JP2005344626A - Wind mill power generation device - Google Patents

Wind mill power generation device Download PDF

Info

Publication number
JP2005344626A
JP2005344626A JP2004165859A JP2004165859A JP2005344626A JP 2005344626 A JP2005344626 A JP 2005344626A JP 2004165859 A JP2004165859 A JP 2004165859A JP 2004165859 A JP2004165859 A JP 2004165859A JP 2005344626 A JP2005344626 A JP 2005344626A
Authority
JP
Japan
Prior art keywords
gas
working liquid
pressure
hydraulic motor
hydraulic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004165859A
Other languages
Japanese (ja)
Inventor
Junjiro Komatsuda
順二郎 小松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motoyama C & R Kk
Original Assignee
Motoyama C & R Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motoyama C & R Kk filed Critical Motoyama C & R Kk
Priority to JP2004165859A priority Critical patent/JP2005344626A/en
Publication of JP2005344626A publication Critical patent/JP2005344626A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generator capable of converting a wind power energy into a potential energy and storing the potential energy therein, providing a large torque driving a generator, and easily smoothening an output power, easily commercializing uninterruptible power generation, and enabling a reduction in the sizes of apparatuses and cost. <P>SOLUTION: An air compressor is driven by a wind mill to reserve a high-pressure gas in a pressure tank so as to accumulate a pressure therein. The high-pressure gas is supplied from the pressure tank to a plurality of gas pressurizing type hydraulic cylinders to pressurize a working fluid so as to feed the hydraulic fluid in one gas pressurizing type hydraulic cylinder to a hydraulic motor in order to drive the hydraulic motor to drive the generator by the hydraulic motor for power generation. When the discharge of the working fluid in the one gas pressurizing type hydraulic cylinder is completed, the supply of the working fluid is switched to the other gas pressurizing type hydraulic cylinder in which the working fluid is reserved to continuously supply the working fluid to the hydraulic motor so as to continue the power generation of the generator and to reserve the working fluid in the one gas pressurizing type hydraulic cylinder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、風の有無、強弱に関係なく発電が平坦に途切れなく行うことができる風力発電装置に関する。   The present invention relates to a wind turbine generator that can perform power generation flatly and seamlessly regardless of the presence or absence of wind and strength.

従来の風力発電は、風車の回転を回転調節装置(ディスクブレーキ)と回転伝達装置を介して発電機のロータに伝えて発電する方法である。
この方法は、風の強さによる回転数の調節をディスクブレーキにより行って強風時と弱風時における発生電力の差を克服することが行われている。
この方法は、有効な蓄電技術が存在しないことや、強風続きでブレーキをかけすぎてディスクブレーキの発熱に起因して火災が発生すること、台風のような強風時には回転伝達系を切断して発電停止する、又、無風時にも発電停止する、といった問題点がある。現状では、平坦で無停止発電が非常に困難である。
風車で発電機を駆動する以外の方法としては例えば下記のものがある。
特開2003−278640号公報 特開2002−070719号公報 特開平11−351125号公報 特開平11−351118号公報
Conventional wind power generation is a method of generating electric power by transmitting rotation of a windmill to a rotor of a generator via a rotation adjusting device (disc brake) and a rotation transmission device.
In this method, the rotational speed is adjusted by the strength of the wind by means of a disc brake to overcome the difference in generated power between the strong wind and the weak wind.
This method is based on the fact that there is no effective power storage technology, the brakes are applied too much with strong winds and a fire occurs due to the heat generated by the disc brakes, and the rotation transmission system is cut off in the case of strong winds such as typhoons. There are problems such as stopping and power generation stop even when there is no wind. At present, flat and non-stop power generation is very difficult.
Examples of methods other than driving the generator with a windmill include the following.
JP 2003-278640 A Japanese Patent Laid-Open No. 2002-070719 JP 11-351125 A JP 11-351118 A

本願発明は、風力エネルギーを圧力エネルギーに変換して貯めておくことができ、発電機を駆動する大きなトルクが得られ、容易に出力電力を平滑化させることができ、無停止発電が容易に実用でき、コンパクトな設備でコストが安くつく風力発電装置を提供するものである。   The present invention can convert wind energy into pressure energy and store it, can obtain a large torque to drive the generator, can easily smooth the output power, and is easily put to practical use for non-stop power generation It is possible to provide a wind power generator that is compact and can be manufactured at a low cost.

本願発明は、風車でエアコンプレッサを駆動して高圧気体を圧力タンクに溜めて蓄圧し該圧力タンクからピストンロッドを有しない複数の気体加圧型液圧シリンダに供給して該気体加圧型液圧シリンダに貯留してある作動液体を加圧し、作動液体が貯留されている一の気体加圧型液圧シリンダの作動液体を液圧モータに給送し、該液圧モータを駆動して該液圧モータにより発電機を駆動して発電し、該一の気体加圧型液圧シリンダの作動液体の排出が完了する時点で、液圧モータを駆動するための作動液体の供給を、開閉弁の切り替えにより、作動液体が貯留されている他の気体加圧型液圧シリンダに切り替えて作動液体の液圧モータへの供給を継続して発電機の発電を継続するとともに、作動液体が排出した前記一の気体加圧型液圧シリンダに対して高圧気体を逃がして作動液体を貯留し貯留後に圧力タンクから高圧気体を再供給する構成であることを特徴とする風力発電装置を提供することにある。
本願発明は、気体加圧型液圧シリンダは、ピストンがストロークできる大径シリンダ室と、小径シリンダ室を有して、大径シリンダ室内をピストンがストロークできるようになっており、小径シリンダ室に圧縮気体が流入してピストンに関して小径シリンダ室とは反対側の大径シリンダ室内に貯留される作動液体が圧縮気体の圧力で送り出されるようになっていることが好ましい。
The present invention drives an air compressor with a windmill, accumulates high-pressure gas in a pressure tank, accumulates the pressure, and supplies the pressure tank to a plurality of gas-pressurized hydraulic cylinders having no piston rod. The hydraulic fluid stored in the cylinder is pressurized, the hydraulic fluid of one gas pressure type hydraulic cylinder in which the hydraulic fluid is stored is fed to the hydraulic motor, and the hydraulic motor is driven to drive the hydraulic motor When the generator is driven to generate electric power, and the discharge of the working liquid of the one gas pressurized hydraulic cylinder is completed, the supply of the working liquid for driving the hydraulic motor is performed by switching the on-off valve, Switching to another gas-pressurized hydraulic cylinder in which the working liquid is stored to continue supplying the working liquid to the hydraulic motor to continue the power generation of the generator, and to add the one gas that has been discharged from the working liquid. Pressure type hydraulic syring And to provide a wind power generator, characterized in that the resupplying constituting the high-pressure gas from the pressure tank after storage storing the working liquid to discharge high-pressure gas against.
In the present invention, the gas pressure type hydraulic cylinder has a large-diameter cylinder chamber in which the piston can stroke and a small-diameter cylinder chamber, and the piston can stroke in the large-diameter cylinder chamber, and is compressed into the small-diameter cylinder chamber. It is preferable that the working liquid stored in the large-diameter cylinder chamber on the opposite side of the small-diameter cylinder chamber with respect to the piston is sent out by the pressure of the compressed gas.

本願発明は、(1)風力エネルギーを圧力エネルギーに変換して貯めておくことができ、無停止発電が容易に実用できる。(2)気体加圧型液圧シリンダの大きさによって液圧モータを駆動する作動液体の液圧を決めることができ、発電機を駆動する大きなトルクが得られる。(3)複数の気体加圧型液圧シリンダの作動液体を液圧モータへ供給するようにしても、気体加圧型液圧シリンダの径を同一にすれば、液圧モータに作用する液圧は脈圧が全く生じないので開閉弁の切り替えのタイミングが容易になり、出力電力を容易に平滑化させることができる。(4)油圧シリンダを大きくして高強度に作れば、錘を大きくすることができ、高圧気体の供給量を大きくとれて高圧気体の圧力を錘の大きさに設定することができ、コンパクトな設備で大きな電力が得られ、設備コストが安くつく。(5)極めて平坦に適切な圧力の高圧気体を液圧モータに継続して供給できるから、発電機の電力を途切れなく、高効率で、一定に得られる。(6)請求項2の構成の気体加圧型液圧シリンダを用いると、気液分離が行えて気体が液管に侵入せず、また、作動液体が気管に侵入しないので、停止事故が未然に回避される。   In the present invention, (1) wind energy can be converted into pressure energy and stored, and non-stop power generation can be easily implemented. (2) The hydraulic pressure of the working liquid that drives the hydraulic motor can be determined by the size of the gas pressurized hydraulic cylinder, and a large torque that drives the generator can be obtained. (3) Even if the working fluid of a plurality of gas pressurizing hydraulic cylinders is supplied to the hydraulic motor, the hydraulic pressure acting on the hydraulic motor can be reduced if the diameters of the gas pressurizing hydraulic cylinders are the same. Since no pressure is generated, the switching timing of the on-off valve is facilitated, and the output power can be easily smoothed. (4) If the hydraulic cylinder is enlarged and made strong, the weight can be increased, the amount of high-pressure gas supplied can be increased, and the pressure of the high-pressure gas can be set to the size of the weight. Large power can be obtained with the equipment, and the equipment cost is low. (5) Since a high-pressure gas having an appropriate pressure can be continuously supplied to the hydraulic motor in an extremely flat manner, the power of the generator can be obtained with high efficiency and constant without interruption. (6) If the gas pressurization type hydraulic cylinder of the structure of claim 2 is used, gas-liquid separation can be performed, gas does not enter the liquid pipe, and working liquid does not enter the trachea, so that a stop accident can occur in advance. Avoided.

本願を実施するための最良の形態にかかる発明の風力発電装置を図に示す。
図1において、1はタワー、2は風車、3は回転伝達機構、4はクラッチ、5はエアコンプレッサ、6は圧力タンク、7a,7b,7cはピストンロッドを有しない気体加圧型気体加圧型液圧シリンダ、8は液圧モータ(油圧モータ)、9は発電機、10は一次側高圧気体給送管、11は二次側高圧気体給送管、12は安全弁、13a,13b,13cは高圧気体用自動開閉弁、14a,14b,14cは逆止弁、15a,15b,15cは気体脈動圧除去用補助タンク、16a,16b,16cは高圧気体大気放出用自動開閉弁、17は液送り管、18は送り側自動開閉弁、19は液戻り管、20は戻り側自動開閉弁、21a,22a,23aはピストンが上限位置に上昇したことを検出するセンサ、21b,22b,23bはピストンが下限位置に下降したことを検出するセンサである。作動液体に油を用いるときは、送り側自動開閉弁と戻り側自動開閉弁は電磁弁とされる。作動液体に水を用いるときは、送り側自動開閉弁と戻り側自動開閉弁は電動弁と電磁弁のいずれでも良い。
The wind power generator of the invention concerning the best mode for carrying out the present application is shown in the figure.
In FIG. 1, 1 is a tower, 2 is a windmill, 3 is a rotation transmission mechanism, 4 is a clutch, 5 is an air compressor, 6 is a pressure tank, 7a, 7b, and 7c are gas pressurization type gas pressurization liquids that do not have a piston rod. Pressure cylinder, 8 is a hydraulic motor (hydraulic motor), 9 is a generator, 10 is a primary side high pressure gas feed pipe, 11 is a secondary side high pressure gas feed pipe, 12 is a safety valve, 13a, 13b, and 13c are high pressures Gas automatic open / close valve, 14a, 14b and 14c are check valves, 15a, 15b and 15c are auxiliary tanks for removing gas pulsation pressure, 16a, 16b and 16c are automatic open / close valves for high-pressure gas atmospheric discharge, and 17 is a liquid feed pipe. , 18 is a feed-side automatic open / close valve, 19 is a liquid return pipe, 20 is a return-side automatic open / close valve, 21a, 22a and 23a are sensors for detecting that the piston has been raised to the upper limit position, and 21b, 22b and 23b are pistons Lowered to the lower limit position A sensor for detecting the door. When oil is used as the working liquid, the feed-side automatic open / close valve and the return-side automatic open / close valve are electromagnetic valves. When water is used as the working liquid, the feed-side automatic open / close valve and the return-side automatic open / close valve may be either an electric valve or an electromagnetic valve.

図2に示すように、気体加圧型液圧シリンダ7a,7b,7cは、ピストンがストロークできる大径シリンダ室71と、小径シリンダ室72を有して、大径シリンダ室71内をピストン73がストロークできるようになっており、小径シリンダ室72に圧縮気体が流入してピストン73に関して小径シリンダ室72とは反対側の大径シリンダ室73内に貯留される作動液体が圧縮気体の圧力で送り出されるようになっている。
この構造は、ピストン73により作動液体と圧縮気体とを分離し、ピストン73が上昇しているときの圧縮気体のシリンダ室容積を大きく確保してピストン73が下降していっても圧縮気体の圧力が大きく下がらないようになっていて、気体が液管に侵入せず、また、作動液体が気管に侵入しないので、停止事故が未然に回避される。
As shown in FIG. 2, the gas pressurization type hydraulic cylinders 7 a, 7 b, 7 c have a large-diameter cylinder chamber 71 in which the piston can stroke and a small-diameter cylinder chamber 72. The compressed gas flows into the small-diameter cylinder chamber 72 and the working liquid stored in the large-diameter cylinder chamber 73 opposite to the small-diameter cylinder chamber 72 with respect to the piston 73 is sent out by the pressure of the compressed gas. It is supposed to be.
In this structure, the working liquid and the compressed gas are separated by the piston 73, and a large cylinder chamber volume of the compressed gas is secured when the piston 73 is raised, and the pressure of the compressed gas is maintained even when the piston 73 is lowered. Therefore, the gas does not enter the liquid pipe and the working liquid does not enter the trachea, so that a stop accident can be avoided.

図1に戻り説明する。エアコンプレッサ5は、風車2で風力から得る回転エネルギーを回転伝達機構3、クラッチ4を介して伝達され駆動され高圧気体を一次側高圧気体給送管10を介して圧力タンク6に溜めて蓄圧する。
圧力タンク6に貯留される高圧気体は、二次側高圧気体給送管11を介してピストンロッドを有しない複数の気体加圧型液圧シリンダ7a,7b,7cに供給されシリンダ内の作動液体が加圧される。
所要順序により開閉弁の開閉が行われることにより、作動液体が貯留されている一の気体加圧型液圧シリンダの作動液体が高圧気体に加圧作用により液圧モータ8に給送される。従って、作動液体の給送により液圧モータ8が駆動して該液圧モータ8により発電機9が駆動して発電するようになっている。
一の気体加圧型液圧シリンダの作動液体の排出が完了する時点で、液圧モータ8を駆動するための作動液体の供給を、開閉弁の切り替えにより、作動液体が貯留されている他の気体加圧型液圧シリンダに切り替えて作動液体の液圧モータ8への供給を継続して発電機9の発電を継続するとともに、作動液体が排出した前記一の気体加圧型液圧シリンダに対して高圧気体を逃がして作動液体を貯留し貯留後に圧力タンク6から高圧気体を再供給するようになっている。
Returning to FIG. The air compressor 5 is driven by rotational energy obtained from wind power by the windmill 2 via the rotation transmission mechanism 3 and the clutch 4, and accumulates high-pressure gas in the pressure tank 6 via the primary-side high-pressure gas supply pipe 10 to accumulate pressure. .
The high-pressure gas stored in the pressure tank 6 is supplied to a plurality of gas-pressurized hydraulic cylinders 7a, 7b, and 7c that do not have piston rods via the secondary-side high-pressure gas feed pipe 11, and the working liquid in the cylinders is supplied. Pressurized.
By opening and closing the on-off valve in the required order, the working liquid of one gas pressurization type hydraulic cylinder in which the working liquid is stored is fed to the hydraulic motor 8 by pressurizing action to the high pressure gas. Therefore, the hydraulic motor 8 is driven by feeding the working liquid, and the generator 9 is driven by the hydraulic motor 8 to generate electric power.
When the discharge of the working liquid of one gas pressurization type hydraulic cylinder is completed, the supply of the working liquid for driving the hydraulic motor 8 is switched to another gas in which the working liquid is stored by switching the on-off valve. Switching to the pressurized hydraulic cylinder continues to supply the working liquid to the hydraulic motor 8 to continue the power generation of the generator 9, and to the high pressure relative to the one gas pressurized hydraulic cylinder discharged from the working liquid. The working liquid is stored by letting the gas escape, and the high pressure gas is supplied again from the pressure tank 6 after the storage.

図示しない制御装置によって、クラッチ4、高圧気体用自動開閉弁13a,13b,13c、高圧気体大気放出用自動開閉弁16a,16b,16c、送り側自動開閉弁18、戻り側自動開閉弁20、センサ21a,21b、22a,22b、23a,23bが制御される。
クラッチ4は、台風時のような強すぎる風があるときには、接続を解除するように制御される。
センサ21a,21b、22a,22b、23a,23bの信号は、自動弁の順次の切り替え制御に使用される。
By a control device (not shown), the clutch 4, the high-pressure gas automatic open / close valves 13a, 13b, 13c, the high-pressure gas atmospheric release automatic open / close valves 16a, 16b, 16c, the feed-side automatic open / close valve 18, the return-side automatic open / close valve 20, 21a, 21b, 22a, 22b, 23a, 23b are controlled.
The clutch 4 is controlled to release the connection when there is too strong wind such as during a typhoon.
The signals of the sensors 21a, 21b, 22a, 22b, 23a, 23b are used for sequential switching control of the automatic valves.

気体加圧型液圧シリンダを7a―7b―7cの順で作動液を液圧モータ8に供給する場合の制御について以下に説明する。
(1)今、作動液体の充填されている状態を次ぎのように設定する。気体加圧型液圧シリンダ7a,7bの大径シリンダ室71に作動液体が一杯に貯留され、ピストン73が大径シリンダ室71の上限位置にあるものとする一方、気体加圧型液圧シリンダ7cの大径シリンダ室71に作動液体が貯留されておらず、ピストン73が大径シリンダ室71の下限位置にあるものとする。
(2)制御器は、一番最初、弁13a,13b,16cを「開」、弁13c, 弁16a,16bを「閉」にするとともに、弁18a,20cを「開」、弁18b,18c, 20a,20bを「閉」にして、クラッチ4を接続する。すると、圧力タンク6から高圧気体が二次側高圧気体給送管11を通して気体加圧型液圧シリンダ7a,7bに送られるから、気体加圧型液圧シリンダ7aの作動液体が液圧モータ8へ給送される。液圧モータ8を通った作動液体は、気体加圧型液圧シリンダ7cに流入してピストン73が持ち上がっていき、エアが弁16cから放出される。気体加圧型液圧シリンダ7aのピストン73が下限位置に来ると、気体加圧型液圧シリンダ7cのピストン73が上限位置に来るようになっていて、それぞれセンサ21b、23aにより検出される。
(3)次ぎに、制御器は、弁13aを「閉」に、弁16aを「開」に、弁20aを「開」に、弁18bを「開」に、弁16cを「閉」に、弁13cを「開」に、弁20cを「閉」にする。すると、気体加圧型液圧シリンダ7bの作動液体が液圧モータ8へ給送される。液圧モータ8を通った作動液体は、気体加圧型液圧シリンダ7aに流入してピストン73が持ち上がっていき、エアが弁16aから放出される。気体加圧型液圧シリンダ7bのピストン73が下限位置に来ると、気体加圧型液圧シリンダ7aのピストン73が上限位置に来るようになっていて、それぞれセンサ22b、21aにより検出される。
(4)次ぎに、制御器は、弁13bを「閉」に、弁16bを「開」に、弁20bを「開」に、弁18cを「開」に、弁16aを「閉」に、弁13aを「開」に、弁20aを「閉」にする。すると、気体加圧型液圧シリンダ7cの作動液体が液圧モータ8へ給送される。液圧モータ8を通った作動液体は、気体加圧型液圧シリンダ7bに流入してピストン73が持ち上がっていき、エアが弁16bから放出される。気体加圧型液圧シリンダ7cのピストン73が下限位置に来ると、気体加圧型液圧シリンダ7bのピストン73が上限位置に来るようになっていて、それぞれセンサ23b、22aにより検出される。
以後も、制御器は、上記の動作順になるように制御する。
なお、上記の開閉弁18a,18b,18cの開閉のタイミングについて、同時にいずれも開となる時間が数秒あってもパスカルの定理から、液圧モータ8へ給送される高圧気体の液圧は変化しない。
The control in the case of supplying the hydraulic fluid to the hydraulic motor 8 in the order of the gas pressure type hydraulic cylinder in the order of 7a-7b-7c will be described below.
(1) The state where the working liquid is filled is set as follows. It is assumed that the working liquid is fully stored in the large-diameter cylinder chambers 71 of the gas-pressurized hydraulic cylinders 7a and 7b and the piston 73 is at the upper limit position of the large-diameter cylinder chamber 71. It is assumed that no working liquid is stored in the large diameter cylinder chamber 71 and the piston 73 is at the lower limit position of the large diameter cylinder chamber 71.
(2) The controller firstly opens the valves 13a, 13b, and 16c, closes the valves 13c and 16a and 16b, and opens the valves 18a and 20c and opens the valves 18b and 18c. , 20a, 20b are closed and the clutch 4 is connected. Then, since the high pressure gas is sent from the pressure tank 6 to the gas pressurization hydraulic cylinders 7 a and 7 b through the secondary high pressure gas feed pipe 11, the working liquid in the gas pressurization hydraulic cylinder 7 a is supplied to the hydraulic motor 8. Sent. The working liquid that has passed through the hydraulic motor 8 flows into the gas pressurizing hydraulic cylinder 7c, the piston 73 is lifted, and air is released from the valve 16c. When the piston 73 of the gas pressurization type hydraulic cylinder 7a comes to the lower limit position, the piston 73 of the gas pressurization type hydraulic cylinder 7c comes to the upper limit position and is detected by the sensors 21b and 23a, respectively.
(3) Next, the controller sets the valve 13a to “closed”, the valve 16a to “open”, the valve 20a to “open”, the valve 18b to “open”, and the valve 16c to “closed”. The valve 13c is set to “open” and the valve 20c is set to “closed”. Then, the working liquid in the gas pressurization type hydraulic cylinder 7 b is fed to the hydraulic motor 8. The working liquid that has passed through the hydraulic motor 8 flows into the gas pressurizing hydraulic cylinder 7a, the piston 73 is lifted, and air is released from the valve 16a. When the piston 73 of the gas pressurization type hydraulic cylinder 7b comes to the lower limit position, the piston 73 of the gas pressurization type hydraulic cylinder 7a comes to the upper limit position and is detected by the sensors 22b and 21a, respectively.
(4) Next, the controller sets the valve 13b to “closed”, the valve 16b to “open”, the valve 20b to “open”, the valve 18c to “open”, and the valve 16a to “closed”. The valve 13a is “open” and the valve 20a is “closed”. Then, the working liquid in the gas pressurization type hydraulic cylinder 7 c is fed to the hydraulic motor 8. The working liquid that has passed through the hydraulic motor 8 flows into the gas pressurizing hydraulic cylinder 7b, the piston 73 is lifted, and air is released from the valve 16b. When the piston 73 of the gas pressurization type hydraulic cylinder 7c comes to the lower limit position, the piston 73 of the gas pressurization type hydraulic cylinder 7b comes to the upper limit position and is detected by the sensors 23b and 22a, respectively.
Thereafter, the controller performs control so that the operation order is as described above.
Note that the hydraulic pressure of the high-pressure gas supplied to the hydraulic motor 8 changes from Pascal's theorem, even if the opening / closing timing of the on-off valves 18a, 18b, 18c is simultaneously several seconds. do not do.

風車2はタワー1に設けられていることに限定しない。風車2とエアコンプレッサ5はクラッチ4を介して直結されていても良い。気体加圧型液圧シリンダは2本あれば足りる。風車2とエアコンプレッサ5と気体加圧型液圧シリンダ7aを一組として二組備えていて、2本の気体加圧型液圧シリンダの高圧気体が切り替え式に液圧モータ8に給送されるようになっていても良い。液圧モータ8は、ギヤ型、ベーン型、ピストン型のいずれであっても良い。設備の配列について、エアコンプレッサ5と液圧モータ8と発電機9を集合して配置し、気体加圧型液圧シリンダ7a,7b,7cを抱き合わせて配置すると、配管がコンパクトになる。   The windmill 2 is not limited to being provided in the tower 1. The windmill 2 and the air compressor 5 may be directly connected via the clutch 4. Two gas-pressurized hydraulic cylinders are sufficient. Two sets of the wind turbine 2, the air compressor 5, and the gas pressurization type hydraulic cylinder 7a are provided so that the high pressure gas of the two gas pressurization type hydraulic cylinders is fed to the hydraulic motor 8 in a switching manner. It may be. The hydraulic motor 8 may be any of a gear type, a vane type, and a piston type. If the air compressor 5, the hydraulic motor 8 and the generator 9 are arranged together and arranged with the gas pressurizing hydraulic cylinders 7a, 7b and 7c laid together, the piping becomes compact.

本願発明の風力発電装置を示す概念図。The conceptual diagram which shows the wind power generator of this invention. 本願発明の風力発電装置の構成要素の気体加圧型液圧シリンダを示す断面図。Sectional drawing which shows the gas pressurization type hydraulic cylinder of the component of the wind power generator of this invention.

符号の説明Explanation of symbols

1・・・タワー、2・・・風車、3・・・回転伝達機構、4・・・クラッチ、5・・・エアコンプレッサ、6・・・圧力タンク、7a,7b,7c・・・気体加圧型気体加圧型液圧シリンダ、8・・・液圧モータ、9・・・発電機、10・・・一次側高圧気体給送管、11・・・二次側高圧気体給送管、12・・・安全弁、13a,13b,13c・・・高圧気体用自動開閉弁、14a,14b,14c・・・逆止弁、15a,15b,15c・・・気体脈動圧除去用補助タンク、16a,16b,16c・・・高圧気体大気放出用自動開閉弁、17・・・液送り管、18・・・送り側自動開閉弁、19・・・液戻り管、20・・・戻り側自動開閉弁、21a,22a,23a,21b,22b,23b・・・センサ、   DESCRIPTION OF SYMBOLS 1 ... Tower, 2 ... Windmill, 3 ... Rotation transmission mechanism, 4 ... Clutch, 5 ... Air compressor, 6 ... Pressure tank, 7a, 7b, 7c ... Gas addition Pressure gas pressure type hydraulic cylinder, 8 ... hydraulic motor, 9 ... generator, 10 ... primary side high pressure gas feed pipe, 11 ... secondary side high pressure gas feed pipe, 12. ..Safety valves, 13a, 13b, 13c ... high pressure gas automatic open / close valves, 14a, 14b, 14c ... check valves, 15a, 15b, 15c ... auxiliary tanks for removing gas pulsation pressure, 16a, 16b 16c ... Automatic open / close valve for high-pressure gas atmospheric release, 17 ... Liquid feed pipe, 18 ... Feed-side automatic open / close valve, 19 ... Liquid return pipe, 20 ... Return-side automatic open / close valve, 21a, 22a, 23a, 21b, 22b, 23b ... sensors,

Claims (2)

風車でエアコンプレッサを駆動して高圧気体を圧力タンクに溜めて蓄圧し該圧力タンクからピストンロッドを有しない複数の気体加圧型液圧シリンダに供給して該気体加圧型液圧シリンダに貯留してある作動液体を加圧し、作動液体が貯留されている一の気体加圧型液圧シリンダの作動液体を液圧モータに給送し、該液圧モータを駆動して該液圧モータにより発電機を駆動して発電し、該一の気体加圧型液圧シリンダの作動液体の排出が完了する時点で、液圧モータを駆動するための作動液体の供給を、開閉弁の切り替えにより、作動液体が貯留されている他の気体加圧型液圧シリンダに切り替えて作動液体の液圧モータへの供給を継続して発電機の発電を継続するとともに、作動液体が排出した前記一の気体加圧型液圧シリンダに対して高圧気体を逃がして作動液体を貯留し貯留後に圧力タンクから高圧気体を再供給する構成であることを特徴とする風力発電装置。 The air compressor is driven by a windmill to accumulate high-pressure gas in a pressure tank, accumulate the pressure, supply the pressure tank to a plurality of gas-pressurized hydraulic cylinders having no piston rod, and store in the gas-pressurized hydraulic cylinder. A certain working liquid is pressurized, the working liquid of one gas pressurization type hydraulic cylinder in which the working liquid is stored is fed to the hydraulic motor, the hydraulic motor is driven, and the generator is driven by the hydraulic motor. When it is driven to generate electricity, and the discharge of the working liquid from the one gas pressurized hydraulic cylinder is completed, the working liquid is stored by switching the on-off valve to supply the working liquid for driving the hydraulic motor. The one gas pressurization type hydraulic cylinder which is switched to the other gas pressurization type hydraulic cylinder and continues to supply the working liquid to the hydraulic motor to continue the power generation of the generator and the working liquid is discharged. Against high Wind turbine generator, wherein after to discharge gas storing the working liquid reservoir is re-supplies constituting the high-pressure gas from the pressure tank. 気体加圧型液圧シリンダは、ピストンがストロークできる大径シリンダ室と、小径シリンダ室を有して、大径シリンダ室内をピストンがストロークできるようになっており、小径シリンダ室に圧縮気体が流入してピストンに関して小径シリンダ室とは反対側の大径シリンダ室内に貯留される作動液体が圧縮気体の圧力で送り出されるようになっていることを特徴とする請求項1に記載の風力発電装置。 The gas-pressurized hydraulic cylinder has a large-diameter cylinder chamber in which the piston can stroke and a small-diameter cylinder chamber. The piston can stroke in the large-diameter cylinder chamber, and compressed gas flows into the small-diameter cylinder chamber. The wind power generator according to claim 1, wherein the working liquid stored in the large-diameter cylinder chamber opposite to the small-diameter cylinder chamber with respect to the piston is sent out by the pressure of the compressed gas.
JP2004165859A 2004-06-03 2004-06-03 Wind mill power generation device Pending JP2005344626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165859A JP2005344626A (en) 2004-06-03 2004-06-03 Wind mill power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165859A JP2005344626A (en) 2004-06-03 2004-06-03 Wind mill power generation device

Publications (1)

Publication Number Publication Date
JP2005344626A true JP2005344626A (en) 2005-12-15

Family

ID=35497232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165859A Pending JP2005344626A (en) 2004-06-03 2004-06-03 Wind mill power generation device

Country Status (1)

Country Link
JP (1) JP2005344626A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092680B1 (en) 2009-08-28 2011-12-09 김봉환 Wind power generator system
CN103196251A (en) * 2013-04-10 2013-07-10 中国东方电气集团有限公司 Shaft power input superconducting wind power generator refrigerating system
CN103216473A (en) * 2012-01-21 2013-07-24 周登荣 Starting device for turbine and turbofan power generating system
CN103967691A (en) * 2013-01-31 2014-08-06 邓允河 System for realizing remote energy storage and generation
CN103967725A (en) * 2013-01-31 2014-08-06 邓允河 Remote energy transmission conversion system and method, and application thereof
JP2015080473A (en) * 2013-10-21 2015-04-27 エイブル株式会社 Liquid supply device
CN110617177A (en) * 2018-06-20 2019-12-27 河南博奇新能源技术开发有限公司 Wind power hydraulic power generation system and application method thereof
DE202022100015U1 (en) 2022-01-03 2022-01-14 Chandrashekhar Azad Intelligent system based on machine learning and artificial intelligence to control mill operation to reduce power consumption

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092680B1 (en) 2009-08-28 2011-12-09 김봉환 Wind power generator system
CN103216473A (en) * 2012-01-21 2013-07-24 周登荣 Starting device for turbine and turbofan power generating system
CN103967691A (en) * 2013-01-31 2014-08-06 邓允河 System for realizing remote energy storage and generation
CN103967725A (en) * 2013-01-31 2014-08-06 邓允河 Remote energy transmission conversion system and method, and application thereof
CN103196251A (en) * 2013-04-10 2013-07-10 中国东方电气集团有限公司 Shaft power input superconducting wind power generator refrigerating system
CN103196251B (en) * 2013-04-10 2015-05-13 中国东方电气集团有限公司 Shaft power input superconducting wind power generator refrigerating system
JP2015080473A (en) * 2013-10-21 2015-04-27 エイブル株式会社 Liquid supply device
CN110617177A (en) * 2018-06-20 2019-12-27 河南博奇新能源技术开发有限公司 Wind power hydraulic power generation system and application method thereof
DE202022100015U1 (en) 2022-01-03 2022-01-14 Chandrashekhar Azad Intelligent system based on machine learning and artificial intelligence to control mill operation to reduce power consumption

Similar Documents

Publication Publication Date Title
US11067099B2 (en) Method and system for combined pump water pressure-compressed air energy storage at constant turbine water pressure
KR101072963B1 (en) Device for the storage of heat energy for subsequent conversion into electrical energy
US20050193729A1 (en) Trinity hydro-pneumatic power source
WO2009094226A4 (en) Method and apparatus for using solar energy to enhance the operation of a compressed air energy storage system
US20120137950A1 (en) Method and system for pressure harvesting for underwater unmanned vehicles
WO2011009377A1 (en) Wave power generation system
EP2791501B1 (en) A yawing system comprising a preload mechanism
JP2005344626A (en) Wind mill power generation device
NO331866B1 (en) Device and method for recovering hydraulic energy
CN110056490B (en) Ocean temperature difference energy power generation device
CN108798558A (en) A kind of passive heave compensator of winch type master and its working method
CN208294700U (en) Yawing brake system, yaw system and the wind power generating set of wind power generating set
CN101514691A (en) Method for storing energy by compressing air with water pressure generated in mine
KR101756279B1 (en) Hydraulic tension control apparatus for mooring rope
KR20130109413A (en) Hydraulic wind power generation device and its method
CN209370181U (en) Hydraulic control system in wind power equipment
CN211230706U (en) Hydraulic wind power generation system
JP2006132323A (en) Power generating device using wind power as power source
JP6633959B2 (en) Hydrogen filling equipment
CN104817027A (en) Gas-liquid tension compensation system
GB2324120A (en) Converting thermal energy of a natural water source into useful power
CN103225737A (en) System for storing high pressure gas on seabed and method thereof
JPH03213672A (en) Energy storing method and its device
TWI619882B (en) Energy storage and power generation systems by water pressure
CN102913416A (en) Mechanical full-bridge type circulating liquid gas compressing part and energy storage system