JP2005353017A - Klt identification value measuring technique for control object signal transmission characteristics - Google Patents

Klt identification value measuring technique for control object signal transmission characteristics Download PDF

Info

Publication number
JP2005353017A
JP2005353017A JP2004198644A JP2004198644A JP2005353017A JP 2005353017 A JP2005353017 A JP 2005353017A JP 2004198644 A JP2004198644 A JP 2004198644A JP 2004198644 A JP2004198644 A JP 2004198644A JP 2005353017 A JP2005353017 A JP 2005353017A
Authority
JP
Japan
Prior art keywords
signal
klt
identification value
value
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004198644A
Other languages
Japanese (ja)
Other versions
JP4228351B2 (en
Inventor
Toshiyuki Matsuura
敏行 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004198644A priority Critical patent/JP4228351B2/en
Publication of JP2005353017A publication Critical patent/JP2005353017A/en
Application granted granted Critical
Publication of JP4228351B2 publication Critical patent/JP4228351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly accurate KLT (K=gain, L=equivalent useless time, T=equivalent time constant) identification value measuring method, with which more accurate measuring of the KLT identification is made possible in order to more securely perform optimal setting, though normally, KLT identification value of signal transmission characteristics ranging from the input signal of a control object to the output signal of the control object is used to optimally set the control parameter for a controller. <P>SOLUTION: In a KTL identification value measuring technique by the impulse response method, a right-angled triangle impulse signal is added to the input signal. The resulting output signal response curve shape always comes to a mountain shape or a valley shape, and its peak point (a mountain summit or bottom of the valley) can be more easily specified as compared with an inflection point. As a result, the highly accurate KLT identification value measuring is made possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は自動制御の分野(特にプロセス計測制御)において、制御装置の制御パラメータ決定に必要な制御対象の信号伝達特性の計測(プロセス同定)に関する。
自動制御システム構成に制御対象信号伝達特性の計測手段(プロセス同定手段)が含まれる事は、次の特許文献等に記載されている如く公知の技術である。
[特許文献1]特開平8−76805
[要約]図の同定機構および同定信号発生器
[特許文献2]特開2001−350503
[要約]図のプロセス同定手段
本発明は制御対象信号伝達特性計測手段の具体的手法に関する発明である。
The present invention relates to measurement (process identification) of a signal transfer characteristic of a control object necessary for determining a control parameter of a control device in the field of automatic control (particularly process measurement control).
It is a well-known technique as described in the following patent documents and the like that the automatic control system configuration includes a measurement means (process identification means) of a control target signal transfer characteristic.
[Patent Document 1] JP-A-8-76805
[Summary] Identification mechanism of figure and identification signal generator [Patent Document 2] JP 2001-350503 A
[Summary] Process identification means in the figure The present invention relates to a specific technique of a control object signal transfer characteristic measurement means.

フイードバック制御、フイードフォアード制御、干渉系の非干渉化制御等、単純な制御から複雑なアドバンスド制御にいたるまで、あらゆる制御において広く使用されている制御対象信号伝達特性(プロセスパラメータ)の計測はKLT同定値の計測である。
ここで、 Kはゲイン、
Lは等価むだ時間、
Tは等価時定数。
本発明は制御対象信号伝達特性のKLT同定値計測手法の一つである。
[背景技術]
Measurement of control target signal transfer characteristics (process parameters) widely used in all types of control, from simple control to complex advanced control, such as feedback control, feedback control, and non-interference control of interference system It is the measurement of the identification value.
Where K is the gain,
L is the equivalent dead time,
T is the equivalent time constant.
The present invention is one of the KLT identification value measurement methods of the signal transmission characteristic to be controlled.
[Background technology]

現在広く使用されている制御対象信号伝達特性のKLT同定値計測手法は、次の非特許文献等に記載されているごとく、通常、ステップ応答法と言われているもので、ステップ応答の変曲点(最大傾斜点)接線手法である。
[非特許文献1]高山静:自動制御のための初歩数学、 P 272
日刊工業新聞(1964)東京
[非特許文献2]片山徹:フイードバック制御の基礎、 P 158
朝倉書店 (1987)東京
[発明の開示]
[発明が解決しようとする課題]
As described in the following non-patent literature, the KLT identification value measurement method for the signal transmission characteristic to be controlled that is widely used at present is usually called a step response method. This is a point (maximum tilt point) tangent method.
[Non-Patent Document 1] Shizuka Takayama: Basic Mathematics for Automatic Control, P 272
Nikkan Kogyo Shimbun (1964) Tokyo [Non Patent Literature 2] Toru Katayama: Fundamentals of Feedback Control, P 158
Asakura Shoten (1987) Tokyo [Disclosure of Invention]
[Problems to be solved by the invention]

上記汎用のステップ応答法、いわゆるステップ応答の変曲点接線手法とは、制御対象の入力信号(符号MV)から其の制御対象の出力信号(符号PV)までの信号伝達特性のKLT同定値を計測するために、図1に示すごとく、MV信号とPV信号とがある値で整定している状態で、MV信号に対して適切な量の正または負の信号をステップで付加し、次の整定値に達するまでの操作を与える。
この操作で得られた時間(単位Sec)に対する,MV信号とPV信号両者の計測値(単位%)より;
(1)PV初期整定値(符号PV0)とPV最終整定値(符号PV1)、および、MV初期整定値(符号MV0)とMV最終整定値(符号MV1)を求め、(PV1−PV0)/(MV1−MV0)でゲインKを算出する。
(2)PV信号応答曲線図形の傾斜部位で、変曲点(最大傾斜点、符号IP)を特定し、さらに其の変曲点を通過する接線を特定する。
其の変曲点接線上で値がPV0となる時刻と、MVステップ信号付加時刻との差で等価むだ時間Lを算出する。
(3)其の変曲点接線上で値がPV1となる時刻と、PV0となる時刻との差で等価時定数Tを算出する。
このKLT同定値計測手法が汎用のステップ応答法であるが、問題はLおよびTの算出精度、換言すれば、変曲点IPの特定精度及び変曲点接線の特定精度である。一般に(とくにPV信号が雑音を含む場合)変曲点および接線の特定が困難である。図4の上図がその一例で、どの点を変曲点とするか、変曲点接線をどのように引くか難しい問題で、結果として高精度のLT同定値が得難い。
The above-mentioned general-purpose step response method, the so-called step response inflection point tangent method, is the KLT identification value of the signal transfer characteristic from the control target input signal (symbol MV) to the control target output signal (symbol PV). In order to measure, as shown in FIG. 1, in a state where the MV signal and the PV signal are set at a certain value, an appropriate amount of positive or negative signal is added to the MV signal in steps. Gives an operation until the set value is reached.
From the measured values (unit%) of both the MV signal and the PV signal with respect to the time (unit Sec) obtained by this operation;
(1) PV initial set value (symbol PV0) and PV final set value (symbol PV1), and MV initial set value (symbol MV0) and MV final set value (symbol MV1) are obtained, and (PV1-PV0) / ( The gain K is calculated by MV1-MV0).
(2) An inflection point (maximum inclination point, symbol IP) is specified at the inclined portion of the PV signal response curve graphic, and a tangent line passing through the inflection point is specified.
The equivalent dead time L is calculated by the difference between the time when the value becomes PV0 on the inflection point tangent and the MV step signal addition time.
(3) The equivalent time constant T is calculated by the difference between the time when the value becomes PV1 on the inflection point tangent and the time when it becomes PV0.
Although this KLT identification value measurement method is a general-purpose step response method, the problem is the accuracy of calculating L and T, in other words, the accuracy of specifying the inflection point IP and the accuracy of specifying the inflection point tangent. In general, it is difficult to specify an inflection point and a tangent (especially when the PV signal includes noise). The upper diagram of FIG. 4 is an example, and it is difficult to determine which point is the inflection point and how to draw the inflection point tangent. As a result, it is difficult to obtain a highly accurate LT identification value.

KLT同定値計測手法には上記ステップ応答法以外にインパルス応答法がある。通常のインパルス応答法は、図3に示すごとく、MV信号とPV信号とがある値で整定している状態で、MV信号に対して、適切な量の正または負の信号をステップで付加し、適切な時間経過後元のMV整定値にステップで戻す操作を与える。換言すれば、MV信号に矩形型の信号を付加する操作である。
この操作で得られた時間(単位Sec)に対する、MV信号とPV信号両者の計測値(単位%)より;
(1)PV信号値からPV整定値(符号PV0)を引き算した値の時間積分値(符号PVA、単位%Sec)と、MV信号値からMV整定値(符号MV0)を引き算した値の時間積分値(符号MVA、単位%Sec)との比でゲインKを算出する。
(2)ここで問題はLおよびTの算出方法であるが、PV信号応答曲線は、とくにTが小なるときは、図3に示す様になり、上記変曲点接線手法によってLとTを算出することになる。結果としてステップ応答法と同様高精度のLT同定値が得難い。
[課題を解決するための手段]
In addition to the step response method, there is an impulse response method as the KLT identification value measurement method. In the normal impulse response method, as shown in FIG. 3, an appropriate amount of positive or negative signal is added to the MV signal in steps while the MV signal and the PV signal are set at a certain value. Then, an operation of returning to the original MV set value in a step after an appropriate time has passed is given. In other words, this is an operation of adding a rectangular signal to the MV signal.
From the measured value (unit%) of both the MV signal and the PV signal with respect to the time (unit Sec) obtained by this operation;
(1) Time integral value (sign PVA, unit% Sec) obtained by subtracting PV set value (sign PV0) from PV signal value and time integral value obtained by subtracting MV set value (sign MV0) from MV signal value The gain K is calculated by the ratio with the value (sign MVA, unit% Sec).
(2) The problem here is how to calculate L and T, but the PV signal response curve is as shown in FIG. 3, especially when T is small. Will be calculated. As a result, it is difficult to obtain a highly accurate LT identification value as in the step response method.
[Means for solving problems]

本発明は通常のインパルス応答法を改良し、変曲点接線手法に依らずにLおよびTを算出し、高精度のKLT同定値の計測を可能にする手法である。
本発明のインパルス応答法は、図2に示すごとく、MV信号とPV信号とが共にある値で整定している状態で、MV信号に対して適切な時間、適切な傾斜で正または負のランプ信号を付加した後ステップで前記MV整定値に復帰せしめ、PV信号が再度整定に達するまでの操作を与える。換言すれば、MV信号に直角三角形型信号を付加する操作である。それによって、PV信号に山状または谷状の応答曲線を発生せしめる。
この操作で得られた時間(単位Sec)に対する、MV信号とPV信号の計測値(単位%)より;
(1)PV信号値からPV整定値(PV0)を引き算した値の時間積分値(符号PVA、単位%Sec)とMV信号値からMV整定値(MV0)を引き算した値の時間積分値(符号MVA、単位%Sec)との比でゲインKを算出する。
図2において、PV信号とMV信号両者図形の斜線部面積(単位%Sec)の比がゲインKである。このゲインKの算出手法は、図3に示す通常のインパルス応答法に於けるゲインKの算出手法と同一で公知の手法である。
The present invention is a technique that improves the ordinary impulse response method, calculates L and T without depending on the inflection point tangent method, and enables measurement of the KLT identification value with high accuracy.
As shown in FIG. 2, the impulse response method of the present invention is a positive or negative ramp with an appropriate time and an appropriate slope with respect to the MV signal in a state where both the MV signal and the PV signal are set at a certain value. After the signal is added, the operation returns to the MV set value in the step, and the operation until the PV signal reaches settling again is given. In other words, this is an operation of adding a right triangle signal to the MV signal. Thereby, a peak-like or valley-like response curve is generated in the PV signal.
From the measured values (unit%) of the MV signal and PV signal with respect to the time (unit Sec) obtained by this operation;
(1) Time integral value (sign PVA, unit% Sec) obtained by subtracting PV set value (PV0) from PV signal value, and time integral value (sign sign) obtained by subtracting MV set value (MV0) from MV signal value The gain K is calculated as a ratio to MVA, unit% Sec).
In FIG. 2, the ratio of the hatched area (unit% Sec) between the PV signal and the MV signal graphic is the gain K. This gain K calculation method is the same as the gain K calculation method in the normal impulse response method shown in FIG.

(2)発生するPV信号応答曲線が山状になるか、谷状になるかは次の条件で定まる。
* K>0、付加するランプ信号が正―――――――――山状
* K<0、付加するランプ信号が負―――――――――山状
* K>0、付加するランプ信号が負―――――――――谷状
* K<0、付加するランプ信号が正―――――――――谷状
発生した山状または谷状のPV信号応答曲線の尖端つまり山頂または谷底を尖端点(符号PP)と呼ぶことにする。この尖端点PPの発生が本発明の特徴である。
尖端点PPまでに発生するPV応答曲線の最大傾斜が大なるほど尖端点PPの特定が容易となる。其の最大傾斜は、ゲインKと、MV信号に付加するランプ信号の時間と傾斜とで定まる。
* 適切なランプ信号付加時間は等価時定数Tである。
何となれば、付加時間=等価時定数Tのとき、PV信号傾斜値は、達し得る最大傾斜値の63.2%に達しておりほぼ充分と考えられる。
* 適切なランプ信号の傾斜は大きい程望ましいが、制御対象操業上の制約と、計測中MVとPV両信号がスケールアウトしない条件とで定まる。
本発明のインパルス応答は、図2に示すごとく、入力MV信号と出力PV信号両者に尖端点が発生する。MV信号尖端点発生時刻は其のステップ復帰時刻である。
MV信号尖端点が発生するまではPV信号尖端点PPは発生しない。
制御対象の等価むだ時間Lが零のときMV,PV両者の尖端点発生時刻は一致する。
MV信号尖端点発生時刻に対するPV信号尖端点PP発生時刻のおくれ(図2のL)が制御対象の等価むだ時間Lと考えられる。
(2) Whether the generated PV signal response curve has a mountain shape or a valley shape is determined by the following conditions.
* K> 0, the ramp signal to be added is positive ------------------------- K <0, the ramp signal to be added is negative ------------- The ramp signal to be negative is ------------------------------------------------------------------ K <0, the added ramp signal is positive ------- The apex, that is, the summit or the valley bottom is referred to as the apex point (reference PP). The occurrence of the apex point PP is a feature of the present invention.
As the maximum slope of the PV response curve generated up to the apex point PP increases, the apex point PP can be identified more easily. The maximum slope is determined by the gain K and the time and slope of the ramp signal added to the MV signal.
* The appropriate ramp signal addition time is the equivalent time constant T.
In any case, when the additional time = equivalent time constant T, the PV signal slope value reaches 63.2% of the maximum slope value that can be reached, which is considered to be almost sufficient.
* Although it is desirable that the slope of the appropriate ramp signal is large, it is determined by the restrictions on the operation of the controlled object and the condition that both the MV and PV signals do not scale out during measurement.
In the impulse response of the present invention, as shown in FIG. 2, the apex point is generated in both the input MV signal and the output PV signal. The MV signal peak point occurrence time is the step return time.
The PV signal peak point PP is not generated until the MV signal peak point is generated.
When the equivalent dead time L of the controlled object is zero, the cusp point generation times of both MV and PV coincide.
A delay (L in FIG. 2) of the PV signal peak point PP generation time with respect to the MV signal peak point generation time is considered as the equivalent dead time L of the control target.

(3)PV信号応答曲線の尖端点PP以降は、制御対象の等価時定数TによるPV定常値(PV0)えの整定状態であると考えられる。
PV信号応答曲線の尖端点PP以降、整定に達するまでのPV信号値とPV定常値PV0との差の減衰特性から等価時定数Tを算出する。
PV信号応答曲線に雑音が無く、図2に示すごとき単調減衰のときは、時定数定義を応用して63.2%の水平線を引き、PV信号応答曲線との交点時刻と、尖端点PP発生時刻との差を等価時定数Tとすることが出来る。
通常は電子計算機を用い、尖端点PP以降のPV信号応答実測値と、推定時定数の場合の応答計算値との、自乗誤差の時間積分値または面積誤差を最小にする推定時定数を、逐次近似法により求め其れを等価時定数Tとする。
[発明の効果]
(3) After the peak point PP of the PV signal response curve, it is considered that the PV steady-state value (PV0) is set by the equivalent time constant T to be controlled.
After the peak point PP of the PV signal response curve, an equivalent time constant T is calculated from the attenuation characteristic of the difference between the PV signal value and the PV steady value PV0 until the set point is reached.
When there is no noise in the PV signal response curve and the monotonic decay is as shown in FIG. 2, the time constant definition is applied to draw a horizontal line of 63.2%, the point of intersection with the PV signal response curve and the occurrence of the peak point PP The difference from the time can be set as an equivalent time constant T.
Usually, using an electronic computer, the estimated time constant that minimizes the time integral value or the area error of the square error between the PV signal response measured value after the apex point PP and the calculated response value in the case of the estimated time constant is sequentially determined. It is determined by an approximation method and is set as an equivalent time constant T.
[The invention's effect]

本発明の制御対象KLT同定値計測手法は、制御対象の入力信号であるMV信号に直角三角形型のインパルス信号を付加することが特徴で、得られる制御対象出力信号応答曲線は、常に、山状または谷状となり、其の尖端点は従来の変曲点に比し特定し易い。
図4が其の一例である。図4は制御対象の入力信号であるMV信号に、ステップ信号を付加した場合(図4の上の図)、と本発明のインパルス信号を付加した場合(図4の下の図)、の出力信号応答曲線である。変曲点および其の接線の特定に比し、尖端点の特定が容易である事が分かる。
[産業上の利用可能性]
The control target KLT identification value measurement method of the present invention is characterized in that a right triangle-shaped impulse signal is added to the MV signal that is the control target input signal, and the control target output signal response curve obtained is always mountain-shaped. Or it becomes a trough shape, and the tip point is easy to specify compared with the conventional inflection point.
FIG. 4 is an example. FIG. 4 shows the output when a step signal is added to the MV signal that is the input signal to be controlled (upper diagram in FIG. 4) and when the impulse signal of the present invention is added (lower diagram in FIG. 4). It is a signal response curve. It can be seen that it is easier to specify the apex point than to specify the inflection point and its tangent.
[Industrial applicability]

自動制御の分野において制御装置の制御パラメータ最適設定には、通常、制御対象の入力信号から出力信号までの信号伝達特性のKLT同定値を使用する。制御形態が多変数非干渉化を含むフイードバック制御の場合は、制御対象入力信号である複数の操作量から出力信号である複数の制御量までのマトリックス信号伝達特性のKLT同定値を使用し、制御形態がフイードフォアード制御の場合は更に、入力信号である外乱量から出力信号である制御量までの信号伝達特性のKLT同定値を使用する。
あらゆる制御形態において制御パラメータのより確実な最適設定には、より高精度のKLT同定値の計測が必要となる。
本発明の制御対象信号伝達特性KLT同定値計測手法は、より高精度を目的とするもので、自動制御の分野での利用可能性は高い。
In the field of automatic control, the control parameter optimal setting of the control device usually uses the KLT identification value of the signal transfer characteristic from the input signal to the output signal to be controlled. In the case of feedback control including multivariable non-interference, the control form is controlled by using KLT identification values of matrix signal transfer characteristics from a plurality of manipulated variables that are control target input signals to a plurality of controlled variables that are output signals. When the form is the feedforward control, the KLT identification value of the signal transfer characteristic from the disturbance amount as the input signal to the control amount as the output signal is further used.
More reliable measurement of the KLT identification value is required for more reliable optimal setting of control parameters in all control modes.
The control target signal transfer characteristic KLT identification value measurement method of the present invention aims at higher accuracy and has high applicability in the field of automatic control.

制御対象信号伝達特性KLT同定値計測の汎用手法であるステップ応答の変曲点接線手法を図示したもの。IPは変曲点。The inflection point tangent method of the step response, which is a general-purpose method of measuring the control target signal transfer characteristic KLT identification value, is illustrated. IP is the inflection point. 本発明の直角三角形型インパルス応答による制御対象信号伝達特性KLT同定値計測手法を図示したもの。PPは尖端点。FIG. 3 is a diagram illustrating a control target signal transfer characteristic KLT identification value measurement method using right-angled triangular impulse responses according to the present invention. FIG. PP is the apex point. 通常のインパルス応答による制御対象信号伝達特性KLT同定値計測手法を図示したもの。IPは変曲点。The figure which shows the control object signal transmission characteristic KLT identification value measurement technique by the usual impulse response. IP is the inflection point. 雑音の多い同一制御対象に対する、ステップ応答波形と本発明のインパルス応答波形の例。An example of a step response waveform and an impulse response waveform of the present invention for the same control target with much noise.

符号の説明Explanation of symbols

MV 制御対象の入力信号
PV 制御対象の出力信号
MV0 入力信号の初期整定値
MV1 入力信号の最終整定値
PV0 出力信号の初期整定値
PV1 出力信号の中間または最終整定値
% 信号の計測値単位、パーセント
Sec 信号の計測時間単位、秒
MVA 入力信号付加値の時間積分値、単位%Sec
PVA 出力信号付加値の時間積分値、単位%Sec
K 信号伝達特性のゲイン、 単位なし
L 信号伝達特性の等価むだ時間 単位Sec
T 信号伝達特性の等価時定数 単位Sec
IP 変曲点(最大傾斜の点)
PP 尖端点(山頂または谷底の点)
MV Input signal to be controlled PV Output signal to be controlled MV0 Initial setting value MV1 of input signal Final setting value PV0 of input signal Initial setting value PV1 of output signal PV1 Intermediate value or final setting value of output signal% Signal measurement unit, percent Sec signal measurement time unit, second MVA input signal additional value time integral value, unit% Sec
Time integral of PVA output signal additional value, unit% Sec
K Signal transfer characteristic gain, no unit L Signal transfer characteristic equivalent dead time Unit Sec
T Equivalent time constant of signal transfer characteristics Unit Sec
IP inflection point (maximum slope point)
PP point (point of summit or valley bottom)

Claims (1)

制御対象の入力信号から出力信号までの、信号伝達特性のKLT同定値(Kはゲイン、Lは等価むだ時間、Tは等価時定数)計測において、入力信号と出力信号とが共にある値で整定している状態で、入力信号に対して適切な時間適切な大きさの正または負のランプ信号を付加した後ステップで上記入力信号整定値に復帰する操作を与え,出力信号に対して山状または谷状の応答曲線を発生せしめる。
発生した山状または谷状出力信号応答曲線の山頂点または谷底点発生時刻と上記入力信号ステップ復帰時刻との差で、等価むだ時間Lを算出する事を特徴とする制御対象信号伝達特性のKLT同定値計測手法。
In the measurement of the KLT identification value (K is gain, L is equivalent dead time, and T is equivalent time constant) of the signal transfer characteristics from the input signal to the output signal to be controlled, both the input signal and the output signal are settled at a certain value. In such a state, after adding a positive or negative ramp signal of an appropriate magnitude to the input signal for an appropriate time, an operation for returning to the input signal set value in the step is given, and the output signal is crested. Or a valley-like response curve is generated.
The control target signal transfer characteristic KLT is characterized in that an equivalent dead time L is calculated by the difference between the peak or valley point generation time of the generated peak or valley output signal response curve and the input signal step return time. Identification value measurement technique.
JP2004198644A 2004-06-09 2004-06-09 KLT identification value measurement method for control signal transmission characteristics Expired - Fee Related JP4228351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198644A JP4228351B2 (en) 2004-06-09 2004-06-09 KLT identification value measurement method for control signal transmission characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198644A JP4228351B2 (en) 2004-06-09 2004-06-09 KLT identification value measurement method for control signal transmission characteristics

Publications (2)

Publication Number Publication Date
JP2005353017A true JP2005353017A (en) 2005-12-22
JP4228351B2 JP4228351B2 (en) 2009-02-25

Family

ID=35587426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198644A Expired - Fee Related JP4228351B2 (en) 2004-06-09 2004-06-09 KLT identification value measurement method for control signal transmission characteristics

Country Status (1)

Country Link
JP (1) JP4228351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155065A (en) * 2019-03-22 2020-09-24 三菱電機株式会社 Liquid pressure system control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231601A (en) * 1987-03-20 1988-09-27 Yokogawa Electric Corp Self-tuning controller
JPH0210402A (en) * 1988-06-29 1990-01-16 Yokogawa Electric Corp Process identifying device
JPH0619506A (en) * 1992-06-29 1994-01-28 Omron Corp Identifying device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231601A (en) * 1987-03-20 1988-09-27 Yokogawa Electric Corp Self-tuning controller
JPH0210402A (en) * 1988-06-29 1990-01-16 Yokogawa Electric Corp Process identifying device
JPH0619506A (en) * 1992-06-29 1994-01-28 Omron Corp Identifying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155065A (en) * 2019-03-22 2020-09-24 三菱電機株式会社 Liquid pressure system control device
JP7122994B2 (en) 2019-03-22 2022-08-22 三菱電機株式会社 hydraulic system controller

Also Published As

Publication number Publication date
JP4228351B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
CN110908364B (en) Fault detection method based on robust interval estimation
US6711531B1 (en) Temperature control simulation method and apparatus
JP2018181331A5 (en) Extreme value search control system, method and extreme value search controller with constraint handling
US20150309486A1 (en) Engineering Tool and Method for Parameterizing a Model-Based Predictive Controller
JP6203449B2 (en) System stability estimation apparatus and system stability estimation method
KR20080043941A (en) Integrals of relay feedback responses for extracting process information
JP4228351B2 (en) KLT identification value measurement method for control signal transmission characteristics
US10120349B2 (en) Control device and control method
CN104750086B (en) Fault and state estimation method and fault and state estimation device
JP7287166B2 (en) Valve controller and vacuum valve
WO2023019854A1 (en) Time-to-digital conversion device and time-to-digital conversion method therefor
CN114185270B (en) Model predictive motion control method and system for precision motion platform
JP2008052529A (en) Simulation apparatus, simulation method, and simulation program
JP2006280140A (en) Inverter simulator and motor simulator
Alanqar et al. Practice-oriented system identification strategies for MPC of building thermal and HVAC dynamics
JPH11312003A (en) Method for identifying object to be controlled
JP2004279338A (en) Method for measuring temperature reactivity coefficient of nuclear reactor
CN114118307B (en) Intelligent data fusion processing method and device for magneto-optical encoder for inhibiting temperature effect
KR20160019938A (en) On-product derivation and adjustment of exposure parameters in a directed self-assembly process
CN110456780B (en) Control quality adjusting method and device for automatic control system and readable storage medium
JP2009049305A (en) Oxide film thickness estimating method and device, and program
JP2009159700A (en) Output control device and control method of generator
CN117130401A (en) Temperature control method and device for water content measuring instrument
Mataušek Closed-loop PID controller design and performance
JPH11353007A (en) Simulation testing method for control equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees