JP2005528522A - Inoculated alloys to prevent micro sinkholes for casting pig iron processing - Google Patents

Inoculated alloys to prevent micro sinkholes for casting pig iron processing Download PDF

Info

Publication number
JP2005528522A
JP2005528522A JP2004501648A JP2004501648A JP2005528522A JP 2005528522 A JP2005528522 A JP 2005528522A JP 2004501648 A JP2004501648 A JP 2004501648A JP 2004501648 A JP2004501648 A JP 2004501648A JP 2005528522 A JP2005528522 A JP 2005528522A
Authority
JP
Japan
Prior art keywords
pig iron
inoculated
alloy
iron according
cast pig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004501648A
Other languages
Japanese (ja)
Inventor
マルガリア,トマ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferropem SAS
Original Assignee
Pechiney Electrometallurgie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Electrometallurgie SAS filed Critical Pechiney Electrometallurgie SAS
Publication of JP2005528522A publication Critical patent/JP2005528522A/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/08Manufacture of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本発明は鋳造銑鉄の処理を目的とした接種合金を対象とし、該接種合金は、0.005%から3%のビスマス、鉛そしてアンチモンのグループの一つの元素と、0.3%から10%の稀土類金属と、そして場合によっては5%までのアルミニウムと、1.5%までのカルシウムを含有し(重量%)、残りはケイ素鉄であって、ランタンがその組成中の稀土類金属の90%を超えて構成している。本発明による接種合金により、銑鉄の効果的な接種が可能になり、鋳造品中のミクロひけ巣の発生を回避できるようになる。The present invention is directed to an inoculated alloy intended for the treatment of cast pig iron, which inoculates 0.005% to 3% of one element of the bismuth, lead and antimony group and 0.3% to 10%. Rare earth metals, and in some cases up to 5% aluminum and up to 1.5% calcium (wt%), the remainder being silicon iron, lanthanum being a rare earth metal of the composition It constitutes over 90%. The inoculated alloy according to the present invention enables effective inoculation of pig iron and avoids the occurrence of micro-shrinks in the casting.

Description

本発明は、炭化鉄がなく、ミクロひけ巣のない構造が望まれる鋳造品の製造を目的とした銑鉄を、溶融状態で処理することに関するものである。   The present invention relates to the treatment of pig iron in the molten state for the purpose of producing a cast product that is free of iron carbide and is desired to have a structure without a micro-shrink.

銑鉄というものは、よく知られた鉄−炭素−ケイ素の合金であり、機械部品の製造用に広く用いられている。それらの鋳造品の良好な機械的特性を得るためには、最終的には鉄+黒鉛の構造を得ることで、合金を硬化させ、脆化させるFe3Cタイプの炭化鉄の形成を可能な限り回避しなければならないことが知られている。 Pig iron is a well-known iron-carbon-silicon alloy and is widely used for manufacturing machine parts. In order to obtain good mechanical properties of these castings, it is possible to form Fe 3 C type iron carbide that hardens and embrittles the alloy by finally obtaining the structure of iron + graphite. It is known that it must be avoided as long as possible.

次に、形成される黒鉛が、回転楕円状であったり、蠕虫状であったり、あるいは、薄板状であることを望むこともできるが、前もって満たすべき不可欠な条件は、炭化鉄の形成を回避することである。そのために、溶融銑鉄は鋳造前に接種処理を受け、該接種処理は冷却の際に、炭化鉄よりはむしろ黒鉛の発生を助長する。   Secondly, the graphite formed can be spheroidal, worm-like, or thin-plate shaped, but an essential condition that must be met in advance is to avoid iron carbide formation. It is to be. For this reason, the molten pig iron is subjected to an inoculation process before casting, which promotes the generation of graphite rather than iron carbide upon cooling.

したがって、接種処理は非常に重要である。ところで、用いられる接種剤がどうであれ、接種は溶融銑鉄に対して効果を有しており、該効果は時間とともに減少し、一般的には、10分後にはすでに50%も低下することがよく知られている。当業者はこの現象を「フェーディング効果」の名で呼んでいる。最大の効果を得るために、一般的には段階的な接種が実行され、該接種は、銑鉄を精錬する様々な段階で接種剤を幾度か添加することからなる。したがって、溶融銑鉄を接種することが通常の方法であり、該方法は、一方では、たとえば粒の大きさが2mmと10mmの間または0.4mmと2mmの間に含まれる接種合金を用いて取鍋において、他方では、「注湯の際」、つまり粒の大きさが0.2mmと0.7mmの間に含まれる接種合金を用いて取鍋の湯口において、最後は「鋳型の中」、要するに鋳型の湯道において、溶融銑鉄の径路に接種剤で構成される挿入物を配置することで行われる。   Therefore, the inoculation process is very important. By the way, whatever the inoculum used, the inoculation has an effect on the molten pig iron, and this effect decreases with time, and in general it can already decrease by 50% after 10 minutes. well known. Those skilled in the art refer to this phenomenon as “fading effect”. In order to obtain the maximum effect, a gradual inoculation is generally carried out, which consists of adding the inoculum several times at various stages of refining pig iron. Therefore, inoculation with molten pig iron is the usual method, which, on the one hand, is carried out using an inoculum alloy, for example, whose grain size is comprised between 2 mm and 10 mm or between 0.4 mm and 2 mm. In the pan, on the other hand, at the time of pouring, that is, in the ladle of the ladle using an inoculated alloy whose grain size is comprised between 0.2 mm and 0.7 mm, and finally in the mold. In short, it is carried out by placing an insert composed of the inoculant in the molten pig iron path in the mold runner.

所定の形状のこれらの挿入物にはスラグという名が付いている。二つのタイプのスラグがある。
−溶融した接種剤の鋳造によって得られる「鋳造した」スラグと、
−一般的には、ごく少量の結合剤で、ひいては結合剤なしで、圧縮された粉末から得られる塊状化したスラグである。
These inserts of a given shape are named slag. There are two types of slag.
-"Cast" slag obtained by casting molten inoculum;
-Generally agglomerated slag obtained from compacted powder with very little binder and thus no binder.

鋳造したスラグは、当業者には最高の品質レベルだと考えられているが、しかし、塊状化したスラグがコストという理由で当業者に好まれることも多い。鋳造品の鋳造時間は非常に短いため、スラグの溶解の運動は極めて急速でなければならない。   Cast slag is considered the highest quality level by those skilled in the art, but agglomerated slag is often preferred by those skilled in the art because of cost. Since the casting time of the casting is very short, the slag melting movement must be very rapid.

また、当業者は頻繁に、ミクロひけ巣という名で指示される、ミリメートル単位またはマイクロメートル単位の寸法の空洞が鋳造品の中に存在することを十分に確認している。これらの欠陥は鋳造品を脆化させ、ひいては、例えば表面の仕上げをするために、後で鋳造品を機械加工することが必要なとき、このような欠陥に遭遇することは、欠陥品を廃棄することが避けられないということにつながる。   Also, those skilled in the art often have fully confirmed that there are cavities in the cast that are in the millimeter or micrometer dimension, designated by the name of the micro-shrink. These defects can cause the casting to become brittle and thus encounter such defects when it is necessary to machine the casting later, for example to finish the surface, discarding the defective product. It is inevitable to do.

銑鉄製品にミクロひけ巣が発生することを回避するための既知の方法は、溶融銑鉄にランタンを添加することである。ランタノイド類のこの金属は、実際、固化の始まる直前の溶融銑鉄の粘度だけではなく、固化の途中の銑鉄、つまり固体+液体の混合物の粘度も低下させる特性がある。すべてが、ランタンの添加により、運動中の銑鉄がチキソトロピー性になったかのように行われる。そのとき当業者は、鋳型を正確に設計することで、押湯の中にひけ巣をまとめあげ、そうして無傷の鋳造品が得られる。   A known method for avoiding the occurrence of micro-shrinks in pig iron products is to add lanthanum to the molten pig iron. This metal of lanthanides actually has the property of reducing not only the viscosity of molten pig iron just before the start of solidification, but also the viscosity of pig iron in the middle of solidification, that is, a solid + liquid mixture. Everything is done as if exercised pig iron became thixotropic with the addition of lanthanum. At that time, those skilled in the art can accurately design the mold to collect the sinkholes in the feeder and thus obtain an intact casting.

したがって、市場に次々と登場したのは、まずはランタンを含有する団塊化剤であり、該団塊化剤の使用法はGS銑鉄と呼ばれる団塊状の銑鉄専用であり、次はSiが45%でLaが2%のFeSiタイプの接種剤であり、該接種剤は、GS銑鉄にも、GL銑鉄と呼ばれる薄板状の黒鉛銑鉄にも使用可能である。   Therefore, what appeared on the market one after another was a nodule containing lanthanum, and the use of the nodule was exclusively for nodule-shaped pig iron called GS pig iron, and the next was La with 45% Si. Is a 2% FeSi type inoculum which can be used for both GS pig iron and thin plate graphite pig iron called GL pig iron.

本発明は、溶融銑鉄の処理を目的とする接種合金を供給することを対象としており、該接種合金によって、特に「鋳型の中」での処理の際に、鋳造によって得られる部品におけるミクロ気孔の形成を避けながら、効果的な接種が可能になるものである。   The present invention is directed to supplying an inoculum alloy intended for the treatment of molten pig iron, and the microporosity in the parts obtained by casting with the inoculum alloy, especially during the treatment “in the mold”. Effective inoculation is possible while avoiding formation.

本発明は鋳造銑鉄の処理を目的とする接種合金を対象としており、その組成が(重量%で)0.005%から3%のビスマス、鉛そしてアンチモンのグループの一つの元素と、0.3%から10%の稀土類金属、そして場合によっては、5%までのアルミニウムと、1.5%までのカルシウムを含有し、残りはケイ素鉄であって、ランタンが、その組成に入る稀土類金属の90%を超えて構成している。   The present invention is directed to an inoculated alloy intended for the treatment of cast pig iron, whose composition (by weight) is from 0.005% to 3% of one element of the bismuth, lead and antimony group, 0.3% % To 10% rare earth metal, and in some cases up to 5% aluminum and up to 1.5% calcium, the remainder being silicon iron, lanthanum entering the composition Of over 90%.

合金は、好ましくはビスマスを含有し、その含有量は0.2%と1.5%の間、好ましくは0.7%と1.3%の間に含まれる。ランタンの含有量は、有利には0.3%から8%の間、好ましくは、0.5%から3%の間に含まれる。少なくとも0.8%のアルミニウムの存在が有利であり、その含有量は好ましくは1%と3.5%の間に含まれる。   The alloy preferably contains bismuth, the content of which is comprised between 0.2% and 1.5%, preferably between 0.7% and 1.3%. The lanthanum content is advantageously comprised between 0.3% and 8%, preferably between 0.5% and 3%. The presence of at least 0.8% aluminum is advantageous and its content is preferably comprised between 1% and 3.5%.

本発明による合金は、粉末状または異なった組成の合金の粉末の混合物の形状、あるいは、溶融合金から鋳造したスラグの形状、もしくは粉末または粉末の混合物から塊状化したスラグの形状で調製することができる。この粉末は、好ましくは1mm未満の粒度を有し、総重量の35%を超える50μmと250μmの間である粒度分析の断片と、全体の25%未満に相当する50μm未満の断片を伴っている。   The alloys according to the invention can be prepared in the form of a powder or a mixture of powders of alloys of different composition, or in the form of a slag cast from a molten alloy, or in the form of a slag agglomerated from a mixture of powder or powder. it can. This powder preferably has a particle size of less than 1 mm, with more than 35% of the total weight between 50 μm and 250 μm, and with less than 50 μm fragments corresponding to less than 25% of the total .

接種剤は、その性質上、炭素が黒鉛の形で存在するような銑鉄を得ることを目的としているので、本出願人には、ミクロひけ巣を防止する特性を有する接種剤を開発することが望ましく思われた。   Since the inoculum is intended to obtain pig iron in which carbon exists in the form of graphite due to its nature, the applicant can develop an inoculum having the property of preventing micro-shrinkage. It seemed desirable.

したがって、まず検討の対象となったのは75%のFeSiを主成分とする接種合金であり、該接種合金は、ミクロひけ巣を防止する元素が添加されており、該元素はランタンまたはゲルマニウムでありうる。ゲルマニウムに関しては、要求される含有量は0.3%から6%である。ランタンについては、0.3%から8%であり、好ましくは0.5%から5%である。   Therefore, the first object to be examined was an inoculation alloy containing 75% FeSi as a main component, and the inoculation alloy was added with an element for preventing micro-shrinkage, and the element was lanthanum or germanium. It is possible. For germanium, the required content is 0.3% to 6%. For lanthanum, it is 0.3% to 8%, preferably 0.5% to 5%.

しかし、より有益な解決法は、同一の元素が複数の機能を果たすことができるような接種合金を考えると明らかになる。つまり、特に有益なものとして明らかなのは、米国特許第4432793号明細書(Nobel−Bozel)に記載されているような、ケイ素鉄を主成分とし、3%までのビスマス、鉛またはアンチモンと、3%までの稀土類を含有している合金を基に、該合金にランタンのような、ミクロ気孔を防止する元素を添加し、そしてFe−Si−Bi−La合金の中のランタンとその他の稀土類との合計を最適化することで、得られる配合を確実なものにすることである。   However, a more useful solution becomes apparent when considering inoculated alloys in which the same element can perform multiple functions. That is, it is clear that this is particularly beneficial, as described in US Pat. No. 4,432,793 (Nobel-Bozel), based on silicon iron, up to 3% bismuth, lead or antimony, and 3% Based on alloys containing up to 1% rare earths, lanthanum and other rare earths in Fe-Si-Bi-La alloys are added to the alloys and elements such as lanthanum are added to prevent microporosity By optimizing the sum of and, it is to ensure the resulting formulation.

本出願人は、まず、通常の粒度、すなわち、取鍋での処理用には2mmと7mmの間、または0.4mmと2mmの間、そして注湯に際しての処理用には0.4mmと0.7mmの間の粒度で調製された、ミクロ気孔を防止するこれらの新しい合金が、接種剤として多くの良好な特性を有するということを検証した。次に、これらの同じ合金で接種用のスラグを調製することを検討した。最終的な銑鉄にビスマスを投入したにもかかわらず、ミクロ気孔の減少という点での成果が確認された。   The Applicant firstly has a normal particle size, i.e. between 2 and 7 mm for processing in a ladle, or between 0.4 and 2 mm, and 0.4 and 0 for processing during pouring. It has been verified that these new alloys prepared with a particle size between .7 mm and which prevent microporosity have many good properties as inoculum. Next, the preparation of slag for inoculation with these same alloys was studied. Despite the addition of bismuth to the final pig iron, results were confirmed in terms of reducing micropores.

そうして、非常に良好な結果が、FeSiタイプの合金で構成された、鋳造されたスラグで得られたのであり、該スラグは以下のものを含有していた。
−60%から80%、好ましくは72%から78%のケイ素、
−0.3%から8%、好ましくは0.5%から5%のランタン、
−0.2%から1.5%、好ましくは0.7%から1.3%のビスマス、
−0.8%から5%、好ましくは1%から3.5%のアルミニウム。
Thus, very good results have been obtained with cast slag composed of FeSi type alloys, which contained the following:
-60% to 80%, preferably 72% to 78% silicon,
-0.3% to 8%, preferably 0.5% to 5% lanthanum,
-0.2% to 1.5%, preferably 0.7% to 1.3% bismuth,
0.8% to 5%, preferably 1% to 3.5% aluminum.

以下に説明する例を実施するために、1600kgの銑鉄について20kgの容量で、稀土類を含有していない、Mgが5%でCaが1%のFeSiMgタイプの通常の接種合金を用いて、一回分の装入量の銑鉄が誘導炉で溶融され、Tundish Cover法で処理された。この溶融銑鉄の分析結果は次のとおりである。
C=3.7%、 Si=2.6%、 Mn=0.07%、 P=0.03%、
S=0.003%、 Mg=0.038%。
In order to carry out the example described below, a typical inoculation alloy of the FeSiMg type with a capacity of 20 kg for 1600 kg pig iron, no rare earths, 5% Mg and 1% Ca is used. A batch charge of pig iron was melted in an induction furnace and processed by the Tundish Cover method. The analysis results of this molten pig iron are as follows.
C = 3.7%, Si = 2.6%, Mn = 0.07%, P = 0.03%,
S = 0.003%, Mg = 0.038%.

マクロレベルやミクロレベルでの気孔の性能が、「V」字の試験片の鋳造試験によって評価された。   The performance of the pores at the macro and micro levels was evaluated by the casting test of “V” specimens.

この試験において、試験片は「V」字で構成され、その高さは110mm、頂点の角度は40°、「V」字の分岐幅は20mm、そして鋳造品の厚みは20mmである。この形状では、銑鉄の品質に従って、「V」字の頂点に80mmの幅、69cm3である一単位あたりの体積、そして、480gから500gである一単位あたりの質量となる。このタイプの鋳造品では、気孔は「V」字の凹入部に選択的に発生する。 In this test, the test piece is composed of a “V” shape, the height is 110 mm, the apex angle is 40 °, the branch width of the “V” shape is 20 mm, and the thickness of the casting is 20 mm. In this shape, according to the quality of the pig iron, there is a width of 80 mm at the apex of the “V” shape, a volume per unit of 69 cm 3 , and a mass per unit of 480 to 500 g. In this type of casting, pores are selectively generated in the “V” -shaped recesses.

試験の結果を判断するため、鋳造品は半分の厚みに裁断し、その断面を光学顕微鏡で観察することで、気孔性の表面を評価する。結果は、その断面の表面に関連する相対的な面積で表される。   In order to judge the result of the test, the cast product is cut into half thickness, and the cross section is observed with an optical microscope to evaluate the porous surface. The result is expressed in the relative area associated with the surface of the cross section.

実施例1
前の工程から取鍋一つ分の処理済の銑鉄が回ってくると、それを粉末の接種合金を用いて取鍋で接種したのだが、該粉末の粒度は2mmと10mmの間に含まれ、その組成は「Foundary Grade」であり、残りは主にFeであって、1トンの銑鉄に対して200gの用量で用いられた。
Example 1
When the treated pig iron for one ladle from the previous process turns around, it was inoculated in the ladle using a powder inoculation alloy, but the particle size of the powder is between 2mm and 10mm. The composition was “Foundary Grade”, the rest was mainly Fe, used at a dose of 200 g for 1 ton of pig iron.

この銑鉄は、検定試験で規定されたのと同一の形状であるV字の鋳造品を鋳造するために用いられたもので、36個の鋳造品が湯道によって供給された砂鋳型の中に密集して配置され、該湯道には、耐熱スポンジで構成されたフィルタが配置されている。   This pig iron was used to cast a V-shaped casting having the same shape as specified in the test, and 36 castings were placed in a sand mold supplied by a runner. A filter made of heat-resistant sponge is arranged in the runner.

得られた鋳造品は、研磨された断面を光学顕微鏡で観察することで、深さに応じた金属の構造と気孔率のレベルとを測定した。   The obtained cast product was subjected to observation of the polished cross section with an optical microscope, thereby measuring the metal structure and the porosity level according to the depth.

分岐の中心部では、黒鉛の団塊の密度は120/mm2と測定された。鋳造品の平均気孔率は2.4%と評価された。 At the center of the branch, the density of graphite nodules was measured to be 120 / mm 2 . The average porosity of the cast product was estimated to be 2.4%.

実施例2
前の工程から第二の取鍋一つ分の処理済の銑鉄が回ってくると、それを接種合金を用いて取鍋で接種したのだが、該接種合金は、粒度が2mmと10mmの間に含まれ、その組成は、
Si=75.4%、 Al=0.94%、 Ca=0.86%、 La=2.2%、
Bi=0.92%で、残りは主にFeであり、1トンの銑鉄に対して200gの用量で用いられた。
Example 2
When the processed pig iron for one second ladle from the previous step turns around, it was inoculated in the ladle using the inoculated alloy, but the inoculated alloy has a particle size between 2 mm and 10 mm. And its composition is
Si = 75.4%, Al = 0.94%, Ca = 0.86%, La = 2.2%,
Bi = 0.92%, the rest being mainly Fe, used at a dose of 200 g for 1 ton of pig iron.

この銑鉄は、検定試験で規定されたのと同一の形状であるV字の鋳造品を鋳造するために用いられたもので、36個の鋳造品が、湯道によって供給された砂鋳型の中に密集して配置され、該湯道には、耐熱スポンジで構成されたフィルタが配置されている。   This pig iron was used to cast a V-shaped casting having the same shape as specified in the certification test, and 36 castings were contained in the sand mold supplied by the runner. A filter made of heat-resistant sponge is arranged in the runner.

得られた鋳造品は、研磨された断面を光学顕微鏡で観察することで、深さに応じた金属の構造と気孔率のレベルを測定した。分岐の中心部では、黒鉛の団塊の密度は、360/mm2と計測された。 The obtained cast product was subjected to observation of the polished cross section with an optical microscope, thereby measuring the metal structure and the porosity level according to the depth. At the center of the branch, the density of graphite nodules was measured to be 360 / mm 2 .

鋳造品の平均気孔率は0.3%と評価された。   The average porosity of the cast product was estimated to be 0.3%.

実施例3
前の工程から第三の取鍋一つ分の処理済の銑鉄が回ってくると、それは検定試験で規定されたのと同一の形状であるV字の鋳造品を鋳造するために用いられるのだが、該銑鉄は、密集して配置された36個の小室のある砂鋳型の中に湯道によって供給され、該湯道では、鋳型での処理のための接種合金で構成された25gのスラグが配置されており、その組成は、
Si=73.6%、 Al=3.92%、 Ca=0.78%、 La=2.1%、
Bi=0.97%で、残りは主にFeであった。
Example 3
When the treated pig iron for the third ladle from the previous process turns around, it is used to cast a V-shaped casting with the same shape as specified in the certification test. However, the pig iron is fed by a runner into a sand mold with 36 chambers arranged closely, where 25 g of slag composed of inoculated alloy for treatment with the mold. Is arranged, and its composition is
Si = 73.6%, Al = 3.92%, Ca = 0.78%, La = 2.1%,
Bi = 0.97%, and the remainder was mainly Fe.

得られた鋳造品は、研磨された断面を光学顕微鏡で観察することで、深さに応じた金属の構造と気孔率のレベルを判断した。分岐の中心部では、黒鉛の団塊の密度は320/mm2と計測された。 The obtained cast product was subjected to observation of the polished cross section with an optical microscope, thereby judging the metal structure and the porosity level according to the depth. At the center of the branch, the density of graphite nodules was measured as 320 / mm 2 .

鋳造品の気孔率は平均で0.2%と算定された。   The average porosity of the cast product was calculated to be 0.2%.

Claims (12)

鋳造銑鉄用の接種合金であり、その組成が(重量%で)、0.005%から3%のビスマス、鉛そしてアンチモンのグループのいずれか一つの元素と、0.3%から10%の稀土類金属と、そして場合によっては5%までのアルミニウムと1.5%までのカルシウムを含有し、残りがケイ素鉄であるものであって、ランタンがその組成に入る稀土類金属の90%を超えて構成することを特徴とする、鋳造銑鉄用の接種合金。   Inoculated alloy for cast pig iron, composition (by weight) of 0.005% to 3% bismuth, lead and antimony elements and 0.3% to 10% rare earth Containing more than 90% of the rare earth metals that contain lanthanum, and optionally up to 5% aluminum and up to 1.5% calcium, the remainder being silicon iron An inoculated alloy for cast pig iron, characterized by comprising 0.3%から8%のランタンと0.2%から1.5%のビスマスを含有することを特徴とする、請求項1に記載の鋳造銑鉄用の接種合金。   2. Inoculated alloy for cast pig iron according to claim 1, characterized in that it contains 0.3% to 8% lanthanum and 0.2% to 1.5% bismuth. ビスマスの含有量が0.7%と1.3%の間に含まれることを特徴とする、請求項1または請求項2に記載の鋳造銑鉄用の接種合金。   The inoculated alloy for cast pig iron according to claim 1 or 2, characterized in that the bismuth content is comprised between 0.7% and 1.3%. ランタンの含有量が0.5%と5%の間に含まれることを特徴とする、請求項1〜3のいずれか一つに記載の鋳造銑鉄用の接種合金。   The inoculated alloy for cast pig iron according to any one of claims 1 to 3, characterized in that the content of lanthanum is comprised between 0.5% and 5%. アルミニウムの含有量が0.8%と5%の間に含まれることを特徴とする、請求項1〜4のいずれか一つに記載の鋳造銑鉄用の接種合金。   The inoculated alloy for cast pig iron according to any one of claims 1 to 4, characterized in that the aluminum content is comprised between 0.8% and 5%. アルミニウムの含有量が1%と3.5%の間に含まれることを特徴とする、請求項5に記載の鋳造銑鉄用の接種合金。   6. Inoculated alloy for cast pig iron according to claim 5, characterized in that the aluminum content is comprised between 1% and 3.5%. 粉末に調製されることを特徴とする、請求項1〜6のいずれか一つに記載の鋳造銑鉄用の接種合金。   The inoculated alloy for cast pig iron according to any one of claims 1 to 6, characterized in that it is prepared into a powder. 「鋳型の中」での処理のために、スラグの形状に調製されることを特徴とする、請求項1〜6のいずれか一つに記載の鋳造銑鉄用の接種合金。   7. Inoculated alloy for cast pig iron according to any one of claims 1 to 6, characterized in that it is prepared in the form of a slag for "in-mold" processing. スラグが溶融合金の鋳造によって得られることを特徴とする、請求項8に記載の鋳造銑鉄用の接種合金。   9. Inoculated alloy for cast pig iron according to claim 8, characterized in that the slag is obtained by casting a molten alloy. スラグが粉末の塊状化によって得られることを特徴とする、請求項8に記載の鋳造銑鉄用の接種合金。   9. Inoculated alloy for cast pig iron according to claim 8, characterized in that slag is obtained by agglomeration of powder. 粉末の粒度が1mmよりも小さく、50μmと250μmの間に含まれる粒度分析の断片が、総重量の35%を超え、50μm未満の断片が25%未満に相当することを特徴とする、請求項10に記載の鋳造銑鉄用の接種合金。   The particle size of the powder is smaller than 1 mm, and the size analysis fragments contained between 50 μm and 250 μm represent more than 35% of the total weight and less than 50 μm fragments correspond to less than 25%. 10. The inoculated alloy for cast pig iron according to 10. 合金の平均的な組成が、異なった組成の合金の粉末の混合によって得られることを特徴とする、請求項10または請求項11に記載の鋳造銑鉄用の接種合金。   12. Inoculated alloy for cast pig iron according to claim 10 or 11, characterized in that the average composition of the alloy is obtained by mixing powders of alloys of different compositions.
JP2004501648A 2002-04-29 2003-04-24 Inoculated alloys to prevent micro sinkholes for casting pig iron processing Abandoned JP2005528522A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0205385A FR2839082B1 (en) 2002-04-29 2002-04-29 ANTI MICRORETASSURE INOCULATING ALLOY FOR TREATMENT OF MOLD SHAPES
PCT/FR2003/001295 WO2003093514A2 (en) 2002-04-29 2003-04-24 Inoculation alloy against micro-shrinkage cracking for treating cast iron castings

Publications (1)

Publication Number Publication Date
JP2005528522A true JP2005528522A (en) 2005-09-22

Family

ID=28800032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004501648A Abandoned JP2005528522A (en) 2002-04-29 2003-04-24 Inoculated alloys to prevent micro sinkholes for casting pig iron processing

Country Status (13)

Country Link
US (1) US20050180876A1 (en)
EP (1) EP1499750A2 (en)
JP (1) JP2005528522A (en)
KR (1) KR20040097396A (en)
CN (1) CN1665941A (en)
AU (1) AU2003265514A1 (en)
BR (1) BR0309658A (en)
CA (1) CA2484036A1 (en)
FR (1) FR2839082B1 (en)
MX (1) MXPA04010671A (en)
NO (1) NO20045177L (en)
WO (1) WO2003093514A2 (en)
ZA (1) ZA200408584B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503460A (en) * 2012-11-14 2016-02-04 フェロペム Inoculant alloys for thick cast iron parts

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855186B1 (en) * 2003-05-20 2005-06-24 Pechiney Electrometallurgie INOCULATING PRODUCTS CONTAINING BISMUTH AND RARE EARTHS
US20130056398A1 (en) * 2006-12-08 2013-03-07 Visys Nv Apparatus and method for inspecting and sorting a stream of products
CN102814491B (en) * 2012-09-09 2013-06-12 吉林大学 High-strength gray cast iron enhancer and strengthening treatment process thereof
US20140345557A1 (en) * 2013-05-23 2014-11-27 Caterpillar Inc. Thermal Spray Coated Engine Valve for Increased Wear Resistance
US11859270B2 (en) 2016-09-12 2024-01-02 Snam Alloys Pvt Ltd Non-magnesium process to produce compacted graphite iron (CGI)
CN106544462B (en) * 2016-10-25 2018-06-29 嘉善蓝欣涂料有限公司 A kind of nodular cast iron inoculant and its preparation method and application
CN107841588A (en) * 2017-12-13 2018-03-27 南京浦江合金材料股份有限公司 A kind of the sial lanthanum nucleating agent and its preparation technology of anti-iron casting shrinkage porosite
NO20172061A1 (en) * 2017-12-29 2019-07-01 Elkem Materials Cast iron inoculant and method for production of cast iron inoculant
CN114317864B (en) * 2022-03-17 2022-06-24 勤威(天津)工业有限公司 Smelting process for reducing shrinkage porosity in nodular cast iron

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841490A (en) * 1952-02-27 1958-07-01 Int Nickel Co Method for making improved gray cast iron
FR1525645A (en) * 1966-05-24 1968-10-23 Vanadium Corp Of America Improvements to nodular cast iron preparation processes
FR2421948A1 (en) * 1978-04-06 1979-11-02 Pro Chi Met Produits Chim Meta PROCESS FOR THE PREPARATION OF FERROUS ALLOYS SENSITIVELY FREE OF CERIUM, ALLOWING IN PARTICULAR IMPROVEMENT OF THEIR MECHANICAL PROPERTIES THANKS TO THE USE OF LANTHANE, AND FERROUS ALLOYS OBTAINED BY THIS PROCESS
JPS5616613A (en) * 1979-07-21 1981-02-17 Toyota Motor Corp Additive for cast iron
US4363661A (en) * 1981-04-08 1982-12-14 Ford Motor Company Method for increasing mechanical properties in ductile iron by alloy additions
FR2511044A1 (en) * 1981-08-04 1983-02-11 Nobel Bozel FERRO-ALLOY FOR THE TREATMENT OF INOCULATION OF SPHEROIDAL GRAPHITE FONT
DE3147461C2 (en) * 1981-12-01 1983-10-13 Goetze Ag, 5093 Burscheid Wear-resistant cast iron alloy of high strength with spherulitic graphite precipitation, its manufacturing process and its use
JPS59197345A (en) * 1983-04-22 1984-11-08 Osaka Tokushu Gokin Kk Production of cv cast iron
DE3726272A1 (en) * 1987-08-07 1989-02-16 Metallgesellschaft Ag METHOD FOR VACCATING CAST IRON
FR2635534B1 (en) * 1988-08-12 1992-04-03 Pechiney Electrometallurgie PROCESS FOR OBTAINING SPHEROIDAL GRAPHITE FOUNDS
DE3924558C1 (en) * 1989-07-25 1990-11-22 Skw Trostberg Ag, 8223 Trostberg, De
JP2626417B2 (en) * 1992-05-28 1997-07-02 信越化学工業株式会社 Graphite spheroidizing alloy in mold and graphite spheroidizing method
US5580401A (en) * 1995-03-14 1996-12-03 Copeland Corporation Gray cast iron system for scroll machines
FR2750143B1 (en) * 1996-06-25 1998-08-14 Pechiney Electrometallurgie FERROALLIAGE FOR INOCULATION OF SPHEROIDAL GRAPHITE FOUNDS
NO306169B1 (en) * 1997-12-08 1999-09-27 Elkem Materials Cast iron grafting agent and method of making grafting agent
US6793707B2 (en) * 2002-01-10 2004-09-21 Pechiney Electrometallurgie Inoculation filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503460A (en) * 2012-11-14 2016-02-04 フェロペム Inoculant alloys for thick cast iron parts

Also Published As

Publication number Publication date
WO2003093514A2 (en) 2003-11-13
ZA200408584B (en) 2005-12-28
MXPA04010671A (en) 2004-12-13
WO2003093514A3 (en) 2004-04-01
US20050180876A1 (en) 2005-08-18
KR20040097396A (en) 2004-11-17
BR0309658A (en) 2005-02-22
FR2839082B1 (en) 2004-06-04
FR2839082A1 (en) 2003-10-31
CA2484036A1 (en) 2003-11-13
EP1499750A2 (en) 2005-01-26
CN1665941A (en) 2005-09-07
NO20045177L (en) 2004-11-26
AU2003265514A1 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
RU2700220C1 (en) Cast iron modifier and method for production of cast iron modifier
JP4974591B2 (en) Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same
RU2701587C1 (en) Cast iron modifier and method of producing cast iron modifier
RU1813113C (en) Cast iron modifier
KR102493172B1 (en) Cast iron inoculants and methods of producing cast iron inoculants
WO1995024508A1 (en) Cast iron inoculant and method for production of cast iron inoculant
CN104812922A (en) Inoculant alloy for thick cast-iron parts
JP2005528522A (en) Inoculated alloys to prevent micro sinkholes for casting pig iron processing
EP1126037A1 (en) Production of nodular cast iron involving a preliminary inoculation in the casting ladle
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
US20060225858A1 (en) Process for making inoculation inserts
KR102581323B1 (en) Mold powder and mold coating
WO1998000571A1 (en) Strontium-aluminum intermetallic alloy granules
JP2000073129A (en) Production of metal-ceramic composite material for casting
JP4323607B2 (en) Inoculant for spheroidal graphite cast iron and method for producing the same
JP3842906B2 (en) Cast iron having fine graphite on ferrite ground and manufacturing method thereof
RU2177041C1 (en) Method of gray cast iron production
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JP3837477B2 (en) Method for producing alumina particle dispersed composite material
SU1585370A1 (en) Iron innoculating agent
JPH1029035A (en) Metallic particle casting mold
JP2011074414A (en) Graphite spheroidizing agent and graphite spheroidizing treatment method for molten iron
JPH0820812A (en) Production of ductile cast iron
JPS6077945A (en) Manufacture of metallic material containing dispersed particle
RU2316608C1 (en) Modifying agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080310