JP2005347668A - 波長走査型ファイバレーザ光源 - Google Patents

波長走査型ファイバレーザ光源 Download PDF

Info

Publication number
JP2005347668A
JP2005347668A JP2004168151A JP2004168151A JP2005347668A JP 2005347668 A JP2005347668 A JP 2005347668A JP 2004168151 A JP2004168151 A JP 2004168151A JP 2004168151 A JP2004168151 A JP 2004168151A JP 2005347668 A JP2005347668 A JP 2005347668A
Authority
JP
Japan
Prior art keywords
optical fiber
wavelength
optical
light
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168151A
Other languages
English (en)
Inventor
Shiyoukou Tei
昌鎬 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntech Co
Original Assignee
Suntech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntech Co filed Critical Suntech Co
Priority to JP2004168151A priority Critical patent/JP2005347668A/ja
Publication of JP2005347668A publication Critical patent/JP2005347668A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】高速で波長を変化させることができる波長可変型のファイバレーザ光源を提供すること。
【解決手段】光ファイバループに光ファイバで発振波長にゲインを有するゲイン媒体を設けてループを形成する。この光ファイバループに光サーキュレータ13を設け、光サーキュレータ13で取り出された光をコリメートレンズ21で拡大し、ミラー25との間にバンドパスフィルタ24を設ける。バンドパスフィルタ24を2回透過する波長を選択することによって選択度を高める。又バンドパスフィルタ24の入射角度を高速で変化させ選択波長を変化させる。
【選択図】図1

Description

本発明は単光性の光を発生してその発光波長を周期的に走査する波長走査型ファイバレーザ光源に関するものである。
従来、光を測定対象に照射し測定対象を分析する分析装置の光源として、広帯域の光源が用いられている。分光分析では広帯域の光を測定対象に投光し、その反射光や透過光をグレーティング等で波長成分に空間的に分解したり、干渉計で周波数成分にフーリエ変換して分析する手法が広く用いられている。このような光源としては、例えば白色光源やエルビウムドープドファイバ(EDF)を用いたASE光源等が用いられていた。しかしこのような分光分析では、波長に対する光出力強度密度が低いため、分光において利用できる光のレベルが小さい。そのためフーリエ変換の分析をしても検出光信号がノイズに埋まれてしまい、分析が難しいという欠点があった。
分析装置の光源として、強いレベルの単一スペクトルの光を所望の帯域で変化させる波長可変型の光源を用いる方法もある。これは単光性の強い光の波長を変化させて測定対象に照射し、測定対象を透過したり、又は反射する光をそのまま受光素子で受光するものである。この方法では、光源の波長に対する光出力強度密度が高いので、検出光のレベルと信号対ノイズ比が十分に高く、十分な測定精度を実現できる。
従来の波長可変型の光源には外部共振器型レーザやファイバリングレーザがある。外部共振器型レーザは、ゲイン媒質、例えば半導体レーザを用い、その半導体レーザの一方の端面と外部のミラーとの間で外部共振器を形成し、外部共振器の中にグレーティング等による波長可変フィルタを設けることによって発振波長を変化させ、波長可変型の光源を得るようにしたものである。外部共振器型レーザ光源では、外部共振器型長は例えば50mmと比較的小さく、縦モード間隔は例えば30GHzと広い。従って単に波長可変フィルタの波長を変えただけでは、縦モードの間で不安定になる。例えばモード間では不連続なモードホップが生じたり、マルチモードで発振することもある。そのため単一モードで連続的に波長を可変し、しかも出力を安定とするためには、外部共振器長をピエゾ素子等を用いて微妙に制御しなければならず、複雑な制御が必要となる。又機械的な動作を伴い、波長と外部共振器長とを同期させて制御するため、高速で波長を変化させることが難しいという欠点があった。
又非特許文献1に、エルビウムドープドファイバを用いたリングレーザによる波長可変光源も提案されている。これはエルビウムドープドファイバ(EDF)及びこれを励起するファイバアンプをゲイン媒体として用い、その光ファイバループの間に波長可変型のバンドパスフィルタを設けて、このバンドパスフィルタの波長を変化させることによって波長可変光源を得るようにしたものである。この場合には光ファイバループの共振器長を例えば30mと長くできるため、縦モード間隔を狭くすることができる。そのため共振器長を変化させることなく、モードホップの影響をなくすることができる。従って厳密には単一モード発振ではないが、バンドパスフィルタの選択波長を変化させるだけで、擬似的に連続して波長可変を行うことができる。
YAMASHITA ET AL., IEEE JOURAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.7, NO.1 JANUARY/FEBRUARY 2001, PP41〜43
このリングレーザによる波長可変光源を分析装置の光源として用いる場合には、高速で波長を可変させること、及び発振スペクトルの幅を狭くすることがバンドパスフィルタの特性として要求される。
しかし従来のフィルタ技術では高速可変と、高いQ値を同時に得ることが難しかった。例えば光音響光学効果(AO)を利用した波長可変フィルタでは、透過波長以外での抑圧比が十分でなく、安定した発振ができないという欠点があった。又バンドパスフィルタとしてピエゾ素子を用いてファブリペローエタロンを形成した場合には、波長可変速度が数Hz以下と遅く、ヒステリシスがあるという問題点があった。バンドパスフィルタにグレーティングを用いる場合には、光軸の調整が難しく、又高価になるという欠点があった。更にバンドパスフィルタとして光干渉フィルタを用いたものも考えられるが、フィルタを一度通過させるだけではフィルタのQが低く、あまりスペクトルを狭くすることができないという欠点があった。
本発明はこのような欠点を解消するため成されたもので、狭帯域の光源を高速で走査できるようにした波長走査型のファイバレーザ光源を提供することを目的とする。
この課題を解決するために、本発明の波長走査型ファイバレーザ光源は、光ファイバループと、前記光ファイバループに設けられ、発振する波長に対する利得を有するゲイン媒体と、第1〜第3の端子を有し、前記第1,第2の端子が光ファイバループに接続され、各端子に入射される光の方向を制御する光サーキュレータと、前記光サーキュレータの第3の端子より得られる光を平行光とするコリメートレンズと、前記コリメートレンズで形成される光軸に対して垂直の反射面を有するミラーと、前記コリメートレンズと前記ミラーとの間に配置され、入射角によって透過波長を変化させるバンドパスフィルタと、前記バンドパスフィルタに対して光の入射角を変化させることによって透過光を周期的に変化させる角度制御部と、前記光ファイバループに形成され、光ファイバループを通過する光の一部を取り出す光学カップラと、を具備することを特徴とするものである。この角度制御部は、バンドパスフィルタと光軸との角度を変化させるガルバノメータによって構成してもよい。
ここで前記ゲイン媒体は、前記光ファイバループの少なくとも一部を構成する光ファイバ増幅器としてもよい。光ファイバ増幅器は例えば、エルビウムがドープされたエルビウムドープドファイバと、前記エルビウムドープドファイバを駆動する励起用レーザと、前記励起用レーザからの出力をエルビウムドープドファイバに入射するカップラと、を有するようにしてもよい。又ドープする材料を選択することによってゲインの波長帯域を調整することも可能である。
ここで前記ゲイン媒体は、光を増幅する半導体光増幅器としてもよい。
ここで前記光ファイバループに設けられ、前記光ファイバループ内の光の偏波方向を制御する偏波コントローラと、前記コリメートレンズとミラーとの間に設けられ、偏光方向を一定とする偏光子と、を更に有するようにしてもよい。
ここで前記光ファイバループは偏波面保存型の光ファイバを含んで構成されているようにしてもよい。
このような特徴を有する本発明によれば、光サーキュレータによって光ファイバループの光の一部を取り出し、コリメートレンズで空間に平行光として出射すると共に、コリメートレンズとミラーとの間にバンドパスフィルタを配置している。こうすればバンドパスフィルタを2回透過した光が光ファイバループによって発振することとなり、波長選択性が高いレーザ光を発振させることができる。そしてこのバンドパスフィルタの角度を角度制御部により変化させている。この角度制御速度を十分高くすることによって高速で波長可変を行うことができるという効果が得られる。コリメートレンズで平行となった光はバンドパスフィルタを透過し、ミラーで反射された光ビームはバンドパスフィルタの角度にかかわらず同じ光路をたどってコリメートレンズより光ファイバループに入るので、フィルタの角度の変化に伴う出力レベルの変動はない。又光ファイバループを偏波面保存型光ファイバを含んで構成することによって、構成を簡略化することができるという効果が得られる。
図1は本発明の実施の形態による波長走査型ファイバレーザ光源の構成を示す図である。本実施の形態の波長走査型ファイバレーザ光源10は光ファイバ11を含んでループを形成している。このループの一部に、ゲイン媒体12、光サーキュレータ13、光カップラ14及び偏波コントローラ15を設ける。ゲイン媒体12は、光ファイバループの一部に設けられるエルビウムイオン(Er3+)を添加したエルビウムドープドファイバ16と、このエルビウムドープドファイバ16にポンプ光を入射するファイバ励起用の半導体レーザ17、及びWDMカップラ18を有している。この光ファイバループは、例えば30〜50mの長さを有するものとする。この励起用半導体レーザ17は例えば1480nmや980nmの波長が用いられ、エルビウムドープドファイバ16を透過する光を増幅するものである。光サーキュレータ13は、光ファイバ11を透過する光の方向を図示のように矢印方向に規制するものである。即ち光サーキュレータ13の入力端子13a,13bが光ファイバループに接続されており、入力端子13aから入射した光は光サーキュレータの端子13cより出射される。又光サーキュレータ13cより入射した光は端子13bより出射される。端子13bより入射した光は端子13aより出射される。又光カップラ14は光ファイバループの光の一部を抽出するものであり、偏波コントローラ15は、光ファイバループを透過する光の偏波方向を一定方向に規定するものである。
光サーキュレータ13の端子13cは、光ファイバ21を介して図示のようにコリメートレンズ22に接続される。コリメートレンズ22は光ファイバ21からの光を平行光とするもので、その光軸上には偏光子23、バンドパスフィルタ24及びミラー25が設けられる。ミラー25はコリメートレンズ22で形成される光軸に対して反射面が垂直に配置された全反射ミラーである。又バンドパスフィルタ24は例えば誘電体多層膜を多数積層した光干渉型の誘電体多層膜フィルタとし、光軸に対して傾けて配置されている。誘電体多層膜フィルタは入射角度が変化することによって透過波長が変化する。このバンドパスフィルタ24はガルバノメータ26に連結されている。ガルバノメータ26はバンドパスフィルタ24の光軸に対する角度を高速で変化させる角度制御部であって、例えばフィルタ24に対する光の入射角度を40°の範囲で数KHzの速度で回転させるものとする。又偏光子23はコリメートレンズとミラー25間の光軸を透過する光の偏光方向を所定方向に規定するものである。
次にこの実施の形態の動作について説明する。この実施の形態において前述した励起用の半導体レーザ17を駆動し、WDMカップラ18を介して光ファイバループをポンピングする。図2(a)はゲイン媒体12の利得を示す。こうすれば光サーキュレータ13の作用によって端子13aから加わった光が端子13cより光ファイバ21に入り、コリメートレンズ22によって平行光となる。そしてバンドパスフィルタ24を透過する波長の光はミラー25に入射し、ミラー25で反射されて再びフィルタ24を透過した光のみが、コリメートレンズ22を介してサーキュレータ13より光ファイバループに加わる。又偏波コントローラ15は光ファイバループを透過する光の偏波を一定方向に調整する。図2(b)は光ファイバループの長さと光ファイバの屈折率で定まる光学長に応じて定まる外部共振縦モードを示している。例えばこの光学波長を30mとすると、約10MHzの間隔の縦モードが存在する。ここで図3の曲線Aはバンドパスフィルタ24の1回の透過特性を示す図であり、曲線Bは2回の透過によって狭帯域となったバンドパスフィルタの特性を示す図である。図2(c)はこの2回の透過によるフィルタの特性B1を示しており、このフィルタを透過することによって選択された波長で図2(d)に示すように縦モードを含んで多モード発振する。発振波長は例えば1550nmとなる。こうして光ファイバループで発振したレーザ光の一部、例えばレーザ光の10%のレベルの光を光カップラ14を介して取り出す。尚、多モードの発振での光信号は光波長多重通信で伝送する際には問題となるが、分光分析や光ファイバセンシング、光部品評価などでは発振線幅(厳密には、多モード発振時スペクトルの包絡線の半値幅)が被測定対象の分解能より十分狭ければ、問題となるものではない。
そしてバンドパスフィルタ24をガルバノメータ26によって回動させる。こうすれば光ビームとバンドパスフィルタ24との角度が変化するため、バンドパスフィルタ22の透過波長が図2(c)のB2〜B3の範囲で変化する。ガルバノメータ26を駆動することによって、この角度を適宜調整することにより、波長を例えば100nmの範囲内で、数KHzの走査速度で、フィルタの透過波長を変化させることができる。従って数KHzの走査速度で100nmの範囲でファイバレーザ光源の発振波長を変化させることができる。図4は発振波長の時間的な変化を示すグラフである。
この実施の形態による発振の場合には、図2(d)に示すように多モードの状態の発振となる。しかし図2(b)に示すように縦モード間隔が極めて狭く、モードホップが早く高速であるために、外部共振器型半導体レーザのようなモードホップに伴う悪影響がなく、発振波長を変化させることができる。又ガルバノメータを用いることにより、比較的低価格でファイバレーザ光源を実用化することができるという効果が得られる。
図5はコリメートレンズ22とミラー25との間の光軸の変化とバンドパスフィルタの傾き角度との関係を示す図である。図5(a),(b)に示すようにバンドパスフィルタ24の傾きによってバンドパスフィルタ24とミラー25の間の光軸が上下にシフトする。しかしミラー25で反射された光がバンドパスフィルタ24を介して同一の光路を通ってコリメートレンズに入射される。従ってこの実施の形態では、光ファイバ21から出射された光と光ファイバ21に入射される光とが同一の光軸となっている。即ちバンドパスフィルタ24の角度が変化したとしても、バンドパスフィルタ24を透過する光の光軸に結合損失の変化がなく、全ての波長域に渡ってロスを平坦とすることができる。このためゲイン媒体のゲイン帯域をより有効に活用し、出力波長範囲を広くとることができる。
一方、図6は本実施の形態の比較例として示した波長走査型ファイバレーザ光源である。この比較例ではサーキュレータに代えて光ファイバループにコリメートレンズ27,28を介して直接バンドパスフィルタ29を挿入したものである。その他の構成は本実施の形態と同様である。図7はこの場合のコリメートレンズ27,28とバンドパスフィルタ29の光軸の変化を示す図である。ガルバノメータ30によりバンドパスフィルタ29を回転させて選択波長を変化させると、図7に示すようにフィルタの角度によって光軸が左右に振れるため、光ファイバに入射する光のレベルが変化する。従って波長の変化域に渡って共振器内のロスが変動し、波長に応じて出力レベルが変化するという問題が生じる。これに対し、本実施の形態ではこのような問題点をなくすることができる。
図8は本発明の第2の実施の形態による波長走査型ファイバレーザ光源を示す図である。この実施の形態では光ファイバループの一部にゲイン媒体として半導体光増幅器(SOA)31を用いたものである。ファイバループには通常の光ファイバ11のみでループを形成する。又偏波コントローラとして15a,15bを挿入する。その他の構成は実施の形態1と同様である。半導体光増幅器31は両端に出力面があり、電流を注入することによって光を増幅するものであるが、特定の共振波長はなく、本実施の形態のように両端に光ファイバを接続してループを形成すると図2(b)に示す外部共振モードが得られる。又実施の形態1と同様に、光サーキュレータ13を介してバンドパスフィルタ24を接続しておくことによって、バンドパスフィルタ24の波長で前述した実施の形態と同様に発振が得られる。そしてガルバノメータ26で駆動することによって、高速で発振波長を変化させることができる。
図9は本発明の第3の実施の形態による波長走査型ファイバレーザ光源を示す図である。この実施の形態では光ファイバループに偏波面保存型光ファイバ32を用いてファイバレーザ光源のループを形成したものである。この実施の形態でも実施の形態2と同様にゲイン媒体として半導体光増幅器31を用いる。又光サーキュレータ13、光カップラ14を用いることも前述の実施の形態と同様である。この実施の形態では、偏波面保存型光ファイバ32を用いるため、ループを回って発振する光の偏波面は所定方向に一定となる。従って実施の形態1のような偏波コントローラ15やコリメートレンズ22とミラー25との間の偏光子23は不要となる。その他の構成は前述した実施の形態と同様であり、比較的簡単な構成で同様の効果が得られる。
尚、前述した各実施の形態では角度制御部としてガルバノメータを用いているが、高速でバンドパスフィルタ24の角度を変化させることができるものであれば足りる。
本発明は高速で波長を可変することができ、しかもバンドパスフィルタの波長選択特性を向上させつつ、高速で波長可変することができる。又グレーティングを用いないため、比較的安価で実現することができる。従って医療用の分析機器、例えば皮膚断面モニタ装置に適用することが可能となる。又グレーティングファイバを用いて歪みの計測をする場合に、本発明の波長走査型ファイバレーザ光源を光源として用いることができる。
本発明の第1の実施の形態による波長走査型ファイバレーザ光源を示す概略図である。 本実施の形態の光ファイバレーザ光源のゲイン媒体の利得、発振モード、バンドパスフィルタ及び発振出力を示すグラフである。 本実施の形態のバンドパスフィルタの特性を示すグラフである。 本実施の形態の発振波長の時間的な変化を示すグラフである。 本実施の形態によるミラーの回動角度と光軸との変化を示す図である。 比較例による波長走査型ファイバレーザ光源の概略図である。 比較例によるバンドパスフィルタの角度と光軸の変化を示す図である。 本発明の第2の実施の形態による波長走査型ファイバレーザ光源を示す概略図である。 本発明の第3の実施の形態による波長走査型ファイバレーザ光源を示す概略図である。
符号の説明
10 波長走査型ファイバレーザ光源
11 光ファイバ
12 ゲイン媒体
13 光サーキュレータ
14 カップラ
15 偏波コントローラ
16 エルビウムドープドファイバ
17 半導体レーザ
18 WDMカップラ
21 光ファイバ
22 コリメートレンズ
23 偏光子
24 バンドパスフィルタ
25 ミラー
26 ガルバノメータ
31 半導体光増幅器
32 偏波面保存型光ファイバ

Claims (5)

  1. 光ファイバループと、
    前記光ファイバループに設けられ、発振する波長に対する利得を有するゲイン媒体と、
    第1〜第3の端子を有し、前記第1,第2の端子が光ファイバループに接続され、各端子に入射される光の方向を制御する光サーキュレータと、
    前記光サーキュレータの第3の端子より得られる光を平行光とするコリメートレンズと、
    前記コリメートレンズで形成される光軸に対して垂直の反射面を有するミラーと、
    前記コリメートレンズと前記ミラーとの間に配置され、入射角によって透過波長を変化させるバンドパスフィルタと、
    前記バンドパスフィルタに対して光の入射角を変化させることによって透過光を周期的に変化させる角度制御部と、
    前記光ファイバループに形成され、光ファイバループを通過する光の一部を取り出す光学カップラと、を具備することを特徴とする波長走査型ファイバレーザ光源。
  2. 前記ゲイン媒体は、前記光ファイバループの一部を構成する光ファイバ増幅器であることを特徴とする請求項1記載の波長走査型ファイバレーザ光源。
  3. 前記ゲイン媒体は、光を増幅する半導体光増幅器であることを特徴とする請求項1記載の波長走査型ファイバレーザ光源。
  4. 前記光ファイバループに設けられ、前記光ファイバループ内の光の偏波方向を制御する偏波コントローラと、
    前記コリメートレンズとミラーとの間に設けられ、偏光方向を一定とする偏光子と、を更に有することを特徴とする請求項1記載の波長走査型ファイバレーザ光源。
  5. 前記光ファイバループは偏波面保存型の光ファイバを含んで構成されていることを特徴とする請求項1記載の波長走査型ファイバレーザ光源。
JP2004168151A 2004-06-07 2004-06-07 波長走査型ファイバレーザ光源 Pending JP2005347668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168151A JP2005347668A (ja) 2004-06-07 2004-06-07 波長走査型ファイバレーザ光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168151A JP2005347668A (ja) 2004-06-07 2004-06-07 波長走査型ファイバレーザ光源

Publications (1)

Publication Number Publication Date
JP2005347668A true JP2005347668A (ja) 2005-12-15

Family

ID=35499724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168151A Pending JP2005347668A (ja) 2004-06-07 2004-06-07 波長走査型ファイバレーザ光源

Country Status (1)

Country Link
JP (1) JP2005347668A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024876A (ja) * 2004-06-07 2006-01-26 Sun Tec Kk 波長走査型ファイバレーザ光源
WO2009068312A2 (de) * 2007-11-29 2009-06-04 Toptica Photonics Ag Faserlaser mit ringförmigem resonator
WO2009104612A1 (ja) * 2008-02-18 2009-08-27 旭硝子株式会社 ファイバレーザー
JP2009277754A (ja) * 2008-05-13 2009-11-26 Canon Inc レーザ装置、レーザ装置の駆動方法および光断層画像撮像装置
JP2012060186A (ja) * 2006-01-26 2012-03-22 Advantest Corp レーザ発振器
JP2012079885A (ja) * 2010-09-30 2012-04-19 Panasonic Electric Works Sunx Co Ltd レーザ光出射装置およびレーザ光の中心波長および波長帯域幅の変更方法
JP2017118153A (ja) * 2017-03-31 2017-06-29 ソニー株式会社 半導体レーザ装置組立体
WO2018105549A1 (ja) 2016-12-09 2018-06-14 日本電信電話株式会社 波長掃引光源、波長掃引光源のための駆動データ作成方法および光偏向器
CN108365509A (zh) * 2018-03-15 2018-08-03 执鼎医疗科技(杭州)有限公司 一种波长扫描的光纤激光器
WO2020250272A1 (ja) * 2019-06-10 2020-12-17 株式会社ニコン 計測装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024876A (ja) * 2004-06-07 2006-01-26 Sun Tec Kk 波長走査型ファイバレーザ光源
JP2012060186A (ja) * 2006-01-26 2012-03-22 Advantest Corp レーザ発振器
US8457164B2 (en) 2007-11-29 2013-06-04 Toptica Photonics Ag Fiber laser comprising a ring-shaped resonator
WO2009068312A2 (de) * 2007-11-29 2009-06-04 Toptica Photonics Ag Faserlaser mit ringförmigem resonator
WO2009068312A3 (de) * 2007-11-29 2009-09-03 Toptica Photonics Ag Faserlaser mit ringförmigem resonator
WO2009104612A1 (ja) * 2008-02-18 2009-08-27 旭硝子株式会社 ファイバレーザー
JPWO2009104612A1 (ja) * 2008-02-18 2011-06-23 旭硝子株式会社 ファイバレーザー
JP2009277754A (ja) * 2008-05-13 2009-11-26 Canon Inc レーザ装置、レーザ装置の駆動方法および光断層画像撮像装置
JP2012079885A (ja) * 2010-09-30 2012-04-19 Panasonic Electric Works Sunx Co Ltd レーザ光出射装置およびレーザ光の中心波長および波長帯域幅の変更方法
WO2018105549A1 (ja) 2016-12-09 2018-06-14 日本電信電話株式会社 波長掃引光源、波長掃引光源のための駆動データ作成方法および光偏向器
US11165219B2 (en) 2016-12-09 2021-11-02 Nippon Telegraph And Telephone Corporation Swept light source and drive data generation method and optical deflector for swept light source
EP4191808A1 (en) 2016-12-09 2023-06-07 Nippon Telegraph And Telephone Corporation Swept light source and drive data generation method and optical deflector for swept light source
US11721948B2 (en) 2016-12-09 2023-08-08 Nippon Telegraph And Telephone Corporation Swept light source and drive data generation method and optical deflector for swept light source
JP2017118153A (ja) * 2017-03-31 2017-06-29 ソニー株式会社 半導体レーザ装置組立体
CN108365509A (zh) * 2018-03-15 2018-08-03 执鼎医疗科技(杭州)有限公司 一种波长扫描的光纤激光器
WO2020250272A1 (ja) * 2019-06-10 2020-12-17 株式会社ニコン 計測装置

Similar Documents

Publication Publication Date Title
JP4628820B2 (ja) 波長走査型ファイバレーザ光源
JP4527479B2 (ja) 波長走査型ファイバレーザ光源
US8358461B2 (en) Wavelength-tunable light source
US7388891B2 (en) Wide bandwidth light source
US9759983B2 (en) Frequency comb source with large comb spacing
US7099358B1 (en) Tunable laser light source
JP5898077B2 (ja) Oct医療用画像化のためのフィルタase掃引源
US8400640B2 (en) Optical sensor interrogation system based on FDML wavelength swept laser
US20080252900A1 (en) Optical tomography system
JP3361305B2 (ja) 光 源
US20110069722A1 (en) Swept fiber laser source for optical coherence tomography
JP2005347668A (ja) 波長走査型ファイバレーザ光源
JP2009031238A (ja) 光コヒーレンストモグラフィー装置
JP2006024876A (ja) 波長走査型ファイバレーザ光源
JP2009060022A (ja) 波長走査型光源
US7653316B2 (en) Discretely ITU-T channel grid wavelength tunable single longitudinal mode erbium-doped fiber ring laser
JP2019114721A (ja) 波長掃引光源
JP2009033078A (ja) 波長走査型光源
KR20210113306A (ko) 라만 분광법으로 극미량의 가스를 검출하는 데 적합한 광학 피드백을 갖는 공진 광학 공동 시스템
JP2005217077A (ja) レーザ装置
JP2014103357A (ja) 光源装置、光干渉断層撮像装置
RU2801639C1 (ru) Волоконный кольцевой источник лазерного излучения с пассивным сканированием частоты
JP4589620B2 (ja) 光波長基準装置
Budarnykh et al. Automatic control of the tuning parameters of a self-sweeping Tm-doped fiber laser
Baribault et al. Stitch-free widely tunable dual-channel fibre laser for use in a passive component analyser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306