JP2005344968A - Heat exchanging structure and heat insulating structure using non-woven metal tissue - Google Patents

Heat exchanging structure and heat insulating structure using non-woven metal tissue Download PDF

Info

Publication number
JP2005344968A
JP2005344968A JP2004163161A JP2004163161A JP2005344968A JP 2005344968 A JP2005344968 A JP 2005344968A JP 2004163161 A JP2004163161 A JP 2004163161A JP 2004163161 A JP2004163161 A JP 2004163161A JP 2005344968 A JP2005344968 A JP 2005344968A
Authority
JP
Japan
Prior art keywords
heat
fiber cloth
woven
thermal conductivity
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004163161A
Other languages
Japanese (ja)
Inventor
Yukihiro Sugawara
征洋 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRITSU HYBRID KK
Original Assignee
SANRITSU HYBRID KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRITSU HYBRID KK filed Critical SANRITSU HYBRID KK
Priority to JP2004163161A priority Critical patent/JP2005344968A/en
Publication of JP2005344968A publication Critical patent/JP2005344968A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the performance of a heat storage device using the water, paraffin or the like, to improve the performance of a heat exchanger and a heat sink (heat removal), and to achieve heat insulating effect of various apparatuses, aircraft, automobiles, buildings or the like. <P>SOLUTION: In this heat exchanging structure, the non-woven metal tissue of wire diameter of 20-120μm formed by a melt spinning method and a cutting method, is used, the non-woven metal tissue is laminated in the thickness direction of the non-woven metal tissue, and a heat transfer tube is mounted in the thickness direction of the non-woven metal tissue in a state of being kept into contact with a laminated body. This heat insulating structure is constituted by vertically laminating the non-woven metal tissue in the heat transferring direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム、銅、鉄、ステンレス鋼、黄銅およびその他の金属繊維から成形された不織金属繊維布を利用した潜熱および顕熱の蓄熱促進、熱交換器の性能促進、ヒートシンク、保温(保冷)、断熱、耐熱および均熱に関する。 The present invention uses a non-woven metal fiber cloth formed from aluminum, copper, iron, stainless steel, brass and other metal fibers to promote latent heat and sensible heat storage, heat exchanger performance, heat sink, heat retention ( Cold insulation), heat insulation, heat resistance and soaking.

従来、アルミニウムを例にとると、溶融紡糸法または切削法により成形されたアルミニウム繊維を積層したものが知られている。この不織アルミニウム繊維布は多孔層であることから吸音材、フィルタ(ろ過材)、触媒又は流れ制御部材として、また導電材であることから電極として使用することが提案されている。例えば、特公平4−13142号公報、実公平6-28266号公報には、不織アルミニウム繊維布の片面又は両面にエキスパンドメタルを圧接して積層体とし、又は圧接した後加熱して焼成することにより金属多孔質材に成形することにより、吸音材、触媒、フィルタ又は流れ制御部材に使用することが開示されている。特開平3−137256号公報、特公平6−61882号公報等には、不織アルミニウム繊維布の片面又は両面に凹凸を形成し、又は、片面に凹凸を形成した面にパンチングメタル、ラス網を圧接することにより、吸音材、触媒または流れ制御部材として使用することが開示されている。特公平47−26922号公報には、不織アルミニウム繊維布の外周部又は内面の一部を加熱状態で加圧して結合することにより、吸音材、触媒、フィルタ又は電極として使用することが開示されている。 Conventionally, taking aluminum as an example, a laminate of aluminum fibers formed by a melt spinning method or a cutting method is known. Since this non-woven aluminum fiber cloth is a porous layer, it has been proposed to be used as a sound absorbing material, a filter (filter material), a catalyst or a flow control member, and as a conductive material, as an electrode. For example, in Japanese Patent Publication No. 4-13142 and No. 6-28266, an expanded metal is pressed on one side or both sides of a non-woven aluminum fiber cloth to form a laminate, or after being pressed and heated, it is fired. Is used for a sound-absorbing material, a catalyst, a filter or a flow control member. In JP-A-3-137256, JP-B-6-61882, etc., a non-woven aluminum fiber cloth is formed with irregularities on one side or both sides, or punched metal or lath nets are formed on the side with irregularities formed on one side. It is disclosed that it is used as a sound absorbing material, a catalyst, or a flow control member by being pressed. Japanese Examined Patent Publication No. 47-26922 discloses that a part of the outer peripheral portion or inner surface of a non-woven aluminum fiber cloth is pressed and bonded in a heated state to be used as a sound absorbing material, a catalyst, a filter, or an electrode. ing.

ところで、特開昭51−61405号公報には、鉄系金属繊維からなる不織金属繊維布をアルミニウム系金属で被覆し、又は不織金属繊維布をアルミニウム系基板に融着させるとともにアルミニウム系金属で被覆することにより、熱交換器、ガソリン等のベーパライザーとして使用することが開示されている。また、特開昭58−128849号公報には、金属繊維からなる不織金属繊維布をアルミニウム製の基板上に載置し、焼結炉で加熱することにより不織金属繊維布を焼結し多孔性の焼結層とするとともに、この焼結層基板に一体に融着させることにより、熱交換器用の伝熱体として使用することが開示されている。ところが、前者については、不織金属繊維布自体の熱伝導率によるよりも被覆材としてのアルミニウム系金属の熱伝導率により伝熱作用をし、後者については基板のアルミニウムが不織金属繊維布を被覆するとともに不織金属繊維布部位が多孔質構造となり、不織金属繊維布を被覆するアルミニウムの熱伝導と多孔質構造による蒸気泡により伝熱作用をすることになる。従って、不織金属繊維布を伝熱用として使用しうるとしても、不織金属繊維布、中でも不織アルミニウム繊維布の有効熱伝導率の大きな異方性の熱特性に着目したものではない。 By the way, JP-A-51-61405 discloses that a non-woven metal fiber cloth made of iron-based metal fibers is coated with an aluminum-based metal, or the non-woven metal fiber cloth is fused to an aluminum-based substrate and an aluminum-based metal. It is disclosed that it is used as a vaporizer for heat exchangers, gasoline, etc. by coating with. JP-A-58-128849 discloses that a nonwoven metal fiber cloth made of metal fibers is placed on an aluminum substrate and heated in a sintering furnace to sinter the nonwoven metal fiber cloth. It is disclosed that a porous sintered layer is used as a heat transfer body for a heat exchanger by being integrally fused to the sintered layer substrate. However, in the former, the heat transfer effect is caused by the thermal conductivity of the aluminum-based metal as the covering material rather than by the thermal conductivity of the non-woven metal fiber cloth itself. As a result of the coating, the non-woven metal fiber cloth part has a porous structure, and heat transfer is effected by heat conduction of aluminum covering the non-woven metal fiber cloth and vapor bubbles due to the porous structure. Therefore, even if the non-woven metal fiber cloth can be used for heat transfer, it does not pay attention to the anisotropic thermal characteristics of the non-woven metal fiber cloth, particularly the non-woven aluminum fiber cloth, which have a large effective thermal conductivity.

特開2000−346574号によると、溶融紡糸法によるアルミニウム繊維を積層または加圧成形された不織アルミニウム繊維布からなることを特徴とする非接触型保温蓄熱材に関して公開されている。これは、非接触型を特徴とし、不織アルミニウム繊維布の放射率が0.7程度であることから、太陽エネルギーの集熱に利用しうることを主たる用途としている外、不織アルミニウム繊維布の熱伝導率は嵩密度が331kg/m3で0.07W/(m・K)程度であると非定常法によって測定しており、保温、断熱、氷の生成促進にも利用しうると記述している。しかしながら、本明細書における後述の実験結果(図2参照)からも明確なように嵩密度が増すと有効熱伝導率も上昇するため、既存の繊維質断熱材や発泡断熱材と比較しても有効熱伝導率の値が大きいので、少なくとも低温領域や大きな嵩密度の場合においては既存の断熱材との競合は難しい。反面、高温領域においてはアルミニウム繊維の融点が600℃程度と低く高温領域での耐熱・耐火材としての利用も難しい。中温度の限られた温度領域の保温材としての利用が考えられるとしても、やはり、不織アルミニウム繊維布単独では既存の断熱および耐火材に替わりうるものではない。また、不織アルミニウム繊維布に水を飽和させて水の生成促進を図るとしても、もともと有効熱伝導率の低い不織アルミニウム繊維布に水や氷を含ませても、これの有効熱伝導率を大きく上げることは難しく、本明細書における後述の実験結果(図5)から明白なように、氷の生成をわずかに促進させるに留まり、凍結促進を図ることは難しいと言える。しかも、特開2000−346574号のアルミニウム繊維の製造法は特別な技術を必要とする溶融紡糸法に限られたものであるので、製造法が容易でかつ安価な切削法による不織アルミニウム繊維布の方が経済性の観点からも優位に立つと考える。 According to Japanese Patent Laid-Open No. 2000-346574, a non-contact type heat storage material is disclosed which is made of a non-woven aluminum fiber cloth obtained by laminating or press-molding aluminum fibers by a melt spinning method. This is characterized by a non-contact type, and the emissivity of the non-woven aluminum fiber cloth is about 0.7. Therefore, it is mainly used for collecting solar energy. Conductivity is measured by the unsteady method when the bulk density is about 331 kg / m 3 and about 0.07 W / (m · K), and it is described that it can be used for heat retention, heat insulation, and promotion of ice formation. . However, as apparent from the experimental results described later in this specification (see FIG. 2), as the bulk density increases, the effective thermal conductivity also increases. Therefore, even when compared with existing fibrous heat insulating materials and foam heat insulating materials. Since the value of the effective thermal conductivity is large, at least in the case of a low temperature region or a large bulk density, it is difficult to compete with existing heat insulating materials. On the other hand, the melting point of aluminum fibers is as low as about 600 ° C in the high temperature region, making it difficult to use as a heat and fire resistant material in the high temperature region. Even if it can be used as a heat insulating material in a temperature range having a limited medium temperature, the non-woven aluminum fiber cloth alone cannot replace the existing heat insulating and refractory material. Even if water is promoted by saturating the non-woven aluminum fiber cloth and water or ice is originally included in the non-woven aluminum fiber cloth having low effective heat conductivity, the effective heat conductivity of the non-woven aluminum fiber cloth can be reduced. It is difficult to greatly increase the temperature, and as is clear from the experimental results described later in this specification (FIG. 5), it can be said that the formation of ice is only slightly promoted and it is difficult to promote freezing. Moreover, since the method for producing aluminum fibers disclosed in Japanese Patent Application Laid-Open No. 2000-346574 is limited to the melt spinning method requiring a special technique, the non-woven aluminum fiber cloth produced by a cutting method that is easy and inexpensive to produce. I think that is more advantageous from the viewpoint of economy.

昼間と夜間における電力の極端な需要の差異からもたらされる電力供給危機を回避するため、所謂電力供給の平準化を遂行するための一つの有力な方策として潜熱蓄熱システムが採用されている。潜熱とは物質の相変化、すなわち凝固や溶融に必要な熱エネルギーであり、ただ温度を上昇させるのに必要な顕熱よりは大きなエネルギーであるため、一般に潜熱蓄熱型の蓄熱システムが採用される場合が多い。一つの具体例として、夏季の空調負荷にかかかわる電力供給の平準化のため、夜間の格安の電力を利用して冷凍機を作動して氷を生成し、日中に熱交換器を介して氷を融解させてビル等の冷房を行う。このような方法によって、電力供給の平準化を図れるだけでなく、省エネルギーに対しても多大な貢献ができるのである。蓄熱システムを考える場合、相変化物質(Phase Change Material、PCMと略記)の選択も必要あるが、如何にして短時間で多くの相変化、すなわち凝固又は溶融させるかにかかっている。これに加えて、時間の経過に対して安定した放熱(凝固)または蓄熱(溶融)が実現できることも重要な性能向上の要素となる。これまで、相変化促進を図るため大別して二通りの方法が考えられている。一つは伝熱管にフインを具備して伝熱面積を増加させて相変化の促進を図る方法である。もう一つは蓄熱層に熱伝導率の良い金属の小片(球、チップ、カール、繊維など)を充填し、これにPCMを満たして蓄熱層の有効熱伝導率を大きくして相変化促進を図る方法である。すなわち、前者はフイン型、後者は多孔層型と言ってよい。フイン型は凝固又は融解初期にそれぞれ放熱量又は蓄熱量は大きいが、時間の経過につれて次第にそれらの放・蓄熱量が減少の一途をたどる短所がある。これに反して、多孔層型は安定した放・蓄熱量が得られるもののフィン型と比較して放・蓄熱量が小さくなることは避けられない。多孔層型で放・蓄熱量を多くしようとすれば、多くの金属小片を蓄熱層に充填しなければならず、このため、設計放・蓄熱量、すなわちPCMの量を設定しようとすれば多孔層すなわち蓄熱層を大きくせざるをえない。以上の理由により、従来型の潜熱蓄熱システムで安定して且つ多くの放・蓄熱量を実現するには更なる研究開発が必要である。 In order to avoid the power supply crisis caused by the extreme difference in power demand between daytime and nighttime, a latent heat storage system has been adopted as one effective measure for achieving so-called leveling of power supply. Latent heat is the heat energy required for the phase change of the substance, that is, solidification and melting, and is larger than the sensible heat necessary to raise the temperature, so a latent heat storage type heat storage system is generally adopted. There are many cases. As one specific example, in order to level the power supply related to the air conditioning load in the summer, ice is generated by operating a refrigerator using cheap electricity at night and via a heat exchanger during the day. Melt ice and cool buildings. By such a method, not only can the power supply be leveled, but also a great contribution can be made to energy saving. When considering a heat storage system, it is also necessary to select a phase change material (abbreviated as PCM), but it depends on how many phase changes, ie solidification or melting, take place in a short time. In addition to this, the ability to realize stable heat dissipation (solidification) or heat storage (melting) over time is also an important performance improvement factor. Up to now, two methods have been considered in order to promote phase change. One is a method of promoting the phase change by providing fins in the heat transfer tube to increase the heat transfer area. The other is to fill the heat storage layer with small pieces of metal (spheres, chips, curls, fibers, etc.) with good thermal conductivity and fill it with PCM to increase the effective thermal conductivity of the heat storage layer and promote phase change. It is a method to plan. That is, the former may be referred to as a fin type, and the latter as a porous layer type. The fin type has a large amount of heat release or heat storage in the initial stage of solidification or melting, but has a disadvantage that the amount of released and stored heat gradually decreases as time passes. On the other hand, although the porous layer type can provide a stable amount of released / stored heat, the amount of released / stored heat is unavoidably smaller than that of the fin type. If you want to increase the amount of heat released or stored in the porous layer type, you must fill the heat storage layer with many metal pieces. For this reason, if you want to set the amount of designed heat released or stored, that is, the amount of PCM, it will be porous. The layer, that is, the heat storage layer, must be enlarged. For the above reasons, further research and development is necessary to realize a large amount of released and stored heat stably with a conventional latent heat storage system.

各種家電機器、航空機、自動車、建築物、高温炉、低温装置などの保温・断熱に対して、対象温度域や熱環境、すなわち用途によって各種の保温・断熱材が適宜選択され採用されている。主な保温・断熱材として、グラスウール、セラミックス繊維、炭素繊維、岩綿などの繊維系保温・断熱材、ポリウレタン、スタイロフォームなどの発泡保温・断熱材、ケイ酸カルシウム系耐火材など多くのものが市販され適宜採用施工されている。以上挙げた保温・断熱材はそれなりの効果があるものの、価格、環境問題、耐水性、耐熱性、信頼性などのいずれかの課題をかかえていることも事実である。特に耐火材に焦点を当ててみる。一般に耐火材は高温領域に対して有効であり、耐火材を使用する目的は木材などの可燃材を火災などから着火・燃焼を防ぐことが主な目的である。しかしながら、たとえばケイ酸カルシウム系の耐火材は多孔質であるため有効熱伝導率が0.1W/(m・K)以下で小さく、しかも熱容量も比較的に小さい値を持つものが多い。小さな有効熱伝導率をもつ耐火材は断熱効果を発揮するので、一見耐火材として有効であると思いがちであるが、反面、有効熱伝導率と熱容量が小さいために逆に高温加熱されたときの耐火材の温度上昇が顕著になる。したがって、耐火材と積層されている木材などの可燃材の昇温を招き、やがて着火燃焼する事態に陥ることになる。このような事態を遅らせるため耐火材と木板との間に不織金属繊維布を挟むことが有効である。不織金属繊維布の厚み方向の有効熱伝導率は比較的に小さく、面方向の有効熱伝導率は相対的に大きいことが、出願者らの基礎的な研究で明らかになりつつある。耐火材からの高温熱量が木板方向には伝導しにくくて、面方向には多くの熱を伝導する。したがって、不織金属繊維布は断熱材の役目ばかりでなく、一種の熱緩衝材の役目もするのである。不織金属繊維布による断熱および昇温防止に関する公的な報告は出願者らの知る限りにおいては見当たらない。 Various heat insulation / insulation materials are appropriately selected and adopted depending on the target temperature range and thermal environment, that is, applications, for heat insulation / insulation of various home appliances, aircraft, automobiles, buildings, high temperature furnaces, low temperature devices, and the like. Many heat insulation and heat insulation materials such as glass wool, ceramic fiber, carbon fiber, rock wool, etc., heat insulation and insulation materials such as polyurethane and styrofoam, and calcium silicate fireproof materials are commercially available. It has been adopted as appropriate. Although the heat insulating and heat insulating materials mentioned above have some effects, it is also true that they have any problems such as price, environmental problems, water resistance, heat resistance and reliability. Focus on refractory materials in particular. In general, a refractory material is effective in a high temperature region, and the purpose of using the refractory material is mainly to prevent ignition and combustion of a combustible material such as wood from a fire. However, for example, calcium silicate-based refractory materials are porous, so that effective thermal conductivity is as small as 0.1 W / (m · K) or less, and the heat capacity is often relatively small. Refractory materials with a small effective thermal conductivity exhibit a heat insulation effect, so it is easy to think that they are effective as a refractory material at first glance, but on the other hand, when they are heated at high temperatures due to their small effective thermal conductivity and heat capacity. The temperature rise of the refractory material becomes remarkable. Therefore, the temperature of the combustible material such as wood laminated with the refractory material is increased, and eventually a situation of ignition and combustion occurs. In order to delay such a situation, it is effective to sandwich a non-woven metal fiber cloth between the refractory material and the wooden board. Applicants' basic research has revealed that the effective thermal conductivity in the thickness direction of the nonwoven metal fiber cloth is relatively small and the effective thermal conductivity in the plane direction is relatively large. High-temperature heat from the refractory material is difficult to conduct in the direction of the wooden board, and conducts a lot of heat in the surface direction. Therefore, the non-woven metal fiber cloth serves not only as a heat insulating material but also as a kind of heat buffer material. To the best of the applicants' knowledge, there are no official reports on heat insulation and temperature rise prevention with non-woven metal fiber cloth.

一つの課題として、従来のフイン型潜熱蓄熱方法は凝固・溶融開始した短い時間帯では多くの放・蓄熱量が望めるものの、時間の経過につれて放・蓄熱量は次第に減少して安定した放・蓄熱量が期待できず伝熱制御が難しい。しかも、フイン付伝熱管の製造法は難しく、それの価格を引き上げているため、効果が期待できるにもかかわらず市販の蓄熱システムではフイン付伝熱管の普及が遅れている。一方、多孔層型潜熱蓄熱方法は、時間的に安定した放・蓄熱量が得られるものの、それの凝固・溶融速度が小さい外、充填金属粒子の含有体積が大きくなるため蓄熱層が大きくなる短所が避けられない。本発明は上記の従来の潜熱蓄熱方法をさらに発展させるものであり、不織アルミニウム繊維布を始めとする不織金属繊維布の有効熱伝導率の大きな異方性を利用し、凝固・溶融促進による潜熱蓄熱システムの性能向上を図る。以上の蓄熱促進の外、不織金属繊維布を圧延または焼結し、さらに腐食防止加工を施すことによって嵩密度と強度を高めて、軽量な多孔質の各種フインを成形することによって各種熱交換器の性能促進や各種機器のヒートシンク(熱除去)の性能促進を図る。 One problem is that the conventional fin-type latent heat storage method can provide a large amount of released / stored heat in the short period of time when solidification / melting has started, but the amount of released / stored heat gradually decreases as time passes. The amount cannot be expected and heat transfer control is difficult. And since the manufacturing method of a heat exchanger tube with a fin is difficult and raises the price, the spread of a heat exchanger tube with a fin is late in the commercial heat storage system, although an effect can be expected. On the other hand, although the porous layer type latent heat storage method can provide a stable amount of heat release and storage over time, it has a small solidification / melting rate and has a disadvantage that the heat storage layer becomes large because the volume of filled metal particles increases. Is inevitable. The present invention further develops the above-described conventional latent heat storage method, utilizing the large anisotropy of the effective thermal conductivity of non-woven metal fiber cloth such as non-woven aluminum fiber cloth to accelerate solidification and melting. Improve the performance of the latent heat storage system. In addition to the above heat storage enhancement, non-woven metal fiber cloth is rolled or sintered and further subjected to corrosion prevention processing to increase bulk density and strength, and various heat exchange by forming various lightweight porous fins Promote performance of heat sinks and heat sinks (heat removal) of various devices.

二つ目の課題として、従来の断熱・保温方法は既述のごとく適用温度範囲に応じて優れた材料が用いられているが、必ずしも可燃材を保護しているとは認めがたい。つまり、各種断熱材の有効熱伝導率が小さいがため、火炎などの集中加熱を受けると返って断熱材の昇温を招き、やがて積層されている可燃材に温度伝播し、これの燃焼を招き兼ねない。本発明は耐火材と可燃材との間に不織金属繊維布を具備して集中加熱を受けたときの可燃材を燃焼から防護することを目的とし、建材、中・高温域の各種熱関連機器、交通機関等の断熱および昇温防止を図るほか、これと類似した伝熱挙動であるが、たとえば、床暖房などにおいて、加熱円管に不織金属繊維布を具備することによって床面の温度斑を軽減する、所謂均熱効果を図る。 As a second problem, the conventional heat insulation and heat insulation methods use excellent materials according to the application temperature range as described above, but it is not necessarily recognized that the combustible materials are protected. In other words, the effective thermal conductivity of various heat insulating materials is small, so when they are subjected to intensive heating such as flame, the heat insulating materials are heated up, and the temperature of the heat insulating materials is eventually propagated to the stacked combustible materials, causing the combustion of these. I can not. The present invention has a non-woven metal fiber cloth between a refractory material and a flammable material, and is intended to protect the flammable material from burning when subjected to central heating. In addition to heat insulation and prevention of temperature rise in equipment, transportation, etc., the heat transfer behavior is similar to this. For example, in floor heating, the floor of the floor surface is provided by providing a non-woven metal fiber cloth in the heating circular tube. A so-called soaking effect that reduces temperature spots is achieved.

図1に一枚の不織金属繊維布に対する熱流方向と有効熱伝導率の関係を座標を導入して示したものである。不織金属繊維布の面方向すなわち繊維が伸びている方向をx座標にとり距離をLxとする。一方、厚み方向すなわち繊維同士が重なっている方向をy座標にとり距離をLyとする。x方向の熱流束と有効熱伝導率はそれぞれqxとλexとする。これに対しy方向の熱流束と有効熱伝導率はそれぞれqyとλeyとする。Lx間の温度差をΔTx、Ly間の温度差をΔTyとすれば、各方向の有効熱伝導率は次のように表せる。 FIG. 1 shows the relationship between the heat flow direction and the effective thermal conductivity for a piece of non-woven metal fiber cloth, with coordinates introduced. The surface direction of the non-woven metal fiber cloth, that is, the direction in which the fiber extends is taken as the x coordinate, and the distance is L x . On the other hand, the thickness direction, that is, the direction in which the fibers overlap each other is taken as the y coordinate, and the distance is defined as Ly . The heat flux and effective thermal conductivity in the x direction are q x and λ ex , respectively. On the other hand, the heat flux and effective thermal conductivity in the y direction are q y and λ ey , respectively. The temperature difference [Delta] T x between L x, if the temperature difference between L y and [Delta] T y, the effective thermal conductivity of each direction is expressed as follows.

Figure 2005344968
Figure 2005344968

ここで、本出願で測定に用いた鉄とステンレス鋼の不織金属繊維布は切削法によって成形しているので、繊維はx方向全域に伸びており、紙面に垂直な方向は厚み方向(y方向)と同じで繊維同士は点接触の状態である。これに対して、溶融防止法によるアルミニウムの不織金属繊維布の繊維はx方向のみに伸びている訳ではなく面全域にランダムに繊維が積層されている。したがって、この場合のアルミニウム繊維の面方向に対する方向性がなく、例えばx方向と紙面に垂直な方向の繊維の伸び方や配列は同じと見なせるものである。切削法による不織アルミニウム繊維布の繊維の配列状態は、切削法による鉄およびステンレス鋼の繊維の配列状態と異なり、溶融防止法による不織アルミニウム繊維布の配列状態と類似している。鉄およびステンレス鋼繊維とアルミニウム繊維の配列状態の差異によるλexの特徴は、後述のごとく文献1による推算値との比較で明確になる。 Here, since the non-woven metal fiber cloth of iron and stainless steel used for the measurement in this application is formed by a cutting method, the fibers extend in the entire x direction, and the direction perpendicular to the paper surface is the thickness direction (y The direction of the fibers is in a point contact state. On the other hand, the fibers of the non-woven metal metal cloth made of aluminum by the melting prevention method do not extend only in the x direction, but are randomly laminated over the entire surface. Accordingly, there is no directionality with respect to the plane direction of the aluminum fiber in this case, and for example, the extension and arrangement of the fibers in the x direction and the direction perpendicular to the paper surface can be regarded as the same. The arrangement state of the non-woven aluminum fiber cloth by the cutting method is different from the arrangement state of the iron and stainless steel fibers by the cutting method, and is similar to the arrangement state of the non-woven aluminum fiber cloth by the melting prevention method. The characteristic of λ ex due to the difference in the arrangement state of iron and stainless steel fibers and aluminum fibers becomes clear by comparison with the estimated value according to Document 1 as described later.

図2に出願者らが測定したアルミニウム(λexとλey)、鉄(λexとλey)、ステンレス鋼(λeyのみ)の不織金属繊維布の有効熱伝導率(λex、λey)の一例を示す。ただし、充填物質は空気(気体)である。測定方法は現在最も精度が良いとされている平板直接法によった。文献1による不連続および連続固体系(多孔質)の有効熱伝導率の推算式によ推算結果を参考のため示した。文献1の推算式は不織金属繊維布に対する有効熱伝導率の異方性を推算するためのものではないが、限られた条件下で出願者が行った有効熱伝導率の実測値の信頼性を吟味するために有用である。まず、厚み方向の有効熱伝導率λeyについて吟味する。アルミニウム繊維のλeyは嵩密度ρの増加につれて単調に増加しており、熱伝導率の良いアルミニウム(約237W/(m・K))の素材からなる繊維にしては大変小さな値を示している。これは繊維が厚み方向に点接触のような形で重なり合っているので、接触熱抵抗が大きいためである。嵩密度が100kg/m3(空隙率ε=0.96、充填率φ=0.04、εとφとの間にε=1−φの関係がある)で約0.1W/(m・K)であり、保温材としても利用しうるものである。嵩密度が300kg/mのときのλeyは0.28W/(m・K)であり、特開2000−346574号の0.06W/(m・K)よりもかなり大きな値を示している。このように不織アルミニウム繊維布は嵩密度の増加につれてλeyは次第に大きくなるので、断熱材として利用するときは小さな嵩密度のものでなければならない。融紡糸法による不織アルミニウム繊維布と切削法による不織アルミニウム繊維布との間に有効熱伝導率の差異はなく、繊維の線径が同じ程度であれば、繊維の製造法によるアルミニウム不織繊維布の有効熱伝導率λeyは同じ値を持つとみてよい。全般的に田中らの推算式(文献1)よりも比較的に大きな値を示していることから、本発明の不織アルミニウム繊維布の有効熱伝導率は従来の推算式から正確に予測することは難しく、実測に頼らざるを得ない。特に、嵩密度ρが200kg/m3(空隙率ε=0.925、充填率φ=0.075)を超えると推算式からの差が次第に大きくなる傾向を示している。不織鉄繊維布のλeyは0.05W/(m・K)であり、アルミニウムの場合よりもかなり小さな値を示しており、しかも嵩密度ρの依存性が小さく、本測定範囲内ではほぼ一様な値を示している。しかも実測値は文献1の推算結果と比較的に良く一致している。ステンレス鋼の場合のλeyの実測値は鉄の場合よりも若干小さい。これはステンレス鋼の素材自身の熱伝導率が鉄の素材の熱伝導率よりも小さい値を持つことに起因するが、両者の金属繊維布のλeyはほぼ同じと見て良い。不織銅繊維布の場合の実測値は図中にないが、文献1からの予測値では鉄の場合と余り差が見られない。したがって、不織銅繊維布も保温材として利用しうるものである。保温・断熱および耐熱の観点から見ると、アルミニウムよりも融点の高い鉄(約1500℃)とステンレスの不織金属繊維布の方が有効であるといえる。総じて、厚み方向のλeyは低密度の領域においては、繊維素材の種類に大きく影響されないとみてよい。
田中誠・千阪文武、不連続および連続固体系の有効熱伝導率の一推算法、化学工学論文集、16-1(1990)、pp.168-173。
FIG. 2 shows the effective thermal conductivity (λ ex , λ) of the non-woven metal fiber cloth of aluminum (λ ex and λ ey ), iron (λ ex and λ ey ), and stainless steel (λ ey only) measured by the applicants. ey ) is an example. However, the filling material is air (gas). The measuring method was the direct plate method, which is currently considered the most accurate. The estimation results based on the estimation formula of effective thermal conductivity of discontinuous and continuous solid systems (porous) according to Reference 1 are shown for reference. The estimation formula in Document 1 is not for estimating the anisotropy of effective thermal conductivity for non-woven metal fiber cloth, but the reliability of the measured value of effective thermal conductivity performed by the applicant under limited conditions. Useful for examining sex. First, the effective thermal conductivity λ ey in the thickness direction will be examined. The λ ey of the aluminum fiber increases monotonously as the bulk density ρ increases, indicating a very small value for a fiber made of aluminum (about 237 W / (m · K)) with good thermal conductivity. . This is because the contact heat resistance is large because the fibers overlap in the thickness direction in the form of point contact. The bulk density is 100 kg / m 3 (porosity ε = 0.96, filling rate φ = 0.04, ε = 1−φ has a relation of ε = 1−φ), and is about 0.1 W / (m · K), It can also be used as a heat insulating material. When the bulk density is 300 kg / m 3 , λ ey is 0.28 W / (m · K), which is much larger than 0.06 W / (m · K) in JP 2000-346574 A. As described above, the non-woven aluminum fiber cloth has a small bulk density when used as a heat insulating material because λey gradually increases as the bulk density increases. There is no difference in effective thermal conductivity between the non-woven aluminum fiber cloth produced by the melt spinning method and the non-woven aluminum fiber cloth produced by the cutting method. It can be considered that the effective thermal conductivity λ ey of the fiber cloth has the same value. Overall, it shows a relatively larger value than the estimation formula of Tanaka et al. (Reference 1), so the effective thermal conductivity of the non-woven aluminum fiber cloth of the present invention should be accurately predicted from the conventional estimation formula. Is difficult, and we have to rely on actual measurements. In particular, when the bulk density ρ exceeds 200 kg / m 3 (porosity ε = 0.925, filling rate φ = 0.075), the difference from the estimation formula tends to increase gradually. The λ ey of the non-woven iron fiber cloth is 0.05 W / (m · K), which is considerably smaller than that of aluminum, and the dependency of the bulk density ρ is small. Various values are shown. Moreover, the actual measurement values are in good agreement with the estimation results of Document 1. The measured value of λ ey in the case of stainless steel is slightly smaller than that in the case of iron. This is due to the fact that the thermal conductivity of the stainless steel material itself is smaller than the thermal conductivity of the iron material, but it can be seen that the λ ey of both metal fiber cloths is almost the same. The actual measurement value in the case of the non-woven copper fiber cloth is not shown in the figure, but the predicted value from Document 1 does not show much difference from the case of iron. Therefore, non-woven copper fiber cloth can also be used as a heat insulating material. From the viewpoint of heat insulation, heat insulation, and heat resistance, non-woven metal fiber cloth made of iron (about 1500 ° C) and stainless steel, which has a higher melting point than aluminum, is more effective. In general, it can be considered that λ ey in the thickness direction is not greatly affected by the type of fiber material in a low density region.
Tanaka Makoto and Chisaka Fumitake, A Method for Estimating Effective Thermal Conductivity of Discontinuous and Continuous Solid Systems, Chemical Engineering, 16-1 (1990), pp. 168-173.

次に、面方向の有効熱伝導率λexを吟味する。この場合にも文献1による推算式を比較のため示した。不織アルミニウム繊維布の場合におけるλexはλeyよりも格段と大きな値を示している。これは、不織アルミニウム繊維布の繊維が面方向すなわち熱流方向に伸びているので、繊維を伝導する熱量が増加したためである。すなわち厚み方向(λey)と面方向(λex)の有効熱伝導率に大きな異方性が存在するのである。繊維系断熱材の有効熱伝導率は多少異方性があると言われているが不織アルミニウム繊維布の場合は、嵩密度ρ=200kg/m3でλexは6W/(m・K)であるのに対し、λey は0.15W/(m・K)であるので、これらの比、λexey、は40であり、大変大きな異方性を示していることが認められる。このような有効熱伝導率の大きな異方性をもつ不織金属繊維布に関する報告は出願者の知る限りでは見当たらない。λexに対する文献1による推算式は出願者らの測定値よりも1.7倍程大きな値を示している。このように、熱伝導率の大きな金属繊維と熱伝導率の小さな空気(気体)からなる多孔質(繊維布)の有効熱伝導率の推算は難しく実測に頼らざるを得ない。不織鉄繊維布の場合のλexの実測値はアルミニウムの場合のλexよりも小さな値をもつが、嵩密度ρ=80kg/m3で0.5W/(m・K) 程度の値をもっている。鉄の場合も有効熱伝導率の異方性が大きく、本測定範囲内ではλexeyは10程度の値を持っていることが認められる。鉄のλexの値は文献1の推算値と良く合っている。これは、前記のごとく切削法による鉄繊維はx方向(面方向)全域まで伸びているからであり、文献1の推算式にかかわる単一セルモデルの概念が不織鉄繊維布の構成(繊維の配列)と類似しているからであると考える。ステンレス鋼の場合のλexの実測値は図中にないが、繊維布の性格が鉄繊維布と同じであれば、ステンレス鋼のλexは鉄と同程度であると見なしても良いと文献1の推算値から判断できる。不織銅繊維布のλexの実測値は図中にないが、これの文献1による推算値は同じ嵩密度に対して比較するとアルミニウムの場合の推算値よりも低い値を示している。しかしながら、同じ空隙率ε、すなわち同じ繊維充填率φで比較すると銅の場合の方がλexが大きな値をもつのである。したがって、不織銅繊維布の有効熱伝導率の異方性は図2の中では最も大きな値をもつと言える。 Next, the effective thermal conductivity λ ex in the plane direction is examined. Also in this case, the estimation formula according to Document 1 is shown for comparison. In the case of the non-woven aluminum fiber cloth, λ ex is much larger than λ ey . This is because the amount of heat conducted through the fibers increased because the fibers of the non-woven aluminum fiber cloth extend in the surface direction, that is, in the heat flow direction. That is, there is a large anisotropy in the effective thermal conductivity in the thickness direction (λ ey ) and the plane direction (λ ex ). The effective thermal conductivity of fiber insulation is said to be somewhat anisotropic, but in the case of non-woven aluminum fiber cloth, bulk density ρ = 200 kg / m 3 and λ ex is 6 W / (m ・ K) On the other hand, since λ ey is 0.15 W / (m · K), these ratios, λ ex / λ ey , are 40, and it is recognized that very large anisotropy is exhibited. To the best of the applicant's knowledge, there are no reports regarding such non-woven metal fiber cloth having a large anisotropy of effective thermal conductivity. The estimation formula according to Document 1 for λ ex shows a value about 1.7 times larger than the value measured by the applicants. Thus, it is difficult to estimate the effective thermal conductivity of a porous (fiber cloth) made of metal fibers having a high thermal conductivity and air (gas) having a low thermal conductivity, and it is necessary to rely on actual measurement. The measured value of λ ex in the case of non-woven iron fiber cloth is smaller than λ ex in the case of aluminum, but it has a value of about 0.5 W / (m · K) at a bulk density ρ = 80 kg / m 3 . . Even in the case of iron, the anisotropy of effective thermal conductivity is large, and it is recognized that λ ex / λ ey has a value of about 10 within this measurement range. The value of λ ex for iron is in good agreement with the estimated value in Document 1. This is because the iron fiber obtained by the cutting method extends to the entire region in the x direction (plane direction) as described above, and the concept of the single cell model related to the estimation formula of Document 1 is the structure of the non-woven iron fiber cloth (fiber This is because it is similar to The measured value of λ ex in the case of stainless steel is not shown in the figure, but if the character of the fiber cloth is the same as that of the iron fiber cloth, it can be considered that λ ex of stainless steel can be regarded as being equivalent to iron It can be judged from the estimated value of 1. The actual measured value of λ ex of the non-woven copper fiber cloth is not shown in the figure, but the estimated value according to Document 1 shows a value lower than the estimated value in the case of aluminum when compared with the same bulk density. However, when compared with the same porosity ε, that is, the same fiber filling rate φ, λ ex has a larger value in the case of copper. Therefore, it can be said that the anisotropy of the effective thermal conductivity of the nonwoven copper fiber cloth has the largest value in FIG.

不織アルミニウム繊維布の例でも分かるように不織金属繊維布の大きな有効熱伝導率の異方性により、前記の特許請求の範囲の請求項1と請求項2を解決できる。すなわち、請求項1に関しては、不織金属繊維布に水やパラフインなどの相変化物質(PCM)を飽和させて、不織金属繊維布の面方向に熱が移動するように冷却もしくは加熱することによって、PCMの凝固またはPCMの溶融促進を図ることができ、結果的には潜熱蓄熱システムの性能を上げることができるのである。これは、不織金属繊維布とPCMからなる多孔層の熱流方向の有効熱伝導率λexを高めることができるからである。ちなみに、出願者の実測によれば充填率φが0.1(すなわち10%)の不織アルミニウム繊維布の空隙部に氷(PCM)が存在する場合の面方向のλexは約7W /(m・K)なる大きな値を示した。これは氷の熱伝導率である2.2W/(m・K)より3倍以上の大きな有効熱伝導率の値をもつことになるので、潜熱蓄熱に利用すれば大幅に凝固促進すなわち蓄熱促進が図れるのである。文献2で、充填率0.97(約10%)のアルミニウムのチップ(小片)粒子層の空隙部に氷が存在する場合の有効熱伝導率は4.69W/(m ・K)であり、出願者の発明である不織アルミニウム繊維布の方が約1.5倍の大きな有効熱伝導率をもつことが明確である。文献2の場合は、アルミニウムのチップ粒子層の有効熱伝導率の異方性を考慮しない場合のものである。潜熱を利用しない通常の顕熱蓄熱の場合においても不織金属繊維布の有効熱伝導率の異方性を利用すれば、伝熱促進ならびに温度の一様化が図れるので、顕熱蓄熱の性能も上げることが可能になる。請求項2に関しては、例えば、耐火材と可燃材である木板などの間に不織金属繊維布を挟む場合を考える。耐火材が火炎により局部的に加熱された場合、厚み方向すなわち木板方向に伝導する熱流すなわち温度伝播を不織金属繊維布によって面方向にそらし木板の昇温防止もしくは着火燃焼を遅らせることができるのである。これはアルミニウム繊維と空気からなる多孔層の熱流方に垂直方向の有効熱伝導率λexを高めることができるからである。さらに、加熱円管や電熱線などの不連続な加熱によって幅広い板面を一様温度に設定する場合、すなわち均熱効果はこれらの熱源と板面との間に不織金属繊維布を挟むことによって実現可能となる。
W. Leidenfrost and D. Lindemann、 Simple method to determine the effective conductivity of porous media saturated with a phase changing liquid、 Int. J. Refrig. Vol.11 (1988)、 pp. 144-152。
As can be seen from the example of the non-woven aluminum fiber cloth, claims 1 and 2 of the above claims can be solved by the large effective thermal conductivity anisotropy of the non-woven metal fiber cloth. That is, according to claim 1, the nonwoven metal fiber cloth is saturated with a phase change material (PCM) such as water or paraffin, and is cooled or heated so that heat is transferred in the surface direction of the nonwoven metal fiber cloth. As a result, PCM solidification or PCM melting can be promoted, and as a result, the performance of the latent heat storage system can be improved. This is because the effective thermal conductivity λ ex in the heat flow direction of the porous layer made of the nonwoven metal fiber cloth and PCM can be increased. By the way, according to the applicant's actual measurement, λ ex in the surface direction when ice (PCM) is present in the void of the non-woven aluminum fiber cloth having a filling rate φ of 0.1 (ie 10%) is about 7 W / (m · K) showed a large value. This has an effective thermal conductivity value that is more than three times greater than the ice thermal conductivity of 2.2 W / (m ・ K). It can be planned. In Reference 2, the effective thermal conductivity is 4.69 W / (m · K) when ice is present in the voids of an aluminum chip (small piece) particle layer with a filling rate of 0.97 (about 10%). It is clear that the non-woven aluminum fiber cloth of the invention has a large effective thermal conductivity of about 1.5 times. In the case of Document 2, the anisotropy of the effective thermal conductivity of the aluminum chip particle layer is not taken into consideration. Even in the case of normal sensible heat storage that does not use latent heat, if the anisotropy of the effective thermal conductivity of the non-woven metal fiber cloth is used, heat transfer can be promoted and the temperature made uniform, so the performance of sensible heat storage Can also be raised. As for claim 2, for example, a case is considered in which a non-woven metal fiber cloth is sandwiched between a refractory material and a wood board which is a combustible material. When the refractory material is locally heated by the flame, the heat flow conducted in the thickness direction, that is, the direction of the wooden board, that is, the temperature propagation can be diverted to the surface direction by the non-woven metal fiber cloth, so that the temperature increase of the wooden board can be prevented or ignition combustion can be delayed. is there. This is because the effective thermal conductivity λ ex in the direction perpendicular to the heat flow direction of the porous layer made of aluminum fibers and air can be increased. Furthermore, when a wide plate surface is set to a uniform temperature by discontinuous heating such as a heating tube or heating wire, that is, the soaking effect is that a non-woven metal fiber cloth is sandwiched between these heat sources and the plate surface. Can be realized.
W. Leidenfrost and D. Lindemann, Simple method to determine the effective conductivity of porous media saturated with a phase changing liquid, Int. J. Refrig. Vol. 11 (1988), pp. 144-152.

以上の金属の種類による各繊維布の有効熱伝導率の特性がほぼ明らかになったと思われる。凝固・溶融促進、熱交換器の性能促進、ヒートシンク(熱除去)、昇温防止および均熱方法などの伝熱促進に対しては素材の熱伝導率が大きいアルミニウムと銅の繊維のλexを利用することが有効である。一方、保温・保冷、断熱および耐熱・耐火方法に対しては素材の熱伝導率が小さい鉄とステンレス鋼の繊維が望ましく、例えば放射反射スクリーンと積層すれば低温から高温に至る広い温度範囲でそれらの効果を発揮すると考える。図2の関係から目的や用途に応じた金属繊維の種類と嵩密度の選択が可能であり,これらの数値を用いることによって対象構造の具体的な伝熱計算も可能になる。 It seems that the characteristic of the effective thermal conductivity of each fiber cloth by the above metal types has become almost clear. Acceleration of solidification / melting, heat exchanger performance, heat sink (heat removal), prevention of temperature rise, and heat transfer enhancement such as soaking method, λ ex of aluminum and copper fibers with high thermal conductivity of the material It is effective to use. On the other hand, for heat insulation / cold insulation, heat insulation and heat / fire resistance methods, iron and stainless steel fibers with low thermal conductivity are desirable. For example, if they are laminated with a radiation-reflecting screen, they can be used in a wide temperature range from low to high. I think that the effect of. From the relationship shown in FIG. 2, it is possible to select the type and bulk density of the metal fiber according to the purpose and application. By using these numerical values, it is possible to calculate the specific heat transfer of the target structure.

特に不織金属繊維布の有効熱伝導率の大きな異方性の熱特性を利用することにより、凍結促進(伝熱促進)、昇温防止(断熱効果)および均熱効果を図ることができる。不織金属繊維布はアルミニウムばかりでなく、銅、鉄、ステンレス鋼、黄銅などの素材によっても溶融紡糸法や切削法によって成形することが可能である。これらの素材の種類によって有効熱伝導率の特性は異なるが(図2参照)、程度の差はあれ、水やパラフインなどの相変化物質(PCM)を含む不織金属繊維布による凍結(凝固)や融解(溶融)促進が図られ、さらに、不織金属繊維布単独や他の金属板、耐火材又は放射反射スクリーンとの併用によって、各種可燃材の昇温防止が図れる外、温度を一様にする均熱効果も顕著であり、結果的に不織金属繊維布は有効熱伝導率の大きな異方性をもつ熱特性と多孔質性を有効に利用することにより、各種家電機器、航空機、自動車、建築物、高温炉、低温装置などの保温(保冷)、断熱、耐熱、均熱および蓄熱システムの性能向上、熱交換器およびヒートシンク(熱除去)の性能向上が図れる。その他の特徴として、不織金属繊維布は金属の種類によっても効果が異なるものの、耐熱性、耐水性、耐候性に優れ、しかも軽量でリサイクル可能な循環型材料であり、他の非金属繊維質材料に見られる有害な化学物質の発散も皆無であって環境型社会に貢献する新しい利用方法が展開されると言ってよい。 In particular, by utilizing the anisotropic thermal characteristics of the nonwoven metal fiber cloth having a large effective thermal conductivity, it is possible to promote freezing (acceleration of heat transfer), prevention of temperature rise (insulation effect), and soaking effect. The non-woven metal fiber cloth can be formed not only by aluminum but also by materials such as copper, iron, stainless steel, brass, etc., by a melt spinning method or a cutting method. The characteristics of effective thermal conductivity differ depending on the type of these materials (see Fig. 2), but freezing (solidification) with non-woven metal fiber cloth containing phase change substances (PCM) such as water and paraffin, to some extent. In addition, non-woven metal fiber cloth alone and other metal plates, refractory materials or radiation reflective screens can be used to prevent the temperature rise of various combustible materials, and the temperature is uniform. The soaking effect is also remarkable, and as a result, the non-woven metal fiber cloth effectively utilizes thermal properties and porosity with a large anisotropy of effective thermal conductivity, thereby enabling various home appliances, aircraft, It is possible to improve the performance of heat insulation (cold insulation), heat insulation, heat resistance, soaking and heat storage system, and heat exchanger and heat sink (heat removal) for automobiles, buildings, high-temperature furnaces, low-temperature devices, etc. Other features include non-woven metal fiber cloth, which has different effects depending on the type of metal, but has excellent heat resistance, water resistance, and weather resistance, and is a lightweight and recyclable recyclable material. It can be said that there is no divergence of harmful chemical substances found in materials, and that new usage methods that contribute to an environmental society will be developed.

不織金属繊維布の有効熱伝導率の大きな異方性をもつ熱特性を利用し、一つ目としては、不織金属繊維布内に水やパラフインなどの相変化物質を飽和させた蓄熱層により凝固・溶融促進を図る高性能な潜熱蓄熱システムの実施形態。二つ目は、不織金属繊維布を圧延または焼結し、さらに腐食防止加工を施すことによって嵩密度と強度を高めて、軽量な多孔質の各種フインを成形することによる各種熱交換器の性能促進や各種機器のヒートシンク(熱除去)の性能促進。三つ目は、耐火材と可燃材との間に不織金属繊維布を挟むことによって伝導熱量を断熱かつ放散させて可燃材の着火・燃焼を遅らせる実施形態。四つ目は不連続な加熱源と加熱面との間に不織金属繊維布を具備することによって加熱面を一様温度に設定する均熱方法の実施形態等が考えられる。 Utilizing the thermal properties of non-woven metal fiber cloth with large anisotropy of effective thermal conductivity, the first is a heat storage layer in which phase change materials such as water and paraffin are saturated in the non-woven metal fiber cloth. An embodiment of a high-performance latent heat storage system that promotes solidification and melting by means of heat treatment. Secondly, rolling or sintering non-woven metal fiber cloth, further increasing the bulk density and strength by applying anti-corrosion processing, and various heat exchangers by forming various lightweight porous fins. Performance enhancement and performance enhancement of heat sink (heat removal) of various devices. The third is an embodiment in which the non-woven metal fiber cloth is sandwiched between the refractory material and the combustible material to insulate and dissipate the heat of conduction to delay the ignition and combustion of the combustible material. Fourthly, an embodiment of a soaking method for setting the heating surface to a uniform temperature by providing a non-woven metal fiber cloth between the discontinuous heating source and the heating surface can be considered.

最初に請求項1に関する一つの実施の実施例を示す。図3に含水不織アルミニウム繊維布の凍結促進実験法の概念図を示す。不織アルミニウム繊維布の母試料1(面積:50cm×50cm、厚さ:5mm)から中空円盤状すなわちディスク3を切り取る。これを外径19.05mm、肉厚1mmの冷却銅管2に所定の嵩密度になるように積層して凍結層(潜熱蓄熱層)とする。実用化を想定し一回り大きな銅製のベース管4にディスクを積層したものを冷却銅管に挿入した場合の実験も行った。凍結層を矩形の容器に設置し、これに水を満たす。すなわち、不織アルミニウム繊維布内に水を飽和させるのである。冷却銅管内に低温ブラインを循環させて冷却銅管外表面温度を−10℃に設定して冷却銅管周りの凍結実験を開始する。凍結量は水が氷に変化するときの体積変化から測定する。凍結時間は180分(3時間)である。図4に凍結時間t(min)と冷却銅管表面積基準の単位面積当たりの凍結量MF(kg/m2)の関係を示す。図中のφは繊維の充填率であり、空隙率εとはφ=1−εの関係がある。充填率φ=0は繊維がまったく含まない場合(ベア管)の結果である。繊維が充填されると凍結初期ではあまり凍結が促進されていないが、時間tが経過すると次第に凍結量MFが増し、すなわち凍結が促進していることが認められる。しかも繊維の充填率φが大きくなるほど凍結促進が図られている。図5は不織アルミニウム繊維布がない場合(ベア管)の凍結量Mφ=0と不織アルミニウム繊維布がある場合の凍結量MFの比(凍結量比)、MF/MFφ=0、と不織アルミニウム繊維布の充填率φの関係を示したものである(実験点●)。充填率φの増加につれて凍結量比は直線的に増加しており、φ=0.075では2.35、φ=0.1では2.6に達しており、すなわち、それぞれベア管の場合の2.3、2.6倍もの凍結量が得られていることが認められる。この関係は凍結時間が3時間であるが、時間が長くなると、さらに凍結量比が大きくなることが予測でき、高々10%以下の充填率で、かなりの凍結促進が実現できると考える。実用化を想定した前記のベース管4に不織アルミニウム繊維布のディスクを積層した場合の凍結量は、ベース管がない場合の凍結量とほとんど同じ結果となった。このことはベース管と冷却銅管との間の熱抵抗は無視しても良いことになる。したがって、冷却銅管に不織アルミニウム繊維布を設置する場合には、冷却銅管と不織アルミニウム繊維布との間の接触熱抵抗を無視しても良いと言える。参考のため、冷却銅管に不織アルミニウム繊維布をロール状に巻いた凍結実験を行った(実験点○)。これは特開2000−346574号の場合に相当するものであり、熱伝導方向が不織アルミニウム繊維布の厚み方向、すなわち熱伝導方向(冷却管の半径方向)の不織アルミニウム繊維布の有効熱伝導率が低いλeyの場合の凍結実験である。このとき、不織アルミニウム繊維布の充填率φが0.075のとき凍結量比(MF/MFφ=0)は1.4であり、前記のディスク状(λex)の場合の凍結量比2.3より大幅に小さい値となった。すなわち、同じ不織アルミニウム繊維布の充填率が同じ値であっても、凍結促進効果が大きく異なるのである。このことより、不織アルミニウム繊維布の有効熱伝導率の異方性(λex)を有効に利用すると大きな蓄熱効果が得られることになる。 First, an embodiment of the present invention relating to claim 1 will be described. FIG. 3 shows a conceptual diagram of a method for promoting freezing of a water-containing non-woven aluminum fiber cloth. A hollow disk shape, that is, a disk 3 is cut from the mother sample 1 (area: 50 cm × 50 cm, thickness: 5 mm) of the non-woven aluminum fiber cloth. This is laminated on the cooling copper pipe 2 having an outer diameter of 19.05 mm and a wall thickness of 1 mm so as to have a predetermined bulk density to form a frozen layer (latent heat storage layer). Assuming practical application, an experiment was also performed in which a disk with a larger copper base tube 4 was inserted into a cooled copper tube. Place the frozen layer in a rectangular container and fill it with water. That is, water is saturated in the non-woven aluminum fiber cloth. A low temperature brine is circulated in the cooling copper tube to set the outer surface temperature of the cooling copper tube to −10 ° C., and a freezing experiment around the cooling copper tube is started. The amount of freezing is measured from the volume change when water changes to ice. The freezing time is 180 minutes (3 hours). FIG. 4 shows the relationship between the freezing time t (min) and the freezing amount M F (kg / m 2 ) per unit area based on the surface area of the cooled copper pipe. In the figure, φ is the fiber filling rate, and the porosity ε has a relationship of φ = 1−ε. The filling rate φ = 0 is the result when no fiber is contained (bare tube). Although much frozen in freezing initial fibers is filled is not promoted, the time t has elapsed freeze amount M F increases gradually, i.e. it is recognized that freezing is promoted. Moreover, freezing is promoted as the fiber filling ratio φ increases. FIG. 5 shows the ratio of the freezing amount M φ = 0 when there is no non-woven aluminum fiber cloth (bare tube) to the freezing amount M F when there is a non-woven aluminum fiber cloth (freezing amount ratio), M F / M Fφ = The relationship between 0 and the filling rate φ of the non-woven aluminum fiber cloth is shown (experimental point ●). The freezing ratio increases linearly as the filling rate φ increases, reaching 2.35 at φ = 0.075 and 2.6 at φ = 0.1, that is, 2.3 and 2.6 times the amount of freezing in the case of bare pipes, respectively. It is recognized that it has been obtained. This relationship is that the freezing time is 3 hours, but if the time is longer, it can be predicted that the freezing ratio will increase further, and it is considered that considerable freezing acceleration can be realized with a filling rate of 10% or less. The amount of freezing when the non-woven aluminum fiber cloth disk was laminated on the base tube 4 assumed for practical use was almost the same as the amount of freezing when there was no base tube. This means that the thermal resistance between the base tube and the cooling copper tube can be ignored. Therefore, when a non-woven aluminum fiber cloth is installed on the cooling copper pipe, it can be said that the contact thermal resistance between the cooling copper pipe and the non-woven aluminum fiber cloth may be ignored. For reference, a freezing experiment was performed in which a non-woven aluminum fiber cloth was wound around a cooled copper tube in a roll shape (experimental point ○). This corresponds to the case of JP 2000-346574, and the effective heat of the non-woven aluminum fiber cloth whose heat conduction direction is the thickness direction of the non-woven aluminum fiber cloth, that is, the heat conduction direction (radial direction of the cooling pipe). This is a freezing experiment in the case of λ ey with low conductivity. In this case, freeze-amount ratio when the filling rate φ nonwoven aluminum fabric is 0.075 (M F / M Fφ = 0) is 1.4, significantly above freezing weight ratio of 2.3 in the case of the shaped disc (lambda ex) It became a small value. That is, even if the filling rate of the same non-woven aluminum fiber cloth is the same value, the effect of promoting freezing is greatly different. From this fact, when the anisotropy (λ ex ) of the effective thermal conductivity of the non-woven aluminum fiber cloth is effectively used, a large heat storage effect can be obtained.

図6はケイ酸カルシウム系耐火材(TLW)6と木板(Wood )7の間に嵩密度ρが220kg/mの不織アルミニウム繊維布を挟み下面からブンゼンバーナーで約800℃の火炎で加熱したときの積層板昇温実施例である。ただし、木板の表面温度T10が危険温度である250に達したら火炎加熱を停止する。 図中の●は熱電対による温度測定点であり、T1〜T13の13点の箇所の温度を測定した。 hTLW、hWAFL、hWoodはそれぞれ耐火板6、不織アルミニウム繊維布8、木板7の厚さを示す。図7は木板表面温度T10の昇温実験結果の一例を示す。実験点○は耐火板6と木板7の間に不織アルミニウム繊維布8を挟まない場合である。実験点●は不織アルミニウム繊維布を挟んだ場合であり、両者を比較した。このとき不織アルミニウム繊維布がない場合(耐火板のみ)とある場合(耐火板+不織アルミニウム繊維布)の熱コンダクタンスを等しくしてある。すなわち、両者の耐火板の厚みを変えて、両者の厚み方向の見かけの熱伝導率を等しくしてある。もし、熱流が1次元(厚み方向)のみであって、加熱時間が経過すれば両者の温度上昇は同じくなる筈である。図7をみると不織アルミニウム繊維布がない場合の木板表面温度は急激に上昇して、加熱時間t=32分(min)で木板の危険温度250℃に達していることが認められる。これに対して不織アルミニウム繊維布を挟んだ場合t=32分で170℃程度までの上昇であり、不織アルミニウム繊維布を挟むことによって木板の温度上昇を大幅に遅らせていることが明確に認められる。 Fig. 6 shows a non-woven aluminum fiber cloth with a bulk density ρ of 220 kg / m 3 between a calcium silicate refractory (TLW) 6 and a wood board (Wood) 7. It is a laminated board temperature rising Example when doing. However, to stop the flame heating reaches the 250 surface temperature T 10 of the wood board is dangerous temperature. In the figure, ● is a temperature measurement point by a thermocouple, and the temperature at 13 points from T 1 to T 13 was measured. h TLW , h WAFL , and h Wood indicate the thicknesses of the fireproof plate 6, the non-woven aluminum fiber cloth 8, and the wood plate 7, respectively. Figure 7 shows an example of a heating experiment results of the wood board surface temperature T 10. The test point (circle) is a case where the non-woven aluminum fiber cloth 8 is not sandwiched between the fireproof board 6 and the wooden board 7. The experimental point ● is when a non-woven aluminum fiber cloth is sandwiched, and the two were compared. At this time, the thermal conductance is the same when there is no non-woven aluminum fiber cloth (only the fireproof plate) and when there is no fireproof plate + nonwoven aluminum fiber cloth. That is, the thickness of both fireproof plates is changed, and the apparent thermal conductivity in the thickness direction of both is made equal. If the heat flow is only one-dimensional (thickness direction) and the heating time elapses, the temperature rise of both should be the same. Referring to FIG. 7, it can be seen that the surface temperature of the wood board without the non-woven aluminum fiber cloth rises rapidly and reaches the critical temperature of 250 ° C. in the heating time t = 32 minutes (min). On the other hand, when the non-woven aluminum fiber cloth is sandwiched, the temperature rises to about 170 ° C in t = 32 minutes, and clearly the temperature rise of the wooden board is greatly delayed by sandwiching the non-woven aluminum fiber cloth. Is recognized.

図8は蓄熱式床暖房の加熱円管上部に不織アルミニウム繊維布を具備した場合の床面の均熱方法に関する概念図である。蓄熱層の幅は150mmで高さhは30mmである。蓄熱層13の中央に直径13mmの電気加熱円管14を挿入する。蓄熱層の最上部は床板11であり、この下に厚さ6mmで嵩密度が約300kg/m3の不織アルミニウム繊維布12を一枚貼る。電力を調整して加熱円管表面温度を50℃に設定して、床面の中央温度T14と床面の端面温度T15が定常状態になる5時間まで実験を行った。実験結果の一例として、不織アルミニウム繊維布を貼らない場合の床面温度はT14=32℃、T15=25.7℃であった。すなわち加熱円管直上の床面温度T14が最も高く、端面の温度T15が最も低かった。両者の温度差は6.3℃であり、床面温度に大きな温度差が生じた。一方、不織アルミニウム繊維布を貼った場合の床面温度はT14=27.8℃、T15=26.3℃であった。すなわち、加熱円管直上温度と端面温度との差は僅か1.5℃であり床面温度はほぼ一様であることが認められた。このように、不織アルミニウム繊維布は床面温度を一様にする、所謂均熱効果があると言える。図9にその他の実施形態を示す。不織アルミニウム繊維布を圧延して比較的に嵩密度の大きい不織アルミニウム繊維布15で加熱線16又は加熱円管16の下半分を巻き、さらに不織アルミニウム繊維布を延長させて加熱板17の裏面に貼ると、不織アルミニウム繊維布の厚み方向の熱移動を抑制し面方向の熱移動を促進するため、加熱線又は加熱円管からの熱が効率良く加熱板に伝導し、しかも加熱板温度を一様にできるという所謂伝熱促進と均熱効果を図ることができる。 FIG. 8 is a conceptual diagram relating to a method of soaking the floor surface when a non-woven aluminum fiber cloth is provided on the upper part of the heating circular tube of the regenerative floor heating. The heat storage layer has a width of 150 mm and a height h of 30 mm. An electric heating circular tube 14 having a diameter of 13 mm is inserted in the center of the heat storage layer 13. The uppermost part of the heat storage layer is a floor plate 11, and a sheet of non-woven aluminum fiber cloth 12 having a thickness of 6 mm and a bulk density of about 300 kg / m 3 is pasted thereunder. The electric power was adjusted, the heating tube surface temperature was set to 50 ° C., and the experiment was conducted up to 5 hours when the center temperature T 14 of the floor surface and the end surface temperature T 15 of the floor surface were in a steady state. As an example of the experimental results, the floor temperature when the non-woven aluminum fiber cloth was not applied was T 14 = 32 ° C. and T 15 = 25.7 ° C. That is the highest floor temperature T 14 immediately above the heating circular tube, the temperature T 15 of the end face is the lowest. The temperature difference between the two was 6.3 ° C, and a large temperature difference occurred in the floor surface temperature. On the other hand, the floor temperature when the non-woven aluminum fiber cloth was pasted was T 14 = 27.8 ° C. and T 15 = 26.3 ° C. That is, the difference between the temperature just above the heating tube and the end face temperature was only 1.5 ° C., and the floor surface temperature was found to be almost uniform. Thus, it can be said that the non-woven aluminum fiber cloth has a so-called soaking effect that makes the floor surface temperature uniform. FIG. 9 shows another embodiment. The non-woven aluminum fiber cloth is rolled, and the heating wire 16 or the lower half of the heating tube 16 is wound around the non-woven aluminum fiber cloth 15 having a relatively large bulk density, and the non-woven aluminum fiber cloth is further extended to form a heating plate 17. If it is pasted on the back side of the fabric, heat from the heating wire or the heated circular tube is efficiently conducted to the heating plate to suppress heat transfer in the thickness direction of the non-woven aluminum fiber cloth and promote heat transfer in the surface direction. A so-called heat transfer promotion and soaking effect that the plate temperature can be made uniform can be achieved.

不織金属繊維布の有効熱伝導率の定義を説明するための図である。It is a figure for demonstrating the definition of the effective thermal conductivity of a nonwoven metal fiber cloth. アルミニウム、銅、鉄およびステンレス鋼の不織金属繊維布に関する有効熱伝導率と嵩密度との実測結果と推算値の図である。It is a figure of the actual measurement result and estimated value of the effective thermal conductivity and bulk density regarding the nonwoven metal fiber cloth of aluminum, copper, iron, and stainless steel. 不織アルミニウム繊維布を用いた凍結促進実験の概念図である。It is a conceptual diagram of the freezing acceleration experiment using the non-woven aluminum fiber cloth. 不織アルミニウム繊維布の充填率φが変化した場合の凍結促進効果を示した実験結果の図である。It is a figure of the experimental result which showed the freezing acceleration effect when the filling rate (phi) of a nonwoven fabric aluminum fiber cloth changed. 不織アルミニウム繊維布の充填率φが変化した場合で、不織アルミニウム繊維布がない場合(ベア管)の凍結量との比を示した実験結果の図である(凍結時間が180分のとき)It is a figure of the experimental result which showed the ratio with the amount of freezing when the filling rate φ of the non-woven aluminum fiber cloth is changed and there is no non-woven aluminum fiber cloth (bare tube) (when the freezing time is 180 minutes) ) 火炎加熱による積層板(耐火材、不織アルミニウム繊維布、木板)の昇温実験の概念図である。It is a conceptual diagram of the temperature rising experiment of the laminated board (a refractory material, a non-woven aluminum fiber cloth, a wooden board) by a flame heating. 火炎加熱による積層板(耐火材、不織アルミニウム繊維布、木板)の昇温実験結果の図であるIt is a figure of the temperature rising experiment result of the laminated board (a refractory material, a non-woven aluminum fiber cloth, a wooden board) by a flame heating. 蓄熱式床暖房の加熱円管上部に不織アルミニウム繊維布を具備した場合の床板面の均熱方法に関する図である。It is a figure regarding the soaking method of the floor board surface at the time of comprising the non-woven aluminum fiber cloth in the heating circular pipe upper part of the thermal storage type floor heating. 加熱線又は加熱円管を用いた不連続加熱の場合に不織金属繊維布を利用した加熱板の均熱(一様温度)方法に関する図である。It is a figure regarding the soaking | uniform-heating (uniform temperature) method of the heating plate using a nonwoven metal fiber cloth in the case of the discontinuous heating using a heating wire or a heating circular tube.

符号の説明Explanation of symbols

TLW:耐火材(ケイ酸カルシウム系断熱材)の厚さ
WAFL:不織アルミニウム繊維布の厚さ
Wood:木板の厚さ
:不織金属繊維布の面方向の距離
:不織金属繊維布の厚み方向の距離
MF:冷却管の外表面積の単位面積当たりの凍結量(氷の質量)
MFφ=0:不織アルミニウム繊維布がない場合(ベア管)の単位面積あたりの凍結量
:不織金属繊維布の面方向の熱流束
:不織金属繊維布の厚み方向の熱流束
Q:加熱円管からの放熱量(定常状態では床板面からの方熱量と一致する)
t:凍結時間(分)
T:温度
T1〜T13:温度測定点
T10:木板表面温度
T14:加熱円管直上の床板面温度
T15:蓄熱層端面の床板面温度(加熱円管配列における管と管の中心部の床板面温度に相当)
x、y:座標
ε:空隙率
λex:不織金属繊維布の面(x)方向の有効熱伝導率
λey:不織繊金属維層の厚み(y)方向の有効熱伝導率
ρ:嵩(かさ)密度
φ:不織アルミニウム繊維布の充填率(φ=0.1は水を含んだ全体積に対して10%の体積の不織アルミニウム繊維布が充填していることを示す)
1:不織アルミニウム繊維布の母試料
2:外径19mmφの銅冷却管
3:母試料から切り取ったディスク状の不織アルミニウム繊維布
4:実用化を考慮した銅ベース管(ベース管と不織アルミニウム繊維布のディスクを一体にして冷却管に装着する)
5:冷却管に装着した不織アルミニウム繊維布の写真
6:耐火材
7:木板
8:不織アルミニウム繊維布
9:側板
10:スペーサー
11:床板
12:不織アルミニウム繊維布
13:砂等を充填した蓄熱層
14:電気加熱円管
15:アルミニウム又は銅の不織金属繊維布(比較的に嵩密度の大きいもので、圧延又は焼結などの加工を施したもので均熱板として利用)
16:加熱線又は加熱円管
17:各種の加熱板
h TLW : thickness of refractory material (calcium silicate heat insulating material) h WAFL : thickness of non-woven aluminum fiber cloth h Wood : thickness of wood board L x : distance L y in the surface direction of non-woven metal fiber cloth Distance in thickness direction of non-woven metal fiber cloth
M F : Freezing amount per unit area of the external surface area of the cooling pipe (mass of ice)
MFφ = 0 : amount of freezing per unit area when there is no non-woven aluminum fiber cloth (bare tube) q x : heat flux in the surface direction of the non-woven metal fiber cloth q y : in the thickness direction of the non-woven metal fiber cloth Heat flux
Q: Amount of heat released from the heated tube (in the steady state, it matches the amount of heat from the floor plate)
t: Freezing time (min)
T: Temperature
T 1 ~T 13: temperature measurement point
T 10 : Wood board surface temperature
T 14 : Floor plate surface temperature immediately above the heating tube
T 15 : floor plate surface temperature at the end face of the heat storage layer (corresponding to the floor plate surface temperature at the center of the tube and the tube in the heated circular tube arrangement)
x, y: Coordinate ε: Porosity λ ex : Effective thermal conductivity in the plane (x) direction of the nonwoven metal fiber cloth λ ey : Effective thermal conductivity ρ in the thickness (y) direction of the nonwoven fibrous metal fiber layer ρ: Bulk density φ: Filling ratio of non-woven aluminum fiber cloth (φ = 0.1 indicates that non-woven aluminum fiber cloth having a volume of 10% with respect to the total volume including water is filled)
1: Mother sample of non-woven aluminum fiber cloth 2: Copper cooling tube with an outer diameter of 19 mmφ 3: Disc-shaped non-woven aluminum fiber cloth cut from the mother sample 4: Copper base tube considering practical use (base tube and non-woven fabric) (Aluminum fiber cloth disk is integrated into the cooling pipe)
5: Photograph of non-woven aluminum fiber cloth attached to cooling pipe 6: Refractory material 7: Wood board 8: Non-woven aluminum fiber cloth 9: Side board 10: Spacer 11: Floor board 12: Non-woven aluminum fiber cloth 13: Filled with sand, etc. Heat storage layer 14: Electrically heated circular tube 15: Non-woven metal fiber cloth of aluminum or copper (which has a relatively large bulk density and has been subjected to processing such as rolling or sintering, and used as a soaking plate)
16: Heating wire or heating tube 17: Various heating plates

Claims (2)

不織金属繊維布を不織金属繊維布の厚さ方向に積層し、不織金属繊維布の厚さ方向に伝熱管を積層体と接触するように設けた熱交換構造。 A heat exchange structure in which a non-woven metal fiber cloth is laminated in the thickness direction of the non-woven metal fiber cloth, and a heat transfer tube is provided in contact with the laminate in the thickness direction of the non-woven metal fiber cloth. 熱伝導方向に不織金属繊維布を垂直に積層したことを特徴とする断熱構造。 A heat insulating structure characterized in that non-woven metal fiber cloths are laminated vertically in the heat conduction direction.
JP2004163161A 2004-06-01 2004-06-01 Heat exchanging structure and heat insulating structure using non-woven metal tissue Pending JP2005344968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163161A JP2005344968A (en) 2004-06-01 2004-06-01 Heat exchanging structure and heat insulating structure using non-woven metal tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163161A JP2005344968A (en) 2004-06-01 2004-06-01 Heat exchanging structure and heat insulating structure using non-woven metal tissue

Publications (1)

Publication Number Publication Date
JP2005344968A true JP2005344968A (en) 2005-12-15

Family

ID=35497521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163161A Pending JP2005344968A (en) 2004-06-01 2004-06-01 Heat exchanging structure and heat insulating structure using non-woven metal tissue

Country Status (1)

Country Link
JP (1) JP2005344968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149371A (en) * 2010-01-22 2011-08-04 Ibiden Co Ltd Insulator and exhaust system for internal-combustion engine
WO2015123676A1 (en) * 2014-02-14 2015-08-20 Intramicron, Inc. Thermal management systems for energy storage cells having high charge/discharge currents and methods of making and using thereof
US10454147B2 (en) 2015-11-19 2019-10-22 Intramicron, Inc. Battery pack for energy storage devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149371A (en) * 2010-01-22 2011-08-04 Ibiden Co Ltd Insulator and exhaust system for internal-combustion engine
US9091198B2 (en) 2010-01-22 2015-07-28 Ibiden Co., Ltd. Insulator and exhaust system of internal-combustion engine
WO2015123676A1 (en) * 2014-02-14 2015-08-20 Intramicron, Inc. Thermal management systems for energy storage cells having high charge/discharge currents and methods of making and using thereof
US9614263B2 (en) 2014-02-14 2017-04-04 Intramicron, Inc. Thermal management systems for energy storage cells having high charge/discharge currents and methods of making and using thereof
EP3105813B1 (en) 2014-02-14 2019-07-31 Intramicron, Inc. Thermal management systems for energy storage cells having high charge/discharge currents and methods of making and using thereof
US10454147B2 (en) 2015-11-19 2019-10-22 Intramicron, Inc. Battery pack for energy storage devices

Similar Documents

Publication Publication Date Title
Khan et al. Investigation of heat transfer of a building wall in the presence of phase change material (PCM)
Chen et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review
Rathore et al. Potential of macroencapsulated PCM for thermal energy storage in buildings: A comprehensive review
Sardari et al. Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage
Kasaeian et al. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review
Ambreen et al. Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets
Muzhanje et al. Phase change material based thermal energy storage applications for air conditioning
Li et al. Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam
Nie et al. Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications
Li et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study
Cui et al. Review of phase change materials integrated in building walls for energy saving
Waqas et al. Phase change material (PCM) storage for free cooling of buildings—A review
Zhai et al. A review on phase change cold storage in air-conditioning system: Materials and applications
Baetens et al. Phase change materials for building applications: A state-of-the-art review
Talebizadeh Sardari et al. Localized heating element distribution in composite metal foam‐phase change material: Fourier's law and creeping flow effects
Sarbu et al. Thermal energy storage
EP2540925A1 (en) Heat-insulating panel for use in buildings
WO2012142933A1 (en) Solid heat-storage structure and processing method therefor
Lin et al. Research progress of phase change storage material on power battery thermal management
Moulahi et al. Thermal performance of latent heat storage: Phase change material melting in horizontal tube applied to lightweight building envelopes
Kumar et al. Experimental analysis of salt hydrate latent heat thermal energy storage system with porous aluminum fabric and salt hydrate as phase change material with enhanced stability and supercooling
Yang et al. PCM-based ceiling panels for passive cooling in buildings: A CFD modelling
Bahlekeh et al. CFD analysis on optimizing the annular fin parameters toward an improved storage response in a triple‐tube containment system
Teggar et al. Heat transfer enhancement of ice storage systems: a systematic review of the literature
Soodmand et al. A comprehensive review of computational fluid dynamics simulation studies in phase change materials: applications, materials, and geometries