JP2005354281A - Ultrasonic probe for high temperature - Google Patents

Ultrasonic probe for high temperature Download PDF

Info

Publication number
JP2005354281A
JP2005354281A JP2004171328A JP2004171328A JP2005354281A JP 2005354281 A JP2005354281 A JP 2005354281A JP 2004171328 A JP2004171328 A JP 2004171328A JP 2004171328 A JP2004171328 A JP 2004171328A JP 2005354281 A JP2005354281 A JP 2005354281A
Authority
JP
Japan
Prior art keywords
heat
resistant
soft metal
resistant soft
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004171328A
Other languages
Japanese (ja)
Inventor
Takahiro Arakawa
敬弘 荒川
Akira Kato
加藤  明
Masahiro Hato
昌洋 鳩
Nobuto Takizawa
宣人 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawajima Inspection and Instrumentation Co Ltd
Original Assignee
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Inspection and Instrumentation Co Ltd filed Critical Ishikawajima Inspection and Instrumentation Co Ltd
Priority to JP2004171328A priority Critical patent/JP2005354281A/en
Publication of JP2005354281A publication Critical patent/JP2005354281A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic probe for high temperature that can be manufactured without using any special processes, such as brazing in a vacuum furnace, can improve yields, can stabilize quality, can reduce manufacturing time, can reduce manufacturing costs, does not cause performance to deteriorate much even after long-term repetitive use, and is capable of measurement accurately even if a mount position is at high temperature. <P>SOLUTION: The ultrasonic probe for high temperature comprises a conductive pedestal 12 having a detection inner surface 12a in contact with a non-measurement surface 1 and a detection inner surface 12b in parallel with the detection outer surface; a flat piezoelectric element 16 adhering to the detection inner surface via a first heat-resistant soft metal 14a; a flat pressurization member 18 for pressurizing the piezoelectric element toward the detection inner surface via a second heat-resistant soft metal 14b; a heat-resistant energization member 20 for energizing the pressurization member toward the detection inner surface; and a reaction receiving member 22 that is made of an insulating material, comes into contact with a heat-resistant energization member, and receives the reaction of energization force. The piezoelectric element 16, the measurement inner surface 12b, and the pressurization member 18 are adhered by the deformation of the first heat-resistant soft metal 14a and the second heat-resistant soft metal 14b, and voltage is applied between the pedestal 12 and the pressurization member 18 or voltage is measured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超音波探傷試験、超音波厚さ計測、アコースチックエミッション(AE)の計測、等に用いる高温用超音波探触子に関する。   The present invention relates to a high-temperature ultrasonic probe used for an ultrasonic flaw detection test, ultrasonic thickness measurement, acoustic emission (AE) measurement, and the like.

超音波は物体中において特定の方向に集中して出すことができ、また音響インピーダンンス、すなわち(密度)×(音速)の異なった境界面で反射する。従ってこの性質を利用して、超音波探傷試験、超音波厚さ計測、等に用いることができる。また、亀裂が進展するときなどに超音波が発生するので、超音波センサを取り付けておくことで亀裂進展の有無などを測定するアコースチックエミッション(AE)の計測に用いることができる。以下、これらの試験又は計測用のセンサを「超音波探触子」と総称する。   Ultrasound can be concentrated in a specific direction in an object, and is reflected at different interfaces of acoustic impedance, that is, (density) × (sound speed). Therefore, this property can be used for ultrasonic flaw detection tests, ultrasonic thickness measurement, and the like. Further, since an ultrasonic wave is generated when a crack progresses, it can be used for measurement of acoustic emission (AE) in which the presence or absence of crack propagation is measured by attaching an ultrasonic sensor. Hereinafter, these test or measurement sensors are collectively referred to as “ultrasonic probe”.

超音波探傷試験用の超音波探触子として、耐熱許容限界温度を550〜600℃まで高めたものが[特許文献1]に開示されている。
また、在来の超音波センサを用いて高温配管の減肉量を配管の外側から計測する手段が[特許文献2]に開示されている。
[Patent Document 1] discloses an ultrasonic probe for an ultrasonic flaw detection test in which the allowable temperature limit for heat resistance is increased to 550 to 600 ° C.
Further, [Patent Document 2] discloses a means for measuring a thinning amount of a high-temperature pipe from the outside of the pipe using a conventional ultrasonic sensor.

特許文献1の「超音波探傷装置の探触子」は、図8に示すように、被探傷物51に取り付けられる超音波伝達部材54に、一対の電極56a、56bの間に挟まれた振動子55を積層してなる超音波探傷装置の探触子52において、振動子55をニオブ酸リチウムで形成すると共に、この振動子55と超音波伝達部材54との間に、これらを直接アルミ系ろう材で接合してアルミ系の耐熱性電極層Aを形成し、これを電極としたものである。なおこの図で、53は接触媒体である。   As shown in FIG. 8, the “probe of an ultrasonic flaw detector” of Patent Document 1 is a vibration sandwiched between a pair of electrodes 56 a and 56 b on an ultrasonic transmission member 54 attached to an inspection object 51. In the probe 52 of the ultrasonic flaw detector formed by laminating the elements 55, the vibrator 55 is formed of lithium niobate, and these are directly placed between the vibrator 55 and the ultrasonic transmission member 54 in an aluminum system. An aluminum-based heat-resistant electrode layer A is formed by bonding with a brazing material, and this is used as an electrode. In this figure, reference numeral 53 denotes a contact medium.

特許文献2の「高温構造物への超音波センサの取付方法及び装置」は、図9に示すように、高温構造物61の表面に、超音波センサ62のセンサヘッド62aの先端面を、軟質緩衝金属板69を介して当接配置した後、センサヘッド62aを高温構造物1の表面へ向けて押し付けることにより、軟質緩衝金属板69を塑性変形させ密着させた状態として、超音波センサ62を取り付けるものである。   As shown in FIG. 9, the “Method and apparatus for attaching an ultrasonic sensor to a high-temperature structure” in Patent Document 2 is configured such that the tip surface of the sensor head 62 a of the ultrasonic sensor 62 is softly attached to the surface of the high-temperature structure 61. The ultrasonic sensor 62 is placed in a state in which the soft buffer metal plate 69 is plastically deformed and brought into close contact by pressing the sensor head 62a toward the surface of the high temperature structure 1 after being placed in contact with the buffer metal plate 69. Attached.

特公平07−46095号公報、「超音波探傷装置の探触子」Japanese Examined Patent Publication No. 07-46095, “Probe of ultrasonic flaw detector” 特開平11−304777号公報、「高温構造物への超音波センサの取付方法及び装置」Japanese Patent Application Laid-Open No. 11-304777, “Method and apparatus for attaching an ultrasonic sensor to a high-temperature structure”

接着剤を用いて圧電素子を取り付けた通常のセンサは、許容限界温度が低く(150〜200℃)、そのため超音波センサを低温に保持する必要があった。
一方、特許文献1の超音波探触子は、以下の問題点があった。
(1)振動子55と超音波伝達部材54とを直接アルミ系ろう材で接合するため、製作時にろう付工程を必要とする。このろう付工程は、ろう材の酸化を防ぐ特殊工程(例えば真空炉内ろう付)を必要とするため、ろう付け不良による歩留まりが低く、安定した品質が得難く、かつ製造時間が長く、製造コストが高い。
(2)また、アルミ系ろう材は酸化しやすく酸化による劣化が激しいため、製造直後には耐熱許容限界温度は高い(550〜600℃)が、長期に繰り返し使用すると性能低下が激しい。
(3)さらに、センサ取付位置が高温の場合、ろう付部分が軟化し、甚だしい場合には接合部が剥離し、正確な計測ができなくなる。
A normal sensor having a piezoelectric element attached using an adhesive has a low allowable limit temperature (150 to 200 ° C.), and therefore, it is necessary to keep the ultrasonic sensor at a low temperature.
On the other hand, the ultrasonic probe of Patent Document 1 has the following problems.
(1) Since the vibrator 55 and the ultrasonic transmission member 54 are directly joined with an aluminum brazing material, a brazing process is required at the time of manufacture. This brazing process requires a special process (for example, brazing in a vacuum furnace) that prevents oxidation of the brazing material, so the yield due to poor brazing is low, stable quality is difficult to obtain, and the manufacturing time is long. Cost is high.
(2) In addition, since the aluminum-based brazing material is easy to oxidize and severely deteriorates due to oxidation, the allowable temperature limit for heat resistance is high immediately after production (550 to 600 ° C.), but the performance deteriorates drastically when used repeatedly for a long time.
(3) Furthermore, when the sensor mounting position is high temperature, the brazed portion is softened, and when it is severe, the joint is peeled off and accurate measurement cannot be performed.

本発明は、かかる要望を解決するために創案されたものである。すなわち、本発明の目的は、真空炉内ろう付のような特殊工程を用いることなく製造することができ、歩留まりを高め、品質を安定化し、製造時間を短縮し、製造コストを低減することができ、長期に繰り返し使用しても性能低下が少なく、取付位置が高温でも正確な計測ができる高温用超音波探触子を提供することにある。   The present invention has been developed to solve such a demand. That is, the object of the present invention is to be able to manufacture without using a special process such as brazing in a vacuum furnace, to increase the yield, stabilize the quality, shorten the manufacturing time, and reduce the manufacturing cost. It is possible to provide a high-temperature ultrasonic probe capable of performing accurate measurement even when the mounting position is high, even if used repeatedly for a long time.

本発明によれば、非計測面に接する検出外面と該検出外面に任意の角度を持つ平面である検出内面とを有する導電性の台座と、前記検出内面に第1耐熱軟金属を介して密着する平板状の圧電素子と、該圧電素子を第2耐熱軟金属を介して検出内面に向けて加圧する導電性の加圧部材と、該加圧部材を検出内面に向けて付勢する耐熱付勢部材と、耐熱付勢部材に接触し前記付勢力の反力を受ける反力受部材とを備え、前記台座と加圧部材は、互いに絶縁されており、前記第1耐熱軟金属及び第2耐熱軟金属の変形により圧電素子と計測内面及び加圧部材とを密着させ、台座と加圧部材間に電圧を印加し又は電圧を計測することを特徴とする高温用超音波探触子が提供される。   According to the present invention, a conductive pedestal having a detection outer surface in contact with a non-measurement surface and a detection inner surface that is a plane having an arbitrary angle with the detection outer surface, and the detection inner surface are in close contact with each other via a first heat-resistant soft metal. A plate-shaped piezoelectric element, a conductive pressure member that presses the piezoelectric element toward the detection inner surface via a second heat-resistant soft metal, and heat resistance that biases the pressure member toward the detection inner surface An urging member and a reaction force receiving member that contacts the heat-resistant urging member and receives the reaction force of the urging force, the base and the pressure member being insulated from each other, the first heat-resistant soft metal and the second A high-temperature ultrasonic probe is provided, in which a piezoelectric element, a measurement inner surface, and a pressure member are brought into close contact with each other by deformation of a heat-resistant soft metal, and voltage is applied between the pedestal and the pressure member or voltage is measured. Is done.

本発明の構成によれば、加圧部材と検出内面との間に第1耐熱軟金属と第2耐熱軟金属を介して圧電素子を挟持し、かつ耐熱付勢部材の付勢力により第1耐熱軟金属及び第2耐熱軟金属を変形させて圧電素子と検出内面及び加圧部材とを密着させるので、音響インピーダンンスの大きく異なる境界面を無くし、雑音となる反射を低減することができる。
また、前記台座と加圧部材は、互いに絶縁されているので、この状態で台座と加圧部材間に電圧を印加し又は電圧を計測することにより、加圧部材と台座間の電圧変化により、超音波探傷試験、超音波厚さ計測、アコースチックエミッション(AE)の計測、等を行うことができる。
また、耐熱付勢部材の付勢力により第1耐熱軟金属及び第2耐熱軟金属を変形させて圧電素子と検出内面及び加圧部材とを密着させるので、ろう付なしに製造することができ、歩留まりを高め、品質を安定化し、製造時間を短縮し、製造コストを低減することができる。
さらに、第1の耐熱軟金属及び第2の耐熱軟金属として酸化や劣化の少ない金属を用いることができるので、長期に繰り返し使用しても性能低下を防止できる。
また、加圧部材で間隔を隔てた耐熱付勢部材は取付位置よりも低温にできるので、取付位置が高温でも正確な計測ができる。
According to the configuration of the present invention, the piezoelectric element is sandwiched between the pressure member and the detection inner surface via the first heat-resistant soft metal and the second heat-resistant soft metal, and the first heat-resistant force is applied by the urging force of the heat-resistant urging member. Since the soft metal and the second heat-resistant soft metal are deformed to bring the piezoelectric element, the detection inner surface, and the pressure member into close contact with each other, it is possible to eliminate a greatly different interface between acoustic impedances and reduce reflection that causes noise.
Further, since the pedestal and the pressure member are insulated from each other, in this state, by applying a voltage between the pedestal and the pressure member or measuring the voltage, a voltage change between the pressure member and the pedestal, An ultrasonic flaw detection test, ultrasonic thickness measurement, acoustic emission (AE) measurement, and the like can be performed.
Moreover, since the first heat-resistant soft metal and the second heat-resistant soft metal are deformed by the urging force of the heat-resistant urging member and the piezoelectric element, the detection inner surface and the pressure member are brought into close contact with each other, it can be manufactured without brazing, Yield can be increased, quality can be stabilized, manufacturing time can be shortened, and manufacturing cost can be reduced.
Furthermore, since a metal with little oxidation and deterioration can be used as the first heat-resistant soft metal and the second heat-resistant soft metal, performance deterioration can be prevented even when used repeatedly for a long time.
Moreover, since the heat-resistant urging member spaced by the pressurizing member can be made lower in temperature than the mounting position, accurate measurement can be performed even when the mounting position is high.

本発明の好ましい実施形態によれば、前記台座に一端が連結され、内部に検出内面側から順に前記第1耐熱軟金属、圧電素子、第2耐熱軟金属、加圧部材、耐熱付勢部材及び反力受部材を収容する中空空洞を有し、他端部に反力受部材を検出内面に向けて移動可能な受部材移動手段を有する本体を備える。   According to a preferred embodiment of the present invention, one end is connected to the pedestal, and the first heat-resistant soft metal, the piezoelectric element, the second heat-resistant soft metal, the pressure member, the heat-resistant biasing member, A main body having a hollow cavity for accommodating the reaction force receiving member and having a receiving member moving means capable of moving the reaction force receiving member toward the detection inner surface at the other end.

この構成により、本体の中空空洞内に構成部材(第1耐熱軟金属、圧電素子、第2耐熱軟金属、加圧部材、耐熱付勢部材及び反力受部材)を全て収容して全体を一体化できる。また、一体化することにより、構成部材を本体内に密封でき、信頼性を高めることができる。
さらに、受部材移動手段により反力受部材を移動することにより、耐熱付勢部材の付勢力を調整することができる。
With this configuration, all the constituent members (first heat-resistant soft metal, piezoelectric element, second heat-resistant soft metal, pressure member, heat-resistant biasing member, and reaction force receiving member) are accommodated in the hollow cavity of the main body and integrated as a whole. Can be Moreover, by integrating, a structural member can be sealed in a main body and reliability can be improved.
Furthermore, the urging force of the heat-resistant urging member can be adjusted by moving the reaction force receiving member by the receiving member moving means.

前記反力受部材又は加圧部材は、加圧部材に接続された信号線を通す貫通穴を有するセラミックス製の中空部材である
この構成により、反力受部材の貫通穴を通して圧電素子の加圧部材側(第2耐熱軟金属又は加圧部材)から外部に信号線を接続することができる。
The reaction force receiving member or the pressing member is a ceramic hollow member having a through hole through which a signal line connected to the pressing member passes. With this configuration, the piezoelectric element is pressed through the through hole of the reaction force receiving member. A signal line can be connected to the outside from the member side (second heat-resistant soft metal or pressure member).

また、前記反力受部材と加圧部材の間に、加圧部材から延びた縮径部分を通す貫通穴を有する断熱中空部材を備える、ことが好ましい。
この構成により、断熱中空部材で間隔を隔てた耐熱付勢部材を一層低温に保持できるので、取付位置が高温でも正確な計測ができる。
Moreover, it is preferable to provide the heat insulation hollow member which has a through-hole which lets the reduced diameter part extended from the pressurization member pass between the said reaction force receiving member and a pressurization member.
With this configuration, the heat-resistant urging members spaced apart by the heat insulating hollow members can be held at a lower temperature, so that accurate measurement can be performed even when the mounting position is high.

前記耐熱付勢部材は、所定の温度範囲で高い弾性率を有する耐熱金属製の圧縮バネであり、前記第1耐熱軟金属及び第2耐熱軟金属は、所定の温度範囲で圧縮バネの付勢力で変形可能な耐熱金属製平板である。   The heat-resistant biasing member is a compression spring made of a heat-resistant metal having a high elastic modulus in a predetermined temperature range, and the first heat-resistant soft metal and the second heat-resistant soft metal are biased by the compression spring in a predetermined temperature range. It is a heat resistant metal flat plate that can be deformed by

また前記圧電素子は、ニオブ酸リチウム単結晶であり、前記圧縮バネは、インコネル又はチタンからなる積層皿バネであり、前記第1の耐熱軟金属及び第2の耐熱軟金属は、金、銀、銅、アルミニウム、又はこれらの合金からなる平板であるのがよい。   The piezoelectric element is a lithium niobate single crystal, the compression spring is a laminated disc spring made of inconel or titanium, and the first heat-resistant soft metal and the second heat-resistant soft metal are gold, silver, It may be a flat plate made of copper, aluminum, or an alloy thereof.

上述したように、本発明の高温用超音波探触子は、真空炉内ろう付のような特殊工程を用いることなく製造することができ、歩留まりを高め、品質を安定化し、製造時間を短縮し、製造コストを低減することができ、長期に繰り返し使用しても性能低下が少なく、取付位置が高温でも正確な計測ができる、等の優れた効果を有する。   As described above, the ultrasonic probe for high temperature of the present invention can be manufactured without using a special process such as brazing in a vacuum furnace, increasing the yield, stabilizing the quality, and shortening the manufacturing time. In addition, the manufacturing cost can be reduced, and even when used repeatedly for a long period of time, the performance is less likely to be reduced.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明による高温用超音波探触子の第1実施形態を示す断面図である。この図に示すように、本発明の高温用超音波探触子は、台座12、圧電素子16、圧電素子の両面を挟持する第1耐熱軟金属14a及び第2耐熱軟金属14b、加圧部材18、耐熱付勢部材20、反力受部材22及び受部材移動手段24を備える。   FIG. 1 is a cross-sectional view showing a first embodiment of a high-temperature ultrasonic probe according to the present invention. As shown in this figure, the ultrasonic probe for high temperature of the present invention includes a pedestal 12, a piezoelectric element 16, a first heat-resistant soft metal 14a and a second heat-resistant soft metal 14b that sandwich both surfaces of the piezoelectric element, and a pressure member. 18, a heat-resistant urging member 20, a reaction force receiving member 22, and a receiving member moving means 24.

台座12は、導電性部材であり、この例で、本体10にネジ部13aで連結されている。本体10は、この例ではネジ部13bで互いに結合された2つの本体部材10a,10bからなる。2つの本体部材10a,10bはこの例では導電性部材からなる。   The pedestal 12 is a conductive member, and in this example, the pedestal 12 is connected to the main body 10 by a screw portion 13a. In this example, the main body 10 includes two main body members 10a and 10b that are coupled to each other by a screw portion 13b. The two main body members 10a and 10b are made of conductive members in this example.

台座12は、非計測面に接する検出外面12aと検出外面に任意の角度を持つ平面である検出内面12bとを有する。なお、本実施例の場合、検出内面12bは、検出外面12aに平行である。
また本体12は、内部に中空空洞11を有し、この中空空洞11内に検出内面側から順に第1耐熱軟金属14a、圧電素子16、第2耐熱軟金属14b、加圧部材18、耐熱付勢部材20、反力受部材22及び受部材移動手段24を収容する。
検出外面12aと非計測面1との接触面は、図示しない手段(例えば、接触媒体、ネジ、バネ、溶接、ろう付け、接着)により音響インピーダンンスの大きく異なる境界面が発生しないように接続する。
The pedestal 12 has a detection outer surface 12a that is in contact with the non-measurement surface and a detection inner surface 12b that is a plane having an arbitrary angle with respect to the detection outer surface. In the case of the present embodiment, the detection inner surface 12b is parallel to the detection outer surface 12a.
The main body 12 has a hollow cavity 11 therein, and the first heat-resistant soft metal 14a, the piezoelectric element 16, the second heat-resistant soft metal 14b, the pressurizing member 18, and the heat-resistant body are sequentially provided in the hollow cavity 11 from the detection inner surface side. The urging member 20, the reaction force receiving member 22, and the receiving member moving means 24 are accommodated.
The contact surface between the detection outer surface 12a and the non-measurement surface 1 is connected so as not to generate a boundary surface with greatly different acoustic impedances by means not shown (for example, contact medium, screw, spring, welding, brazing, adhesion). .

第1耐熱軟金属14a及び第2耐熱軟金属14bは、所定の温度範囲(例えば100〜600℃)で耐熱付勢部材20の付勢力で変形可能な耐熱金属製平板である。この耐熱金属製平板は、例えば、金、銀、銅、アルミニウム、又はこれらの合金からなる平板であるのがよい。
またこの図で15は、第1耐熱軟金属14a及び第2耐熱軟金属14bと本体12の間に位置する中空円筒形の絶縁部材である。
The first heat-resistant soft metal 14a and the second heat-resistant soft metal 14b are heat-resistant metal flat plates that can be deformed by the urging force of the heat-resistant urging member 20 in a predetermined temperature range (for example, 100 to 600 ° C.). The refractory metal flat plate may be, for example, a flat plate made of gold, silver, copper, aluminum, or an alloy thereof.
In this figure, reference numeral 15 denotes a hollow cylindrical insulating member positioned between the first heat-resistant soft metal 14 a and the second heat-resistant soft metal 14 b and the main body 12.

圧電素子16は、好ましくはキューリー点が1200℃近傍にあるニュブ酸リチウム単結晶であり、検出内面12bに第1耐熱軟金属14aを介して密着する。
加圧部材18は、圧電素子16を第2耐熱軟金属14bを介して検出内面12bに向けて加圧する。この加圧部材18は、導電性部材からなり、この一部に信号線2が接続される。
The piezoelectric element 16 is preferably a lithium niobate single crystal having a Curie point near 1200 ° C., and is in close contact with the detection inner surface 12b via the first heat-resistant soft metal 14a.
The pressurizing member 18 pressurizes the piezoelectric element 16 toward the detection inner surface 12b through the second heat-resistant soft metal 14b. The pressure member 18 is made of a conductive member, and the signal line 2 is connected to a part of the pressure member 18.

耐熱付勢部材20は、加圧部材18を検出内面12bに向けて付勢する。この耐熱付勢部材20は、所定の温度範囲(例えば100〜600℃)で高い弾性率を有する耐熱金属製の圧縮バネであり、例えば、インコネル又はチタンからなる積層皿バネである。なお、所定の温度範囲で必要となる撓み量とバネ常数を得るために、皿バネは直列に積層し、かつ重ねて用いるのがよい。   The heat-resistant urging member 20 urges the pressing member 18 toward the detection inner surface 12b. The heat-resistant urging member 20 is a compression spring made of a heat-resistant metal having a high elastic modulus in a predetermined temperature range (for example, 100 to 600 ° C.), for example, a laminated disc spring made of inconel or titanium. In order to obtain the amount of deflection and the spring constant required in a predetermined temperature range, the disc springs are preferably stacked in series and used in layers.

反力受部材22は、耐熱付勢部材20に接触しその付勢力の反力を受ける。この例において、反力受部材22は、加圧部材18に接続された信号線2を通す貫通穴22aを有するセラミックス製の中空部材である。   The reaction force receiving member 22 contacts the heat resistant urging member 20 and receives the reaction force of the urging force. In this example, the reaction force receiving member 22 is a ceramic hollow member having a through hole 22 a through which the signal line 2 connected to the pressing member 18 passes.

受部材移動手段24は、この例では本体10の反検出外面10cにネジ部13cで螺合したボルト状の部材であり、その端面(図で下面)が反力受部材22の上面に接し、反力受部材22の受ける反力を本体10に伝達するようになっている。従って、受部材移動手段24を軸心を中心に回転することにより反力受部材22の下面を検出内面12bに向けて移動し、耐熱金属製の圧縮バネを圧縮してその付勢力を変化させることができる。
なおこの図で23は、本体の反検出外面10cと反力受部材22の間に挟持された緩み止め用の圧縮バネである。
In this example, the receiving member moving means 24 is a bolt-shaped member screwed to the anti-detection outer surface 10c of the main body 10 by the screw portion 13c, and an end surface (lower surface in the drawing) is in contact with the upper surface of the reaction force receiving member 22. The reaction force received by the reaction force receiving member 22 is transmitted to the main body 10. Accordingly, by rotating the receiving member moving means 24 about the axis, the lower surface of the reaction force receiving member 22 is moved toward the detection inner surface 12b, and the heat-resistant metal compression spring is compressed to change its urging force. be able to.
In this figure, reference numeral 23 denotes a compression spring for preventing loosening, which is sandwiched between the anti-detection outer surface 10c of the main body and the reaction force receiving member 22.

また、台座12と加圧部材18は、互いに絶縁されている。この絶縁は、加圧部材18、耐熱付勢部材20、反力受部材22および本体10の間に絶縁材を挿入してもよく、或いは、耐熱付勢部材20又は反力受部材22を絶縁材料としてもよい。   Further, the base 12 and the pressure member 18 are insulated from each other. For this insulation, an insulating material may be inserted between the pressure member 18, the heat-resistant urging member 20, the reaction force receiving member 22, and the main body 10, or the heat-resistant urging member 20 or the reaction force receiving member 22 is insulated. It may be a material.

上述した本発明の構成によれば、加圧部材18と検出内面12bとの間に第1耐熱軟金属12aと第2耐熱軟金属12bを介して圧電素子16を挟持し、かつ耐熱付勢部材20の付勢力により第1耐熱軟金属12a及び第2耐熱軟金属12bを変形させて圧電素子16と検出内面12b及び加圧部材18とを密着させるので、音響インピーダンンスの大きく異なる境界面を無くし、雑音となる反射を低減することができる。
また、台座12と加圧部材18が、互いに絶縁されているので、この状態で信号管3に接続する本体10と信号線2に接続する加圧部材18の間に電圧を印加し又は電圧を計測することにより、加圧部材18と本体10間の電圧変化により、超音波探傷試験、超音波厚さ計測、アコースチックエミッション(AE)の計測、等を行うことができる。
According to the configuration of the present invention described above, the piezoelectric element 16 is sandwiched between the pressure member 18 and the detection inner surface 12b via the first heat-resistant soft metal 12a and the second heat-resistant soft metal 12b, and the heat-resistant biasing member. Since the first heat-resistant soft metal 12a and the second heat-resistant soft metal 12b are deformed by the urging force of 20, the piezoelectric element 16, the detection inner surface 12b, and the pressing member 18 are brought into close contact with each other. Reflection that becomes noise can be reduced.
In addition, since the base 12 and the pressure member 18 are insulated from each other, a voltage is applied between the main body 10 connected to the signal tube 3 and the pressure member 18 connected to the signal line 2 in this state. By measuring, an ultrasonic flaw detection test, an ultrasonic thickness measurement, an acoustic emission (AE) measurement, and the like can be performed by a voltage change between the pressing member 18 and the main body 10.

また、耐熱付勢部材20(積層皿バネ)の付勢力により第1耐熱軟金属12a及び第2耐熱軟金属12bを変形させて圧電素子16と検出内面12b及び加圧部材18とを密着させるので、ろう付なしに製造することができ、歩留まりを高め、品質を安定化し、製造時間を短縮し、製造コストを低減することができる。
さらに、第1耐熱軟金属12a及び第2耐熱軟金属12bとして酸化や劣化の少ない金属を用いることができるので、長期に繰り返し使用しても性能低下を防止できる。
また、加圧部材18で間隔を隔てた耐熱付勢部材20は取付位置1よりも低温にできるので、取付位置が高温でも正確な計測ができる。
In addition, since the first heat-resistant soft metal 12a and the second heat-resistant soft metal 12b are deformed by the urging force of the heat-resistant urging member 20 (laminated disc spring), the piezoelectric element 16, the detection inner surface 12b, and the pressure member 18 are brought into close contact with each other. Therefore, it can be manufactured without brazing, yield can be increased, quality can be stabilized, manufacturing time can be shortened, and manufacturing cost can be reduced.
Furthermore, since the metal with little oxidation and deterioration can be used as the 1st heat-resistant soft metal 12a and the 2nd heat-resistant soft metal 12b, even if it uses repeatedly for a long time, a performance fall can be prevented.
Moreover, since the heat-resistant urging member 20 separated by the pressurizing member 18 can be made lower in temperature than the attachment position 1, accurate measurement can be performed even if the attachment position is high.

図2は、本発明による高温用超音波探触子の第2実施形態を示す断面図である。この例において、本発明の高温用超音波探触子10は、反力受部材22と加圧部材18の間に断熱中空部材26を備える。この断熱中空部材26は、加圧部材18から延びた縮径部分18aを通す貫通穴を有している。さらに本体10は、この例ではネジ部13bで互いに結合された2つの本体部材10a,10bからなる。また台座12が連結される図で下方部材10aはこの例では非導電性の断熱部材であり、図で上方部材10bは、導電性部材である。台座12と上方部材10bは、外面が絶縁された信号線4で内部で接続されている。
その他の構成は、第1実施形態と同様である。この構成により、断熱部材10aと断熱中空部材26で間隔を隔てた耐熱付勢部材20を、例えばボイラ等の断熱材の外側付近に位置決めでき、一層低温に保持できるので、非計測面1が高温でも正確な計測ができる。
FIG. 2 is a sectional view showing a second embodiment of the high-temperature ultrasonic probe according to the present invention. In this example, the high-temperature ultrasonic probe 10 of the present invention includes a heat insulating hollow member 26 between the reaction force receiving member 22 and the pressure member 18. The heat insulating hollow member 26 has a through hole through which the reduced diameter portion 18 a extending from the pressure member 18 passes. Furthermore, the main body 10 is composed of two main body members 10a and 10b which are coupled to each other by a screw portion 13b in this example. Further, in the figure where the pedestal 12 is connected, the lower member 10a is a non-conductive heat insulating member in this example, and in the figure, the upper member 10b is a conductive member. The pedestal 12 and the upper member 10b are internally connected by a signal line 4 whose outer surface is insulated.
Other configurations are the same as those of the first embodiment. With this configuration, the heat-resistant biasing member 20 spaced apart by the heat-insulating member 10a and the heat-insulating hollow member 26 can be positioned in the vicinity of the outside of the heat-insulating material such as a boiler and kept at a lower temperature. But accurate measurement is possible.

以下、本発明の実施例を説明する。なお、以下の実施例において、本発明の高温用超音波探触子を単に、新型超音波センサと呼ぶ。
(新型超音波センサの概念)
従来の高温用超音波探触子、例えば高温用超音波センサは圧電素子のニォブ酸リチウム単結晶を取付けるのにアルミ系のろう付を用いていた。このろう付の特殊工程を含むために、ろう付不良による歩留まり低下や品質の不安定や工程確保の不安定さが課題として残されていた。また、耐熱性もアルミろうを用いているために、数年に及び耐熱性としては450℃付近に限界があり、更に高温のボイラなどの構造物への長時間適用に対しては更なる耐熱性の改善が望まれていた。
そこでろう付を用いないで、圧電素子の電極を密着させるタイプの新型超音波センサの開発を行った。圧電素子と電極を密着させる手段としては、柔らかい銅を電極として、背面からインコネル製の皿バネで高温時に加圧することで密着させる皿バネ方式を採用した。
Examples of the present invention will be described below. In the following examples, the high-temperature ultrasonic probe of the present invention is simply referred to as a new ultrasonic sensor.
(Concept of new ultrasonic sensor)
A conventional high-temperature ultrasonic probe, for example, a high-temperature ultrasonic sensor, uses an aluminum-based brazing to attach a lithium niobate single crystal of a piezoelectric element. Since this special process of brazing is included, yield reduction, quality instability and process securing instability due to brazing defects remain as problems. In addition, since aluminum brazing is used, heat resistance is limited to around 450 ° C for several years, and further heat resistance for long-term application to structures such as high-temperature boilers. Improvement in sex was desired.
Therefore, we developed a new type of ultrasonic sensor that does not use brazing but allows the electrodes of piezoelectric elements to be in close contact. As a means for bringing the piezoelectric element and the electrode into close contact, a disc spring method was adopted in which soft copper was used as the electrode and the plate was in close contact with the disc spring made from Inconel at high temperatures.

(皿バネ方式新型超音波センサ)
上述した図1は、試作した新型超音波センサ(本発明の高温用超音波探触子)の概要図である。検出外面12aと検出内面12bで挟まれる部分を台座12として、本体10にネジ13aで螺合する構造とした。また台座12と圧電素子16との間及び圧電素子16と背面の加圧ジク(加圧部材18)の間に銅板14a,14bを挟み、皿バネ20を用いて加圧した。加圧は、本体10の下側部分10aをクランプで固定し、背面の皿バネ締付けネジ(受部材移動手段24)を回すことで行った。
台座と加圧材の表面を、Ra1.5μm以下の粗さまで平滑に磨き、本実施例で用いた銅の軟質金属の強度が軟化し伸びが大きくなる300℃以上に軟質金属部を加圧し、新型超音波センサの波形を観察しながら、新型超音波センサの前面からエコーが充分な高さになり、かつエコー高さが安定するまで締付けネジを回して加圧した。
皿バネ20にはインコネル製(Inconel718)のもので、外径25mm、内径12mm、板厚1.5mm、撓み0.3mm、R0.2mmのもの(日本発条株式会社製)を用いた。
(Belleville spring type new ultrasonic sensor)
FIG. 1 described above is a schematic diagram of a prototyped new ultrasonic sensor (high temperature ultrasonic probe of the present invention). A portion sandwiched between the detection outer surface 12a and the detection inner surface 12b is used as a pedestal 12, and the main body 10 is screwed with a screw 13a. Further, the copper plates 14 a and 14 b were sandwiched between the pedestal 12 and the piezoelectric element 16 and between the piezoelectric element 16 and the pressing jig (pressurizing member 18) on the back surface, and pressurized using the disc spring 20. The pressurization was performed by fixing the lower part 10a of the main body 10 with a clamp and turning the disc spring clamping screw (receiving member moving means 24) on the back.
The surface of the pedestal and the pressurizing material is polished smoothly to a roughness of Ra 1.5 μm or less, and the strength of the soft metal of copper used in this example is softened, and the soft metal part is pressurized to 300 ° C. or higher where the elongation is increased, While observing the waveform of the new ultrasonic sensor, pressure was applied by turning the tightening screw until the echo was sufficiently high from the front of the new ultrasonic sensor and the echo height was stabilized.
The disc spring 20 was manufactured by Inconel (Inconel 718), and had an outer diameter of 25 mm, an inner diameter of 12 mm, a plate thickness of 1.5 mm, a deflection of 0.3 mm, and an R of 0.2 mm (manufactured by Nippon Hojo Co., Ltd.).

(性能確認試験)
試作した皿バネ方式の新型超音波センサを炉中に入れて昇温し、昇温過程におけるセンサの感度変化を測定した。さらに、降温過程での感度の変化についても測定した。図3は、この試験で得られた温度と感度の関係図である。
インコネル製皿バネを用いた場合には、500℃まではむしろ温度上昇ともに感度は良くなり、500℃を超えて感度は徐々に低下し、700℃においては時間と共に急激に感度が低下するのが観察された。一方、降温時において300℃から500℃においては昇温時の感度とほぼ同様の傾向を示したが300℃以下においてやや感度の低下は見られたが、エコーは充分に観察でき、充分な性能を持っていることが確認できた。
(Performance confirmation test)
A prototype of a new Belleville spring type ultrasonic sensor was put into a furnace and the temperature was raised, and the change in sensitivity of the sensor during the temperature rise process was measured. Furthermore, the change in sensitivity during the temperature drop process was also measured. FIG. 3 is a relationship diagram between temperature and sensitivity obtained in this test.
When Inconel disc springs are used, the sensitivity increases as the temperature rises up to 500 ° C, the sensitivity gradually decreases after exceeding 500 ° C, and the sensitivity decreases sharply with time at 700 ° C. Observed. On the other hand, from 300 ° C. to 500 ° C. when the temperature was lowered, a tendency similar to the sensitivity at the time of temperature rise was shown. I confirmed that I have.

図4A,Bは、本発明の実施例における構成部材の高温強度と伸びの比較図であり、インコネルと銅との強度と伸びの比較結果を示している。
インコネルは500℃近傍まで強度変化は少ない。一方、銅は温度と共に強度を低下し、450℃以上でほとんど耐力をなくす。また、250℃付近を越えると急激に伸びも大きくなることがわかる。この銅の強度が低下し伸びが増大し、インコネルの強度変化の少ない300〜500℃の領域で皿バネの加圧力を増大させることで銅は変形し、圧電素子と電極間を密着させ、超音波の伝達を可能にできる。
4A and 4B are comparison diagrams of the high temperature strength and elongation of the constituent members in the example of the present invention, and show the comparison results of the strength and elongation of Inconel and copper.
Inconel has little change in strength up to around 500 ° C. On the other hand, copper decreases in strength with temperature and almost loses yield strength above 450 ° C. It can also be seen that the elongation increases rapidly above about 250 ° C. The strength of the copper decreases, the elongation increases, the copper is deformed by increasing the pressing force of the disc spring in the region of 300 to 500 ° C. where there is little change in the strength of Inconel, and the piezoelectric element and the electrode are brought into close contact with each other. Can transmit sound waves.

感度変化試験において、500℃近傍まで徐々に感度が増大するのは、銅の強度低下に伴って密着性が改善されるためと考えられる。一方、500℃を越えてからの感度低下はインコネルの強度低下によると考えられ、特に700℃ではクリープ変形に伴って、皿バネの応力の高い領域に塑性変形が生じるためと考えられる。
降温過程において、500〜300℃の範囲ではインコネルの強度に比べて銅の強度は小さく伸びが大きいため、昇温時とほぼ同等の感度が得られている。一方、300℃以下の降温時には、昇温時の感度に比べて低下しているが、700℃の降温時にクリープ変形で皿バネの一部が組成変形して皿バネのバネ定数が変化したためと考えられる。但し、充分な感度であり、新型超音波センサの能力として優れた感度があることが確認できる。
一方、高温における長期間の使用に際しては皿バネのクリープ損傷を評価する必要がある。クリープ損傷を評価する上では皿バネに加わる応力を評価する必要があるが、むしろ一度高温にさらして所定の応力以上加わっている範囲の応力を緩和させることで、寿命の保証が可能になると考えられる。
In the sensitivity change test, the sensitivity gradually increases up to about 500 ° C. because the adhesion is improved as the strength of copper decreases. On the other hand, the decrease in sensitivity after exceeding 500 ° C. is considered to be due to a decrease in the strength of Inconel, and particularly at 700 ° C., it is considered that plastic deformation occurs in a region where the stress of the disc spring is high due to creep deformation.
In the temperature lowering process, in the range of 500 to 300 ° C., the strength of copper is small and the elongation is large compared to the strength of Inconel, so that the sensitivity almost equal to that at the time of temperature rise is obtained. On the other hand, when the temperature falls below 300 ° C., the sensitivity is lower than the sensitivity at the time of temperature rise, but when the temperature drops below 700 ° C., part of the disc spring is deformed due to creep deformation and the spring constant of the disc spring changes. Conceivable. However, it can be confirmed that the sensitivity is sufficient and the sensitivity of the new ultrasonic sensor is excellent.
On the other hand, it is necessary to evaluate the creep damage of the disc spring during long-term use at high temperatures. In order to evaluate creep damage, it is necessary to evaluate the stress applied to the disc spring. However, it is considered that the life can be guaranteed by relaxing the stress in the range where the stress is applied more than the predetermined stress once exposed to high temperature. It is done.

(超音波特性)
図5は、本発明の高温用超音波探触子の性能試験の概要図である。この図に示すように、押さえジク6を用いて探触子の本体10を板厚25mmの試験体7に接触させ、常温で波形観測を行った後に、ジクごと電気炉に設置して昇温して、500℃及び600℃に達したときの波形を観察し、常温での波形と比較した。
(Ultrasonic characteristics)
FIG. 5 is a schematic diagram of the performance test of the ultrasonic probe for high temperature of the present invention. As shown in this figure, the probe main body 10 is brought into contact with a test body 7 having a plate thickness of 25 mm using a holding jig 6, and after observing the waveform at room temperature, the jig is installed in an electric furnace to raise the temperature. Then, the waveform when reaching 500 ° C. and 600 ° C. was observed and compared with the waveform at normal temperature.

図6は、本発明の高温用超音波探触子の検出波形と周波数解析結果である。この図において、(A)は常温、(B)は500℃、(C)は600℃における結果である。また各図において上側は計測された波形、下側はその周波数解析結果を示している。これらの結果を表1に示す   FIG. 6 shows detection waveforms and frequency analysis results of the high-temperature ultrasonic probe of the present invention. In this figure, (A) shows the results at room temperature, (B) shows the results at 500 ° C., and (C) shows the results at 600 ° C. In each figure, the upper side shows the measured waveform, and the lower side shows the frequency analysis result. These results are shown in Table 1.

Figure 2005354281
Figure 2005354281

一方、図7は、従来の高温用超音波探触子の検出波形と周波数解析結果である。
今回試作した高温サンサの結果(表1)と比較して、従来のろう付式センサの場合、波数が4波近く発生しているのに対して、本発明の高温サンサでは2波と半分になっている。また周波数特性も、半価値で2.2MHzが3.8MHzとかなり広帯域になっているのがわかる。
波形が広帯域であることは、超音波探傷として高分解能であることを意味し、またSN比の改善を意味している。また、ドップラー効果を利用して流速分布を測定するためのセンサとして、波数が少ない広帯域の探触子が望まれている。これらの観点からも今回試作した新型超音波センサは従来以上に高性能であると言える。
On the other hand, FIG. 7 shows detection waveforms and frequency analysis results of a conventional high-temperature ultrasonic probe.
Compared with the results of the high temperature sensor manufactured this time (Table 1), in the case of the conventional brazed sensor, the wave number is nearly 4 waves, whereas in the high temperature sensor of the present invention, the wave number is reduced to 2 and half. It has become. The frequency characteristics are also half-valued and 2.2 MHz is 3.8 MHz, which is a very wide band.
A broad waveform means high resolution as an ultrasonic flaw detection and an improvement in the signal to noise ratio. In addition, as a sensor for measuring the flow velocity distribution using the Doppler effect, a broadband probe having a small wave number is desired. From these points of view, it can be said that the new ultrasonic sensor prototyped this time has higher performance than before.

上述したようにインコネル製の皿バネを用いて、柔らかい銅を電極に用い、高温で加圧する方式の新型超音波センサを検討したところ、温度変化に対しての感度変化も少なく、また広帯域の優れた超音波特性を持つことがわかった。また、常温に一度戻しても充分な発信能力を持っており、実用化に極めて有望であることがわかった。   As described above, a new type of ultrasonic sensor that uses soft copper as an electrode and pressurizes at a high temperature using an Inconel disc spring was examined. It was found to have ultrasonic characteristics. Moreover, even if it returned to normal temperature once, it had sufficient transmission capability, and it turned out that it is very promising for practical use.

上述したように、本発明の新型超音波センサは、従来のろう付式の高温用超音波センサと比較しての長所として以下があげられる。
(1) ろう付の特殊工程を含まずに機械加工のみで製作できることから、歩留まりを高め、品質を安定化できる。
(2) ろう付後の長期間の熱処理を必要としないので製造時間を短縮し、製造コストを低減することができる。
(3) 従来のろう付式超音波センサの耐熱性は数年単位では450℃であるのに対して耐熱性の向上が期待でき、ボイラなど、従来のセンサでは適用が困難であった機種への適用が期待できる。特に皿バネ部を電極から離す構造として、皿バネ部の温度を低くすることができ、取付位置が高温でも正確な計測ができる。
さらに得られる超音波波形は波数の少ない広帯域であり、超音波特性を改善できる。
As described above, the new ultrasonic sensor of the present invention has the following advantages over the conventional brazing-type high-temperature ultrasonic sensor.
(1) Since it can be manufactured only by machining without including the special process of brazing, the yield can be improved and the quality can be stabilized.
(2) Since a long-term heat treatment after brazing is not required, the manufacturing time can be shortened and the manufacturing cost can be reduced.
(3) The heat resistance of the conventional brazed ultrasonic sensor is 450 ° C in units of several years, but an improvement in heat resistance can be expected. For models such as boilers that were difficult to apply with conventional sensors Can be expected to be applied. In particular, as a structure in which the disc spring portion is separated from the electrode, the temperature of the disc spring portion can be lowered, and accurate measurement can be performed even when the mounting position is high.
Furthermore, the obtained ultrasonic waveform is a wide band with a small wave number, and the ultrasonic characteristics can be improved.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明による高温用超音波探触子の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the ultrasonic probe for high temperature by this invention. 本発明による高温用超音波探触子の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the ultrasonic probe for high temperature by this invention. 本発明の実施例における温度と感度の関係図である。It is a relationship diagram of temperature and sensitivity in the example of the present invention. 本発明の実施例における構成部材の高温強度と伸びの比較図である。It is a comparison figure of the high temperature intensity | strength and elongation of the structural member in the Example of this invention. 本発明の高温用超音波探触子の性能試験の概要図である。It is a schematic diagram of the performance test of the ultrasonic probe for high temperature of this invention. 本発明の高温用超音波探触子の検出波形と周波数解析結果である。It is a detection waveform and frequency analysis result of the ultrasonic probe for high temperature of this invention. 従来の高温用超音波探触子の検出波形と周波数解析結果である。It is a detection waveform and frequency analysis result of a conventional ultrasonic probe for high temperature. 特許文献1の「超音波探傷装置の探触子」の模式図である。6 is a schematic diagram of “a probe of an ultrasonic flaw detector” in Patent Document 1. FIG. 特許文献2の「高温構造物への超音波センサの取付方法及び装置」の模式図である。10 is a schematic diagram of “Method and apparatus for attaching ultrasonic sensor to high-temperature structure” in Patent Document 2. FIG.

符号の説明Explanation of symbols

1 非計測面、2,4 信号線、3 信号管、5 断熱材、6 押さえジク、
7 試験体、10 本体、10a,10b 本体部材、10c 、12 台座、
12a 検出外面、12b 検出内面13a,13b,13c ネジ部、
14a 第1耐熱軟金属、14b 第2耐熱軟金属、15 絶縁部材、
16 圧電素子、18 加圧部材、20 耐熱付勢部材(皿バネ)、
22 反力受部材、23 圧縮バネ、24 受部材移動手段、26 断熱中空部材
1 non-measuring surface, 2, 4 signal lines, 3 signal tube, 5 heat insulating material, 6 holding jig,
7 test body, 10 body, 10a, 10b body member, 10c, 12 base,
12a Detection outer surface, 12b Detection inner surface 13a, 13b, 13c Screw part,
14a first heat-resistant soft metal, 14b second heat-resistant soft metal, 15 insulating member,
16 piezoelectric elements, 18 pressure members, 20 heat-resistant biasing members (disc springs),
22 reaction force receiving member, 23 compression spring, 24 receiving member moving means, 26 heat insulating hollow member

Claims (6)

非計測面に接する検出外面と該検出外面に任意の角度を持つ平面である検出内面とを有する導電性の台座と、前記検出内面に第1耐熱軟金属を介して密着する平板状の圧電素子と、該圧電素子を第2耐熱軟金属を介して検出内面に向けて加圧する導電性の加圧部材と、該加圧部材を検出内面に向けて付勢する耐熱付勢部材と、耐熱付勢部材に接触し前記付勢力の反力を受ける反力受部材とを備え、
前記台座と加圧部材は、互いに絶縁されており、
前記第1耐熱軟金属及び第2耐熱軟金属の変形により圧電素子と計測内面及び加圧部材とを密着させ、台座と加圧部材間に電圧を印加し又は電圧を計測することを特徴とする高温用超音波探触子。
A conductive pedestal having a detection outer surface in contact with the non-measurement surface and a detection inner surface that is a plane having an arbitrary angle with the detection outer surface, and a plate-like piezoelectric element that is in close contact with the detection inner surface via a first heat-resistant soft metal A conductive pressure member that pressurizes the piezoelectric element toward the detection inner surface via the second heat-resistant soft metal; a heat-resistant biasing member that biases the pressure member toward the detection inner surface; A reaction force receiving member that contacts the force member and receives the reaction force of the urging force,
The base and the pressure member are insulated from each other.
The piezoelectric element, the measurement inner surface and the pressure member are brought into close contact with each other by deformation of the first heat-resistant soft metal and the second heat-resistant soft metal, and a voltage is applied between the pedestal and the pressure member, or the voltage is measured. Ultrasonic probe for high temperature.
前記台座に一端が連結され、内部に検出内面側から順に前記第1耐熱軟金属、圧電素子、第2耐熱軟金属、加圧部材、耐熱付勢部材及び反力受部材を収容する中空空洞を有し、他端部に反力受部材を検出内面に向けて移動可能な受部材移動手段を有する本体を備える、ことを特徴とする請求項1に記載の高温用超音波探触子。   One end is connected to the pedestal, and a hollow cavity that houses the first heat-resistant soft metal, the piezoelectric element, the second heat-resistant soft metal, the pressurizing member, the heat-resistant biasing member, and the reaction force receiving member in order from the detection inner surface side. 2. The high-temperature ultrasonic probe according to claim 1, further comprising a main body having a receiving member moving unit that has a reaction force receiving member that is movable toward the inner surface of the detection at the other end. 前記反力受部材又は加圧部材は、加圧部材に接続された信号線を通す貫通穴を有するセラミックス製の中空部材である、ことを特徴とする請求項1に記載の高温用超音波探触子。   2. The ultrasonic probe for high temperature according to claim 1, wherein the reaction force receiving member or the pressing member is a ceramic hollow member having a through hole through which a signal line connected to the pressing member passes. Tentacles. 前記反力受部材と加圧部材の間に、加圧部材から延びた縮径部分を通す貫通穴を有する断熱中空部材を備える、ことを特徴とする請求項1に記載の高温用超音波探触子。   2. The high-temperature ultrasonic probe according to claim 1, further comprising a heat insulating hollow member having a through hole through which a reduced diameter portion extending from the pressure member passes between the reaction force receiving member and the pressure member. Tentacles. 前記耐熱付勢部材は、所定の温度範囲で高い弾性率を有する耐熱金属製の圧縮バネであり、
前記第1耐熱軟金属及び第2耐熱軟金属は、所定の温度範囲で圧縮バネの付勢力で変形可能な耐熱金属製平板である、ことを特徴とする請求項1に記載の高温用超音波探触子。
The heat-resistant biasing member is a compression spring made of a heat-resistant metal having a high elastic modulus in a predetermined temperature range,
2. The high-temperature ultrasonic wave according to claim 1, wherein the first heat-resistant soft metal and the second heat-resistant soft metal are heat-resistant metal flat plates that are deformable by a biasing force of a compression spring in a predetermined temperature range. Transducer.
前記圧電素子は、ニオブ酸リチウム単結晶であり、
前記圧縮バネは、インコネル又はチタンからなる積層皿バネであり、前記第1耐熱軟金属及び第2耐熱軟金属は、金、銀、銅、アルミニウム、又はこれらの合金からなる平板である、ことを特徴とする請求項1に記載の高温用超音波探触子。
The piezoelectric element is a lithium niobate single crystal,
The compression spring is a laminated disc spring made of inconel or titanium, and the first heat-resistant soft metal and the second heat-resistant soft metal are flat plates made of gold, silver, copper, aluminum, or an alloy thereof. The high-temperature ultrasonic probe according to claim 1, wherein the ultrasonic probe is high-temperature.
JP2004171328A 2004-06-09 2004-06-09 Ultrasonic probe for high temperature Pending JP2005354281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171328A JP2005354281A (en) 2004-06-09 2004-06-09 Ultrasonic probe for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171328A JP2005354281A (en) 2004-06-09 2004-06-09 Ultrasonic probe for high temperature

Publications (1)

Publication Number Publication Date
JP2005354281A true JP2005354281A (en) 2005-12-22

Family

ID=35588374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171328A Pending JP2005354281A (en) 2004-06-09 2004-06-09 Ultrasonic probe for high temperature

Country Status (1)

Country Link
JP (1) JP2005354281A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256589A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Terminal for thickness measurement of refractory material, and thickness measuring method of the refractory material
JP2008256423A (en) * 2007-04-03 2008-10-23 Ihi Inspection & Instrumentation Co Ltd Ultrasonic probe for high temperature and its manufacturing method
JP2009150670A (en) * 2007-12-19 2009-07-09 Nippon Steel Corp Terminal for measuring thickness of refractory
JP2009528784A (en) * 2006-03-02 2009-08-06 ビジュアルソニックス インコーポレイテッド Ultrasonic matching layer and transducer
CN103018137A (en) * 2012-12-07 2013-04-03 山东科技大学 Apparatus and method used for determining thermal contact resistance in hot stamping process
JP2013079871A (en) * 2011-10-04 2013-05-02 Ihi Inspection & Instrumentation Co Ltd Brick residual thickness measuring apparatus
CN109239202A (en) * 2018-09-28 2019-01-18 安溪坤祁德机械科技有限公司 The clear powder of negative pressure reduces the measuring probe mounting device of hole
CN110261480A (en) * 2019-07-16 2019-09-20 中国工程物理研究院化工材料研究所 A kind of system and method for quick test piezoelectric material acoustic emission response performance
EP3566020A4 (en) * 2017-01-09 2020-09-09 Sensor Networks, Inc. High-temperature ultrasonic sensor
CN111735877A (en) * 2020-07-24 2020-10-02 水利部水工金属结构质量检验测试中心 Ultrasonic probe fixing device for on-line monitoring
CN112903823A (en) * 2021-01-19 2021-06-04 广州多浦乐电子科技股份有限公司 Ultrasonic detection temperature correction method and temperature-resistant ultrasonic array probe
WO2022137131A1 (en) * 2020-12-21 2022-06-30 Molex, Llc Ultrasonic wall thickness measurement system having a high temperature ultrasonic transducer for monitoring the condition of a structural asset
DE102022107092A1 (en) 2022-03-25 2023-09-28 Krohne Ag Ultrasonic transducer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528784A (en) * 2006-03-02 2009-08-06 ビジュアルソニックス インコーポレイテッド Ultrasonic matching layer and transducer
JP2008256423A (en) * 2007-04-03 2008-10-23 Ihi Inspection & Instrumentation Co Ltd Ultrasonic probe for high temperature and its manufacturing method
JP2008256589A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Terminal for thickness measurement of refractory material, and thickness measuring method of the refractory material
JP2009150670A (en) * 2007-12-19 2009-07-09 Nippon Steel Corp Terminal for measuring thickness of refractory
JP2013079871A (en) * 2011-10-04 2013-05-02 Ihi Inspection & Instrumentation Co Ltd Brick residual thickness measuring apparatus
CN103018137A (en) * 2012-12-07 2013-04-03 山东科技大学 Apparatus and method used for determining thermal contact resistance in hot stamping process
CN103018137B (en) * 2012-12-07 2015-04-15 山东科技大学 Apparatus and method used for determining thermal contact resistance in hot stamping process
US11268936B2 (en) 2017-01-09 2022-03-08 Sensor Networks, Inc. High-temperature ultrasonic sensor
EP3566020A4 (en) * 2017-01-09 2020-09-09 Sensor Networks, Inc. High-temperature ultrasonic sensor
CN109239202A (en) * 2018-09-28 2019-01-18 安溪坤祁德机械科技有限公司 The clear powder of negative pressure reduces the measuring probe mounting device of hole
CN110261480A (en) * 2019-07-16 2019-09-20 中国工程物理研究院化工材料研究所 A kind of system and method for quick test piezoelectric material acoustic emission response performance
CN110261480B (en) * 2019-07-16 2024-03-12 中国工程物理研究院化工材料研究所 System and method for rapidly testing acoustic emission response performance of piezoelectric material
CN111735877A (en) * 2020-07-24 2020-10-02 水利部水工金属结构质量检验测试中心 Ultrasonic probe fixing device for on-line monitoring
WO2022137131A1 (en) * 2020-12-21 2022-06-30 Molex, Llc Ultrasonic wall thickness measurement system having a high temperature ultrasonic transducer for monitoring the condition of a structural asset
CN112903823A (en) * 2021-01-19 2021-06-04 广州多浦乐电子科技股份有限公司 Ultrasonic detection temperature correction method and temperature-resistant ultrasonic array probe
DE102022107092A1 (en) 2022-03-25 2023-09-28 Krohne Ag Ultrasonic transducer
DE102022107092B4 (en) 2022-03-25 2023-12-07 Krohne Ag Ultrasonic transducer

Similar Documents

Publication Publication Date Title
JP4850113B2 (en) Ultrasonic probe for high temperature and manufacturing method thereof
JP2005354281A (en) Ultrasonic probe for high temperature
JP6004587B2 (en) Ultrasonic transducer assembly and system for monitoring structural integrity
Amini et al. A new high-temperature ultrasonic transducer for continuous inspection
JP5260130B2 (en) Ultrasonic inspection apparatus, ultrasonic inspection method, and non-destructive inspection method for nuclear power plant
US20170131241A1 (en) High temperature ultrasonic probe and pulse-echo probe mounting fixture for testing and blind alignment on steam pipes
Kirk et al. Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures
US4918990A (en) Ultrasonic transducer assembly
Kazys et al. Development of ultrasonic sensors for operation in a heavy liquid metal
CN106932488A (en) A kind of stretchable ultrasound transducer array
Shih et al. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high temperatures
Stubbs et al. An ultrasonic sensor for high-temperature materials processing
WO2018156334A1 (en) Multi-element bending transducers and related methods and devices
JP2005308691A (en) Ultrasonic probe and ultrasonic inspection device
JP4244172B2 (en) Ultrasonic probe for high temperature
CN114001848A (en) Method for measuring shearing force of bolt by utilizing ultrasound
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
JPH10339722A (en) Ultrasonic probe for high temperature and attaching method therefor
Bolstad et al. Evaluation of bonding techniques for ultrasound transducers
Bulletti et al. Multielement interdigital transducers for structural health monitoring
Voleišis et al. Investigation of diffusion bonding quality by ultrasonic technique
US20210237122A1 (en) Ultrasonic Transducer
CA3044846C (en) Thickness mode transducers and related devices and methods
WO2012042215A1 (en) Piezoelectric device and methods
JP2003270013A (en) Ultrasonic transducer and method of manufacturing the same and ultrasonic flowmeter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A521 Written amendment

Effective date: 20090918

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20091202

Free format text: JAPANESE INTERMEDIATE CODE: A02