしやすいことからサイクル劣化が大きい問題点が挙げられるが、これに対する有効な解決策が見出されていない。   This method has problems in terms of manufacturing such as high cost due to complicated processes and poor productivity and uniformity. Furthermore, since the porous agglomerated particles produced in the first stage have a sparsely dispersed structure, a porous portion with a high active material utilization rate and a dense portion with a low active material utilization rate coexist. Since the homogeneous reaction is difficult to proceed, the active material utilization rate is remarkably reduced as the cycle progresses, and the electrode plate life is short, which is not practical. When using a paste type active material with increased porosity in order to improve the utilization rate of the active material, the adhesion between particles is low, so the particles are likely to fall off or become muddy. There are major problems, but no effective solution has been found.

本発明の目的は、活物質利用率を向上させ、電池の容量を高くできる鉛蓄電池を提供することにある。本発明によれば、活物質利用率を向上させるために電極を高多孔度化した場合においても、サイクル劣化の小さい鉛蓄電池を提供することができる。   An object of the present invention is to provide a lead-acid battery capable of improving the active material utilization rate and increasing the capacity of the battery. ADVANTAGE OF THE INVENTION According to this invention, even when the electrode is made highly porous in order to improve the active material utilization rate, a lead storage battery with little cycle deterioration can be provided.

本発明は、ペースト式正極板、リテーナもしくはセパレータ、ペースト式負極板を積層してなる鉛蓄電池において、ペースト式正極板、及び/又はペースト式負極板に、親水性短繊維を添加することを特徴とする。親水性短繊維としてはアクリル繊維、レーヨン繊維、ビニロン繊維の単独又は組合せが好ましい。一般に市販されているアクリル繊維はポリアクリロニトリルとポリ酢酸ビニルとの共重合体であり、親水性及び耐希硫酸性に優れ、しかも繊維太さの小さい物が入手できるので、特に好ましい。活物質利用率を向上させるためには、ペースト式活物質層内に硫酸が容易に拡散できるパスを形成することが望ましいが、親水性を含有させることにより、これが実現できる。   The present invention relates to a lead-acid battery in which a paste-type positive electrode plate, a retainer or separator, and a paste-type negative electrode plate are laminated, wherein hydrophilic short fibers are added to the paste-type positive electrode plate and / or the paste-type negative electrode plate. And As the hydrophilic short fibers, acrylic fibers, rayon fibers, and vinylon fibers are preferably used alone or in combination. A commercially available acrylic fiber is a copolymer of polyacrylonitrile and polyvinyl acetate, and is particularly preferred because it is excellent in hydrophilicity and dilute sulfuric acid resistance and can be obtained with a small fiber thickness. In order to improve the active material utilization rate, it is desirable to form a path through which sulfuric acid can easily diffuse in the paste-type active material layer, but this can be realized by adding hydrophilicity.

本発明によれば、硫酸電解液のペースト式活物質内への吸液性及び保持性が、親水性短繊維によって大幅に向上するため、活物質利用率が高く、サイクル劣化の少ない鉛蓄電池を提供することができる。   According to the present invention, the ability to absorb and retain the sulfuric acid electrolyte in the paste-type active material is greatly improved by the hydrophilic short fibers, so that the lead storage battery having a high active material utilization rate and low cycle deterioration can be obtained. Can be provided.

鉛電池は、正極で反応式(1)、の反応が、負極で式(2)の化学反応が進行する。正極の放電はPbOがH、及びSO 2−と反応してPbSOを析出し,HOを放出する反応である。一方,負極の放電は金属PbがSO 2−と反応してPbSOを析出する反応である。従って、鉛電池では活物質としてペースト式正極やペースト式負極以外に、硫酸イオンも必要になる。 In the lead battery, the reaction of the reaction formula (1) proceeds at the positive electrode, and the chemical reaction of the formula (2) proceeds at the negative electrode. The discharge of the positive electrode is a reaction in which PbO 2 reacts with H + and SO 4 2− to precipitate PbSO 4 and release H 2 O. On the other hand, the discharge of the negative electrode is a reaction in which the metal Pb reacts with SO 4 2− to precipitate PbSO 4 . Therefore, in the lead battery, in addition to the paste type positive electrode and the paste type negative electrode, sulfate ions are also required as an active material.

Figure 2006004688
Figure 2006004688

Figure 2006004688
Figure 2006004688

これには、アクリル繊維、レーヨン繊維、ビニロン繊維などの親水性短繊維を導入することが有効であることを見出した。本発明の親水性短繊維の直径は、0.05〜12μm、好ましくは0.05〜4μmであることを特徴とする。本発明において、親水性欄繊維の太さは重要な要因であり、通常用いられる補強繊維よりも細いものが最も好ましい。従って、太さが4μm以下の物が最も好ましい。ここで直径というのは相当直径であり、断面が真円でない場合は、それを円と見なして求めた直径である。   For this purpose, it has been found effective to introduce hydrophilic short fibers such as acrylic fiber, rayon fiber and vinylon fiber. The hydrophilic short fiber of the present invention has a diameter of 0.05 to 12 μm, preferably 0.05 to 4 μm. In the present invention, the thickness of the hydrophilic column fiber is an important factor, and is most preferably thinner than the reinforcing fiber normally used. Therefore, the thing whose thickness is 4 micrometers or less is the most preferable. Here, the diameter is an equivalent diameter, and when the cross section is not a perfect circle, it is a diameter obtained by regarding it as a circle.

親水性短繊維のアスペクト比は1000〜10000であることが望ましく、特に100〜5000のものが望ましい。親水性繊維には、繊維表面に細かい襞があり、この襞を利用して毛細管現象により硫酸を吸い上げる。このことから、繊維の表面積が多いほど、吸い上げられる硫酸量が多いことになる。即ち、同じ重量パーセントで繊維を添加する場合、繊維の表面積は繊維の直径が小さいほど、繊維の長さが長いほど、増加する。このため、繊維径が小さい繊維、繊維長さが長い繊維、即ちアスペクト比が大きい繊維ほど、吸い上げられる硫酸量が多くなり、活物質利用率が増加する。ここで、アスペクト比とは、繊維直径(a)に対する繊維長さ(b)の比(b/a)である。活物質利用率の増加効果が得られる直径は12μm以下であり、特にその改善効果が顕著なのは4μm以下である。繊維の直径が0.05μm未満の場合、繊維が細いため、だまになって分散性が大幅に損なわれるので、添加効果が低下してしまう。また、アスペクト比が1000以上の場合、吸い上げられる硫酸量が多くなり、活物質利用率が増加する。一方、アスペクト比が10000を越える場合、繊維が細長いため、だまになって分散性が大幅に損なわれるので、添加効果が低下してしまう。   The aspect ratio of the hydrophilic short fibers is preferably 1000 to 10,000, and particularly preferably 100 to 5000. Hydrophilic fibers have fine wrinkles on the fiber surface and use this wrinkle to suck up sulfuric acid by capillary action. From this, as the surface area of the fiber increases, the amount of sulfuric acid sucked up increases. That is, when fibers are added at the same weight percent, the surface area of the fibers increases as the fiber diameter decreases and the fiber length increases. For this reason, as the fiber has a smaller fiber diameter and a fiber having a longer fiber length, that is, a fiber having a larger aspect ratio, the amount of sulfuric acid sucked up increases and the active material utilization rate increases. Here, the aspect ratio is the ratio (b / a) of the fiber length (b) to the fiber diameter (a). The diameter at which the effect of increasing the active material utilization rate can be obtained is 12 μm or less, and the improvement effect is particularly remarkable at 4 μm or less. When the diameter of the fiber is less than 0.05 μm, the fiber is thin, so that the dispersibility is greatly impaired and the effect of addition is reduced. Moreover, when the aspect ratio is 1000 or more, the amount of sulfuric acid sucked up increases, and the active material utilization rate increases. On the other hand, when the aspect ratio exceeds 10,000, since the fibers are elongated, the dispersibility is drastically impaired and the effect of addition is reduced.

本発明の親水性繊維の含有量は、ペースト式正極板もしくはペースト式負極板の活物質である鉛原料に対して0.15〜1.0重量パーセント、好ましくは0.3〜0.75重量パーセントであることが好ましい。ペースト活物質中に吸い上げられる硫酸量は、親水性繊維の添加量を増加させることによっても増加する。さらに、添加量を増加させることにより、ペースト電極中の多孔度を上げて硫酸が浸入するサイトを増加させることができる。添加量としては0.15重量パーセント以上で多孔度が増加し、利用率の向上効果が得られる。一方、添加量が1.0重量パーセントを超える場合には、繊維がだまになって分散性が大幅に損なわれるので、電極作製が困難となる。電極作製が容易で利用率が顕著に向上する添加量の範囲としては0.3〜0.75重量パーセントが好ましい。   The content of the hydrophilic fiber of the present invention is 0.15 to 1.0 weight percent, preferably 0.3 to 0.75 weight based on the lead raw material that is the active material of the paste type positive electrode plate or paste type negative electrode plate. A percentage is preferred. The amount of sulfuric acid sucked into the paste active material can also be increased by increasing the amount of hydrophilic fiber added. Furthermore, by increasing the addition amount, the porosity in the paste electrode can be increased to increase the sites where sulfuric acid enters. When the addition amount is 0.15% by weight or more, the porosity increases, and the utilization efficiency is improved. On the other hand, when the added amount exceeds 1.0 weight percent, the fibers become fooled and the dispersibility is greatly impaired, making it difficult to produce an electrode. As the range of the amount of addition that makes the electrode easy to use and the utilization rate is significantly improved, 0.3 to 0.75 weight percent is preferable.

本発明において用いられるアクリル繊維として、ポリアクリロニトリルを95モル%以上含有し、かつ共重合体成分としてポリ酢酸ビニルがある。上記の組成のアクリル繊維では親水性繊維は活物質である鉛と同じ親水性同士であるため、親和性が高い。特にポリアクリロニトリルの二トリル基は鉛イオンとキレート化合物を形成しやすいことから、活物質である鉛を吸着し易く、活物質のサイクル劣化原因の一つである泥状化による活物質の脱落を抑える構造体としての効果が得られる。   The acrylic fiber used in the present invention contains 95% by mole or more of polyacrylonitrile, and polyvinyl acetate is a copolymer component. In the acrylic fiber having the above composition, the hydrophilic fiber has the same hydrophilicity as the active material lead, and therefore has high affinity. In particular, since the nitrile group of polyacrylonitrile tends to form a chelate compound with lead ions, it is easy to adsorb lead, which is an active material, and the active material falls off due to mudification, which is one of the causes of cycle deterioration of the active material. The effect as a structure to suppress is obtained.

ポリアクリロニトリルが95モル%よりも少ない場合、活物質粒子との結合力が低下するため、泥状化による活物質の脱落を招いて、サイクル劣化が大きくなることがありうる。また、コポリマーとしてポリ酢酸ビニルを用いることで、酢酸基は親水性基であるため、さらに希硫酸電解液に対する繊維の濡れ性に優れる。これにより、活物質利用率はさらに向上する。   When the amount of polyacrylonitrile is less than 95 mol%, the binding force with the active material particles is lowered, and therefore, the active material may fall off due to mud formation, and cycle deterioration may increase. Further, by using polyvinyl acetate as a copolymer, since the acetate group is a hydrophilic group, the wettability of the fiber with respect to the dilute sulfuric acid electrolyte is further improved. Thereby, the active material utilization rate is further improved.

図3(a),(b),(c)に、本発明によるペースト式電極の短繊維の分散状態と、他の方法による短繊維の分散状態を模式的に示した。図3(a)は本発明による電極版における短繊維の分散状態を示し、繊維径が細く(12μm)、アスペクト比(250)が大きいため、短繊維の分散状態がよく、比較的均一に電極内に分散している。図3(b)は繊維径が太く(20μm)、アスペクト比が小さい(150)ため、活物質中に分散できる短繊維の量が限られる。また、図3(c)は短繊維の径が小さすぎる(0.05μm未満)ため、電極板内にだまが出来ていることを示す。   3A, 3B, and 3C schematically show the dispersion state of the short fibers of the paste electrode according to the present invention and the dispersion state of the short fibers by other methods. FIG. 3 (a) shows the dispersion state of the short fibers in the electrode plate according to the present invention. Since the fiber diameter is small (12 μm) and the aspect ratio (250) is large, the dispersion state of the short fibers is good and the electrode is relatively uniform. Are dispersed within. In FIG. 3B, since the fiber diameter is large (20 μm) and the aspect ratio is small (150), the amount of short fibers that can be dispersed in the active material is limited. Moreover, FIG.3 (c) shows that the diameter of a short fiber is too small (less than 0.05 micrometer), and is deceived in the electrode plate.

繊維分野で、繊維の太さを表す表記方法として、Texで表す方法がある。Texとは線密度(繊度)を表し、1Texとは繊維1km当りの重量が1gのことを言う。本発明は、補強用短繊維として、繊維の太さが0.1dTex〜4dTexの親水性繊維を用いるのが好ましい。1dTexは1Texの1/10である。同じ密度の繊維で比較した場合、繊維の単位長さ当りの重量が大きいほど、繊維太さが大である。上記繊維径(0.1dTex〜4dTex)の物が、最も優れた結果を示した。   In the fiber field, there is a method of expressing the thickness of the fiber by using Tex. Tex represents the linear density (fineness), and 1Tex means that the weight per 1 km of fiber is 1 g. In the present invention, it is preferable to use a hydrophilic fiber having a fiber thickness of 0.1 dTex to 4 dTex as the reinforcing short fiber. 1dTex is 1/10 of 1Tex. When compared with fibers of the same density, the greater the weight per unit length of the fiber, the greater the fiber thickness. The thing of the said fiber diameter (0.1dTex-4dTex) showed the most excellent result.

繊維の太さが0.1dTex以上の場合、補強用としての機能を十分発揮できる太さであるため、集電体からの活物質の脱落が大幅に抑制され、サイクル寿命がさらに長くなる。特に、活物質利用率を向上させるために、多孔度を上げたペースト式活物質を使用した場合には、粒子間の結合力が増加するため、サイクル寿命に対する効果が顕著である。   When the thickness of the fiber is 0.1 dTex or more, the thickness is such that the function for reinforcement can be sufficiently exerted, so that the active material is prevented from dropping from the current collector, and the cycle life is further prolonged. In particular, when a paste-type active material with increased porosity is used in order to improve the active material utilization rate, the bonding force between particles increases, so the effect on the cycle life is remarkable.

繊維の太さが4dTex以下の場合には、同じ重量で添加した時の繊維の比表面積が大きくなるため、希硫酸電解液に対する濡れ性の効果をさらに発揮することができる。そのため、活物質利用率はさらに向上する。   When the thickness of the fiber is 4 dTex or less, the specific surface area of the fiber when added at the same weight increases, so that the effect of wettability with respect to the dilute sulfuric acid electrolyte can be further exhibited. Therefore, the active material utilization rate is further improved.

本発明においては、上記親水性短繊維と他の補強用繊維、例えばポリエステル繊維或いはポリプロピレン繊維と併用することも可能である。この場合、ポリエステル繊維或いはポリプロピレン繊維は親水性がないが、強度があるので、主として補強繊維の役割を持たせる。これに対し、親水性繊維はなるべく繊維径の小さいものが好ましいことから、補強材としての役割もあるが、どちらかといえば硫酸液の吸収・保持剤としての役割を持たせたという言い方ができる。このような構成にすると、補強繊維の量をあまり大きくしないで、希硫酸の活物質への拡散と保持性に優れた正極板及び負極板が得られる。   In the present invention, the hydrophilic short fibers and other reinforcing fibers such as polyester fibers or polypropylene fibers can be used in combination. In this case, polyester fiber or polypropylene fiber is not hydrophilic, but has strength, and therefore mainly serves as a reinforcing fiber. On the other hand, since the hydrophilic fiber preferably has a fiber diameter as small as possible, it also has a role as a reinforcing material, but it can be said that it has a role as an absorbent / retaining agent for sulfuric acid solution. . With such a configuration, a positive electrode plate and a negative electrode plate excellent in diffusion and retention of dilute sulfuric acid into the active material can be obtained without increasing the amount of reinforcing fibers.

本発明で用いる親水性短繊維は、前述のポリプロピレン樹脂繊維を、親水基を有するモノマー(アクリル酸)の水溶液に浸漬して補強用短繊維を作る従来技術のように、時間の経過とともに酸化分解されて被覆効果が低下するといった欠点がなく、サイクル寿命に優れている。   The hydrophilic short fibers used in the present invention are oxidatively decomposed over time as in the prior art in which the above-mentioned polypropylene resin fibers are immersed in an aqueous solution of a monomer having a hydrophilic group (acrylic acid) to produce reinforcing short fibers. Thus, there is no disadvantage that the coating effect is reduced, and the cycle life is excellent.

本発明の親水性短繊維は、多孔度を上げたペースト式活物質を使用した場合にも、鉛との親和性、即ち密着力が高いため、泥状化による活物質の脱落を抑制されて、サイクル寿命を延長できる。本発明における繊維の好ましい径、アスペクト比、添加量あるいは組成は前述のとおりであるが、短繊維の添加方法は特に限定されない。従って、前述の従来技術に比べて工程が簡素、且つ生産性や均一性に優れた方法をとることが可能である。特に前述の従来技術に比べて均一に繊維が分散しているため、硫酸電解液のペースト式活物質内への吸液効率も、泥状化による活物質の脱落抑制効果も高い。   The hydrophilic short fiber of the present invention has high affinity with lead, that is, high adhesion even when using a paste type active material with increased porosity, so that the active material is prevented from falling off due to mud formation. , Can extend the cycle life. The preferred diameter, aspect ratio, addition amount or composition of the fibers in the present invention are as described above, but the method for adding the short fibers is not particularly limited. Therefore, it is possible to adopt a method that is simpler in process and superior in productivity and uniformity compared to the above-described conventional technology. In particular, since the fibers are uniformly dispersed as compared with the above-described conventional technology, the efficiency of absorbing the sulfuric acid electrolyte into the paste-type active material and the effect of suppressing the dropping of the active material due to mud formation are high.

以下に本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

1.負極板の作製
負極板の作製においては、まず、鉛粉に対して、0.3重量%のリグニンと0.2重量%の硫酸バリウム、及びカーボン粉末を0.1重量%加えた後、後述する仕様の各種繊維を添加し、混練機で約10分混練した混合物を準備した。次に、鉛粉に対して12重量%の水を鉛粉に加えて混合し、さらに鉛粉に対して13重量%の希硫酸(比重1.26,20℃)を加えて負極活物質ペーストを作製した。この負極活物質ペースト55gを、長さ116mm×幅100mm×厚さ1.4mmの鉛−カルシウム−錫合金からなる集電体格子に充填して、温度50℃,湿度98RH%の雰囲気下で18時間放置して熟成した後に、温度110℃で2時間放置して乾燥させ、未化成の負極板1を作製した。
1. Preparation of Negative Electrode Plate In preparation of the negative electrode plate, first, 0.1 wt% of 0.3 wt% lignin, 0.2 wt% barium sulfate, and carbon powder were added to lead powder, and then described later. A mixture was prepared by adding various fibers having the specifications to be kneaded and kneading with a kneader for about 10 minutes. Next, 12% by weight of water is added to the lead powder and mixed with the lead powder, and further 13% by weight of dilute sulfuric acid (specific gravity 1.26, 20 ° C.) is added to the lead powder to prepare the negative electrode active material paste. Was made. The negative electrode active material paste 55 g was filled in a current collector grid made of a lead-calcium-tin alloy having a length of 116 mm, a width of 100 mm, and a thickness of 1.4 mm, and was 18 in an atmosphere of a temperature of 50 ° C. and a humidity of 98 RH%. After standing for aging and aging, it was allowed to stand at a temperature of 110 ° C. for 2 hours and dried to produce an unformed negative electrode plate 1.

2.正極板の作製
正極板の作製においては、まず、鉛粉と鉛丹とを混合した混合物に、後述する仕様の各種繊維を添加し、鉛粉に対して水と希硫酸(比重1.26,20℃)とを加え、これを混練して正極活物質ペーストを作製した。この正極用ペースト状活物質55gを、長さ116mm×幅100mm×厚さ1.7mmの鉛−カルシウム−錫合金からなる集電体格子に充填して、温度50°C、湿度98RH%の雰囲気下で18時間放置して熟成した後に、温度110℃で2時間放置して乾燥させ、未化成の正極板2を作製した。
2. Production of positive electrode plate In production of the positive electrode plate, first, various fibers having the specifications described below are added to a mixture of lead powder and red lead, and water and dilute sulfuric acid (specific gravity 1.26, specific gravity) are added to the lead powder. 20 ° C.) and kneaded to prepare a positive electrode active material paste. The positive electrode paste-like active material 55 g was filled in a current collector grid made of a lead-calcium-tin alloy having a length of 116 mm, a width of 100 mm, and a thickness of 1.7 mm, and an atmosphere having a temperature of 50 ° C and a humidity of 98 RH%. The mixture was allowed to stand for 18 hours and matured, and then left to dry at a temperature of 110 ° C. for 2 hours to produce an unformed positive electrode plate 2.

3.角型電池の作製・化成
図1は、角型電池の一形態を示す図である。負極板1を5枚と正極板2を4枚とを厚さ1.5mmのポリエチレンからなるリテーナ又はセパレータ3を介して積層し、同極性の極板同士をストラップ4で連結させて極板群5を作製した。更に、極板群5を電槽8内に6直列に接続,配置してから、比重1.25(20℃)の希硫酸電解液を注液して未化成電池を作製した。
3. Production and formation of prismatic battery FIG. 1 is a diagram showing one embodiment of a prismatic battery. A group of electrode plates in which five negative electrode plates 1 and four positive electrode plates 2 are laminated via a retainer or separator 3 made of polyethylene having a thickness of 1.5 mm, and the same polarity electrode plates are connected to each other by a strap 4. 5 was produced. Furthermore, after connecting and arranging the electrode plate group 5 in series in the battery case 8, a dilute sulfuric acid electrolyte solution having a specific gravity of 1.25 (20 ° C.) was injected to produce an unformed battery.

この未化成電池を9Aで20時間化成した後に比重1.4(20℃)の希硫酸溶液を追加して、比重1.28(20℃)の濃度の硫酸電解液となるように調整した。正極端子7と負極端子6を溶接し、蓋9で密閉して角型電池を完成させた。得られた電池の容量は28Ahであり、平均放電電圧は12Vである。電池型式では38B19である。   This unformed battery was subjected to chemical conversion at 9A for 20 hours, and then a dilute sulfuric acid solution having a specific gravity of 1.4 (20 ° C.) was added to prepare a sulfuric acid electrolyte solution having a specific gravity of 1.28 (20 ° C.). The positive electrode terminal 7 and the negative electrode terminal 6 were welded and sealed with a lid 9 to complete a square battery. The obtained battery has a capacity of 28 Ah and an average discharge voltage of 12V. The battery type is 38B19.

4.正極活物質の利用率の測定
作製した角型電池を25℃、電流密度6mA/cmの定電流値で放電終止電圧が10.5Vまで放電をして容量を測定し、活物質の充填量から利用率を測定した。
4). Measurement of utilization rate of positive electrode active material The produced square battery was discharged at a constant current value of 25 ° C. and a current density of 6 mA / cm 2 to a discharge end voltage of 10.5 V, and the capacity was measured. The utilization rate was measured.

5.サイクル寿命の測定
作製した角型電池を4に記載の方法で容量を測定した後、上限電圧14.5Vで容量の120%まで充電し、さらに容量の70%を放電するサイクルを繰り返した。試験温度は25℃、電流密度は6mA/cmである。放電終止電圧が10.5V以下となった時点でのサイクル数をサイクル寿命として求めた。
(実施例)
以下に、本発明の実施例について説明する。
(実施例1〜16)
上記1の方法で作製した負極、もしくは上記2の方法で作製した正極に、親水性繊維として表1に示す組成の短繊維を用いた。この繊維を表2に示すような繊維太さ、繊維長さ、アスペクト比に調整し、表2に示す種々の添加量で添加して活物質ペーストを作製した。また、繊維の組成はH−NMR(核磁気共鳴分析装置)による分析により確認した。
5. Measurement of cycle life After measuring the capacity of the produced square battery by the method described in 4, a cycle was charged to 120% of the capacity at an upper limit voltage of 14.5 V, and 70% of the capacity was further discharged. The test temperature is 25 ° C. and the current density is 6 mA / cm 2 . The number of cycles when the end-of-discharge voltage became 10.5 V or less was determined as the cycle life.
(Example)
Examples of the present invention will be described below.
(Examples 1 to 16)
Short fibers having the composition shown in Table 1 were used as hydrophilic fibers in the negative electrode produced by the above method 1 or the positive electrode produced by the above method 2. This fiber was adjusted to fiber thickness, fiber length, and aspect ratio as shown in Table 2, and added in various addition amounts shown in Table 2 to prepare active material pastes. The composition of the fiber was confirmed by analysis with 1 H-NMR (nuclear magnetic resonance analyzer).

図2に実施例5で用いたポリアクリロ二トリルが96モル%、ポリ酢酸ビニルが4モル%のアクリル繊維のH−NMRスペクトルと解析結果を示す。測定装置には日本電子製JNM−GSX400FT−NMRを使用した。これによれば、この共重合体はポリアクリロニトリルと酢酸ビニルとの共重合体であることが確認された。図2から明らかなように、共重合体は−CH2―に基づくスペクトルa、−CH(CN)−に基づくスペクトルb、−CH(−C=O=)ni基づくスペクトルc、及び−CH3に基づくスペクトルdが存在し、それぞれのピーク高さの比から、mとnの比が求められる。また、表2に負極活物質の利用率及び正極活物質の利用率とサイクル寿命を示した。
(比較例1)
上記1の方法で作製した負極、もしくは上記2の方法で作製した正極に、補強用繊維としてポリエステル繊維を添加し、活物質ペーストを作製した。表1にポリエステルの種類、表2に繊維の添加量、繊維太さ、繊維長さ、アスペクト比、負極活物質の利用率、及び正極活物質の利用率とサイクル寿命を示した。
FIG. 2 shows the 1 H-NMR spectrum and analysis results of an acrylic fiber containing 96 mol% polyacrylonitrile and 4 mol% polyvinyl acetate used in Example 5. JNM JGS-GSX400FT-NMR manufactured by JEOL Ltd. was used for the measuring device. According to this, it was confirmed that this copolymer is a copolymer of polyacrylonitrile and vinyl acetate. As is apparent from FIG. 2, the copolymer is based on a spectrum a based on -CH2-, a spectrum b based on -CH (CN)-, a spectrum c based on -CH (-C = O =) ni, and a -CH3. A spectrum d exists, and the ratio of m and n is obtained from the ratio of the peak heights. Table 2 shows the utilization rate of the negative electrode active material, the utilization rate of the positive electrode active material, and the cycle life.
(Comparative Example 1)
Polyester fibers were added as reinforcing fibers to the negative electrode produced by the above method 1 or the positive electrode produced by the above method 2 to produce an active material paste. Table 1 shows the types of polyester, and Table 2 shows the amount of fiber added, fiber thickness, fiber length, aspect ratio, utilization factor of the negative electrode active material, utilization factor of the positive electrode active material, and cycle life.

比較例の鉛蓄電池は、活物質の利用率は、実施例1〜5よりも低く、水の添加量を高くして電極を高多孔度化した場合においても、サイクル劣化が実施例2に比べて大きいことがわかる。   The lead acid battery of the comparative example has a lower utilization factor of the active material than those of Examples 1 to 5, and even when the electrode is made highly porous by increasing the amount of water added, the cycle deterioration is higher than that of Example 2. It can be seen that it is big.

本発明の実施例によれば、活物質利用率が高い鉛蓄電池を提供することができる。加えて、活物質利用率を向上させるために電極を高多孔度化した場合においても、サイクル劣化の小さい鉛蓄電池を提供することができる。   According to the embodiment of the present invention, a lead storage battery having a high active material utilization rate can be provided. In addition, even when the electrode is made highly porous to improve the active material utilization rate, a lead storage battery with little cycle deterioration can be provided.

Figure 2006004688
Figure 2006004688

Figure 2006004688
Figure 2006004688

以上説明したことから明らかなように、本発明による鉛蓄電池は、活物質の利用率が高く、水の添加量を高くして電極を高多孔度化した場合においても、サイクル劣化が小さいことがわかる。   As is clear from the above description, the lead-acid battery according to the present invention has a high utilization factor of the active material, and even when the electrode is made highly porous by increasing the amount of water added, the cycle deterioration is small. Recognize.

本発明に係わる角型鉛蓄電池の構成を示す斜視図である。It is a perspective view which shows the structure of the square lead acid battery concerning this invention. 本発明に用いられたアクリル繊維(A)のNMR図である。It is a NMR figure of the acrylic fiber (A) used for this invention. 本発明及び他の方法によるペースト式電極における短繊維の分散状態を説明する模式図である。It is a schematic diagram explaining the dispersion state of the short fiber in the paste-type electrode by this invention and another method.

符号の説明Explanation of symbols

1…負極板、2…正極板、3…セパレータ、4…ストラップ、5…極板群、6…負極端子、7…正極端子、8…電槽、9…蓋。   DESCRIPTION OF SYMBOLS 1 ... Negative electrode plate, 2 ... Positive electrode plate, 3 ... Separator, 4 ... Strap, 5 ... Electrode plate group, 6 ... Negative electrode terminal, 7 ... Positive electrode terminal, 8 ... Battery case, 9 ... Cover.

Claims (7)

ペースト式正極板、リテーナもしくはセパレータ、及びペースト式負極板を積層してなる鉛蓄電池において、該ペースト式正極板、及び/又は該ペースト式負極板が親水性短繊維を含有することを特徴とする鉛蓄電池。   In a lead-acid battery formed by laminating a paste-type positive electrode plate, a retainer or a separator, and a paste-type negative electrode plate, the paste-type positive electrode plate and / or the paste-type negative electrode plate contains hydrophilic short fibers. Lead acid battery. 上記親水性短繊維はアクリル繊維、レーヨン繊維、及びビニロン繊維の少なくとも1種であることを特徴とする請求項1記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein the hydrophilic short fibers are at least one of acrylic fibers, rayon fibers, and vinylon fibers. 前記親水性短繊維の含有量が前記ペースト式正極板もしくは前記ペースト式負極板の活物質である鉛原料の0.15〜1.0重量パーセントであることを特徴とする請求項1記載の鉛蓄電池。   2. The lead according to claim 1, wherein the content of the hydrophilic short fibers is 0.15 to 1.0 weight percent of a lead raw material which is an active material of the paste-type positive electrode plate or the paste-type negative electrode plate. Storage battery. 前記親水性短繊維の直径が0.05〜12μmであることを特徴とする請求項1ないし3のいずれかに記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 3, wherein a diameter of the hydrophilic short fiber is 0.05 to 12 µm. 前記親水性短繊維のアスペクト比が1000〜10000であることを特徴とする請求項1〜4のいずれかに記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 4, wherein the hydrophilic short fiber has an aspect ratio of 1000 to 10,000. 前記アクリル繊維は、ポリアクリロニトリルを95モル%以上含有し、ポリ酢酸ビニル5モル%以下を含む共重合体であることを特徴とする請求項2に記載の鉛蓄電池。   The lead acid battery according to claim 2, wherein the acrylic fiber is a copolymer containing 95 mol% or more of polyacrylonitrile and 5 mol% or less of polyvinyl acetate. 前記親水性短繊維の太さが0.1dTex〜4.0dTexであることを特徴とする請求項1〜6のいずれかに記載の鉛蓄電池。
The lead acid battery according to any one of claims 1 to 6, wherein the hydrophilic short fibers have a thickness of 0.1 dTex to 4.0 dTex.
JP2004177911A 2004-06-16 2004-06-16 Lead acid battery Active JP4556506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004177911A JP4556506B2 (en) 2004-06-16 2004-06-16 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004177911A JP4556506B2 (en) 2004-06-16 2004-06-16 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006004688A true JP2006004688A (en) 2006-01-05
JP4556506B2 JP4556506B2 (en) 2010-10-06

Family

ID=35772909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004177911A Active JP4556506B2 (en) 2004-06-16 2004-06-16 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4556506B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174342A (en) * 2011-02-17 2012-09-10 Gs Yuasa Corp Lead acid battery and negative electrode active material for the same
WO2016158753A1 (en) * 2015-03-27 2016-10-06 日本エクスラン工業株式会社 Acrylonitrile-based fiber for electrodes, electrode containing this fiber, and lead-acid battery having this electrode
WO2019064854A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead acid storage battery
WO2019064821A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead storage cell
JP2019067741A (en) * 2017-09-28 2019-04-25 株式会社Gsユアサ Lead storage battery
WO2019116704A1 (en) * 2017-12-14 2019-06-20 株式会社Gsユアサ Control valve type lead acid storage battery
WO2019181759A1 (en) * 2018-03-19 2019-09-26 株式会社Gsユアサ Lead acid storage battery
WO2020132380A1 (en) * 2018-12-20 2020-06-25 Crown Battery Manufacturing Company Enhanced lead-acid battery using polyacrylonitrile fibers in active material
CN111712954A (en) * 2018-02-15 2020-09-25 日立化成株式会社 Active material holding tube, electrode, and lead-acid battery
WO2021070231A1 (en) * 2019-10-07 2021-04-15 昭和電工マテリアルズ株式会社 Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JP2021061127A (en) * 2019-10-04 2021-04-15 昭和電工マテリアルズ株式会社 Lead acid battery positive electrode and lead acid battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139765A (en) * 1979-04-17 1980-10-31 Japan Storage Battery Co Ltd Closed lead storage battery
JPS5652875A (en) * 1979-10-02 1981-05-12 Toray Ind Inc Fiber reinforced-material for plate of lead acid battery
JPS56143672A (en) * 1980-04-09 1981-11-09 Japan Storage Battery Co Ltd Lead acid battery
JPS5715363A (en) * 1980-07-01 1982-01-26 Matsushita Electric Ind Co Ltd Plate for lead battery
JPS57168469A (en) * 1981-04-09 1982-10-16 Matsushita Electric Ind Co Ltd Manufacture of pasted electrode for lead acid battery
JPS58147963A (en) * 1982-02-25 1983-09-02 Shin Kobe Electric Mach Co Ltd Electrode plate for lead storage battery
JPS59157961A (en) * 1983-02-24 1984-09-07 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPS63152868A (en) * 1986-12-16 1988-06-25 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH03234807A (en) * 1990-02-08 1991-10-18 Mitsubishi Rayon Co Ltd Acrylic fiber with good water retentivity and its production
JPH06223822A (en) * 1993-01-27 1994-08-12 Shin Kobe Electric Mach Co Ltd Positive electrode plate for lead-acid battery
JP2000036305A (en) * 1998-07-17 2000-02-02 Shin Kobe Electric Mach Co Ltd Plate for lead-acid battery
JP2000239474A (en) * 1999-02-19 2000-09-05 Mitsubishi Rayon Co Ltd Polymer gel electrolyte

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139765A (en) * 1979-04-17 1980-10-31 Japan Storage Battery Co Ltd Closed lead storage battery
JPS5652875A (en) * 1979-10-02 1981-05-12 Toray Ind Inc Fiber reinforced-material for plate of lead acid battery
JPS56143672A (en) * 1980-04-09 1981-11-09 Japan Storage Battery Co Ltd Lead acid battery
JPS5715363A (en) * 1980-07-01 1982-01-26 Matsushita Electric Ind Co Ltd Plate for lead battery
JPS57168469A (en) * 1981-04-09 1982-10-16 Matsushita Electric Ind Co Ltd Manufacture of pasted electrode for lead acid battery
JPS58147963A (en) * 1982-02-25 1983-09-02 Shin Kobe Electric Mach Co Ltd Electrode plate for lead storage battery
JPS59157961A (en) * 1983-02-24 1984-09-07 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JPS63152868A (en) * 1986-12-16 1988-06-25 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH03234807A (en) * 1990-02-08 1991-10-18 Mitsubishi Rayon Co Ltd Acrylic fiber with good water retentivity and its production
JPH06223822A (en) * 1993-01-27 1994-08-12 Shin Kobe Electric Mach Co Ltd Positive electrode plate for lead-acid battery
JP2000036305A (en) * 1998-07-17 2000-02-02 Shin Kobe Electric Mach Co Ltd Plate for lead-acid battery
JP2000239474A (en) * 1999-02-19 2000-09-05 Mitsubishi Rayon Co Ltd Polymer gel electrolyte

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174342A (en) * 2011-02-17 2012-09-10 Gs Yuasa Corp Lead acid battery and negative electrode active material for the same
WO2016158753A1 (en) * 2015-03-27 2016-10-06 日本エクスラン工業株式会社 Acrylonitrile-based fiber for electrodes, electrode containing this fiber, and lead-acid battery having this electrode
JP6094784B2 (en) * 2015-03-27 2017-03-15 日本エクスラン工業株式会社 Acrylonitrile fiber for electrode, electrode containing the fiber, and lead-acid battery having the electrode
JPWO2016158753A1 (en) * 2015-03-27 2017-04-27 日本エクスラン工業株式会社 Acrylonitrile fiber for electrode, electrode containing the fiber, and lead-acid battery having the electrode
CN107431195A (en) * 2015-03-27 2017-12-01 日本爱克兰工业株式会社 Electrode acrylic fibre, the electrode containing the fiber and the lead accumulator with the electrode
CN107431195B (en) * 2015-03-27 2020-11-10 日本爱克兰工业株式会社 Acrylic fiber for electrode, electrode comprising the fiber, and lead-acid battery comprising the electrode
JP2019067741A (en) * 2017-09-28 2019-04-25 株式会社Gsユアサ Lead storage battery
JP2019061919A (en) * 2017-09-28 2019-04-18 株式会社Gsユアサ Lead storage battery
EP3660960A4 (en) * 2017-09-28 2021-04-28 GS Yuasa International Ltd. Lead acid storage battery
WO2019064821A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead storage cell
CN111149240A (en) * 2017-09-28 2020-05-12 株式会社杰士汤浅国际 Lead-acid battery
CN111149240B (en) * 2017-09-28 2023-11-28 株式会社杰士汤浅国际 Lead storage battery
WO2019064854A1 (en) * 2017-09-28 2019-04-04 株式会社Gsユアサ Lead acid storage battery
JP7040056B2 (en) 2017-09-28 2022-03-23 株式会社Gsユアサ Lead-acid battery
WO2019116704A1 (en) * 2017-12-14 2019-06-20 株式会社Gsユアサ Control valve type lead acid storage battery
CN111712954A (en) * 2018-02-15 2020-09-25 日立化成株式会社 Active material holding tube, electrode, and lead-acid battery
WO2019181759A1 (en) * 2018-03-19 2019-09-26 株式会社Gsユアサ Lead acid storage battery
JPWO2019181759A1 (en) * 2018-03-19 2021-03-11 株式会社Gsユアサ Lead-acid battery
JP7215475B2 (en) 2018-03-19 2023-01-31 株式会社Gsユアサ lead acid battery
WO2020132380A1 (en) * 2018-12-20 2020-06-25 Crown Battery Manufacturing Company Enhanced lead-acid battery using polyacrylonitrile fibers in active material
JP2021061127A (en) * 2019-10-04 2021-04-15 昭和電工マテリアルズ株式会社 Lead acid battery positive electrode and lead acid battery
JP7410683B2 (en) 2019-10-04 2024-01-10 エナジーウィズ株式会社 Positive electrode for lead-acid batteries and lead-acid batteries
WO2021070231A1 (en) * 2019-10-07 2021-04-15 昭和電工マテリアルズ株式会社 Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery

Also Published As

Publication number Publication date
JP4556506B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP5797384B2 (en) Composite capacitor negative electrode plate for lead acid battery and lead acid battery
JP4364460B2 (en) Negative electrode for lead acid battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP5154349B2 (en) Battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
EP3236514B1 (en) Lead-acid battery
JP4556506B2 (en) Lead acid battery
WO2015079668A1 (en) Lead-acid battery
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP4053272B2 (en) Negative electrode for lead acid battery
JP2010225564A (en) Negative electrode composition for secondary battery, intermediate composition for generating the same, and secondary battery using them
JP4563039B2 (en) Lithium ion secondary battery
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP4635325B2 (en) Control valve type lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP2006318659A (en) Lead-acid battery
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JP2002100347A (en) Lead-acid battery
US20180241044A1 (en) Acid battery pasting carrier
KR102424563B1 (en) Porous graphene-coated Pb@C nanoparticle catalyst electrode plate manufacturing method
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP2008258131A (en) Positive electrode composition for secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250