JP2005348269A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2005348269A
JP2005348269A JP2004167745A JP2004167745A JP2005348269A JP 2005348269 A JP2005348269 A JP 2005348269A JP 2004167745 A JP2004167745 A JP 2004167745A JP 2004167745 A JP2004167745 A JP 2004167745A JP 2005348269 A JP2005348269 A JP 2005348269A
Authority
JP
Japan
Prior art keywords
idt
saw
piezoelectric substrate
surface acoustic
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004167745A
Other languages
Japanese (ja)
Inventor
Akinori Yamada
明法 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2004167745A priority Critical patent/JP2005348269A/en
Publication of JP2005348269A publication Critical patent/JP2005348269A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress frequency variation among individual SAW devices due to an error in the cutting angle of a wafer in an SH wave SAW device being used for high frequency and employing an ST cut 90° X propagation crystal substrate in a piezoelectric substrate. <P>SOLUTION: An IDT 2 having positive electrode fingers and negative electrode fingers interposing each other is arranged on a piezoelectric substrate 1, and reflectors 3a and 3b for reflecting SAW are arranged on both sides of the IDT 2. I/O pads 4a and 4b of the IDT 2 and the I/O terminals of a package 6 are conducted electrically by metal wires 5a and 5b and the opening of the package 6 is sealed hermetically by a lid. When the electrode material of the IDT 2 and the reflectors 3a and 3b is Al, the piezoelectric substrate 1 is an ST cut 90° X propagation crystal substrate of Euler angle indication (0°, 122°±5°, 90°±2°). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性表面波共振子、弾性表面波フィルタ等の弾性表面波デバイスに関し、特にSH波を用いた弾性表面波デバイスに関するものである。   The present invention relates to a surface acoustic wave device such as a surface acoustic wave resonator and a surface acoustic wave filter, and more particularly to a surface acoustic wave device using SH waves.

近年、弾性表面波(Surface Acoustic Wave:以下、SAW)デバイスは移動体通信分野で広く利用され、高性能、小型、量産性等の優れた特徴があることから特に携帯電話等に多く用いられている。特に近年、無線LANやVICS(Vehicle Information and Communication System)に対応したカーナビゲーションシステムの普及の増大に伴い、これらの機器に用いられるSAWデバイスにおいて高周波化、小型化が強く要求されている。   In recent years, surface acoustic wave (SAW) devices have been widely used in the field of mobile communication, and are particularly popular in mobile phones because of their excellent characteristics such as high performance, small size, and mass productivity. Yes. Particularly in recent years, with the widespread use of car navigation systems compatible with wireless LAN and VICS (Vehicle Information and Communication System), there is a strong demand for higher frequency and smaller size in SAW devices used in these devices.

前記SAWデバイスの種類としては、SAW共振子や、SAW共振子を直列、並列、直列、と配置した梯子(ラダー)型SAWフィルタ、SAW共振子をSAWの伝搬方向(縦方向)に並べて縦共振モードを音響結合させた縦結合型多重モードSAWフィルタ、SAW共振子をSAWの伝搬方向と垂直な方向(横方向)に並べて横共振モードを音響結合させた横結合型多重モードSAWフィルタ、入出力用のIDTを2つ近接配置したトランスバーサルSAWフィルタ等があり、これらのSAWデバイスにおいては一般的に励振波としてレイリー波が用いられる。   The types of SAW devices include SAW resonators, ladder-type SAW filters in which SAW resonators are arranged in series, parallel, and series, and SAW resonators arranged in the SAW propagation direction (longitudinal direction) for longitudinal resonance. A longitudinally coupled multimode SAW filter with acoustically coupled modes, a laterally coupled multimode SAW filter with SAW resonators arranged in the direction perpendicular to the SAW propagation direction (lateral direction) and acoustically coupled with the transverse resonant mode, input / output For example, a Rayleigh wave is generally used as an excitation wave in these SAW devices.

図4は、従来のレイリー波を用いたSAW共振子を示している。圧電基板21上にIDT22を配置すると共に、該IDT22の両側に反射器24a、24bを配置する。圧電基板21には、例えばSTカット0°X伝搬の水晶基板が用いられ、IDT22及び反射器24a、24bはAl又はAlを主成分とする合金から構成される。同図に示すように、励振波としてレイリー波を用いる場合、IDT22を励振したレイリー波を反射させて定在波を発生させるためには反射器24a、24bの電極本数を十分に多くしなければならない。従って、フィルタを設計する際には、反射器のスペースを十分確保する必要があるのでSAWデバイスの小型化には不利であった。また、使用周波数が2GHz帯以上の高周波に用いられるSAWデバイスにおいては、IDT22の電極指幅及び電極指間隔を非常に狭く設計しなければならないので、製造歩留まりが悪いという問題があった。   FIG. 4 shows a conventional SAW resonator using Rayleigh waves. An IDT 22 is disposed on the piezoelectric substrate 21, and reflectors 24 a and 24 b are disposed on both sides of the IDT 22. As the piezoelectric substrate 21, for example, a quartz substrate of ST cut 0 ° X propagation is used, and the IDT 22 and the reflectors 24a and 24b are made of Al or an alloy containing Al as a main component. As shown in the figure, when a Rayleigh wave is used as an excitation wave, the number of electrodes of the reflectors 24a and 24b must be sufficiently increased in order to reflect the Rayleigh wave excited by the IDT 22 and generate a standing wave. Don't be. Therefore, when designing the filter, it is necessary to secure a sufficient space for the reflector, which is disadvantageous for miniaturization of the SAW device. In addition, in a SAW device used for a high frequency of 2 GHz band or higher, the electrode finger width and the electrode finger interval of the IDT 22 must be designed to be very narrow, and there is a problem that the manufacturing yield is poor.

この問題を解決すべく励振波にSH波を用いたSAWデバイス(以下、SH波SAWデバイスと称す)が提案されている。SH波はレイリー波と比較して、伝搬速度が速く反射係数が大きい特徴がある。例えば、圧電基板にSTカット水晶基板を用いた場合、SH波の伝搬速度はレイリー波と比較して約1.6倍と大きいので高周波化に有利であり、また、反射係数が大きいので反射器はごく少数の電極指で形成するだけでよいので小型化にも有利であることが知られている。   In order to solve this problem, a SAW device using an SH wave as an excitation wave (hereinafter referred to as an SH wave SAW device) has been proposed. The SH wave has a feature that the propagation speed is high and the reflection coefficient is large compared to the Rayleigh wave. For example, when an ST-cut quartz substrate is used as the piezoelectric substrate, the propagation speed of the SH wave is about 1.6 times larger than that of the Rayleigh wave, which is advantageous for higher frequency, and since the reflection coefficient is large, the reflector It is known that it is advantageous for miniaturization because it needs only to be formed with very few electrode fingers.

前述のSH波SAWデバイスの先行技術として、特開2002−330051号及び特開2002−330052号で開示されている図5に示すような構造がある。同図に示すSAWデバイスは、圧電基板31にオイラー角表示で(0°,110°〜150°,90°±2°)のSTカット90°X伝搬の水晶基板を用い、圧電基板31上にSH波を励振するIDT32を配置し、その両側にSH波を反射する少数の電極本数で構成された反射器34a、34bを配置した構造を有している。また、IDT32及び反射器34a、34bの電極材料をAlを主成分とする材料とした場合は、波長λで基準化した電極膜厚H/λを0.025〜0.135の範囲に設定し、電極材料をAuを主成分とする材料とした場合は、電極膜厚H/λを0.003〜0.095の範囲に設定している。このように基板のカット角及び電極膜厚を設定することで、反射器の電極1本当たり反射率を向上させて反射器を大幅に小型化することが可能になり、製品全体としての十分な小型化を図ることができる。また、Al電極によるレイリー波を用いたSAWデバイスに比べて、電気機械結合係数を向上させることが可能なので、損失が小さく、広帯域で使用可能なSAWデバイスを得ることができる。
特開2002−330051号公報 特開2002−330052号公報 J.J.Campbell and W.R.Jones IEEE Trans. Sonics & Ultrason , SU-15(1968),pp.209-217
As a prior art of the above-described SH wave SAW device, there is a structure as shown in FIG. 5 disclosed in Japanese Patent Laid-Open Nos. 2002-330051 and 2002-330052. The SAW device shown in the figure uses an ST cut 90 ° X propagation crystal substrate of Euler angle display (0 °, 110 ° to 150 °, 90 ° ± 2 °) on the piezoelectric substrate 31, and is provided on the piezoelectric substrate 31. An IDT 32 that excites SH waves is disposed, and reflectors 34a and 34b each having a small number of electrodes that reflect SH waves are disposed on both sides thereof. Further, when the electrode material of the IDT 32 and the reflectors 34a and 34b is a material mainly composed of Al, the electrode film thickness H / λ normalized by the wavelength λ is set in the range of 0.025 to 0.135. When the electrode material is a material mainly composed of Au, the electrode film thickness H / λ is set in the range of 0.003 to 0.095. By setting the substrate cut angle and the electrode film thickness in this way, it becomes possible to improve the reflectivity per electrode of the reflector and greatly reduce the size of the reflector, which is sufficient for the entire product. Miniaturization can be achieved. In addition, since the electromechanical coupling coefficient can be improved as compared with a SAW device using Rayleigh waves with an Al electrode, a SAW device with low loss and usable in a wide band can be obtained.
JP 2002-330051 A JP 2002-330052 A JJCampbell and WRJones IEEE Trans. Sonics & Ultrason, SU-15 (1968), pp.209-217

ところで、前述の特開2002−330051号及び特開2002−330052号においてはSTカット90°X伝搬水晶基板のカット角θを110°〜150°と広範囲に定義しており、このθの範囲内であれば所望の特性が得られると開示している。しかしながら、例えばカット角θを110°〜150°の中心値である130°として試作を行ったところ、上記公報に記載されている通りに低損失化、広帯域化は確認することができるものの、同じ電極パターンを用いているにも関わらず、SAWデバイスの個体間で共振周波数が大きくばらついてしまう問題があったため量産が困難であった。   By the way, in the above-mentioned JP-A-2002-330051 and JP-A-2002-330052, the cut angle θ of the ST cut 90 ° X propagation quartz substrate is defined in a wide range of 110 ° to 150 °, and within this θ range. Then, it is disclosed that desired characteristics can be obtained. However, for example, when a prototype was made with a cut angle θ of 130 °, which is the central value of 110 ° to 150 °, low loss and wide band can be confirmed as described in the above publication, but the same Despite the use of electrode patterns, mass production was difficult because there was a problem that the resonance frequency varied greatly between individual SAW devices.

本発明が解決しようとする問題点は、圧電基板にSTカット90°X伝搬水晶基板を用いたSH波SAWデバイスにおいて、SAWデバイスの個体間に生じる周波数のばらつきを抑えることにより量産を容易にすることを目的としたものである。   The problem to be solved by the present invention is that, in an SH wave SAW device using an ST cut 90 ° X propagation quartz substrate as a piezoelectric substrate, mass production is facilitated by suppressing frequency variation between individual SAW devices. It is for the purpose.

上記目的を達成するために本発明に係るSAWデバイスの請求項1に記載の発明は、圧電基板と、該圧電基板上に形成されたIDTと、該IDTの両側に配置した反射器とを備えたSAWデバイスであって、前記IDT及び反射器はAl又はAlを主成分とする合金からなり、前記圧電基板は、オイラー角表示で(0°,122°±5°,90°±2°)の水晶基板であることを特徴とする。   In order to achieve the above object, an invention according to claim 1 of a SAW device according to the present invention comprises a piezoelectric substrate, an IDT formed on the piezoelectric substrate, and reflectors disposed on both sides of the IDT. The IDT and the reflector are made of Al or an alloy containing Al as a main component, and the piezoelectric substrate is displayed as Euler angles (0 °, 122 ° ± 5 °, 90 ° ± 2 °). It is characterized by being a quartz substrate.

請求項2に記載の発明は、圧電基板と、該圧電基板上に形成されたIDTと、該IDTの両側に配置した反射器とを備えたSAWデバイスであって、前記IDT及び反射器はAu又はAuを主成分とする合金からなり、前記圧電基板は、オイラー角表示で(0°,122°±5°,90°±2°)の水晶基板であることを特徴とする。   The invention according to claim 2 is a SAW device comprising a piezoelectric substrate, an IDT formed on the piezoelectric substrate, and reflectors disposed on both sides of the IDT, wherein the IDT and the reflector are Au Alternatively, the piezoelectric substrate is made of an alloy containing Au as a main component, and the piezoelectric substrate is a quartz substrate of Euler angle display (0 °, 122 ° ± 5 °, 90 ° ± 2 °).

請求項3に記載の発明は、前記圧電基板は、オイラー角表示で(0°,122°,90°)の水晶基板であることを特徴とする。   The invention according to claim 3 is characterized in that the piezoelectric substrate is a quartz substrate of Euler angle display (0 °, 122 °, 90 °).

請求項4に記載の発明は、前記SAWデバイスは、共振子、共振子フィルタ、ラダー型フィルタ、トランスバーサル型フィルタ、一方向性変換器のうち少なくとも1つの構造を有していることを特徴とする。   The invention according to claim 4 is characterized in that the SAW device has a structure of at least one of a resonator, a resonator filter, a ladder filter, a transversal filter, and a unidirectional converter. To do.

本発明の請求項1に記載のSAWデバイスによれば、オイラー角表示で(0°,122°±5°,90°±2°)の水晶基板を選択することにより、ウェーハの切り出し角度の誤差によるSAWデバイスの個体間の周波数ばらつきを抑圧でき、量産が容易なSAWデバイスを提供できる。   According to the SAW device of the first aspect of the present invention, by selecting a quartz substrate of (0 °, 122 ° ± 5 °, 90 ° ± 2 °) in Euler angle display, an error in the wafer cutting angle is obtained. Thus, it is possible to provide a SAW device that can suppress the frequency variation between the individual SAW devices due to the above and can be easily mass produced.

本発明の請求項2に記載のSAWデバイスによれば、電極材料をAu又はAuを主成分とする合金とすることにより、電極材料をAlとした場合と比較して反射器本数を減らすことができるのでデバイスサイズの小型化に寄与する。   According to the SAW device according to claim 2 of the present invention, the number of reflectors can be reduced compared to the case where the electrode material is Al by making the electrode material Au or an alloy containing Au as a main component. This contributes to device size reduction.

本発明の請求項3に記載のSAWデバイスによれば、オイラー角表示で(0°,122°,90°)の水晶基板を選択することにより、SAWデバイスの個体間の周波数ばらつきをより確実に抑圧できる。   According to the SAW device according to claim 3 of the present invention, by selecting a crystal substrate of (0 °, 122 °, 90 °) in Euler angle display, frequency variation among individual SAW devices can be more reliably achieved. Can be suppressed.

本発明の請求項4に記載のSAWデバイスによれば、小型でSAWデバイスの個体間の周波数ばらつきを抑圧した各種形態のSAWデバイスを提供できる。   According to the SAW device of the fourth aspect of the present invention, it is possible to provide various types of SAW devices that are small and suppress the frequency variation among the individual SAW devices.

以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1は本発明に係るSAWデバイスの一例を示しており、圧電基板1上に正電極指と負電極指とがそれぞれ互いに間挿し合うIDT2と、該IDT2の両側にSAWを反射する為の反射器3a、3bとを配置する。そして、前記IDT2の入出力パッド4a、4bとパッケージ6の入出力用端子とを金属ワイヤ5a、5bにより電気的に導通し、パッケージ6の開口部を蓋(リッド)で気密封止する。圧電基板1は、オイラー角表示で(0°,θ°,90±2°)のSTカット90°X軸伝搬の水晶基板であって、励振するSAWはSH波である。なお、IDT2及び反射器3a、3bの電極材料をAlとしている。   Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 shows an example of a SAW device according to the present invention. IDT 2 in which a positive electrode finger and a negative electrode finger are respectively inserted on a piezoelectric substrate 1 and reflection for reflecting SAW on both sides of the IDT 2 Devices 3a and 3b are arranged. The input / output pads 4a and 4b of the IDT 2 and the input / output terminals of the package 6 are electrically connected by metal wires 5a and 5b, and the opening of the package 6 is hermetically sealed with a lid. The piezoelectric substrate 1 is an ST cut 90 ° X-axis propagation quartz substrate with Euler angle display (0 °, θ °, 90 ± 2 °), and the excited SAW is an SH wave. The electrode material of the IDT 2 and the reflectors 3a and 3b is Al.

図2(a)は、前記SAWデバイスにおいて電極膜厚を変化させた時のカット角θと伝搬速度Vの関係を示している。なお、電極膜厚HはSAWの波長λで基準化した値で表し0.01λから0.04λまで変化させ、縦軸にSAWの伝搬速度V(m/s)、横軸にカット角θ(deg)を表している。同図から、どの電極膜厚においてもθ=122°付近で伝搬速度の最大値を取り、θ=122°±5°の範囲外では急激に伝搬速度が低下している。従って、θ=110°〜150°の範囲においては伝搬速度が一様でなく、切り出し角度を高精度に制御しないと周波数がばらついてしまうことが分かる。また、図2(b)は、θ=122°の伝搬速度を基準とした時のカット角の伝搬速度変化率を示しており、いずれの電極膜厚の条件においてもθ=122°±5°付近が伝搬速度変化率が低い、即ち、カット角の周波数感度が低いことが分かる。   FIG. 2A shows the relationship between the cut angle θ and the propagation velocity V when the electrode film thickness is changed in the SAW device. The electrode film thickness H is expressed as a value normalized by the SAW wavelength λ, and is changed from 0.01λ to 0.04λ. The vertical axis represents the SAW propagation velocity V (m / s), and the horizontal axis represents the cut angle θ ( deg). From the figure, the maximum value of the propagation speed is obtained near θ = 122 ° at any electrode film thickness, and the propagation speed is drastically reduced outside the range of θ = 122 ° ± 5 °. Therefore, in the range of θ = 110 ° to 150 °, the propagation speed is not uniform, and it can be seen that the frequency varies unless the cutting angle is controlled with high accuracy. FIG. 2B shows the rate of change in the propagation speed of the cut angle when the propagation speed of θ = 122 ° is used as a reference, and θ = 122 ° ± 5 ° under any electrode film thickness condition. It can be seen that the rate of change in propagation velocity is low in the vicinity, that is, the frequency sensitivity of the cut angle is low.

例えば、特開2002−330051号に記載されたθ=110°〜150°の中心値であるθ=130°とし、電極膜厚をH/λ=0.04とした場合を考えると、カット角1°あたりの伝搬速度変化率は約−12000ppmであり、一般的に水晶基板のカット角の製造ばらつきは±1°程度であるから、カット角の変化による伝搬速度のばらつきは約±3000ppm程度が生じる。周波数は伝搬速度に比例するので、そのまま±3000ppm程度の周波数ばらつきが生じることになる。これに対し、θ=122°においては、カット角の変化による伝搬速度の変動はほぼ零であり、θ=122°+5°=127°においても、カット角1°当たりの伝搬速度変化率は−4500ppm程度であり、カット角が±1°ずれたとしても、伝搬速度及び周波数のばらつきは高々±1000ppm程度と実用的な範囲となるのである。   For example, considering the case where θ = 130 °, which is the central value of θ = 110 ° to 150 ° described in JP-A-2002-330051, and the electrode film thickness is H / λ = 0.04, the cut angle The rate of change of propagation speed per degree is about −12000 ppm, and generally the manufacturing variation of the cut angle of the quartz substrate is about ± 1 °. Therefore, the variation of the propagation speed due to the change of the cut angle is about ± 3000 ppm. Arise. Since the frequency is proportional to the propagation speed, a frequency variation of about ± 3000 ppm occurs as it is. On the other hand, at θ = 122 °, the fluctuation of the propagation velocity due to the change in the cut angle is almost zero, and even at θ = 122 ° + 5 ° = 127 °, the propagation velocity change rate per 1 ° of the cut angle is −. Even if the cut angle is shifted by ± 1 °, it is about 4500 ppm, and the variation in propagation speed and frequency is at most about ± 1000 ppm, which is a practical range.

以上から、STカット90°X伝搬水晶基板を用いたSH波SAWデバイスにおいて、電極膜厚HをH≦0.04λとした時にカット角θ=122°±5°の範囲の周波数感度が低いことが判明した。従って、カット角をθ=122°±5°に設定すればウェーハの切り出し角度の誤差によってSAWデバイスの個体間の周波数がばらつくことを抑圧できる。   From the above, in the SH wave SAW device using the ST cut 90 ° X propagation quartz substrate, the frequency sensitivity in the range of the cut angle θ = 122 ° ± 5 ° is low when the electrode film thickness H is H ≦ 0.04λ. There was found. Therefore, if the cut angle is set to θ = 122 ° ± 5 °, it is possible to suppress variations in the frequency among the individual SAW devices due to an error in the wafer cut angle.

次に、前記SAWデバイスにおいて電極材料をAuとした時のカット角の周波数感度について調べた。   Next, the frequency sensitivity of the cut angle when the electrode material was Au in the SAW device was examined.

図3(a)は、電極材料をAuとし、電極膜厚を変化させた時のカット角θと伝搬速度Vの関係を示している。なお、電極膜厚HはSAWの波長λで基準化した値Hで表し0.01λから0.04λまで変化させ、縦軸にSAWの伝搬速度V(m/s)、横軸にカットアングルθ(deg)を表している。同図より、AuはAlより伝搬速度が遅く、また、θ=122°付近で伝搬速度の最大値をとることが分かる。また、図2(b)は、θ=122°の伝搬速度を基準とした時の伝搬速度変化率を示しており、いずれの電極膜厚の条件においてもAlの場合と同様にθ=122°±5°付近が伝搬速度変化率が低い、即ち、カット角の周波数感度が低いことが分かる。従って、圧電基板上の電極膜の硬さ、重さに依存することなくθ=122°±5°付近でカット角の周波数感度が最も低くなることが判明した。また、AuはAlと比較して密度が高く質量負荷が大きいので反射器本数を大幅に減らしてもSAWのエネルギーをIDT内に十分閉じ込めることができるので小型化に有利である。   FIG. 3A shows the relationship between the cut angle θ and the propagation velocity V when the electrode material is Au and the electrode film thickness is changed. The electrode film thickness H is expressed by a value H normalized by the SAW wavelength λ, and is changed from 0.01λ to 0.04λ. The vertical axis represents the SAW propagation velocity V (m / s), and the horizontal axis represents the cut angle θ. (Deg). From the figure, it can be seen that Au has a lower propagation speed than Al, and takes the maximum value of the propagation speed in the vicinity of θ = 122 °. FIG. 2B shows the rate of change in propagation speed when the propagation speed of θ = 122 ° is used as a reference, and θ = 122 ° as in the case of Al under any electrode film thickness conditions. It can be seen that the rate of change in propagation velocity is low near ± 5 °, that is, the frequency sensitivity of the cut angle is low. Therefore, it has been found that the frequency sensitivity of the cut angle is the lowest in the vicinity of θ = 122 ° ± 5 ° without depending on the hardness and weight of the electrode film on the piezoelectric substrate. Also, since Au has a higher density and a larger mass load than Al, it is advantageous for miniaturization because the SAW energy can be sufficiently confined in the IDT even if the number of reflectors is significantly reduced.

これまで、電極材料をAl又はAuとした場合について説明してきたが、Al又はAuを主成分とする合金としても良く、更にはW、Ta、Ag又はそれらを主成分とする合金としても同様の効果が得られる。また、本発明に係るSAWデバイスの形態としては、図1に示すSAW共振子以外の構造でも良く、SAW共振子を直列、並列、直列、と配置した梯子(ラダー)型SAWフィルタ、SAW共振子をSAWの伝搬方向(縦方向)に並べて縦共振モードを音響結合させた縦結合型多重モードSAWフィルタ、SAW共振子をSAWの伝搬方向と垂直な方向(横方向)に並べて横共振モードを音響結合させた横結合型多重モードSAWフィルタ、入力用IDTと出力用IDTを2つ近接配置したトランスバーサルSAWフィルタ等にも本発明を適用できることは言うまでもない。   So far, the case where the electrode material is Al or Au has been described. However, an alloy containing Al or Au as the main component may be used, and W, Ta, Ag, or an alloy containing these as the main component may be used. An effect is obtained. Further, the form of the SAW device according to the present invention may be a structure other than the SAW resonator shown in FIG. 1, and a ladder-type SAW filter and a SAW resonator in which SAW resonators are arranged in series, parallel, and series. Are arranged in the SAW propagation direction (longitudinal direction) and the longitudinal resonance mode is acoustically coupled, and the longitudinally coupled multi-mode SAW filter is acoustically coupled. It goes without saying that the present invention can also be applied to a coupled laterally coupled multi-mode SAW filter, a transversal SAW filter in which two input IDTs and two output IDTs are arranged close to each other.

本発明に係るSAWデバイスの構造を説明する図である。It is a figure explaining the structure of the SAW device concerning the present invention. 本発明に係るSAWデバイスにおいて、電極材料をAlとし、電極膜厚H/λを変化させた時のカットアングルθと伝搬速度Vの関係を示す。In the SAW device according to the present invention, the relationship between the cut angle θ and the propagation velocity V when the electrode material is Al and the electrode film thickness H / λ is changed is shown. 本発明に係るSAWデバイスにおいて、電極材料をAuとし、電極膜厚H/λを変化させた時のカットアングルθと伝搬速度Vの関係を示す。In the SAW device according to the present invention, the relationship between the cut angle θ and the propagation velocity V when the electrode material is Au and the electrode film thickness H / λ is changed is shown. 従来のレイリー波を用いたSAW共振子を説明する図である。It is a figure explaining the SAW resonator using the conventional Rayleigh wave. 従来のSH波を用いたSAW共振子を説明する図である。It is a figure explaining the SAW resonator using the conventional SH wave.

符号の説明Explanation of symbols

1 圧電基板
2 IDT
3a、3b 反射器
4a、4b 入出力用パッド
5a、5b 金属ワイヤ
6 パッケージ
1 Piezoelectric substrate 2 IDT
3a, 3b Reflector 4a, 4b Input / output pad 5a, 5b Metal wire 6 Package

Claims (4)

圧電基板と、該圧電基板上に形成されたIDTと、該IDTの両側に配置した反射器とを備えた弾性表面波デバイスであって、
前記IDT及び反射器はAl又はAlを主成分とする合金からなり、前記圧電基板は、オイラー角表示で(0°,122°±5°,90°±2°)の水晶基板であることを特徴とした弾性表面波デバイス。
A surface acoustic wave device comprising a piezoelectric substrate, an IDT formed on the piezoelectric substrate, and reflectors disposed on both sides of the IDT,
The IDT and the reflector are made of Al or an alloy containing Al as a main component, and the piezoelectric substrate is a quartz substrate with Euler angle display (0 °, 122 ° ± 5 °, 90 ° ± 2 °). Characteristic surface acoustic wave device.
圧電基板と、該圧電基板上に形成されたIDTと、該IDTの両側に配置した反射器とを備えた弾性表面波デバイスであって、
前記IDT及び反射器はAu又はAuを主成分とする合金からなり、前記圧電基板は、オイラー角表示で(0°,122°±5°,90°±2°)の水晶基板であることを特徴とした弾性表面波デバイス。
A surface acoustic wave device comprising a piezoelectric substrate, an IDT formed on the piezoelectric substrate, and reflectors disposed on both sides of the IDT,
The IDT and the reflector are made of Au or an alloy containing Au as a main component, and the piezoelectric substrate is a quartz substrate of Euler angle display (0 °, 122 ° ± 5 °, 90 ° ± 2 °). Characteristic surface acoustic wave device.
前記圧電基板は、オイラー角表示で(0°,122°,90°)の水晶基板であることを特徴とした請求項1又は2に記載の弾性表面波デバイス。   The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is a quartz substrate of Euler angle display (0 °, 122 °, 90 °). 前記弾性表面波デバイスは、共振子、共振子フィルタ、ラダー型フィルタ、トランスバーサル型フィルタ、一方向性変換器のうち少なくとも1つの構造を有していることを特徴とする請求項1乃至3のいずれかに記載の弾性表面波デバイス。
The surface acoustic wave device has at least one structure of a resonator, a resonator filter, a ladder filter, a transversal filter, and a unidirectional transducer. The surface acoustic wave device according to any one of the above.
JP2004167745A 2004-06-04 2004-06-04 Surface acoustic wave device Withdrawn JP2005348269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167745A JP2005348269A (en) 2004-06-04 2004-06-04 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167745A JP2005348269A (en) 2004-06-04 2004-06-04 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2005348269A true JP2005348269A (en) 2005-12-15

Family

ID=35500190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167745A Withdrawn JP2005348269A (en) 2004-06-04 2004-06-04 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2005348269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505965A (en) * 2015-09-03 2017-03-15 日本电波工业株式会社 Quartz crystal unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505965A (en) * 2015-09-03 2017-03-15 日本电波工业株式会社 Quartz crystal unit
CN106505965B (en) * 2015-09-03 2021-03-30 日本电波工业株式会社 Crystal oscillator

Similar Documents

Publication Publication Date Title
JP5163746B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5239741B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP4148294B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP3897229B2 (en) Surface wave filter
JP3301399B2 (en) Surface acoustic wave device
WO2003088483A1 (en) Surface acoustic wave device, and mobile communication device and sensor both using same
JPWO2010047114A1 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
JP4049195B2 (en) Manufacturing method of surface acoustic wave device
WO2006137464A1 (en) Elastic surface wave device, module, and oscillator
JP2006148622A (en) Surface acoustic wave device and electronic equipment
JP2001077662A (en) Surface wave device and communication device
JP2007028664A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2012049818A (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2007288812A (en) Surface acoustic wave device, module device, oscillation circuit and method for manufacturing surface acoustic wave device
JP7493306B2 (en) Elastic Wave Device
JP2001308675A (en) Surface wave filter and common device, communication device
JP3255502B2 (en) Highly stable surface acoustic wave device
JP5158104B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2011041127A (en) Elastic wave device
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP4356773B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP4613779B2 (en) Surface acoustic wave device
JP2005348269A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060614

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20060614

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802