JP2005354809A - Temperature adjustment structure of electric motor - Google Patents

Temperature adjustment structure of electric motor Download PDF

Info

Publication number
JP2005354809A
JP2005354809A JP2004173068A JP2004173068A JP2005354809A JP 2005354809 A JP2005354809 A JP 2005354809A JP 2004173068 A JP2004173068 A JP 2004173068A JP 2004173068 A JP2004173068 A JP 2004173068A JP 2005354809 A JP2005354809 A JP 2005354809A
Authority
JP
Japan
Prior art keywords
electric motor
temperature control
control structure
cooling
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004173068A
Other languages
Japanese (ja)
Inventor
Yasuhiko Yamagishi
泰彦 山岸
Ryuichi Idoguchi
隆一 井戸口
Yoshinori Nakano
良宣 中野
Yasushi Kasai
靖 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004173068A priority Critical patent/JP2005354809A/en
Publication of JP2005354809A publication Critical patent/JP2005354809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the temperature adjustment structure of an electric motor capable of enhancing cooling efficiency, while suppressing the electric motor from being enlarged in size. <P>SOLUTION: A case 9 accommodating the stator 2 of the electric motor 1 and a rotor 5 is equipped with a plurality of first cooling flow passages 24 having substantially a circular cross-section which are arranged substantially in parallel with each other at an interval, and with second cooling flow passages 25 which are arranged in substantially parallel with each other between the first cooling flow passages 24 and are formed smaller in diameter than the first cooling flow passages 24. This enables the second cooling flow passages 25 to be extended by using the space created by the first cooling flow passages 24, resulting in improving the cooling efficiency of the electric motor 1 while preventing the electric motor 1 from being enlarged in size. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電動機の温調構造に関する。   The present invention relates to a temperature control structure of an electric motor.

従来の電動機の温調構造には、電動機を冷却するため、回転子および固定子を収容する略筒状のケースに、軸方向に延びる冷却流路を周方向に向けて複数配列したものがある(例えば特許文献1照)。
実開平6−36355号公報(第1図)
2. Description of the Related Art Conventional temperature control structures for electric motors include a substantially cylindrical case that accommodates a rotor and a stator and a plurality of axially extending cooling channels arranged in the circumferential direction in order to cool the motor. (For example, see Patent Document 1).
Japanese Utility Model Publication No. 6-36355 (FIG. 1)

ここで、前記従来の温調構造において冷却効率を向上させる場合、冷却流路の径を大きくすると、ケースが大きくなり電動機全体が大きくなってしまう。そのため、電動機の占有スペースに制限がある場合は、冷却効率を向上できない場合がある。   Here, in the case of improving the cooling efficiency in the conventional temperature control structure, if the diameter of the cooling flow path is increased, the case becomes larger and the entire motor becomes larger. For this reason, when the space occupied by the electric motor is limited, the cooling efficiency may not be improved.

そこで、本発明は、電動機の大型化を抑えつつも冷却効率を向上できる電動機の温調構造の提供を目的とする。   Therefore, an object of the present invention is to provide a temperature control structure for an electric motor that can improve cooling efficiency while suppressing an increase in size of the electric motor.

前記目的を達成するために、この発明の電動機の温調構造は、電動機の外装を形成するケースと、前記ケースに収容され磁力を発生する磁力発生部を有する固定子と、前記固定子の磁力によって回転し且つ回転力を外部に出力する出力軸を有する回転子と、を備え、
前記ケースには、互いに略平行に設けられ且つ間隔をあけて配列された複数の断面略円形の第一冷却流路と、前記第一冷却流路同士の間に略平行に配置され且つ前記第一冷却流路よりも小径に形成された第二冷却流路と、を備えることを特徴とするものである。
In order to achieve the above object, a temperature control structure of an electric motor according to the present invention includes a case that forms an exterior of the electric motor, a stator that is housed in the case and has a magnetic force generation unit that generates magnetic force, and a magnetic force of the stator. And a rotor having an output shaft that rotates and outputs rotational force to the outside,
The case is provided with a plurality of substantially circular first cooling channels provided substantially parallel to each other and arranged at intervals, and between the first cooling channels and the first cooling channels. And a second cooling channel formed with a smaller diameter than the one cooling channel.

この発明によれば、第一冷却流路に対して第二冷却流路を小径にしたことで、第一冷却流路同士の間に生じるスペースを利用して冷却流路の総通路断面積を増やすことができる。これによりケースの大型化を押さえつつ電動機の冷却効率を向上できる。つまり電動機の大型化を押さえつつも電動機の冷却効率を向上できる。   According to this invention, since the second cooling flow path has a smaller diameter than the first cooling flow path, the total passage cross-sectional area of the cooling flow path is obtained using the space generated between the first cooling flow paths. Can be increased. Thereby, the cooling efficiency of the electric motor can be improved while suppressing the enlargement of the case. That is, the cooling efficiency of the motor can be improved while suppressing the increase in size of the motor.

以下、この発明の実施形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〔第1実施形態〕
本実施形態の電動機の温調構造について図1から図3を参照しながら説明する。図1は本実施形態で用いる電動機の断面図、図2は図1におけるII−II断面、図3は本実施形態の電動機の温調構造の模式図である。
[First Embodiment]
The temperature control structure of the electric motor of this embodiment will be described with reference to FIGS. 1 is a cross-sectional view of an electric motor used in the present embodiment, FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and FIG. 3 is a schematic diagram of a temperature control structure of the electric motor of the present embodiment.

まず図1および図2を参照しながら電動機1の構成について説明する。電動機1(この例では同期方式の交流電動機)は、固定子2と、回転子5と、ケース9と、備えている。   First, the configuration of the electric motor 1 will be described with reference to FIGS. 1 and 2. The electric motor 1 (in this example, a synchronous AC electric motor) includes a stator 2, a rotor 5, and a case 9.

固定子2は、略円柱状の回転子5の外周側を取り囲むように略円筒状に形成されている。固定子2は、磁束を発生する磁力発生部としてのコイル3と、このコイル3を保持するとともに磁束が通る磁路を形成する固定子コア4と、を備えている。   The stator 2 is formed in a substantially cylindrical shape so as to surround the outer peripheral side of the substantially columnar rotor 5. The stator 2 includes a coil 3 as a magnetic force generator that generates a magnetic flux, and a stator core 4 that holds the coil 3 and forms a magnetic path through which the magnetic flux passes.

回転子5は、磁石を内蔵し磁路を形成する略円柱形状の回転子コア6と、回転子コア6の中心軸線上に設けられ外部に回転力を伝達する出力軸7と、を備えている。   The rotor 5 includes a substantially cylindrical rotor core 6 that includes a magnet and forms a magnetic path, and an output shaft 7 that is provided on the central axis of the rotor core 6 and transmits a rotational force to the outside. Yes.

ケース9は、回転子5および固定子2を収容する。このケース9は、固定子2の外周面に沿って形成された筒状(この例では円筒状)のケース本体14と、ケース本体14の前端開口部を覆う前部カバー15と、ケース本体14の後端開口部を覆う後部カバー16と、を備えている。これら前部カバー15および後部カバー16には、軸受8を介して回転子5の出力軸7が回転自在に支持されている。   The case 9 accommodates the rotor 5 and the stator 2. The case 9 includes a cylindrical (in this example, cylindrical) case main body 14 formed along the outer peripheral surface of the stator 2, a front cover 15 that covers the front end opening of the case main body 14, and the case main body 14. And a rear cover 16 covering the rear end opening. An output shaft 7 of the rotor 5 is rotatably supported by the front cover 15 and the rear cover 16 via a bearing 8.

電動機1の前端側(図1中右側)には、ケース9内に端子台が設置されている。この端子台は、ケース9内面に固定されている端子台本体10と、端子台本体10を覆う端子台カバー23と、を備えて構成されている。コイル3の一部であるコイルリード線11とこのコイルリード線11に接続されるケーブルKとは、U相、V相、W相の各相ごとに端子台本体10にナット13で固定されている。ケーブルKは、ケース9及び端子台本体10を貫通するように保持され、電動機1に要求出力に応じた電流を通電する。この通電により固定子2のコイル3が励磁することで回転子5が回転し、出力軸7の回転力(動力)を電動機1外で取り出すことができる。なお、端子台はケーブルKの揺動を防ぐ機能を有するとともに、各相の端子12同士の間の絶縁機能、端子12とケース9との間の絶縁機能を有する。   A terminal block is installed in the case 9 on the front end side (right side in FIG. 1) of the electric motor 1. The terminal block includes a terminal block main body 10 fixed to the inner surface of the case 9 and a terminal block cover 23 that covers the terminal block main body 10. The coil lead wire 11 which is a part of the coil 3 and the cable K connected to the coil lead wire 11 are fixed to the terminal block body 10 with nuts 13 for each of the U phase, V phase and W phase. Yes. The cable K is held so as to pass through the case 9 and the terminal base body 10 and energizes the electric motor 1 with a current corresponding to the required output. When the coil 3 of the stator 2 is excited by this energization, the rotor 5 rotates, and the rotational force (power) of the output shaft 7 can be taken out of the electric motor 1. The terminal block has a function of preventing the cable K from swinging, and also has an insulating function between the terminals 12 of each phase and an insulating function between the terminal 12 and the case 9.

電動機1後端側(図1中左側)には、出力軸7の回転角度を検出する回転センサ(本実施例ではレゾルバ)が設置されている。この回転センサとしてのレゾルバは、レゾルバ固定子18とレゾルバ回転子19とを備えて構成されており、レゾルバカバー17で覆われている。レゾルバ回転子19は、出力軸7端部に固定されて、出力軸7すなわち回転子5と一体的に回転する。一方、レゾルバ固定子18は、レゾルバ回転子19の外周側に配置され、コイル3すなわち固定子2と相対位置が一致している。これにより、レゾルバは、レゾルバ固定子18とレゾルバ回転子19との位置関係により、固定子2のコイル3と回転子5内の磁石との位置関係を検出できるようになっている。   A rotation sensor (resolver in this embodiment) that detects the rotation angle of the output shaft 7 is installed on the rear end side of the electric motor 1 (left side in FIG. 1). The resolver as the rotation sensor includes a resolver stator 18 and a resolver rotor 19, and is covered with a resolver cover 17. The resolver rotor 19 is fixed to the end of the output shaft 7 and rotates integrally with the output shaft 7, that is, the rotor 5. On the other hand, the resolver stator 18 is disposed on the outer peripheral side of the resolver rotor 19, and the relative position coincides with the coil 3, that is, the stator 2. Thereby, the resolver can detect the positional relationship between the coil 3 of the stator 2 and the magnet in the rotor 5 based on the positional relationship between the resolver stator 18 and the resolver rotor 19.

次に、電動機1の温調構造について説明する。   Next, the temperature control structure of the electric motor 1 will be described.

電動機1のケース9には、図1および図2に示すように電動機1を冷却するための冷却流路(第一冷却流路24及び第二冷却流路25)が設けられている。   As shown in FIGS. 1 and 2, the case 9 of the electric motor 1 is provided with cooling passages (first cooling passage 24 and second cooling passage 25) for cooling the electric motor 1.

第一冷却流路24は、図1に示すようにケース本体14の軸方向に沿って略平行に設けられ、また図2に示すように固定子2に近接するようにケース本体14の内周面に沿って円周方向に等間隔に配列されている。   The first cooling flow path 24 is provided substantially in parallel along the axial direction of the case main body 14 as shown in FIG. 1, and the inner periphery of the case main body 14 is close to the stator 2 as shown in FIG. It is arranged at equal intervals in the circumferential direction along the surface.

一方、第二冷却流路25は、図2に示すように第一冷却流路24より小径に形成され、且つ、第一冷却流路24同士の間のスペースに第一冷却流路24と平行に設けられている。この第二冷却流路25も第一冷却流路24と同様に固定子2に近接するようにケース本体14の内周面に沿って円周方向に等間隔に配列されている。   On the other hand, as shown in FIG. 2, the second cooling channel 25 is formed with a smaller diameter than the first cooling channel 24, and is parallel to the first cooling channel 24 in the space between the first cooling channels 24. Is provided. Similarly to the first cooling flow path 24, the second cooling flow path 25 is also arranged at equal intervals in the circumferential direction along the inner peripheral surface of the case body 14 so as to be close to the stator 2.

これら冷却流路24、25は、冷媒(この例では冷却水)を循環させる図示せぬ冷媒循環路回路に接続されている。具体的には、図3に示すように冷却流路24、25は、その上流側が冷媒入口26およびチャンバー(分配部)22を介して循環回路に接続されており、下流側がチャンバー(合流部)21および冷媒出口27を介して循環回路に接続されている。実際に、図示せぬポンプにより冷媒循環回路内を冷媒が循環すると、電動機1内に導入される冷媒は、冷媒入口26→チャンバー22→冷却流路24、25→チャンバー21→冷媒出口27の経路を経て、電動機1外に排出される。   The cooling channels 24 and 25 are connected to a refrigerant circuit circuit (not shown) that circulates the refrigerant (cooling water in this example). Specifically, as shown in FIG. 3, the cooling channels 24 and 25 are connected to the circulation circuit on the upstream side via the refrigerant inlet 26 and the chamber (distribution unit) 22 and on the downstream side the chamber (confluence unit). 21 and the refrigerant outlet 27 are connected to the circulation circuit. Actually, when the refrigerant circulates in the refrigerant circulation circuit by a pump (not shown), the refrigerant introduced into the electric motor 1 is the path of the refrigerant inlet 26 → the chamber 22 → the cooling flow path 24, 25 → the chamber 21 → the refrigerant outlet 27. Then, it is discharged out of the electric motor 1.

ここで、第二冷却流路25には図3に示すように開閉弁30が設けられていて、第二冷却流路25を開閉できるとともにその流量を調整できるようになっている。この実施形態では、開閉弁30は、制御器29からの信号により開閉制御が行われる。図3中符号31は制御線であり、図3中符号32は制御線31が貫通する開口を密閉するためのシール材である。   Here, the second cooling flow path 25 is provided with an on-off valve 30 as shown in FIG. 3, so that the second cooling flow path 25 can be opened and closed and its flow rate can be adjusted. In this embodiment, the opening / closing valve 30 is controlled to open and close by a signal from the controller 29. Reference numeral 31 in FIG. 3 is a control line, and reference numeral 32 in FIG. 3 is a sealing material for sealing an opening through which the control line 31 passes.

制御器29は、電動機1の固定子2のコイル3の温度をモニタし、このコイル3の検出温度に基づいて制御信号を生成して開閉弁30の弁開度を制御する。制御器29は、コイル温度が第1設定温度以上になると開閉弁30を開き且つコイル温度が第1設定温度から離れるにしたがって開閉弁30の弁開度を大きくなるように制御している。なお、第1設定温度は電動機1を運転するのに適切な温度範囲のうちの一点であり、実験やシュミレーションなどの結果を基に予め設定される。例えば電動機1の適正温度範囲の上限値に近い一点に設定される。   The controller 29 monitors the temperature of the coil 3 of the stator 2 of the electric motor 1, generates a control signal based on the detected temperature of the coil 3, and controls the valve opening degree of the on-off valve 30. The controller 29 controls the opening / closing valve 30 to be opened when the coil temperature becomes equal to or higher than the first set temperature, and the opening degree of the opening / closing valve 30 is increased as the coil temperature moves away from the first set temperature. The first set temperature is one point in a temperature range suitable for operating the electric motor 1 and is set in advance based on the results of experiments, simulations, and the like. For example, it is set to one point close to the upper limit value of the appropriate temperature range of the electric motor 1.

次に、本実施形態の作用について説明する。   Next, the operation of this embodiment will be described.

図示せぬ制御器からの要求出力に応じて、ケーブルKおよびコイルリード線11を介して三相(U相、V相、W相)のコイル3に電流が流れると、固定子2のコイル3で発生する磁束と、回転子5の磁石と、の磁場作用により回転子5が回転する。この回転子5の回転を電動機1のケース9外に露出する出力軸7から取り出して、動力として利用する。   When a current flows to the three-phase (U-phase, V-phase, W-phase) coil 3 via the cable K and the coil lead wire 11 in response to a required output from a controller (not shown), the coil 3 of the stator 2 The rotor 5 is rotated by the magnetic field action of the magnetic flux generated in the above and the magnet of the rotor 5. The rotation of the rotor 5 is taken out from the output shaft 7 exposed outside the case 9 of the electric motor 1 and used as power.

この際、コイル3は発熱する。コイル3の温度は、平常時には第1冷却流路24を流れる冷媒によって冷却されてコイル3の適正温度範囲内に維持される。しかし、コイル3の温度は、高負荷時には第1冷却流路24を流れる冷媒だけでは次第に上昇してしまう場合がある。このような場合、コイル3の温度が第1設定温度を超えた際に制御器29の制御信号により開閉弁30が開いて、第二冷却流路25に冷媒が流れる。これにより、コイル3の温度が適正温度範囲よりも高温にオーバーシュートしないようになっている。なお、開閉弁30はふたたび第1設定温度以下になると開閉弁30は完全に閉じる。   At this time, the coil 3 generates heat. The temperature of the coil 3 is normally cooled by the refrigerant flowing through the first cooling flow path 24 and maintained within the appropriate temperature range of the coil 3. However, the temperature of the coil 3 may gradually increase with only the refrigerant flowing through the first cooling flow path 24 at a high load. In such a case, when the temperature of the coil 3 exceeds the first set temperature, the on-off valve 30 is opened by the control signal of the controller 29, and the refrigerant flows through the second cooling passage 25. As a result, the temperature of the coil 3 does not overshoot higher than the appropriate temperature range. Note that the on-off valve 30 is completely closed when the on-off valve 30 is once again below the first set temperature.

このように第1実施形態では以下の効果を得ることができる。   Thus, in the first embodiment, the following effects can be obtained.

(1)この第1実施形態によれば、第二冷却流路25を第一冷却流路24より小径にして第一冷却流路24同士の間に設けたので、第一冷却流路24の空きスペースを利用して第二冷却流路25を増設できる。そのため、電動機1の大型化を防止しつつ電動機1の冷却効率を向上できる。   (1) According to the first embodiment, since the second cooling flow path 25 has a smaller diameter than the first cooling flow path 24 and is provided between the first cooling flow paths 24, The second cooling flow path 25 can be expanded using the empty space. Therefore, the cooling efficiency of the electric motor 1 can be improved while preventing the electric motor 1 from being enlarged.

また、第一冷却流路24及び第二冷却流路25の断面を略円形とし、且つ、それぞれの冷却流路を互いに平行に設けたので、機械加工により容易に冷却流路24および25を制作できる。なお、本発明において略円形とは楕円形や5角形以上の角形を含むものとする。   In addition, since the first cooling flow path 24 and the second cooling flow path 25 have substantially circular cross sections, and the respective cooling flow paths are provided in parallel to each other, the cooling flow paths 24 and 25 can be easily manufactured by machining. it can. In the present invention, the term “substantially circular” includes an ellipse or a pentagon or more.

(2)また、この第1実施形態によれば、流路24および流路25の断面が真円形であるため、特に機械加工が容易となる。   (2) Further, according to the first embodiment, since the cross sections of the flow path 24 and the flow path 25 are perfectly circular, machining is particularly easy.

(3)また、この第1実施形態によれば、冷却流路24、25を筒状のケース本体14の軸方向(この例では出力軸7の軸線と一致する)に向けて設けたため、ケース本体の14の肉厚も最も薄くできる。   (3) Further, according to the first embodiment, the cooling flow paths 24 and 25 are provided in the axial direction of the cylindrical case main body 14 (in this example, coincident with the axis of the output shaft 7). The thickness of 14 of the main body can be made the thinnest.

(4)また、この第1実施形態によれば、第二冷却流路25を開閉する開閉弁30を備えるため、発熱があまり多くない平常時には第一冷却流路24のみに冷媒を流通させ、発熱量が多くなる高負荷時には第一冷却流路24に加えて第二冷却流路25にも冷媒を流通させることができる。このように平常時と高負荷時とで冷媒流量を変更できるため、高負荷時には冷却効率を向上させて電動機1の最大出力を向上でき、一方、平常時には電動機1の過冷却を防止でき、且つ、冷媒循環回路のポンプの吐出負荷を軽減できる。   (4) Further, according to the first embodiment, since the on-off valve 30 for opening and closing the second cooling passage 25 is provided, the refrigerant is circulated only in the first cooling passage 24 during normal times when the heat generation is not so much. When the heat generation amount is high and the load is high, the refrigerant can be circulated through the second cooling passage 25 in addition to the first cooling passage 24. Since the refrigerant flow rate can be changed between the normal time and the high load in this way, the cooling efficiency can be improved and the maximum output of the electric motor 1 can be improved at the high load, while the overcooling of the electric motor 1 can be prevented in the normal time. The discharge load of the refrigerant circulation circuit pump can be reduced.

(5)また、この第1実施形態によれば、開閉弁30は弁開度(冷媒流量)を調整可能なタイプであるため、第二冷却流路25を開いた際にも第二冷却流路25を流通する冷媒流量を調整できる。これにより電動機1の温度制御がさらに容易になる。   (5) Further, according to the first embodiment, the on-off valve 30 is a type that can adjust the valve opening degree (refrigerant flow rate). The flow rate of the refrigerant flowing through the passage 25 can be adjusted. Thereby, the temperature control of the electric motor 1 is further facilitated.

(6)また、この第1実施形態によれば開閉弁30の弁開度は電動機1の温度に基づくので、その他の因子(例えばコイルの電流量や出力軸の負荷など)を基づくものと比べ、確実に電動機1を適正温度範囲内に維持できる利点がある。   (6) Further, according to the first embodiment, the opening degree of the on-off valve 30 is based on the temperature of the electric motor 1, so that it is compared with those based on other factors (for example, the amount of current in the coil and the load on the output shaft). There is an advantage that the electric motor 1 can be reliably maintained within an appropriate temperature range.

(7)なお、本発明では開閉弁としては例えば温度に応じて自身が変形するバイメタルを用いて開閉弁を構成してもよい。しかしこの第1実施形態によれば、制御器29による外部制御により開閉される開閉弁30であるため、任意のタイミング及び電動機1の温度変化に素早く追従でき、制御性に優れる利点がある。   (7) In the present invention, as the on-off valve, for example, the on-off valve may be configured by using a bimetal that deforms itself depending on the temperature. However, according to the first embodiment, since the on-off valve 30 is opened and closed by external control by the controller 29, it is possible to quickly follow any timing and temperature change of the electric motor 1, and there is an advantage of excellent controllability.

(8)また、この第1実施形態によれば、制御器29が検出する電動機1の温度が発熱部位であるコイル3の温度であるため、さらに制御性に優れる利点がある。   (8) Further, according to the first embodiment, since the temperature of the electric motor 1 detected by the controller 29 is the temperature of the coil 3 that is a heat generating portion, there is an advantage that the controllability is further excellent.

〔第2実施形態〕
次に本発明の第2実施形態について図4および図5を参照しつつ説明する。なお、以下の実施形態で第1実施形態と同一または類似の構成については同一符号を付けて構成ならびにその作用効果の説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. In the following embodiments, the same or similar configurations as those in the first embodiment are denoted by the same reference numerals, and the description of the configurations and the effects thereof are omitted.

この第2実施形態は、開閉弁の変形例を示すものであり、図4(a)及び図5(a)は図1中II−II断面に対応する模式図であり、図4(b)及び図5(b)は第二冷却流路25と開閉弁33の位置関係を示す模式図である。なお、図4は第二冷却流路25が閉の状態すなわち第二冷却流路25に冷媒が流れていない状態を示し、図5は第二冷却流路25が開の状態すなわち第二冷却流路25に冷媒が流れている状態を示している。   This 2nd Embodiment shows the modification of an on-off valve, FIG. 4 (a) and FIG. 5 (a) is a schematic diagram corresponding to the II-II cross section in FIG. 1, FIG.4 (b). FIG. 5B is a schematic diagram showing the positional relationship between the second cooling flow path 25 and the on-off valve 33. 4 shows a state in which the second cooling channel 25 is closed, that is, a state in which no refrigerant flows through the second cooling channel 25, and FIG. 5 shows a state in which the second cooling channel 25 is open, that is, the second cooling channel. A state in which the refrigerant is flowing in the path 25 is shown.

この第2実施形態の開閉弁33は、第1実施形態の開閉弁30と異なり、一つの部材からなる開閉弁33で全ての第二冷却流路25を開閉できるものである。この開閉弁33は、略ドーナツ形状のプレートで形成され、第二冷却流路25と同一形状の開口部33aが第二冷却流路25と同じ数だけ同じ間隔で設けられている。この開閉弁33は、ケース本体14と後部カバー16の間に回転スライド可能に配置され、ケース9内に設けられた小型電動機34により回転駆動するようになっている。小型電動機34は制御線31を介して制御器29と接続され、制御線31が通る電動機1の開口部にはシール材32が設けられている。   Unlike the on-off valve 30 of the first embodiment, the on-off valve 33 of the second embodiment can open and close all the second cooling flow paths 25 with the on-off valve 33 made of one member. The on-off valve 33 is formed of a substantially donut-shaped plate, and the same number of openings 33 a having the same shape as the second cooling channel 25 are provided at the same interval as the second cooling channel 25. The on-off valve 33 is disposed between the case main body 14 and the rear cover 16 so as to be rotatable and slidable. The small motor 34 is connected to the controller 29 via the control line 31, and a sealing material 32 is provided at the opening of the electric motor 1 through which the control line 31 passes.

次に、この第2実施形態の作用について説明する。   Next, the operation of the second embodiment will be described.

この第2実施形態は基本的に第1実施形態と同様であるので、開閉弁33の作用についてのみ説明する。制御器29は、電動機1のコイル温度を測定した値が第1設定温度以上と判断した場合は、小型電動機34を回転させて開閉弁33の開口部33aと第二冷却流路25が同位置となるようにする。これにより、冷媒が第二冷却流路25にも流れることとなる。一方、制御器29は、電動機1のコイル温度を測定した値が第1設定温度以下と判断した場合は、小型電動機34を再び回転させて開閉弁33開口部33aと第二冷却流路25が重ならない位置となるようにする。これにより、第二冷却流路25には冷媒が流入しないこととなる。   Since the second embodiment is basically the same as the first embodiment, only the operation of the on-off valve 33 will be described. When the controller 29 determines that the measured value of the coil temperature of the electric motor 1 is equal to or higher than the first set temperature, the small electric motor 34 is rotated so that the opening 33a of the on-off valve 33 and the second cooling flow path 25 are in the same position. To be. As a result, the refrigerant also flows into the second cooling flow path 25. On the other hand, when the controller 29 determines that the measured value of the coil temperature of the electric motor 1 is equal to or lower than the first set temperature, the small electric motor 34 is rotated again so that the opening / closing valve 33 opening 33a and the second cooling flow path 25 are Make sure that they do not overlap. As a result, the refrigerant does not flow into the second cooling channel 25.

このようにこの第2実施形態では以下の効果を得る。   Thus, the following effects are obtained in the second embodiment.

第2実施形態では、第1実施形態のように開閉弁30を各第二冷却流路25ごとに設けるのではなく、一つの開閉弁33で複数(この例では全て)の第二冷却流路25を開閉できるので、第1実施形態と比較して部品点数を削減ができる。また、組付作業性が向上する。   In the second embodiment, the open / close valve 30 is not provided for each second cooling flow path 25 as in the first embodiment, but a plurality of (all in this example) second cooling flow paths are formed by one open / close valve 33. Since 25 can be opened and closed, the number of parts can be reduced as compared with the first embodiment. Also, the assembly workability is improved.

〔第3実施形態〕
第3実施形態を図6を参照しながら説明する。図6は図2相当の断面図である。この第3実施形態の電動機1は、燃料電池車の駆動電動機として構成されていおり、電動機1の温調構造は電動機1に付設された燃料電池システムの一部25Aを利用したものである。
[Third Embodiment]
A third embodiment will be described with reference to FIG. 6 is a cross-sectional view corresponding to FIG. The electric motor 1 of the third embodiment is configured as a drive electric motor for a fuel cell vehicle, and the temperature control structure of the electric motor 1 uses a part 25A of the fuel cell system attached to the electric motor 1.

この第3実施形態では、冷却用の第二冷却流路25の一部を電動機1の暖気のために用いる点で第1実施形態と異なっている。   The third embodiment is different from the first embodiment in that a part of the second cooling flow path 25 for cooling is used for warming up the electric motor 1.

電動機1外には、圧縮機35(なお、圧縮機35は図示せぬ他の電動機で駆動する)で圧縮した空気(温媒)を燃料電池37へ送るための送風通路(温媒流通路)40が設けられている。この送風通路40には、この送風通路40と、電動機1の冷却通路25の一部の冷却流路25Aと、を連通する連通路41(41a、41b)が接続されており、これにより送風通路40を流通する空気の少なくとも一部を、図6中矢示43に示すように冷却流路25Aにバイパスさせることが可能となっている。連通路41には開度を調整可能な調整弁36が設けられ、この調整弁36の開度は制御器38により制御されるようになっている。なお、図6中符号31は制御器38と調整弁36とをつなぐ制御線であり、図6中符号32は連通路41が貫通する電動機1の開口部に設けられたシール材32である。   Outside the electric motor 1, a blower passage (heating medium flow passage) for sending air (warming medium) compressed by a compressor 35 (the compressor 35 is driven by another electric motor not shown) to the fuel cell 37. 40 is provided. The air passage 40 is connected to a communication passage 41 (41a, 41b) that communicates the air passage 40 with a part of the cooling passage 25A of the cooling passage 25 of the electric motor 1, thereby providing the air passage. At least a part of the air flowing through 40 can be bypassed to the cooling flow path 25A as indicated by an arrow 43 in FIG. The communication passage 41 is provided with an adjustment valve 36 whose opening degree can be adjusted, and the opening degree of the adjustment valve 36 is controlled by a controller 38. In FIG. 6, reference numeral 31 is a control line connecting the controller 38 and the regulating valve 36, and reference numeral 32 in FIG. 6 is a sealing material 32 provided at the opening of the electric motor 1 through which the communication path 41 passes.

次に、この第3実施形態の作用を説明する。   Next, the operation of the third embodiment will be described.

この第3実施形態の作用は基本的に第1実施形態と同様で、以下の点を追加したものである。制御器38は、システム稼働時(特に起動直後)において図示せぬ温度センサの検出結果により電動機1のコイル温度が第2設定温度より低いと判断した場合、これに基づき調整弁36を開き、第2設定温度より低ければ低いほどバイパス流量を増やすように制御する。   The operation of the third embodiment is basically the same as that of the first embodiment, and the following points are added. When the controller 38 determines that the coil temperature of the electric motor 1 is lower than the second set temperature based on the detection result of a temperature sensor (not shown) during system operation (especially immediately after startup), the controller 38 opens the adjustment valve 36 based on this, Control is performed such that the lower the set temperature is, the higher the bypass flow rate is.

なお、第2設定温度は電動機1を運転するのに適切な温度範囲のうちの一点で且つ前記第1設定温度以下(第1設定温度も含む)の温度であり、実験やシュミレーションなどの結果を基に予め設定される。例えば電動機1の適正温度範囲の下限値に近い一点に設定される。   The second set temperature is one point in the temperature range suitable for operating the electric motor 1 and is a temperature not more than the first set temperature (including the first set temperature). It is preset based on this. For example, it is set to one point close to the lower limit value of the appropriate temperature range of the electric motor 1.

このように第3実施形態では以下の効果を得ることができる。   Thus, in the third embodiment, the following effects can be obtained.

この第3実施形態によれば、第二冷却流路25の一部25Aに空気圧縮機35で圧縮した高温空気(温媒)を流通自在な構成により、電動機1が冷えすぎて問題となる場合に電動機1を暖めることが可能となる。   According to the third embodiment, when the high-temperature air (warm medium) compressed by the air compressor 35 can flow freely through a part 25A of the second cooling flow path 25, the electric motor 1 gets too cold and causes a problem. The electric motor 1 can be warmed up.

例えば、電動機1が永久磁石式同期電動機である場合、磁石の磁力は低温になるほど強くなる。そのため、電動機1外部(車両の駆動軸)から高回転で出力軸7および回転子5が回転させられ、かつ、電動機1が低温であるために固定子2側の磁力発生の強くなると、電動機1の端子12間に過電圧が発生する可能性がある。しかし、この第3実施形態では、車両走行用電動機1において、過電圧が発生する可能性のある磁石温度(第2設定温度以下)では、電動機1ケース9を暖めて過電圧が出ない程度の温度まで上昇させてから車両の運転を開始することで過電圧の発生を回避できる。   For example, when the electric motor 1 is a permanent magnet type synchronous motor, the magnetic force of the magnet becomes stronger as the temperature becomes lower. Therefore, when the output shaft 7 and the rotor 5 are rotated at high speed from the outside of the motor 1 (vehicle drive shaft), and the motor 1 is at a low temperature, the generation of magnetic force on the stator 2 side becomes strong. There is a possibility that an overvoltage may occur between the terminals 12. However, in the third embodiment, in the motor 1 for vehicle travel, at a magnet temperature at which overvoltage may occur (below the second set temperature), the motor 1 case 9 is heated to a temperature at which no overvoltage is generated. The occurrence of overvoltage can be avoided by starting the operation of the vehicle after raising it.

また、この第3実施形態によれば、電動機1の温度として電動機1の発熱源であるコイル温度を直接検出することで、温調制御を素早くできる利点がある。   Further, according to the third embodiment, there is an advantage that the temperature control can be quickly performed by directly detecting the coil temperature, which is the heat generation source of the electric motor 1, as the temperature of the electric motor 1.

なお、第3実施形態においては、電動機1の温度が低いときに加熱できる構造であれば、本発明にあってはその他の構造に変更してもよい。また、第3実施形態のように燃料電池システム中の温媒を利用して加熱する構造に限られず、本発明にあってはその他のシステムの温媒を利用する構造であってもよい。   In addition, in 3rd Embodiment, if it is a structure which can be heated when the temperature of the electric motor 1 is low, you may change into another structure in this invention. Moreover, it is not restricted to the structure heated using the heating medium in a fuel cell system like 3rd Embodiment, In this invention, the structure using the heating medium of another system may be sufficient.

なお、本発明においては例えば、以下のような変更が可能である。
第1〜第3実施形態ではコイル温度を基準に第二冷却流路25の開閉制御を行っているが、本発明では電動機の温度であればコイル以外のその他の部位の温度を基準にしてもよい。また、その他の因子を基準にしてもよい。
In the present invention, for example, the following modifications are possible.
In the first to third embodiments, the opening / closing control of the second cooling flow path 25 is performed based on the coil temperature. However, in the present invention, the temperature of other parts other than the coil can be used as a reference if the temperature of the motor. Good. Further, other factors may be used as a reference.

また、第1〜第3実施形態においては冷却流路24、25の形状を軸方向に平行な流路としたが、本発明では流路形状を限定するものではなく例えばUターン型にしてもよい。また、冷媒の流通方向も限定するものではない。   In the first to third embodiments, the shape of the cooling channels 24 and 25 is a channel parallel to the axial direction. However, in the present invention, the channel shape is not limited and, for example, a U-turn type is used. Good. Further, the flow direction of the refrigerant is not limited.

また、本発明では第一冷却流路及び第二冷却流路の数は電動機1の発熱量に応じて設計変更できる。   In the present invention, the number of the first cooling channels and the number of the second cooling channels can be changed according to the amount of heat generated by the electric motor 1.

また、本発明では冷却流路の断面形状を真円形としたが楕円形にしてもよい。   In the present invention, the cross-sectional shape of the cooling flow path is a perfect circle, but may be an elliptical shape.

また、本発明では第二冷却流路の開閉弁は、第二冷却流路を開閉できれば開閉弁の種類は例えばスライス式開閉弁、フラッパ式開閉弁、バタフライ式開閉弁、ボール式開閉弁などに限られずその他の形態であってもよい。   In the present invention, the on-off valve of the second cooling channel can be, for example, a slice type on-off valve, a flapper type on-off valve, a butterfly on-off valve, a ball type on-off valve, etc. It is not limited, and other forms may be used.

本発明の第1実施形態に係る電動機の軸方向の断面図である。It is sectional drawing of the axial direction of the electric motor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る電動機の円周方向の断面図である。It is sectional drawing of the circumferential direction of the electric motor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る電動機の温調構造の模式図である。It is a schematic diagram of the temperature control structure of the electric motor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る電動機の温調構造の第二冷却流路未使用時を示す模式図である。It is a schematic diagram which shows the time of the 2nd cooling flow path unused of the temperature control structure of the electric motor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る電動機の温調構造の第二冷却流路使用時を示す模式図である。It is a schematic diagram which shows the time of the 2nd cooling flow path use of the temperature control structure of the electric motor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る電動機の温調構造の模式図である。It is a schematic diagram of the temperature control structure of the electric motor which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…電動機
2…固定子
3…コイル(磁気発生部)
5…回転子
7…出力軸
9…ケース
24…第一冷却流路
25…第二冷却流路
29…制御器
30…開閉弁
33…開閉弁
35…圧縮機
36…調整弁(加熱機構)
37…燃料電池
40…温媒流通路(加熱機構)
41…連通路(加熱機構)
43…温媒の流通方向
F…冷媒の流通方向
DESCRIPTION OF SYMBOLS 1 ... Electric motor 2 ... Stator 3 ... Coil (magnetic generation part)
DESCRIPTION OF SYMBOLS 5 ... Rotor 7 ... Output shaft 9 ... Case 24 ... 1st cooling flow path 25 ... 2nd cooling flow path 29 ... Controller 30 ... On-off valve 33 ... On-off valve 35 ... Compressor 36 ... Adjustment valve (heating mechanism)
37 ... Fuel cell 40 ... Heat medium flow passage (heating mechanism)
41. Communication path (heating mechanism)
43: Heat medium flow direction F: Refrigerant flow direction

Claims (8)

電動機の外装を形成するケースと、
前記ケースに収容され磁力を発生させる磁力発生部を有する固定子と、
前記固定子の磁力によって回転する回転子と、
を備え、
前記ケースには、互いに略平行に設けられ且つ間隔をあけて配列された複数の断面略円形の第一冷却流路と、前記第一冷却流路同士の間に略平行に配置され且つ前記第一冷却流路よりも小径に形成された第二冷却流路と、を備えることを特徴とする電動機の温調構造。
A case forming the exterior of the electric motor;
A stator having a magnetic force generating part that is housed in the case and generates a magnetic force;
A rotor that rotates by the magnetic force of the stator;
With
The case is provided with a plurality of substantially circular first cooling channels provided substantially parallel to each other and arranged at intervals, and between the first cooling channels and the first cooling channels. And a second cooling flow path having a smaller diameter than the one cooling flow path.
請求項1に記載の電動機の温調構造であって、
前記第二冷却流路を開閉する開閉弁を備えることを特徴とする電動機の温調構造。
The temperature control structure of the electric motor according to claim 1,
An electric motor temperature control structure comprising an on-off valve that opens and closes the second cooling channel.
請求項2に記載の電動機の温調構造であって、
前記開閉弁は、前記第二冷却流路の開度を調整自在であることを特徴とする電動機の温調構造。
It is the temperature control structure of the electric motor according to claim 2,
The opening / closing valve is capable of adjusting the opening degree of the second cooling channel, and the temperature control structure of the electric motor.
請求項3に記載の電動機の温調構造であって、
前記開閉弁の弁開度は、前記電動機の温度に基づいて開閉されることを特徴とする電動機の温調構造。
The temperature control structure of the electric motor according to claim 3,
The valve opening degree of the on-off valve is opened and closed based on the temperature of the electric motor.
請求項4に記載の電動機の温調構造であって、
前記電動機の温度に基づいて前記開閉弁の弁開度を制御する制御器を備えることを特徴とする電動機の温調構造。
The temperature control structure of the electric motor according to claim 4,
A temperature control structure for an electric motor, comprising a controller for controlling a valve opening degree of the on-off valve based on a temperature of the electric motor.
請求項1〜5の何れか1項に記載の電動機の温調構造であって、
前記電動機を加熱自在な加熱機構をさらに備えることを特徴とする電動機の温調構造。
It is the temperature control structure of the electric motor of any one of Claims 1-5,
A temperature control structure for an electric motor, further comprising a heating mechanism capable of heating the electric motor.
請求項6に記載の電動機の温調構造であって、
前記加熱機構は、
前記電動機外に設けられ且つ温媒が流通する温媒流通路と、
前記温媒流通路と前記冷却流路の少なくとも一つとを接続して前記温媒流通路の温媒の少なくとも一部を該冷却流路にバイパスさせる連通路と、
前記連通路の開度を調整可能な調整弁と、
を備えることを特徴とする電動機の温調構造。
It is the temperature control structure of the electric motor of Claim 6, Comprising:
The heating mechanism is
A heating medium flow passage provided outside the electric motor and through which the heating medium flows;
A communication path that connects at least one of the heating medium flow path and at least one of the cooling flow paths to bypass at least a part of the heating medium in the heating medium flow path to the cooling flow path;
An adjustment valve capable of adjusting the opening of the communication path;
A temperature control structure for an electric motor comprising:
請求項7に記載の電動機の温調構造であって、
前記温媒流通路は、
燃料電池システムの一部を構成するもので、且つ、圧縮機で圧縮した空気を燃料電池に送風するための送風通路であることを特徴とする電動機の温調構造。
The temperature control structure of the electric motor according to claim 7,
The heating medium flow path is
A temperature control structure of an electric motor, which constitutes a part of a fuel cell system and is a ventilation passage for blowing air compressed by a compressor to a fuel cell.
JP2004173068A 2004-06-10 2004-06-10 Temperature adjustment structure of electric motor Pending JP2005354809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173068A JP2005354809A (en) 2004-06-10 2004-06-10 Temperature adjustment structure of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173068A JP2005354809A (en) 2004-06-10 2004-06-10 Temperature adjustment structure of electric motor

Publications (1)

Publication Number Publication Date
JP2005354809A true JP2005354809A (en) 2005-12-22

Family

ID=35588789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173068A Pending JP2005354809A (en) 2004-06-10 2004-06-10 Temperature adjustment structure of electric motor

Country Status (1)

Country Link
JP (1) JP2005354809A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055757A1 (en) * 2008-11-14 2010-05-20 住友重機械工業株式会社 Liquid-cooled motor
JP2011259611A (en) * 2010-06-09 2011-12-22 Toyota Motor Corp Cooling structure of electric motor
JP2012100524A (en) * 2010-11-04 2012-05-24 Siemens Ag Welded manifold for stator housing segment
JP2012152011A (en) * 2011-01-19 2012-08-09 Fuji Electric Co Ltd Stator of rotary electric machine
CN105790507A (en) * 2016-04-25 2016-07-20 中国船舶重工集团公司第七0四研究所 Motor cooling water jacket structure
WO2018019461A1 (en) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft System having an electric machine with a cryogenic component, and method for operating the system
CN110429762A (en) * 2019-08-14 2019-11-08 浙江特种电机有限公司 New-energy automobile ultra-high efficient motor cooling system loop structure and its installation method
CN112366881A (en) * 2020-10-14 2021-02-12 杭州乔纳森机电科技有限公司 Internal circulation heat dissipation constant temperature motor casing and motor with same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055757A1 (en) * 2008-11-14 2010-05-20 住友重機械工業株式会社 Liquid-cooled motor
JP2010119265A (en) * 2008-11-14 2010-05-27 Sumitomo Heavy Ind Ltd Liquid-cooled motor
JP2011259611A (en) * 2010-06-09 2011-12-22 Toyota Motor Corp Cooling structure of electric motor
JP2012100524A (en) * 2010-11-04 2012-05-24 Siemens Ag Welded manifold for stator housing segment
JP2012152011A (en) * 2011-01-19 2012-08-09 Fuji Electric Co Ltd Stator of rotary electric machine
CN105790507A (en) * 2016-04-25 2016-07-20 中国船舶重工集团公司第七0四研究所 Motor cooling water jacket structure
WO2018019461A1 (en) * 2016-07-29 2018-02-01 Siemens Aktiengesellschaft System having an electric machine with a cryogenic component, and method for operating the system
US20190157964A1 (en) * 2016-07-29 2019-05-23 Siemens Aktiengesellschaft System having an electric machine with a cryogenic component, and a method for operating the system
CN109874370A (en) * 2016-07-29 2019-06-11 西门子公司 With with low-temperature components motor system and for the method for operating system
US11038411B2 (en) * 2016-07-29 2021-06-15 Rolls-Royce Deutschland Ltd & Co Kg System having an electric machine with a cryogenic component, and a method for operating the system
CN110429762A (en) * 2019-08-14 2019-11-08 浙江特种电机有限公司 New-energy automobile ultra-high efficient motor cooling system loop structure and its installation method
CN110429762B (en) * 2019-08-14 2024-05-03 浙江特种电机有限公司 New energy automobile motor cooling system loop structure and installation method thereof
CN112366881A (en) * 2020-10-14 2021-02-12 杭州乔纳森机电科技有限公司 Internal circulation heat dissipation constant temperature motor casing and motor with same

Similar Documents

Publication Publication Date Title
JP4894438B2 (en) Centrifugal pump
JP4563475B2 (en) Rotating electric machine
JP5642393B2 (en) Electromechanical cooling
CN111279086B (en) Centrifugal compressor
KR20070077765A (en) Motor-driven supercharger
JP2009542168A (en) Method and apparatus for cooling an electric machine
EP0913582B1 (en) Pump motor having sumbersible stator and rotor
JP2000179339A (en) Cooling water circulating device
EP2605379B1 (en) System and Method for Cooling Dynamoelectric Machine
KR101911782B1 (en) Air blower for fuel cell vehicle
JP4576309B2 (en) Rotating electric machine
JP2005354809A (en) Temperature adjustment structure of electric motor
EP2333937A1 (en) Rotor of rotary-electric machine
JP2003102147A (en) Cooling device for motor
WO2002071577A1 (en) Rotary electric machinery
KR20140097676A (en) A device for cooling a motor
JP4780328B2 (en) Supercharger with electric motor
US10815868B2 (en) Cooling control device
CN109742903A (en) Vehicle and its hub motor cooling system, hub motor heat dissipating method
KR101737154B1 (en) Air blower for fuel cell vehicle
JP2002018745A (en) Power tool
JP2007002764A (en) Drive control device for water pump and cooling water circulation device
JP4728187B2 (en) Rotating electric machine
GB2401911A (en) Fan with cooling means for a hair dryer motor
JP7210373B2 (en) Rotating electric machine