JP2005346298A - Controlling device of machine tool - Google Patents

Controlling device of machine tool Download PDF

Info

Publication number
JP2005346298A
JP2005346298A JP2004163616A JP2004163616A JP2005346298A JP 2005346298 A JP2005346298 A JP 2005346298A JP 2004163616 A JP2004163616 A JP 2004163616A JP 2004163616 A JP2004163616 A JP 2004163616A JP 2005346298 A JP2005346298 A JP 2005346298A
Authority
JP
Japan
Prior art keywords
winding
speed
machining
switching
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004163616A
Other languages
Japanese (ja)
Inventor
Takanori Yokochi
孝典 横地
Motosumi Yura
元澄 由良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2004163616A priority Critical patent/JP2005346298A/en
Publication of JP2005346298A publication Critical patent/JP2005346298A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve shape precision at the time of C-axis machining. <P>SOLUTION: A speed range determination part 9 receives a speed command Vo from an NC device 1 and determines whether it is of low-speed winding or of high-speed winding in the same way as the conventional method, and transmits a number of revolutions determination command Vj which is a data to determine whether the number of revolutions is for the low-speed winding or for the high-speed winding, to a winding switching determination part 12. A machining condition determination part 11 receives a program code Pc from the NC device, determines whether the program code is a fast-feed command or a cutting-feed command, and sends machining condition determination data Pj showing which machining condition is applicable, to the winding switching determination part 12. Whether the machining to be implemented is a C-axis machining or not is included in the machining condition determination data Pj. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工作機械における主軸用電動機の制御装置に関する。   The present invention relates to a control device for a spindle motor in a machine tool.

図3に、従来の電動機の制御ブロックの一例を示す。NC装置1から速度指令Voを受け取った速度制御部2は速度指令Voとエンコーダ8から受け取った速度検出値Vmからトルク指令Tcを生成し、電流制御部3に送出する。電流制御部3では電流検出部5から受け取った電流検出値Imをもとに、電圧指令Vcを生成し、インバータ部4に送出する。インバータ部4では電圧指令Vcをもとに、実際に電動機7の巻線に電流Iを流す。電流検出部5では巻線に実際に流れている電流値Iを検出する。   FIG. 3 shows an example of a control block of a conventional electric motor. The speed control unit 2 that has received the speed command Vo from the NC device 1 generates a torque command Tc from the speed command Vo and the detected speed value Vm received from the encoder 8, and sends it to the current control unit 3. The current control unit 3 generates a voltage command Vc based on the current detection value Im received from the current detection unit 5 and sends it to the inverter unit 4. Inverter unit 4 actually causes current I to flow through the winding of motor 7 based on voltage command Vc. The current detector 5 detects a current value I actually flowing through the winding.

一方、速度範囲判定部9ではNC装置1から速度指令Voを受け取り、あらかじめ設定された巻線切替回転数Vnより速度指令Voが大きいか小さいかの判定を行い、Vo≦Vnの場合は低速巻線、Vo>Vnの場合は高速巻線であるという内容の巻線判定指令Cjをパラメータ切替部10に送出する。パラメータ切替部10では巻線判定指令Cjに応じて、低速巻線用パラメータあるいは高速巻線用パラメータのいずれかを、速度パラメータ指令VPoとして速度制御部2に、電流パラメータ指令IPoとして電流制御部3にそれぞれ送出する。また、パラメータ切替部10は巻線判定指令Cjが現在の巻線と違う巻線に指令された場合に、巻線切替指令Coを巻線切替部6に送出する。   On the other hand, the speed range determination unit 9 receives the speed command Vo from the NC device 1 and determines whether the speed command Vo is larger or smaller than the preset winding switching speed Vn. If Vo ≦ Vn, the low speed winding is performed. If the line is Vo> Vn, a winding judgment command Cj indicating that the winding is a high-speed winding is sent to the parameter switching unit 10. In the parameter switching unit 10, either the low speed winding parameter or the high speed winding parameter is set to the speed control unit 2 as the speed parameter command VPo and the current control unit 3 as the current parameter command IPo according to the winding determination command Cj. Respectively. Further, the parameter switching unit 10 sends a winding switching command Co to the winding switching unit 6 when the winding determination command Cj is commanded to a winding different from the current winding.

巻線切替部6ではマグネットコンタクタ等により、電動機7の各相巻線の端子の接続方法を例えばY巻線と△巻線の間で切り替えたり、Y巻線同士で巻数を切り替えたりといった方法により、巻線切替を行う。以下、Y巻線と△巻線との間で切り替える場合のY巻線、またはY巻線同士で巻数を切り替える場合の巻数が多くなる巻線を低速巻線、Y巻線と△巻線との間で切り替える場合の△巻線、またはY巻線同士で巻数を切り替える場合の巻数が少なくなる巻線を高速巻線とそれぞれ呼ぶことにする。   The winding switching unit 6 uses a magnet contactor or the like to switch the terminal connection method of each phase winding of the electric motor 7 between, for example, a Y winding and a Δ winding, or by switching the number of turns between Y windings. The winding is switched. Hereinafter, the Y winding when switching between the Y winding and the △ winding, or the winding with a larger number of turns when switching the number of turns between the Y windings, the low speed winding, the Y winding and the △ winding A winding having a smaller number of turns when switching the number of turns between the Y windings or a Δ winding when switching between them is called a high-speed winding.

複合加工機と呼ばれる工作機械においては、主軸と回転工具軸を同期させて行うC軸創成加工がしばしば行われる。C軸創成加工においては、ワークを掴んでいる主軸の回転位置と、回転工具の位置とを同期させることによって、単純な円形ではない複雑な形状の加工を行う。この場合、加工を行う際には、まず、ワークを加工する初期位置にもってくるために、主軸は早送りでワークを回転させて初期位置に位置決めした後、工具がついている回転工具とワークがついている主軸とを同期させながら、切削送りでワークを加工していく。この場合、早送り時も切削送り時も、主軸は通常、数10回転〜100回転程度の低い回転数で回される事がほとんどである。したがって、C軸創成加工時には、ほとんどの場合主軸電動機の巻線は低速巻線となっている。   In a machine tool called a multi-task machine, a C-axis generating process is often performed in which a main axis and a rotary tool axis are synchronized. In the C-axis generating process, a complicated shape that is not a simple circle is processed by synchronizing the rotational position of the spindle holding the workpiece and the position of the rotary tool. In this case, when performing machining, first the spindle is moved to the initial position for machining, so the spindle rotates the workpiece by rapid traverse and is positioned at the initial position, and then the rotary tool with the tool and the workpiece are attached. The workpiece is machined by cutting feed while synchronizing with the spindle. In this case, the spindle is usually rotated at a low rotational speed of about several tens to 100 revolutions at both rapid feed and cutting feed. Therefore, at the time of C-axis generation processing, in most cases, the winding of the spindle motor is a low-speed winding.

特開平10−126993号公報JP-A-10-126993

主軸電動機が巻線切替を行う際、低速巻線の巻線数は高速巻線の巻線数に比べて多くなることは知られているが、巻線数が多くなると巻線数に比例して巻線のインダクタンスも大きくなる。巻線のインダクタンスが大きくなると、巻線に流れる電流の応答性が低下する。電流の応答性が低下するという事は、制御ループ上でその下流にある速度の応答性も低下することになり、さらに、位置の応答性も低下することになる。C軸創成加工において形状精度が要求される場合には、当然同期する軸全ての加工時の位置及び速度の高い応答性が必要になる。   When the main shaft motor switches the winding, it is known that the number of low-speed windings is larger than the number of high-speed windings, but the number of windings increases in proportion to the number of windings. As a result, the winding inductance also increases. As the inductance of the winding increases, the response of the current flowing through the winding decreases. When the current responsiveness is reduced, the responsiveness of the velocity downstream of the control loop is also reduced, and the position responsiveness is also reduced. When shape accuracy is required in the C-axis generating process, naturally, the responsiveness of the position and speed at the time of machining of all synchronized axes is required.

しかし、前述したとおり、C軸創成加工時には主軸電動機の回転数が低いため、主軸電動機は低速巻線で運転されており、したがって、切削送り時には必要とされる高い応答性を達成できずに加工するため、必要となる形状精度で加工できないという問題が起こってしまう。   However, as described above, since the rotation speed of the main shaft motor is low during the C-axis generation processing, the main shaft motor is operated with a low-speed winding, so that the high responsiveness required for cutting feed cannot be achieved. Therefore, there arises a problem that processing cannot be performed with the required shape accuracy.

一方、一般的に電動機の低速巻線と高速巻線を比較すると、同一のトルクを出力する際に高速巻線では電流の所要量が大きく、常時高速巻線を使用するとモータ発熱が大きくなり、機械の熱変形が大きくなる。そのため、応答性を必要としないC軸創成加工の早送りにおいては、低速巻線を用いて駆動し、機械の熱変形を小さく抑えることが必要である。   On the other hand, in general, when comparing the low-speed winding and high-speed winding of the motor, the required amount of current is large in the high-speed winding when outputting the same torque, and if the high-speed winding is always used, the motor heat generation becomes large, The thermal deformation of the machine increases. Therefore, in the rapid feed of the C-axis generating process that does not require responsiveness, it is necessary to drive using a low-speed winding to suppress the thermal deformation of the machine.

以上のように、C軸創成加工時においては、早送り時には発熱の小さな低速巻線を用いて熱変形を小さくし、切削送り時には高い応答性により高精度の加工を行うことが求められる。   As described above, at the time of C-axis generation processing, it is required to reduce thermal deformation by using a low-speed winding with small heat generation during rapid feed and to perform highly accurate machining with high responsiveness during cutting feed.

上記課題を解決するために、本発明の電動機の制御装置は、工作機械における主軸電動機の固定子巻線を、高速回転時には各相の巻線の巻数が少なくなるように、低速回転時には各相の巻線の巻数が多くなるように、前記巻線を切り替える工作機械の制御装置において、回転工具軸と主軸とを同期させて加工を行うC軸創成加工時に、早送り時には低速巻線に、切削送り時には高速巻線に、主軸電動機の固定子巻線を巻線切替する。   In order to solve the above-described problems, the motor control device according to the present invention is configured so that the stator winding of the spindle motor in the machine tool has a smaller number of windings of each phase during high-speed rotation. In the machine tool control device that switches the windings so that the number of windings increases, the C-axis generating process, in which the rotary tool axis and the main axis are synchronized, is cut into a low-speed winding during rapid feed. When feeding, the stator winding of the spindle motor is switched to the high-speed winding.

本発明を用いることにより、C軸創成加工時に主軸電動機が常に応答性の低い低速巻線で制御されているために、加工時の形状精度が低下するという課題に対して、早送り指令か切削送り指令であるかを判定して、早送り指令時には低速巻線、切削送り指令時には高速巻線を用いて加工することにより、早送り時には発熱の小さな低速巻線で駆動することによって機械の熱変形を小さくすることができ、切削送り時には高形状精度で加工を行うことができる。   By using the present invention, since the spindle motor is always controlled by low-speed winding with low responsiveness at the time of C-axis generating machining, the rapid feed command or cutting feed is used for the problem that the shape accuracy at the time of machining decreases. It is judged whether it is a command, and machining is performed using a low-speed winding at the time of a fast-feed command and high-speed winding at the time of a cutting feed command. It is possible to perform processing with high shape accuracy at the time of cutting feed.

図1に、本発明における主軸電動機の巻線切替を行うための制御ブロックの一例を示す。なお、従来図を示す図3と同じ番号及び記号で示される要素については、その働きが従来技術と同等であるとして説明を省略する。速度範囲判定部9は、NC装置1から速度指令Voを受け取り、従来技術と同様に低速巻線か高速巻線かの判定を行うものの、該回転数が低速巻線用のものか、高速巻線用のものかの判定データである回転数判定指令Vjを巻線切替判定部12に送出する。一方、加工条件判定部11は、NC装置からプログラムコードPcを受け取ると、該プログラムコードが早送り指令であるか切削送り指令であるかの判定を行い、いずれかの条件であるという内容の加工条件判定データPjを巻線切替判定部12に送出する。この際、加工条件判定データPj内には、行う加工がC軸創成加工であるか否かという内容も含まれている。   FIG. 1 shows an example of a control block for switching the winding of the spindle motor in the present invention. In addition, about the element shown with the same number and symbol as FIG. 3 which shows a prior art figure, description is abbreviate | omitted because the effect | action is equivalent to a prior art. The speed range determination unit 9 receives the speed command Vo from the NC device 1 and determines whether it is a low-speed winding or a high-speed winding as in the prior art. A rotation speed determination command Vj, which is determination data for the line, is sent to the winding switching determination unit 12. On the other hand, when the machining condition determination unit 11 receives the program code Pc from the NC device, the machining condition determination unit 11 determines whether the program code is a rapid feed command or a cutting feed command, and the machining condition has a content of any one of the conditions. Determination data Pj is sent to the winding switching determination unit 12. At this time, the machining condition determination data Pj also includes a content indicating whether the machining to be performed is C-axis generation machining.

なお、前述したように、巻線切替部6ではマグネットコンタクタ等により、電動機7の各相巻線の端子の接続方法を例えばY巻線と△巻線の間で切り替えたり、Y巻線同士で巻数を切り替えたりといった方法により、巻線切替を行う。以下、Y巻線と△巻線との間で切り替える場合のY巻線、またはY巻線同士で巻数を切り替える場合の巻数が多くなる巻線を低速巻線、Y巻線と△巻線との間で切り替える場合の△巻線、またはY巻線同士で巻数を切り替える場合の巻数が少なくなる巻線を高速巻線とそれぞれ呼ぶことにする。   As described above, the winding switching unit 6 uses a magnet contactor or the like to switch the terminal connection method of each phase winding of the electric motor 7 between, for example, the Y winding and the Δ winding, The winding is switched by a method such as switching the number of turns. Hereinafter, the Y winding when switching between the Y winding and the △ winding, or the winding with a larger number of turns when switching the number of turns between the Y windings, the low speed winding, the Y winding and the △ winding A winding having a smaller number of turns when switching the number of turns between the Y windings or a Δ winding when switching between them is called a high-speed winding.

次に、巻線切替判定部12における処理を図2を用いて説明する。図2は、巻線切替判定部12の処理の内容を示すフローチャートである。まず、巻線切替判定部12はNC装置1から受け取ったプログラムコードPcから、C軸創成加工かどうかの判定を行う(S201)。C軸創成加工でない場合は、巻線切替の判定に速度指令Voが使われ、従来技術と同様に、あらかじめ設定された巻線切替回転数VnよりVoが大きいか小さいかの判定を行うことによって、高速巻線であるか低速巻線であるかの判定を行う(S202)。   Next, processing in the winding switching determination unit 12 will be described with reference to FIG. FIG. 2 is a flowchart showing the contents of processing of the winding switching determination unit 12. First, the winding switching determination unit 12 determines whether or not the C-axis generation processing is performed from the program code Pc received from the NC device 1 (S201). If it is not the C-axis generating process, the speed command Vo is used to determine the winding switching, and as in the prior art, by determining whether Vo is larger or smaller than the preset winding switching speed Vn. Then, it is determined whether the winding is a high-speed winding or a low-speed winding (S202).

一方、C軸創成加工の場合には、加工条件判定データPjが早送り指令であるか切削送り指令であるかの判定を行う(S203)。前記判定により早送り指令と判定された場合は低速巻線となり、これに基づいて巻線判定指令Cjを作成し(S204)、また、切削送り指令と判定された場合には高速巻線となり、これに基づいて巻線判定指令Cjを作成し(S205)、パラメータ切替部10に巻線判定指令Cjを送出する。   On the other hand, in the case of C-axis generating machining, it is determined whether the machining condition determination data Pj is a rapid feed command or a cutting feed command (S203). If it is determined that the fast feed command is determined by the above determination, a low speed winding is generated. Based on this, a winding determination command Cj is created (S204). If the cutting feed command is determined, the high speed winding is generated. Based on the winding determination command Cj (S205), and sends the winding determination command Cj to the parameter switching unit 10.

以上が、NC装置1から加工条件判定部11に送出されるプログラムコードPcのいくつかの例である。なお、前述した通り、加工条件判定部11から送出される加工条件判定データPjには、C軸創成加工か否かの内容も含まれているため、NC装置1から加工条件判定部11に送出されるプログラムコードPcにも、C軸創成加工か否かの内容が含まれている。   The above are several examples of the program code Pc sent from the NC device 1 to the machining condition determination unit 11. As described above, since the machining condition determination data Pj sent from the machining condition determination unit 11 includes the content of whether or not the C-axis generation processing is performed, the NC device 1 sends it to the machining condition determination unit 11. The program code Pc to be processed also includes the content of whether or not the C-axis generating process is performed.

本発明における主軸電動機の巻線切替を行うための制御ブロックの一例を示す図である。It is a figure which shows an example of the control block for performing coil switching of the spindle motor in this invention. 本発明における巻線切替判定部12における処理の内容を示すフローチャートである。It is a flowchart which shows the content of the process in the winding switch determination part 12 in this invention. 従来における主軸電動機の巻線切替を行うための制御ブロックの一例を示す図である。It is a figure which shows an example of the control block for performing the coil switching of the conventional spindle motor.

符号の説明Explanation of symbols

1 NC装置、2 速度制御部、3 電流制御部、4 インバータ部、5 電流検出部、6 巻線切替部、7 電動機、8 エンコーダ、9 速度範囲判定部、10 パラメータ切替部、11 加工条件判定部、12 巻線切替判定部。

1 NC device, 2 speed control unit, 3 current control unit, 4 inverter unit, 5 current detection unit, 6 winding switching unit, 7 motor, 8 encoder, 9 speed range determination unit, 10 parameter switching unit, 11 machining condition determination Unit, 12 winding switching determination unit.

Claims (2)

工作機械における主軸電動機の固定子巻線を、高速回転時には各相の巻線の巻数が少なくなるように、低速回転時には各相の巻線の巻数が多くなるように、前記主軸電動機の固定子巻線を切り替える工作機械の制御装置において、
回転工具軸と主軸とを同期させて加工を行うC軸創成加工時に、加工プログラムにおいて早送りを示すプログラムコードが指令された時には各相の巻線の巻数が多くなるように、切削送りを示すプログラムコードが指令された時には各相の巻線の巻数が少なくなるように、主軸電動機の固定子巻線を巻線切替することを特徴とした工作機械の制御装置。
Stator motor stator windings in machine tools, so that the number of turns of each phase winding is reduced during high-speed rotation, and the number of turns of each phase winding is increased during low-speed rotation. In machine tool control devices that switch windings,
A program that indicates cutting feed so that the number of windings of each phase increases when a program code that indicates rapid feed is commanded in the machining program during C-axis generating machining that performs machining by synchronizing the rotary tool axis and the spindle A machine tool control device characterized by switching the winding of a stator winding of a spindle motor so that the number of windings of each phase is reduced when a code is commanded.
工作機械における主軸電動機の固定子巻線を、高速回転時には△巻線に、低速回転時にはY巻線に、前記主軸電動機の固定子巻線を切り替える工作機械の制御装置において、
回転工具軸と主軸とを同期させて加工を行うC軸創成加工時に、加工プログラムにおいて早送りを示すプログラムコードが指令された時にはY巻線に、切削送りを示すプログラムコードが指令された時には△巻線に、主軸電動機の固定子巻線を巻線切替することを特徴とした工作機械の制御装置。

In the machine tool control device for switching the stator winding of the spindle motor in the machine tool to the △ winding at the time of high speed rotation, to the Y winding at the time of low speed rotation, the stator winding of the spindle motor,
At the time of C-axis generating machining that performs machining by synchronizing the rotary tool axis and the main spindle, when a program code indicating rapid feed is commanded in the machining program, △ winding when a program code indicating cutting feed is commanded A machine tool control device characterized by switching a winding of a stator winding of a spindle motor on a wire.

JP2004163616A 2004-06-01 2004-06-01 Controlling device of machine tool Pending JP2005346298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163616A JP2005346298A (en) 2004-06-01 2004-06-01 Controlling device of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163616A JP2005346298A (en) 2004-06-01 2004-06-01 Controlling device of machine tool

Publications (1)

Publication Number Publication Date
JP2005346298A true JP2005346298A (en) 2005-12-15

Family

ID=35498627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163616A Pending JP2005346298A (en) 2004-06-01 2004-06-01 Controlling device of machine tool

Country Status (1)

Country Link
JP (1) JP2005346298A (en)

Similar Documents

Publication Publication Date Title
CN106239257B (en) The control device and control method of lathe
CN109308052B (en) Numerical controller and numerical control method
CN110235068B (en) Positioning control method and system for machine tool spindle
JP2009053801A (en) Numerical controller with program restart function
JP2004048885A (en) Power converter
US11048221B2 (en) Numerical controller
WO2013118169A1 (en) Numerical control device
CN111791087B (en) Control device for machine tool having spindle and feed shaft
JP2005313280A (en) Numerical control device
CN109687793B (en) Motor control device
JP7035875B2 (en) Numerical control device, numerical control method, and numerical control program
JP6423904B2 (en) Numerical control device for machine tools
JP2004362104A (en) Numerical controller for machine tool and numerical control method for the same machine tool
JP2005346298A (en) Controlling device of machine tool
JP5530500B2 (en) Spindle drive motor controller
JP2004202594A (en) Numerical control device
CN111221300B (en) Numerical control device
JP6423907B2 (en) Numerical control device for machine tools
US10232480B2 (en) Numerical controller of machine tool
CN113795796A (en) Control system and motor control device
US11211887B2 (en) Motor control device and machine tool
JP5129362B2 (en) Spindle drive motor controller
JP7481447B2 (en) Machine tool control device and control method
JP2004195616A (en) Main spindle synchronous control method and its device
US11114967B2 (en) Controller of rotary axis