JP2005347102A - Overcharge prevention type nonaqueous secondary battery - Google Patents

Overcharge prevention type nonaqueous secondary battery Download PDF

Info

Publication number
JP2005347102A
JP2005347102A JP2004165459A JP2004165459A JP2005347102A JP 2005347102 A JP2005347102 A JP 2005347102A JP 2004165459 A JP2004165459 A JP 2004165459A JP 2004165459 A JP2004165459 A JP 2004165459A JP 2005347102 A JP2005347102 A JP 2005347102A
Authority
JP
Japan
Prior art keywords
separator
secondary battery
lithium
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004165459A
Other languages
Japanese (ja)
Inventor
Satoshi Nishikawa
聡 西川
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004165459A priority Critical patent/JP2005347102A/en
Publication of JP2005347102A publication Critical patent/JP2005347102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery capable of improving a yield while having a sufficient overcharge prevention function even in a flat lithium ion nonaqueous secondary battery having a bent part. <P>SOLUTION: This lithium ion nonaqueous secondary battery is so structured that a battery element having a positive electrode and a negative electrode stacked on each other by interlaying a separator is impregnated with an electrolyte, and is enclosed in a battery armoring case in a form rolled in a curvature radius below 500 μm. In this lithium ion nonaqueous secondary battery, a quantity of lithium capable of being dedoped from the positive electrode is larger than a quantity of lithium capable of being completely dedoped from the negative electrode, and is a value allowing lithium capable of being electrochemically dedoped at 0.5 mAh/cm<SP>2</SP>or above to remain in the positive electrode with the negative electrode completely doped; and the separator is a porous film satisfying T<300 sec/100 cc and 1 sec/100 cc<T×ε<100 sec/100 cc, when it is assumed that a Gurley value and a void content are T sec/100 cc and ε, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は捲回型のリチウムイオン非水系二次電池に関し、なかでも過充電を防止するセパレータに関する。   The present invention relates to a wound lithium ion non-aqueous secondary battery, and more particularly to a separator that prevents overcharge.

リチウムイオンのドープ・脱ドープ反応により起電力を得る非水系二次電池は高いエネルギー密度を有するという特徴から携帯電話・ノートパソコン等の携帯電子機器の電源として広く普及している。ただし、この電池は可燃性の非水溶媒を電解液に用いているので誤用により発火する危険性があり、安全性確保は重要な技術要素となっている。特に安全性確保の観点で過充電対策は重要となっている。現状の非水系二次電池では電子回路の制御により過充電対策がなされているが、この方法は電子回路が故障する場合を想定すると本質的に安全とは言い難い。このような背景から過充電対策の技術が検討されている。   Non-aqueous secondary batteries that obtain an electromotive force by doping and dedoping reactions of lithium ions are widely used as power sources for portable electronic devices such as mobile phones and notebook personal computers because of their high energy density. However, since this battery uses a flammable non-aqueous solvent as an electrolyte, there is a risk of fire due to misuse, and ensuring safety is an important technical element. In particular, overcharge countermeasures are important from the viewpoint of ensuring safety. In the current non-aqueous secondary battery, overcharge countermeasures are taken by controlling the electronic circuit, but this method is essentially not safe when assuming that the electronic circuit breaks down. Against this background, techniques for overcharge countermeasures are being studied.

過充電を防止する技術として、過充電を防止するための添加剤を電解液に添加する方法があり、多くの添加剤が提案されている。これら添加剤は満充電の正極電位より少し高い電位で正極と反応することで過充電を防止することを原理とする。しかし、この種の添加剤は一般に還元に弱く悪影響を及ぼす。これを回避するためには過充電防止添加剤の負極での還元反応を防止するためのビニレンカーボネートのような添加剤も必要となりコスト高になるのが現状で一般的には採用されていない。また、高レートでの過充電の場合は過充電を防止するための添加剤の反応が充電速度に追従できないという課題もある。   As a technique for preventing overcharge, there is a method of adding an additive for preventing overcharge to an electrolytic solution, and many additives have been proposed. The principle of these additives is to prevent overcharging by reacting with the positive electrode at a potential slightly higher than the fully charged positive electrode potential. However, this type of additive is generally weak and detrimental to reduction. In order to avoid this, an additive such as vinylene carbonate for preventing the reduction reaction at the negative electrode of the overcharge prevention additive is also required, and it is generally not adopted to increase the cost. Further, in the case of overcharge at a high rate, there is also a problem that the reaction of the additive for preventing overcharge cannot follow the charge rate.

本発明者らは、過充電時に負極上に析出する金属リチウムを用いて過充電を防止する技術を国際公開第01/67536号公報(特許文献1)にて開示している。この技術では、過充電防止のために負極上に析出する金属リチウムを用いるので、通常の使用においては電池に何ら悪影響を与えることはない。また、正極界面近傍に到達した金属リチウムの正極での酸化反応速度は極めて速く高レートでの過充電に対しても有利であり、従来の添加剤の課題を克服する技術である。   The present inventors have disclosed a technique for preventing overcharge using metallic lithium deposited on the negative electrode during overcharge in International Publication No. 01/67536 (Patent Document 1). In this technique, metallic lithium deposited on the negative electrode is used to prevent overcharge, and therefore, the battery is not adversely affected during normal use. Further, the oxidation reaction rate of metallic lithium reaching the vicinity of the positive electrode interface at the positive electrode is extremely fast, which is advantageous for overcharging at a high rate, and is a technique for overcoming the problems of conventional additives.

類似技術が特開2002−237330号公報(特許文献2)に開示されている。この技術ではセパレータにポリオレフィン微多孔膜を用いる。オレイン酸エチル等の添加剤を用いることで金属リチウムの析出を制御し、特許文献1同様の手法で過充電を防止するものである。   A similar technique is disclosed in Japanese Patent Laid-Open No. 2002-237330 (Patent Document 2). This technique uses a polyolefin microporous membrane for the separator. By using an additive such as ethyl oleate, precipitation of metallic lithium is controlled, and overcharge is prevented in the same manner as in Patent Document 1.

国際公開第01/67536号公報International Publication No. 01/67536 特開2002−237330号公報JP 2002-237330 A

特許文献1記載の過充電防止技術は非水系二次電池の安全性を向上させる観点で有効なものであり、この技術ではセパレータのモロホロジーが重要な技術要素の1つである。本発明者らは、この過充電防止技術を達成するセパレータ構成として、織物、不織布、穴あけ加工したフィルム等の網目状シートまたはこれらシートを内包したポリフッ化ビニリデン(PVdF)に代表される電解液に膨潤しこれを保持する有機高分子からなる多孔質シートを例示している。このようなセパレータは積層タイプのような電池には有効である。しかし、折り曲げ部分を有する捲回構造の扁平型電池では、この系のセパレータで薄膜化しようとすると、折り曲げ部分で電極剤がセパレータに食い込み微短絡してしまう等の要因から電池の歩留まりが上がらないという課題があった。   The overcharge prevention technique described in Patent Document 1 is effective in terms of improving the safety of the non-aqueous secondary battery, and the separator morphology is one of the important technical elements in this technique. As a separator configuration for achieving this overcharge prevention technology, the present inventors have used a mesh sheet such as a woven fabric, a nonwoven fabric, a perforated film, or an electrolytic solution typified by polyvinylidene fluoride (PVdF) containing these sheets. The porous sheet which consists of organic polymer which swells and hold | maintains this is illustrated. Such a separator is effective for a battery such as a laminated type. However, in a flat battery with a wound structure having a bent portion, if it is attempted to make a thin film with a separator of this system, the yield of the battery will not increase due to factors such as the electrode agent biting into the separator at the bent portion and causing a short circuit. There was a problem.

特許文献2の技術ではセパレータがポリオレフィン微多孔膜であるので、電池の歩留まりが上がらないという課題は回避可能と考えられる。ただし、過充電を防止するためにオレイン酸エチル等を添加する必要があり、この添加剤の影響で電池性能の低下を招く可能性がある。また、電池性能の低下を極力抑え効果を発揮させるためには、このような添加剤の添加量を厳密に制御する必要があり、コスト高となる。   In the technique of Patent Document 2, since the separator is a polyolefin microporous film, it is considered possible to avoid the problem that the yield of the battery does not increase. However, in order to prevent overcharging, it is necessary to add ethyl oleate or the like, and the influence of this additive may cause a decrease in battery performance. Further, in order to suppress the deterioration of the battery performance as much as possible and to exert the effect, it is necessary to strictly control the amount of such an additive, which increases the cost.

そこで本発明は、特許文献1記載の過充電防止技術を活用した捲回構造の扁平型電池において、添加剤を必要としないで特許文献1記載の過充電防止技術を発現させ、電池の歩留まりも改善させることを目的とする。   Therefore, the present invention provides a flat battery having a wound structure utilizing the overcharge prevention technology described in Patent Document 1 and exhibits the overcharge prevention technology described in Patent Document 1 without the need for an additive. The purpose is to improve.

本発明者らが上記の課題を解決するために検討した結果、曲率半径500μm以下の折り曲げ構造を有する捲回型電池の場合、正極に含有されるリチウムの量と負極にドープ可能なリチウムの量のバランスを適切に調整し、特定のモロホロジーのポリオレフィン微多孔膜を用いることで上記の課題を解決できることを見出し本発明に至った。特許文献2記載の技術は、正極に含有されるリチウムの量と負極にドープ可能なリチウムの量のバランスが適切でないため、オレイン酸エチル等を添加する必要性が生じたものと推測される。すなわち本発明は、セパレータを介して正極と負極が積層された電池エレメントが電解液を含浸し、曲率半径500μm以下で捲回された状態で電池外装ケースに封入されているリチウムイオン非水系二次電池において、正極から脱ドープ可能なリチウム量が負極を完全にドープしうるリチウム量より多く、かつ負極が完全にドープされた状態で0.5mAh/cm以上の電気化学的に脱ドープ可能なリチウムが正極中に残存しうる量であり、セパレータは、ガーレ値をT秒/100cc、空孔率をεとした場合、T<300秒/100ccかつ1秒/100cc<T・ε<100秒/100ccを満たす多孔膜であることを特徴とする非水系二次電池を提供する。さらに本発明は上記発明に加え以下の発明も提供する。
1.該セパレータがポリオレフィン微多孔膜である上記発明記載の非水系二次電池。
2.電解液を含浸した後の温度120〜150℃における該セパレータのインピーダンスが、25℃における該セパレータのインピーダンスの100倍以上である1記載の非水系二次電池。
3.該セパレータがポリエチレンを主体とする有機高分子からなる2記載の非水系二次電池。
4.該セパレータを120℃で30分間、張力をかけずに保持した場合、該セパレータの熱収縮率が10%以下である上記発明または1〜3いずれかに記載の非水系二次電池。
5.電池形状が角型である上記発明または1〜4いずれかに記載の非水系二次電池。
6.電池外装がアルミラミネートフィルム外装である5記載の非水系二次電池。
As a result of studies conducted by the present inventors to solve the above problems, the amount of lithium contained in the positive electrode and the amount of lithium that can be doped in the negative electrode in the case of a wound battery having a folded structure with a curvature radius of 500 μm or less. The present inventors have found that the above problems can be solved by appropriately adjusting the balance and using a polyolefin microporous membrane having a specific morphology. The technique described in Patent Document 2 is presumed to be necessary to add ethyl oleate or the like because the balance between the amount of lithium contained in the positive electrode and the amount of lithium that can be doped into the negative electrode is not appropriate. That is, the present invention provides a lithium ion non-aqueous secondary battery in which a battery element in which a positive electrode and a negative electrode are laminated via a separator is impregnated with an electrolyte and wound in a battery outer case with a curvature radius of 500 μm or less. In a battery, the amount of lithium that can be dedoped from the positive electrode is larger than the amount of lithium that can completely dope the negative electrode, and can be electrochemically dedoped at 0.5 mAh / cm 2 or more with the negative electrode fully doped The amount of lithium that can remain in the positive electrode, and the separator is T <300 seconds / 100 cc and 1 second / 100 cc <T · ε <100 seconds, where the Gurley value is T seconds / 100 cc and the porosity is ε. A nonaqueous secondary battery characterized by being a porous film satisfying / 100 cc is provided. In addition to the above invention, the present invention also provides the following invention.
1. The non-aqueous secondary battery according to the above invention, wherein the separator is a polyolefin microporous membrane.
2. 2. The nonaqueous secondary battery according to 1, wherein the impedance of the separator at a temperature of 120 to 150 ° C. after impregnation with the electrolytic solution is 100 times or more the impedance of the separator at 25 ° C.
3. 3. The non-aqueous secondary battery according to 2, wherein the separator is made of an organic polymer mainly composed of polyethylene.
4). The nonaqueous secondary battery according to any one of the above invention and any one of 1 to 3, wherein the separator has a thermal shrinkage of 10% or less when held at 120 ° C. for 30 minutes without applying a tension.
5). The non-aqueous secondary battery according to the above invention or any one of 1 to 4, wherein the battery has a square shape.
6). 6. The nonaqueous secondary battery according to 5, wherein the battery exterior is an aluminum laminate film exterior.

本発明によれば過充電時の安全性が高い非水系二次電池が生産性よく得られる。   According to the present invention, a non-aqueous secondary battery having high safety during overcharge can be obtained with high productivity.

本発明の非水系二次電池は、セパレータを介して正極と負極が積層された電池エレメントが電解液を含浸し、曲率半径500μm以下で捲回された状態で電池外装ケースに封入されているリチウムイオン非水系二次電池において、正極から脱ドープ可能なリチウム量が負極を完全にドープしうるリチウム量より多く、かつ負極が完全にドープされた状態で0.5mAh/cm以上の電気化学的に脱ドープ可能なリチウムが正極中に残存しうる量であり、セパレータは、ガーレ値をT秒/100cc、空孔率をεとした場合、T<300秒/100ccかつ1秒/100cc<T・ε<100秒/100ccを満たす多孔膜であることを特徴とする。すなわち本発明非水系二次電池は、電池構造、正負極容量バランス及びセパレータ構成の組み合わせに特徴があり、過充電時に安全性が高く生産性のよい非水系二次電池が提供可能となる。 The non-aqueous secondary battery of the present invention is a lithium battery encapsulated in a battery outer case in a state in which a battery element in which a positive electrode and a negative electrode are laminated via a separator is impregnated with an electrolyte and wound with a curvature radius of 500 μm or less. In an ionic non-aqueous secondary battery, the amount of lithium that can be dedoped from the positive electrode is larger than the amount of lithium that can completely dope the negative electrode, and the electrochemical property is 0.5 mAh / cm 2 or more when the negative electrode is completely doped. The amount of lithium that can be dedoped into the positive electrode can remain in the positive electrode, and the separator has T <300 seconds / 100 cc and 1 second / 100 cc <T when the Gurley value is T seconds / 100 cc and the porosity is ε. -It is a porous film satisfy | filling (epsilon) <100 second / 100cc. That is, the non-aqueous secondary battery of the present invention is characterized by a combination of the battery structure, positive and negative electrode capacity balance, and separator configuration, and can provide a non-aqueous secondary battery with high safety and good productivity during overcharge.

電池構造の特徴は、セパレータを介して正極と負極が積層された電池エレメントが電解液を含浸し捲回された状態で電池外装ケースに封入されており、負極が曲率半径500μm以下で捲回された部分が存在することである。図1は該曲率半径を説明するための図で電池の内部構造の一部分を示している。本発明では、図1に示された4の部分の半分、すなわち負極集電体間の距離の半分を曲率半径と定義する。   The battery structure is characterized in that a battery element in which a positive electrode and a negative electrode are stacked via a separator is impregnated with an electrolyte and wound in a battery outer case, and the negative electrode is wound with a radius of curvature of 500 μm or less. That part is present. FIG. 1 is a view for explaining the radius of curvature and shows a part of the internal structure of the battery. In the present invention, the radius of curvature is defined as half of the portion 4 shown in FIG. 1, that is, half of the distance between the negative electrode current collectors.

特許文献1で述べられている過充電防止機能は、過充電時に負極表面に析出する金属リチウムを用いて過充電を防止するためのものであるが、折り曲げられた部分は過充電時の金属リチウムの析出が幾何学的な要因で集中し、この機能が発現し易くなる。本発明の非水系二次電池セパレータは該曲率半径が500μm以下で捲回された部分が存在する電池であっても適用可能である。   The overcharge prevention function described in Patent Document 1 is for preventing overcharge by using metal lithium deposited on the surface of the negative electrode during overcharge, but the bent portion is the metal lithium during overcharge. This function is likely to occur due to concentration of precipitation due to geometrical factors. The non-aqueous secondary battery separator of the present invention can be applied even to a battery having a wound portion with a radius of curvature of 500 μm or less.

上記のような電池構造的な特徴から本発明非水系二次電池の実施は角型電池での実施が可能である。また、過充電防止機能を有し過充電時のガス発生、電池の膨れは顕著に抑制されるので、電池の外装は膨れの問題が顕著であるアルミラミネートフィルムでの実施も可能である。   Due to the battery structural features as described above, the non-aqueous secondary battery of the present invention can be implemented with a prismatic battery. Further, since it has an overcharge preventing function and gas generation and battery swelling during overcharging are remarkably suppressed, the exterior of the battery can be implemented with an aluminum laminate film in which the problem of swelling is significant.

正負極の容量バランスの特徴は、負極に完全にリチウムがドープされた状態で正極中に0.5mAh/cm以上の電気化学的に脱ドープ可能なリチウムが残存していることである。過充電防止機能は過充電時に負極表面に電析する金属リチウムを用いることを原理とするため、ある一定量以上の金属リチウムの電析が必須である。この電析される金属リチウムの供給源はほとんど正極中に存在している電気化学的に脱ドープ可能なリチウムである。このため、本発明の非水系二次電池の場合、負極に完全にリチウムがドープされた状態で正極中に0.5mAh/cm以上の電気化学的に脱ドープ可能なリチウムが存在していることが好適で、さらに好適には1.0mAh/cm以上である。 The capacity balance between the positive and negative electrodes is that 0.5 mAh / cm 2 or more of electrochemically dedopeable lithium remains in the positive electrode while the negative electrode is completely doped with lithium. Since the overcharge prevention function is based on the use of metallic lithium that is electrodeposited on the negative electrode surface during overcharging, it is essential to deposit a certain amount or more of metallic lithium. The source of metal lithium to be deposited is mostly electrochemically dedopeable lithium present in the positive electrode. For this reason, in the case of the non-aqueous secondary battery of the present invention, there is electrochemically dedopeable lithium of 0.5 mAh / cm 2 or more in the positive electrode in a state in which the negative electrode is completely doped with lithium. It is preferably 1.0 mAh / cm 2 or more.

負極に完全にリチウムがドープされた状態で正極中に0.5mAh/cm以上の電気化学的に脱ドープ可能なリチウムが残存していることは、負極にドープ可能なリチウム量と正極から脱ドープ可能なリチウム量を各々測定し、その差を求めることで確認できる。具体的には、任意の充電状態の電池を分解し、正極及び負極を取り出し、それぞれの電極が作用極、リチウム箔が参照極及び対極となる3電極式または2電極式電気化学セルを組み測定することで求めることが可能である。2電極式の場合は同一のリチウム箔が参照極と対極を兼ねることになる。ここで、このセルに用いる電解液は本発明非水系二次電池で用いるものと同一のものが好ましい。 The fact that 0.5 mAh / cm 2 or more of electrochemically dedopeable lithium remains in the positive electrode in a state where the negative electrode is completely doped with lithium means that the amount of lithium that can be doped into the negative electrode and the positive electrode are removed. This can be confirmed by measuring the amount of lithium that can be doped and determining the difference. Specifically, a battery in an arbitrary state of charge is disassembled, the positive electrode and the negative electrode are taken out, and measurement is performed using a three-electrode or two-electrode electrochemical cell in which each electrode is a working electrode and a lithium foil is a reference electrode and a counter electrode It is possible to obtain it. In the case of the two-electrode type, the same lithium foil serves as a reference electrode and a counter electrode. Here, the electrolytic solution used in this cell is preferably the same as that used in the non-aqueous secondary battery of the present invention.

負極に関しては、リチウム電極に対し0Vまでが負極中にドープ可能なリチウム量と考えられ、0V以下となるとリチウムの電析が始まる。故に、負極を用いて上記電気化学セルを組み、負極へリチウムがドープされるように電流を流した場合、負極電位が0Vに到達するまでの電気量が負極中でドープ可能なリチウム量となる。   Regarding the negative electrode, up to 0 V with respect to the lithium electrode is considered to be the amount of lithium that can be doped into the negative electrode, and when it becomes 0 V or less, lithium electrodeposition begins. Therefore, when the electrochemical cell is assembled using a negative electrode and a current is passed so that lithium is doped into the negative electrode, the amount of electricity until the negative electrode potential reaches 0 V is the amount of lithium that can be doped in the negative electrode. .

正極に関しては、リチウム電極に対し5V以下でリチウムの脱ドープが起こり、脱ドープ反応が終了すると電解液の酸化分解が起こる電位まで上昇する。故に、正極を用いて上記電気化学セルを組み、正極からリチウムが脱ドープされるように電流を流した場合、正極電位が5Vに到達するまでの電気量が正極中からドープ可能なリチウム量となる。   Regarding the positive electrode, lithium de-doping occurs at 5 V or less with respect to the lithium electrode, and when the de-doping reaction ends, the potential rises to a potential at which oxidative decomposition of the electrolyte solution occurs. Therefore, when the electrochemical cell is assembled using a positive electrode and a current is applied so that lithium is dedoped from the positive electrode, the amount of electricity until the positive electrode potential reaches 5 V is the amount of lithium that can be doped from the positive electrode. Become.

上記の測定で負極、正極ともに測定の電流密度は低い方が測定精度の観点から好ましく、0.1C以下が好適である。   In the above measurement, it is preferable from the viewpoint of measurement accuracy that the current density of both the negative electrode and the positive electrode is low, and 0.1 C or less is preferable.

負極及び正極に対し上記の測定を行いその差を計算することで、負極に完全にリチウムがドープされた状態で正極中の電気化学的に脱ドープ可能なリチウムの量を算出することができる。   By performing the above measurement on the negative electrode and the positive electrode and calculating the difference between them, the amount of electrochemically dedopeable lithium in the positive electrode can be calculated while the negative electrode is completely doped with lithium.

ここで正極及び負極を取り出す電池の充電状態は任意の充電状態で原理的に問題ない。また、必ずしも電池から取り出さなくても、電池に組む前の電極を用いても構わない。   Here, the state of charge of the battery from which the positive electrode and the negative electrode are taken out is arbitrarily charged and there is no problem in principle. Further, the electrode before being assembled into the battery may be used without necessarily removing the battery.

本発明の非水系二次電池に用いるセパレータの特徴は、ガーレ値をT秒/100cc、空孔率をεとした場合、T<300秒/100ccかつ1秒/100cc<T・ε<100秒/100ccを満たす多孔膜であることである。T>300秒/100ccまたはT・ε>100秒/100cc以上であると、前述した電池構造及び容量バランスとしても良好に過充電防止機能を得ることはできない。またT・ε<1秒/100ccであると折り曲げ部分に対する物性が十分なものでなく電池の生産性が上がらない。   The separator used in the non-aqueous secondary battery of the present invention is characterized by T <300 seconds / 100 cc and 1 second / 100 cc <T · ε <100 seconds, where the Gurley value is T seconds / 100 cc and the porosity is ε. It is a porous film satisfying / 100 cc. When T> 300 seconds / 100 cc or T · ε> 100 seconds / 100 cc or more, the overcharge prevention function cannot be obtained satisfactorily as the above-described battery structure and capacity balance. If T · ε <1 second / 100 cc, the physical properties of the bent portion are not sufficient, and the productivity of the battery does not increase.

ここで、ガーレ値T秒/100ccはJIS P8117に従い測定した数値とする。また、空孔率εは膜厚、目付け、構成素材の真密度から求めることができる。すなわち、目付けを膜厚で割り見かけの密度を求め、構成素材の真密度を見かけの密度で割り、これを1から引くことで求められる。   Here, the Gurley value T seconds / 100 cc is a numerical value measured according to JIS P8117. The porosity ε can be obtained from the film thickness, basis weight, and the true density of the constituent materials. That is, the apparent density is obtained by dividing the basis weight by the film thickness, the true density of the constituent material is divided by the apparent density, and this is subtracted from 1.

このようなセパレータは、本発明の非水系二次電池の電池構造と容量バランスを考えた場合、過充電防止機能発現と折り曲げに対する物性において適度な空隙と曲路率となっている。   When considering the battery structure and capacity balance of the non-aqueous secondary battery of the present invention, such a separator has an appropriate gap and curvature in terms of overcharge prevention function expression and physical properties against bending.

本発明のセパレータは電解液に非膨潤性の材質で十分な物性が得られるものが、短絡歩留まりを含む生産性の観点から好ましい。このような観点からポリオレフィン微多孔膜が好適である。ここで、セパレータの膜厚は10μm以上が好適である。   The separator of the present invention is preferably a non-swellable material in the electrolyte solution that provides sufficient physical properties from the viewpoint of productivity including short circuit yield. From such a viewpoint, a polyolefin microporous membrane is suitable. Here, the thickness of the separator is preferably 10 μm or more.

別途、該セパレータは外部短絡時の安全性確保等を考えた場合シャットダウン機能を有した方が好ましい。すなわち、該セパレータは電解液を含浸したときのインピーダンスが120〜160℃の範囲で25℃で測定したインピーダンスの100倍以上となる方が好適である。この特性は、SUS電極間に電解液を含浸させたセパレータを挟み、これをボタンセルの封入した評価セルを用いて評価できる。ここで、電解液には1M LiBF PC/EC(1/1重量比)を用いることが好適である。この評価セルを恒温槽に入れ、1kHzの交流インピーダンスを測定しながら、昇温していくことで評価することが可能である。この測定でセルのインピーダンスは実数成分とする。 Separately, it is preferable that the separator has a shutdown function in view of ensuring safety in the event of an external short circuit. That is, it is preferable that the separator has an impedance when impregnated with an electrolytic solution is 100 times or more the impedance measured at 25 ° C. in the range of 120 to 160 ° C. This characteristic can be evaluated using an evaluation cell in which a separator impregnated with an electrolyte is sandwiched between SUS electrodes and this is enclosed in a button cell. Here, it is preferable to use 1M LiBF 4 PC / EC (1/1 weight ratio) as the electrolytic solution. It is possible to evaluate by putting this evaluation cell in a thermostat and raising the temperature while measuring the AC impedance of 1 kHz. In this measurement, the impedance of the cell is a real component.

上記のようなシャットダウン特性が得られるようにするためには、120〜160℃に融点のある材料を用いることが好適である。このような観点からセパレータの材料はポリエチレンを主体とすることが好適である。具体的にはポリエチレンを50重量%以上、好ましくは90重量%以上含むことが好ましい。   In order to obtain the shutdown characteristics as described above, it is preferable to use a material having a melting point of 120 to 160 ° C. From such a viewpoint, the material of the separator is preferably mainly composed of polyethylene. Specifically, it is preferable to contain 50% by weight or more, preferably 90% by weight or more of polyethylene.

また、本発明非水系二次電池に用いるセパレータは、オーブン試験といった加熱試験での安全性確保という観点から熱収縮率は小さい方が好ましい。具体的には120℃で30分間、張力フリーで処理した場合のTD方向の熱収縮率は10%以下が好ましく、特に6%以下が好適である。   The separator used in the non-aqueous secondary battery of the present invention preferably has a small thermal shrinkage rate from the viewpoint of ensuring safety in a heating test such as an oven test. Specifically, the thermal shrinkage in the TD direction when treated at 120 ° C. for 30 minutes without tension is preferably 10% or less, and particularly preferably 6% or less.

以上が本発明の非水系二次電池の特徴であり、他の構成は公知の構成を好適に用いることができる。   The above is the feature of the non-aqueous secondary battery of the present invention, and a known configuration can be suitably used as the other configuration.

本発明非水系二次電池に用いる正極は活物質、バインダー、導電助剤からなる電極層を集電体上へ形成した構成となっている。ここで導電助剤は必ずしも添加する必要はない。正極活物質はLiCoO、LiNiO、LiMn等が挙げられる。過充電防止機能発現のためには前述した容量バランスに電池を構成する必要があるが、このような観点から正極活物質はLiCoO、LiNiOを主体とすることが好ましく、特にLiCoOが好ましい。また、正極活物質は平均粒径が5〜15μmのものが好適である。バインダーはポリフッ化ビニリデン等を好適に用いることが可能である。導電助剤はアセチレンブラック等が好適である。正極集電体はアルミ箔等を好適に用いることができる。 The positive electrode used in the non-aqueous secondary battery of the present invention has a configuration in which an electrode layer made of an active material, a binder, and a conductive additive is formed on a current collector. Here, it is not always necessary to add the conductive assistant. Examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . In order to develop the overcharge prevention function, the battery needs to be configured with the above-described capacity balance. From such a viewpoint, the positive electrode active material is preferably mainly composed of LiCoO 2 and LiNiO 2 , and particularly preferably LiCoO 2. . The positive electrode active material preferably has an average particle size of 5 to 15 μm. As the binder, polyvinylidene fluoride or the like can be preferably used. As the conductive aid, acetylene black or the like is suitable. As the positive electrode current collector, aluminum foil or the like can be suitably used.

負極も正極同様、活物質、バインダー、導電助剤からなる電極層を集電体上へ形成した構成となっている。ここで導電助剤は必ずしも添加する必要はない。負極活物質はリチウムのドープ・脱ドープが可能な炭素系材料等が好適に用いられる。負極活物質の平均粒径は15〜30μmのものが好適である。バインダーはポリフッ化ビニリデン等を好適に用いることができる。導電助剤はアセチレンブラック等が好適である。負極集電体は銅箔等を好適に用いることができる。   Similarly to the positive electrode, the negative electrode has a structure in which an electrode layer made of an active material, a binder, and a conductive additive is formed on the current collector. Here, it is not always necessary to add the conductive assistant. As the negative electrode active material, a carbon-based material capable of being doped / undoped with lithium is preferably used. The average particle diameter of the negative electrode active material is preferably 15 to 30 μm. As the binder, polyvinylidene fluoride or the like can be suitably used. As the conductive aid, acetylene black or the like is suitable. A copper foil or the like can be suitably used for the negative electrode current collector.

本発明非水系二次電池に用いる電解液はリチウム塩を非水溶媒に溶解した構成となっている。非水溶媒はカーボネート系溶媒が好ましく、一般に環状カーボネートと鎖状カーボネートを混合した構成となっている。環状カーボネートはプロピレンカーボネート、エチレンカーボネート等が挙げられ、鎖状カーボネートはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が挙げられる。ここで、サイクル特性や保存特性を改善する添加剤として提案されているビニレンカーボネート等を添加しても当然問題はない。リチウム塩は、LiPF、LiBF、LiClO等が挙げられ、特にLiPFが好適である。 The electrolytic solution used for the non-aqueous secondary battery of the present invention has a structure in which a lithium salt is dissolved in a non-aqueous solvent. The non-aqueous solvent is preferably a carbonate solvent, and generally has a structure in which a cyclic carbonate and a chain carbonate are mixed. Examples of cyclic carbonates include propylene carbonate and ethylene carbonate. Examples of chain carbonates include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Here, there is no problem even if vinylene carbonate or the like proposed as an additive for improving cycle characteristics and storage characteristics is added. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 and the like, and LiPF 6 is particularly preferable.

[実施例1]
「正極」
平均粒径7μmのコバルト酸リチウム(LiCoO:日本化学工業株式会社製)粉末89.5重量部とアセチレンブラック4.5重量部、PVdFの乾燥重量が6重量部となるように、6重量%のPVdFのN−メチル−ピロリドン(NMP)溶液を用い、正極剤ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗工し、乾燥後プレスして正極を作製した。この正極を作用極にし、リチウム箔を対極及び参照極とし、電解液に1M LiPFEC/EMC(3/7重量比)を用いた3電極式セルを組み、この正極から電気化学的に脱ドープ可能なリチウムの量を測定した結果、5.7mAh/cmであった。
[Example 1]
"Positive electrode"
6% by weight so that the lithium cobalt oxide (LiCoO 2 : Nippon Kagaku Kogyo Co., Ltd.) powder having an average particle size of 7 μm is 89.5 parts by weight, acetylene black is 4.5 parts by weight, and the dry weight of PVdF is 6 parts by weight. A positive electrode paste was prepared using an N-methyl-pyrrolidone (NMP) solution of PVdF. The obtained paste was coated on an aluminum foil having a thickness of 20 μm, dried and pressed to produce a positive electrode. This positive electrode is used as a working electrode, a lithium foil is used as a counter electrode and a reference electrode, a three-electrode cell using 1M LiPF 6 EC / EMC (3/7 weight ratio) as an electrolyte is assembled, and electrochemically detached from this positive electrode. The amount of lithium that can be doped was measured and found to be 5.7 mAh / cm 2 .

「負極」
負極活物質として平均粒径25μmのメゾフェーズカーボンマイクロビーズ(MCMB:大阪ガス化学)粉末87重量部とアセチレンブラック3重量部、PVdFの乾燥重量が10重量部となるように、6重量%のPVdFのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを厚さ18μmの銅箔上に塗工し、乾燥後プレスし負極を作製した。この負極を作用極にし、リチウム箔を対極及び参照極とし、電解液に1M LiPFEC/EMC(3/7重量比)を用いた3電極式セルを組み、この負極に電気化学的にドープ可能なリチウムの量を測定した結果、3.2mAh/cmであった。
"Negative electrode"
6% by weight of PVdF so that the negative electrode active material has 87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical) powder with an average particle size of 25 μm, 3 parts by weight of acetylene black, and 10 parts by weight of the dry weight of PVdF. An NMP solution was used to prepare a negative electrode agent paste. The obtained paste was applied on a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode. This negative electrode is used as a working electrode, a lithium foil is used as a counter electrode and a reference electrode, a three-electrode cell using 1 M LiPF 6 EC / EMC (3/7 weight ratio) as an electrolyte is assembled, and this negative electrode is electrochemically doped. As a result of measuring the amount of possible lithium, it was 3.2 mAh / cm 2 .

「電解液」
1M LiPF EC/EMC(3/7重量比)を用いた。
「セパレータ」
表1の1を用いた。
「電池」
正極、セパレータ、負極と積層し、曲率半径が100μmとなるように負極を内側にして折り曲げ、電解液を含浸させ、アルミラミネートフィルム中に封入することで本発明の非水系二次電池を作製した。この電池を本発明電池1とする。
"Electrolyte"
1M LiPF 6 EC / EMC (3/7 weight ratio) was used.
"Separator"
1 in Table 1 was used.
"battery"
The non-aqueous secondary battery of the present invention was produced by laminating the positive electrode, the separator, and the negative electrode, bending the negative electrode inside so that the radius of curvature was 100 μm, impregnating with the electrolytic solution, and encapsulating in the aluminum laminate film. . This battery is referred to as a battery 1 of the present invention.

[実施例2]
セパレータとして表1の2を用いた以外は本発明電池1と同様に非水系二次電池を作製した。これを本発明電池2とする。
[Example 2]
A non-aqueous secondary battery was produced in the same manner as the battery 1 of the present invention except that 2 in Table 1 was used as the separator. This is referred to as the battery 2 of the present invention.

[実施例3]
セパレータとして表1の3を用いた以外は本発明電池1と同様に非水系二次電池を作製した。これを本発明電池3とする。
[Example 3]
A non-aqueous secondary battery was produced in the same manner as the battery 1 of the present invention except that 3 in Table 1 was used as the separator. This is referred to as the present invention battery 3.

[実施例4]
セパレータとして表1の4を用いた以外は本発明電池1と同様に非水系二次電池を作製した。これを本発明電池4とする。
[Example 4]
A non-aqueous secondary battery was produced in the same manner as the battery 1 of the present invention except that 4 in Table 1 was used as the separator. This is the battery 4 of the present invention.

[比較例1]
セパレータとして表1の5を用いた以外は本発明電池1と同様に非水系二次電池を作製した。これを比較電池1とする。
[Comparative Example 1]
A non-aqueous secondary battery was produced in the same manner as the battery 1 of the present invention except that 5 in Table 1 was used as the separator. This is referred to as comparative battery 1.

[比較例2]
セパレータとして表1の6を用いた以外は本発明電池1と同様に非水系二次電池を作製した。これを比較電池2とする。
[Comparative Example 2]
A non-aqueous secondary battery was produced in the same manner as the battery 1 of the present invention except that 6 in Table 1 was used as the separator. This is referred to as comparative battery 2.

[比較例3]
セパレータとして表1の7を用いた以外は本発明電池1と同様に非水系二次電池を作製した。これを比較電池3とする。
[Comparative Example 3]
A non-aqueous secondary battery was produced in the same manner as the battery 1 of the present invention except that 7 in Table 1 was used as the separator. This is referred to as comparative battery 3.

[比較例4]
曲率半径が750μmとなるように折り曲げた以外は実施例1と同様の非水系二次電池を作製した。これを比較電池4とする。
[Comparative Example 4]
A non-aqueous secondary battery similar to that in Example 1 was manufactured except that the bending radius was 750 μm. This is referred to as a comparative battery 4.

[比較例5]
折り曲げずに(曲率半径が∞)実施例1と同様の非水系二次電池を作製した。これを比較電池5とする。
[Comparative Example 5]
A non-aqueous secondary battery similar to that of Example 1 was fabricated without bending (the radius of curvature was ∞). This is referred to as a comparative battery 5.

[比較例6]
電気化学的にドープ可能なリチウムの量が5.5mAh/cmである負極を用いた以外は実施例1と同様の非水系二次電池を作製した。これを比較電池6とする。
[Comparative Example 6]
A non-aqueous secondary battery similar to that of Example 1 was produced, except that a negative electrode having an electrochemically doped lithium amount of 5.5 mAh / cm 2 was used. This is referred to as a comparative battery 6.

[過充電試験]
本発明電池1〜4及び比較電池1〜6について過充電試験を行った。充電電流密度は2.7mA/cmとし電圧制御なしで充電率500%の過充電試験を行った。試験結果の例として図2に本発明電池1での結果、図3に比較電池1での結果を示す。図2と同様に電圧上昇が停止したものを○、図3と同様に電圧上昇が停止しなかったものを×として表2に示す。
[Overcharge test]
The overcharge test was performed on the inventive batteries 1 to 4 and the comparative batteries 1 to 6. The charge current density was 2.7 mA / cm 2 and an overcharge test with a charge rate of 500% was performed without voltage control. As examples of test results, FIG. 2 shows the results of the battery 1 of the present invention, and FIG. 3 shows the results of the comparative battery 1. Table 2 shows the case where the voltage increase stopped as in FIG. 2, and the case where the voltage increase did not stop as in FIG.

表2に示した実施例1〜4と比較例1〜3の比較から本発明非水系二次電池の構成としてセパレータ構成が重要で前述した構成が適切であることが分かる。また、実施例1と比較例4及び5の比較から電池構成上曲率半径が重要であることが分かる。さらに、実施例1と比較例6の比較から容量設計が重要であることが分かる。   From the comparison of Examples 1 to 4 and Comparative Examples 1 to 3 shown in Table 2, it can be seen that the separator configuration is important as the configuration of the nonaqueous secondary battery of the present invention, and the above-described configuration is appropriate. Further, it can be seen from the comparison between Example 1 and Comparative Examples 4 and 5 that the radius of curvature is important in terms of the battery configuration. Furthermore, it can be seen from the comparison between Example 1 and Comparative Example 6 that the capacity design is important.

Figure 2005347102
Figure 2005347102

Figure 2005347102
Figure 2005347102

以上本発明によれば過充電時の安全性が高く生産性のよい電池の提供が可能であり、携帯電話やノートパソコン等に利用できる。   As described above, according to the present invention, it is possible to provide a battery having high safety and high productivity at the time of overcharge, and can be used for a mobile phone, a notebook computer, and the like.

曲率半径の説明図である。It is explanatory drawing of a curvature radius. 過充電試験結果の例(過充電防止機能が発現したもの)。Example of overcharge test results (where overcharge prevention function was developed). 過充電試験結果の例(過充電防止機能が発現しなかったもの)。Example of overcharge test result (the overcharge prevention function did not appear).

符号の説明Explanation of symbols

1 正極
2 セパレータ
3 負極
4 負極集電体
5 曲率半径の2倍の距離
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Separator 3 Negative electrode 4 Negative electrode collector 5 Distance of 2 times the radius of curvature

Claims (7)

セパレータを介して正極と負極が積層された電池エレメントが電解液を含浸し、曲率半径500μm以下で捲回された状態で電池外装ケースに封入されているリチウムイオン非水系二次電池において、
正極から脱ドープ可能なリチウム量が負極を完全にドープしうるリチウム量より多く、かつ負極が完全にドープされた状態で0.5mAh/cm以上の電気化学的に脱ドープ可能なリチウムが正極中に残存しうる量であり、
該セパレータが、ガーレ値をT秒/100cc、空孔率をεとした場合、T<300秒/100ccかつ1秒/100cc<T・ε<100秒/100ccを満たす多孔膜である
リチウムイオン非水系二次電池。
In a lithium ion non-aqueous secondary battery in which a battery element in which a positive electrode and a negative electrode are laminated through a separator is impregnated with an electrolyte and wound in a battery outer case in a state of being wound with a curvature radius of 500 μm or less,
The amount of lithium that can be dedoped from the positive electrode is larger than the amount of lithium that can completely dope the negative electrode, and the electrochemically dedoped lithium of 0.5 mAh / cm 2 or more is obtained when the negative electrode is completely doped. The amount that can remain in
When the Gurley value is T seconds / 100 cc and the porosity is ε, the separator is a porous film satisfying T <300 seconds / 100 cc and 1 second / 100 cc <T · ε <100 seconds / 100 cc. Water-based secondary battery.
該セパレータがポリオレフィン微多孔膜である請求項1記載のリチウムイオン非水系二次電池。   The lithium ion non-aqueous secondary battery according to claim 1, wherein the separator is a polyolefin microporous membrane. 電解液を含浸した後の温度120〜150℃における該セパレータのインピーダンスが、25℃における該セパレータのインピーダンスの100倍以上である請求項2記載のリチウムイオン非水系二次電池。   3. The lithium ion non-aqueous secondary battery according to claim 2, wherein the impedance of the separator at a temperature of 120 to 150 ° C. after impregnation with the electrolytic solution is at least 100 times the impedance of the separator at 25 ° C. 4. 該セパレータがポリエチレンを主体とするセパレータである請求項3記載のリチウムイオン非水系二次電池。   The lithium ion non-aqueous secondary battery according to claim 3, wherein the separator is a separator mainly composed of polyethylene. 該セパレータを120℃で30分間、張力をかけずに保持したときに、該セパレータのTD方向の熱収縮率が10%以下である請求項1〜3のいずれか1項に記載のリチウムイオン非水系二次電池。   When the separator is held at 120 ° C. for 30 minutes without applying tension, the thermal shrinkage in the TD direction of the separator is 10% or less. Water-based secondary battery. 電池形状が角型であることを特徴とする請求項1に記載のリチウムイオン非水系二次電池。   The lithium ion non-aqueous secondary battery according to claim 1, wherein the battery has a square shape. 電池外装がアルミラミネートフィルム外装である請求項6記載のリチウムイオン非水系二次電池。   The lithium ion non-aqueous secondary battery according to claim 6, wherein the battery exterior is an aluminum laminate film exterior.
JP2004165459A 2004-06-03 2004-06-03 Overcharge prevention type nonaqueous secondary battery Pending JP2005347102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165459A JP2005347102A (en) 2004-06-03 2004-06-03 Overcharge prevention type nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165459A JP2005347102A (en) 2004-06-03 2004-06-03 Overcharge prevention type nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2005347102A true JP2005347102A (en) 2005-12-15

Family

ID=35499280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165459A Pending JP2005347102A (en) 2004-06-03 2004-06-03 Overcharge prevention type nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2005347102A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203160A (en) * 1989-12-28 1991-09-04 Asahi Chem Ind Co Ltd Battery
JP2000348703A (en) * 1999-06-01 2000-12-15 Ube Ind Ltd Separator for battery and lithium battery using same
JP2001043897A (en) * 1999-05-26 2001-02-16 Sony Corp Solid electrolyte battery
WO2001067536A1 (en) * 2000-03-07 2001-09-13 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
JP2001273881A (en) * 2000-03-28 2001-10-05 Yuasa Corp Wound type battery
JP2002164032A (en) * 2000-11-22 2002-06-07 Teijin Ltd Separator for lithium ion secondary battery and lithium ion secondary battery
JP2002237330A (en) * 2001-02-13 2002-08-23 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003103626A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin microporous film and method for manufacturing the same
JP2003138050A (en) * 2001-10-31 2003-05-14 Asahi Kasei Corp Porous polyolefin film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203160A (en) * 1989-12-28 1991-09-04 Asahi Chem Ind Co Ltd Battery
JP2001043897A (en) * 1999-05-26 2001-02-16 Sony Corp Solid electrolyte battery
JP2000348703A (en) * 1999-06-01 2000-12-15 Ube Ind Ltd Separator for battery and lithium battery using same
WO2001067536A1 (en) * 2000-03-07 2001-09-13 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
JP2001273881A (en) * 2000-03-28 2001-10-05 Yuasa Corp Wound type battery
JP2002164032A (en) * 2000-11-22 2002-06-07 Teijin Ltd Separator for lithium ion secondary battery and lithium ion secondary battery
JP2002237330A (en) * 2001-02-13 2002-08-23 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2003103626A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin microporous film and method for manufacturing the same
JP2003138050A (en) * 2001-10-31 2003-05-14 Asahi Kasei Corp Porous polyolefin film

Similar Documents

Publication Publication Date Title
KR102160708B1 (en) Anode for lithium secondary battery with double protective layer and lithium secondary battery comprising the same
EP3429014B1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
JP6192146B2 (en) Lithium electrode and lithium secondary battery including the same
KR102160701B1 (en) Electrode with Perforated Current Collector, Lithium Secondary Battery containing the Same
JP5329310B2 (en) Lithium secondary battery using ionic liquid
JP5215307B2 (en) Lithium secondary battery
WO2011027530A1 (en) Nonaqueous solvent, nonaqueous electrolyte solution using same, and nonaqueous secondary battery
KR20140085337A (en) Lithium secondary battery
JP5015474B2 (en) Battery separator, lithium ion secondary battery, electric double layer capacitor
JPH1186844A (en) Battery electrode and battery using it
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
JP2015211004A (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
CN111801839A (en) Electrode assembly having insulating film, method of manufacturing the same, and lithium secondary battery including the same
JP4815845B2 (en) Polymer battery
KR101650053B1 (en) Electrode Assembly with Inorganic Matter Coating layer and Secondary Battery Having the Same
KR20180092364A (en) Lithium secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
KR101756938B1 (en) Anode active material and lithium secondary battery comprising the same
JP2009249488A (en) Composite porous film, separator for cell using the same and nonaqueous electrolyte secondary cell
JP2008103353A (en) Lithium secondary battery
JP2015125950A (en) Lithium ion secondary battery
KR20150083530A (en) Electrode Assembly with Safety Membrane and Secondary Battery Having the Same
KR20150083499A (en) Electrode Assembly with Safety Membrane and Secondary Battery Having the Same
KR101658575B1 (en) Electrode Assembly with Inorganic Matter Coating layer and Secondary Battery Having the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209