JP2005344597A - Exhaust gas treating device for engines - Google Patents

Exhaust gas treating device for engines Download PDF

Info

Publication number
JP2005344597A
JP2005344597A JP2004164740A JP2004164740A JP2005344597A JP 2005344597 A JP2005344597 A JP 2005344597A JP 2004164740 A JP2004164740 A JP 2004164740A JP 2004164740 A JP2004164740 A JP 2004164740A JP 2005344597 A JP2005344597 A JP 2005344597A
Authority
JP
Japan
Prior art keywords
exhaust gas
urea water
urea
temperature
vaporizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004164740A
Other languages
Japanese (ja)
Inventor
Kiyoshi Amo
天羽  清
Kozo Katogi
工三 加藤木
Minoru Osuga
大須賀  稔
Takehiro Matsumoto
健宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004164740A priority Critical patent/JP2005344597A/en
Publication of JP2005344597A publication Critical patent/JP2005344597A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To remove NOx in correspondence to a whole operation region extending from a low load region for a low exhaust gas temperature at the time of starting of a diesel engine and a small exhaust gas amount to a high load region of a high exhaust gas temperature and a multi-exhaust gas amount. <P>SOLUTION: Splitting gas 19 being a part of exhaust gas is caused to pass through to the outer peripheral surface side being a carburetor 18 of a urea water spray 27, and a plurality of heaters 38, 32, 33, 34, 41, and 43 are situated on the outer peripheral surface of the carburetor 18 and temperature is individually controlled. Further, the temperature of the evaporating surface 26 of the carburetor 18 is set to 250°C or higher and the fluctuation margin of a temperature at a urea steam outlet 47 being the outlet of the carburetor 18 is set to 10°C or less. Further, the urea steam outlet 47 is set to a value larger than a carburetor passage cross-sectional area. Further more, a revolving member b52, flue throttles 53, 54, and 55, and a wall flow exfoliation member 56 are situated in flues 4 and 5 located downstream of the urea steam outlet 47. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排気ガス処理装置および処理方法に係り、特に還元剤として尿素を用い、排気ガス中の窒素酸化物を効率良く除去することができる排気ガス処理装置および処理方法に関する。   The present invention relates to an exhaust gas processing device and a processing method, and more particularly to an exhaust gas processing device and a processing method that can efficiently remove nitrogen oxides in exhaust gas using urea as a reducing agent.

大型トラック、バス等のディーゼルエンジンから、排出される排気ガスに含まれる窒素酸化物(以下、NOxと称する)は、光化学スモッグの原因となる物質である。これらを排出する車両に対してNOxの排出規制が強化されるため、排気ガス脱硝装置の設置が急務となっている。その除去(脱硝)方法として、毒性の無い尿素を還元剤として使用し、NOxを高効率で低減しようとすることが提案されている。   Nitrogen oxides (hereinafter referred to as NOx) contained in exhaust gas discharged from diesel engines such as heavy trucks and buses are substances that cause photochemical smog. Since NOx emission regulations are strengthened for vehicles that discharge these, installation of exhaust gas denitration devices is urgently needed. As a removal (denitration) method, it has been proposed to use non-toxic urea as a reducing agent to reduce NOx with high efficiency.

たとえば、還元剤に尿素水を利用し、比較的低い温度領域においても高いNOx低減率を得られるようにするために、排気管内に配設されたNOx還元触媒を装備し、且つNOx還元触媒の上流側に還元剤として尿素水を添加するように構成した排気浄化装置において、排気管の長手方向における尿素水の添加位置とNOx還元触媒との間に尿素分解触媒を設け、尿素水を前段の尿素分解触媒にてアンモニアと二酸化炭素に分解させ、これにより得られた反応性の高いアンモニアによりNOxを効率良く還元処理することにより、尿素水をそのままNOxと反応させる場合よりも比較的低い温度領域からNOxを還元浄化させることを可能とした排気浄化装置がある(例えば、特許文献1を参照)。   For example, in order to use urea water as a reducing agent and to obtain a high NOx reduction rate even in a relatively low temperature range, a NOx reduction catalyst disposed in the exhaust pipe is provided, and the NOx reduction catalyst In the exhaust emission control device configured to add urea water as a reducing agent upstream, a urea decomposition catalyst is provided between the urea water addition position in the longitudinal direction of the exhaust pipe and the NOx reduction catalyst, A temperature range that is relatively lower than the case where urea water is reacted with NOx as it is by decomposing ammonia and carbon dioxide with a urea decomposition catalyst and efficiently reducing NOx with the highly reactive ammonia obtained thereby. There is an exhaust purification device that can reduce and purify NOx from the exhaust gas (see, for example, Patent Document 1).

また、上述した排気浄化装置の尿素分解触媒を配設しない排気浄化装置として、尿素SCR(Selective Catalytic Reduction)システムがある(例えば、非特許文献1を参照)。
特開2002−161732(第2〜4頁、第1図) 小高松男著「超低エミッションディーゼル機関への挑戦」日本機械学会誌、2002.10、Vol.105、No.1007、P.23
Further, as an exhaust gas purification device that does not include the urea decomposition catalyst of the exhaust gas purification device described above, there is a urea SCR (Selective Catalytic Reduction) system (see, for example, Non-Patent Document 1).
JP-A No. 2002-161732 (pages 2 to 4, FIG. 1) Kodaka Matsuo “Challenge to Ultra Low Emission Diesel Engine”, Journal of the Japan Society of Mechanical Engineers, 2002.10, Vol. 105, no. 1007, p. 23

従来の技術は、尿素水の添加位置とNOx還元触媒(脱硝触媒)の間に尿素分解触媒を配設し尿素分解触媒へ直接尿素水を添加(噴射)する構成である。これにより、尿素分解触媒にて尿素水をアンモニアと二酸化炭素に分解し、分解したアンモニアとNOxをNOx還元触媒上にて反応させ、NOxを効率良く還元処理している。しかし、尿素水を直接尿素分解触媒へ供給するために、尿素分解触媒へ尿素水を均一に分散供給することが難しい。また、尿素水の尿素分解触媒上での分解には、比較的時間を費やすことが懸念される。   The conventional technology has a configuration in which a urea decomposition catalyst is disposed between a urea water addition position and a NOx reduction catalyst (denitration catalyst), and urea water is directly added (injected) to the urea decomposition catalyst. Thus, urea water is decomposed into ammonia and carbon dioxide by the urea decomposition catalyst, the decomposed ammonia and NOx are reacted on the NOx reduction catalyst, and NOx is efficiently reduced. However, since urea water is directly supplied to the urea decomposition catalyst, it is difficult to uniformly distribute urea water to the urea decomposition catalyst. Further, there is a concern that it takes a relatively long time to decompose urea water on the urea decomposition catalyst.

これらのことから、尿素分解触媒へは、尿素水を排気ガスと気化、混合促進し、尿素蒸気等で供給することが好ましい。その尿素蒸気の供給手段として、噴射ノズルから尿素分解触媒までを所定距離確保し、尿素水が尿素分解触媒に到達するまでの間に排気ガスの排熱によって尿素水を加熱・気化促進する手法があるが、発明者らの計算によると噴射された尿素水噴霧が気化するには、排気ガスのある流速時に尿素水噴霧の液滴径100μm程度では、たとえば煙道長さを1.5m程度必要となる。また、液滴径200μm程度の場合には、6.2m程度の煙道長さが必要である。これは、システムの大型化につながり車載には好ましくない。   For these reasons, it is preferable to supply urea water to the urea decomposition catalyst by vaporizing and mixing the exhaust gas with exhaust gas and supplying it with urea vapor or the like. As a means for supplying urea vapor, there is a method of securing a predetermined distance from the injection nozzle to the urea decomposition catalyst, and heating and evaporating the urea water by exhaust heat of exhaust gas until the urea water reaches the urea decomposition catalyst. However, according to the calculation by the inventors, in order to vaporize the injected urea water spray, if the droplet diameter of the urea water spray is about 100 μm at a certain flow rate of the exhaust gas, for example, a flue length of about 1.5 m is required. Become. When the droplet diameter is about 200 μm, a flue length of about 6.2 m is required. This leads to an increase in the size of the system and is not preferable for in-vehicle use.

また、上述した排気ガスの排熱から尿素水気化のための熱量を得る手段は、排気ガス温度が高いときにNOxが大量に発生することを鑑みると有効な方法ともいえるが、エンジン始動時は排気ガス温度が低く、排気ガス量も少ないため、十分に気化促進が図られない。よって、始動時等の低温時には、効率的にNOxを還元浄化させることが難しい。   In addition, the above-described means for obtaining the amount of heat for vaporizing urea water from exhaust gas exhaust heat can be said to be an effective method in view of the fact that a large amount of NOx is generated when the exhaust gas temperature is high. Since the exhaust gas temperature is low and the amount of exhaust gas is small, vaporization cannot be promoted sufficiently. Therefore, it is difficult to efficiently reduce and purify NOx at low temperatures such as at the time of starting.

つぎに、大型トラック、バスなどのディーゼルエンジンを搭載した車両に、尿素水を気化し、加水分解したアンモニアを脱硝触媒反応の還元剤として用いた排気ガス処理装置を適用する場合、たとえば、ある運転状態での所定量の尿素水(50cc/min、32.5wt%、25℃)を気化し加水分解するために最低限必要な熱量は2.4kW程度である。車載バッテリからこれだけの電力を得るのは困難である。   Next, when applying an exhaust gas treatment apparatus using urea that vaporizes urea water and hydrolyzes ammonia as a reducing agent in a denitration catalytic reaction to a vehicle equipped with a diesel engine such as a large truck or bus, for example, a certain operation The minimum amount of heat required to vaporize and hydrolyze a predetermined amount of urea water (50 cc / min, 32.5 wt%, 25 ° C.) in the state is about 2.4 kW. It is difficult to obtain this amount of power from the vehicle battery.

本発明の目的は、還元剤として取り扱いが容易な、例えば尿素水を用い、始動時などの低排気ガス温度と少排気ガス量の低負荷領域から、高排気ガス温度と多排気ガス量の高負荷領域までの全運転領域に対応でき、コンパクトな構成で応答性がよく、および低消費電力として車載用に適したNOxを除去することのできる排気ガス処理装置および処理方法を提供することにある。   An object of the present invention is to use high-exhaust gas temperature and high exhaust gas amount from a low load region with low exhaust gas temperature and small exhaust gas amount at the time of starting, for example, using urea water that is easy to handle as a reducing agent To provide an exhaust gas processing apparatus and a processing method that can cope with the entire operation region up to the load region, have a compact structure with good responsiveness, and can remove NOx suitable for in-vehicle use with low power consumption. .

前記課題を解決するために、本発明は主として次のような構成を採用する。
排気ガス煙道に設けられた脱硝触媒反応器に排気ガスを導入する排気ガス処理装置において、
前記排気ガス煙道内を流れる排気ガスの一部を分流する分流部と、前記分流された排気ガスの流入するヒータ付設の気化器と、前記気化器内へ尿素水を噴射する尿素水噴射弁と、前記気化器を通過した前記排気ガスと前記尿素蒸気を前記分流部と前記脱硝触媒反応器との間の排気ガス煙道に連通する尿素蒸気出口部と、を備え、
前記分流部で分流された排気ガスは、前記尿素水噴射弁から噴射された尿素水の供給されない前記気化器の加熱面上を通過し、前記加熱面とは反対側の前記気化器の蒸発面を前記尿素水とともに通過する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
In an exhaust gas treatment device for introducing exhaust gas into a denitration catalyst reactor provided in an exhaust gas flue,
A diversion part for diverting a part of the exhaust gas flowing in the exhaust gas flue, a vaporizer with a heater into which the diverted exhaust gas flows, and a urea water injection valve for injecting urea water into the vaporizer A urea vapor outlet that communicates the exhaust gas that has passed through the vaporizer and the urea vapor to an exhaust gas flue between the diverter and the denitration catalyst reactor,
The exhaust gas diverted in the diverter passes through the heating surface of the vaporizer that is not supplied with the urea water injected from the urea water injection valve, and the evaporation surface of the vaporizer on the opposite side of the heating surface Is configured to pass along with the urea water.

また、前記排気ガス処理装置において、前記気化器には、前記尿素水噴射弁から噴射された尿素水の流れに沿って複数のヒータが備えられ、それぞれのヒータによって適宜に前記尿素水が温度制御される構成とする。   In the exhaust gas processing device, the vaporizer is provided with a plurality of heaters along the flow of urea water injected from the urea water injection valve, and the temperature of the urea water is appropriately controlled by each heater. The configuration is as follows.

本発明によれば、ヒータの消費電力を低減できるとともに小型な伝熱面を形成することが可能となる。さらに、蒸発面への尿素析出を防止でき、安定して連続的に尿素水を気化することができる。   According to the present invention, the power consumption of the heater can be reduced and a small heat transfer surface can be formed. Furthermore, urea precipitation on the evaporation surface can be prevented, and urea water can be vaporized stably and continuously.

また、煙道主通路に効率的に尿素蒸気およびアンモニアガスを分散供給でき、さらに、脱硝触媒反応器に尿素蒸気およびアンモニアガスをほぼ均一に分散供給できる。   Further, urea vapor and ammonia gas can be efficiently distributed and supplied to the flue main passage, and furthermore, urea vapor and ammonia gas can be distributed and supplied almost uniformly to the denitration catalyst reactor.

このように、低負荷領域から高負荷領域までのエンジンの全運転領域にて排気ガス中の窒素酸化物(NOx)を効率良く除去(脱硝)可能な排気ガス処理装置および排気ガス処理方法が提供できる。また、コンパクトな構成及び低消費電を実現可能である排気ガス処理装置および排気ガス処理方法を提供できる。   Thus, an exhaust gas processing apparatus and an exhaust gas processing method capable of efficiently removing (denitrating) nitrogen oxides (NOx) in exhaust gas in the entire engine operating region from the low load region to the high load region are provided. it can. Further, it is possible to provide an exhaust gas processing apparatus and an exhaust gas processing method capable of realizing a compact configuration and low power consumption.

本発明の実施形態に係る排気ガス処理装置について、図面を参照しながら以下詳細に説明する。図1は本発明の実施形態に係る排気ガス処理装置の全体構成とその周辺構成を示す図であり、図2は本実施形態に係る排気ガス処理装置の具体的構成を示す断面図であり、図3は本実施形態に係る排気ガス処理装置の具体的構成を示す斜視図であり、図4は図3に示すB部の拡大図である。   An exhaust gas treatment apparatus according to an embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of an exhaust gas treatment device according to an embodiment of the present invention and its peripheral configuration, and FIG. 2 is a cross-sectional view showing a specific configuration of the exhaust gas treatment device according to this embodiment. FIG. 3 is a perspective view showing a specific configuration of the exhaust gas processing apparatus according to the present embodiment, and FIG. 4 is an enlarged view of a portion B shown in FIG.

ここで、1はディーゼルエンジン、3は煙道、4,5は煙道、7はDPF(Diesel Particulate Filter)、8は脱硝触媒、10は分流ガス取入口、18は気化器、19は分流ガス、26は蒸発面、27は尿素水噴霧、28は加熱面、29,30,31は絞り、38,32,33,34,41,43はヒータ、40は加水分解触媒、46は排気温センサ、53,54,55は煙道絞り、56は壁流剥離部材、100は排気ガス処理装置、をそれぞれ表す。   Here, 1 is a diesel engine, 3 is a flue, 4, 5 is a flue, 7 is a DPF (Diesel Particulate Filter), 8 is a denitration catalyst, 10 is a split gas inlet, 18 is a vaporizer, and 19 is a split gas. , 26 is an evaporation surface, 27 is urea water spray, 28 is a heating surface, 29, 30, and 31 are throttles, 38, 32, 33, 34, 41, and 43 are heaters, 40 is a hydrolysis catalyst, and 46 is an exhaust temperature sensor. 53, 54, and 55 are flue restrictions, 56 is a wall flow separation member, and 100 is an exhaust gas treatment device.

図1において、ディーゼルエンジン1は、ECU(Electric Control Unit)2に入力する各種信号に基づき燃料噴射量と噴射タイミングを決定している。また、ディーゼルエンジン1は、図示しないEGRバルブ、このバルブと併用してEGR率の制御範囲を広げるための吸気スロットルを有している。ディーゼルエンジン1から排出される排気ガス11の排気通路である煙道3内には、ディーゼル微粒子除去装置100であるDPF(Diesel Particulate Filter)7が設置され、その下流には、脱硝触媒(SCR:Selective Catalytic Reduction:選択還元型NOx触媒)8が配設されている。さらにその下流には、図示しないマフラー等が配設されている。   In FIG. 1, a diesel engine 1 determines a fuel injection amount and an injection timing based on various signals input to an ECU (Electric Control Unit) 2. The diesel engine 1 has an EGR valve (not shown) and an intake throttle for expanding the control range of the EGR rate in combination with this valve. A DPF (Diesel Particulate Filter) 7 that is a diesel particulate removal device 100 is installed in the flue 3 that is an exhaust passage of the exhaust gas 11 discharged from the diesel engine 1, and a denitration catalyst (SCR: SCR: downstream). A selective catalytic reduction (NOx catalyst) 8 is provided. Further, a muffler or the like (not shown) is disposed downstream thereof.

ここで、DPF7と脱硝触媒8を接続する煙道a4にはL字管9が配設されており、その端部である分流ガス取入口10が、DPF7を通過した排気ガス11流の軸流流れ方向に相対するごとく開口している。そして、L字管9の他端は、煙道a4外壁面とボックス12面にて形成される空間13へ連通されている。また、前記ボックス12外壁面の一部には外筒a14が接続され、その外筒a14端部には、外筒b15,c16が連通するように、それぞれ接続されている。また、外筒c16の端部には天板17が配設されている。   Here, an L-shaped tube 9 is disposed in the flue a4 connecting the DPF 7 and the denitration catalyst 8, and the shunt gas intake 10 which is the end of the L-tube 9 is an axial flow of the exhaust gas 11 flow that has passed through the DPF 7. Open as opposed to the flow direction. The other end of the L-shaped tube 9 communicates with a space 13 formed by the outer wall surface of the flue a4 and the surface of the box 12. Further, an outer cylinder a14 is connected to a part of the outer wall surface of the box 12, and the outer cylinders b15 and c16 are connected to end portions of the outer cylinder a14 so as to communicate with each other. A top plate 17 is disposed at the end of the outer cylinder c16.

ボックス12内壁面と煙道a4外壁面と、外筒a14,b15,c16の内壁面および天板17にて形成された空間13には、尿素水25を気化することを目的とした円筒形状をした気化器18が配設されている。ここで、外筒a14,b15,c16の内壁面と気化器18外周部とは、所定の環状空間が形成されている。また、気化器18の端部と天板17の端面の間には、分流ガス19を気化器18内部で旋回させるための旋回部材a20が配設されている。そして、天板17のもう一方の面側(図中上側)には、尿素水噴射弁21を内蔵したホルダー22が配設されている。ホルダー22内には、噴射弁21の外周側に沿って所定空間を持った尿素水循環通路23が形成されている。ホルダー22と天板17の間には遮熱板24が配設されている。   The inner wall surface of the box 12, the outer wall surface of the flue a4, the inner wall surfaces of the outer cylinders a14, b15, c16, and the space 13 formed by the top plate 17 have a cylindrical shape for the purpose of vaporizing the urea water 25. The carburetor 18 is disposed. Here, a predetermined annular space is formed between the inner wall surfaces of the outer cylinders a14, b15, and c16 and the outer peripheral portion of the vaporizer 18. Further, between the end of the vaporizer 18 and the end surface of the top plate 17, a turning member a20 for turning the diverted gas 19 inside the vaporizer 18 is disposed. A holder 22 containing a urea water injection valve 21 is disposed on the other surface side (upper side in the figure) of the top plate 17. A urea water circulation passage 23 having a predetermined space is formed in the holder 22 along the outer peripheral side of the injection valve 21. A heat shield plate 24 is disposed between the holder 22 and the top plate 17.

ここで、噴射弁21の噴孔は、噴孔から噴射される尿素水噴霧27が気化器18の内周面である蒸発面26へ向けて噴射供給可能な構成で配設されている。一方、気化器18の外壁面である加熱面28には、発熱体であるシーズヒータが伝熱面に分割して複数本巻きつけられている。本実施形態では、シーズヒータがひとつの気化器18の加熱面28に6段(本)に分割されて配設されている。さらに、シーズヒータの温度調節の温度センサa39,b35,c36,d37,e42,f44がシーズヒータa38,b32,c33,d34,e41,f43と加熱面28の間に複数個配設されている。   Here, the injection hole of the injection valve 21 is arranged in such a configuration that the urea water spray 27 injected from the injection hole can be supplied to the evaporation surface 26 that is the inner peripheral surface of the vaporizer 18. On the other hand, a plurality of sheathed heaters, which are heating elements, are divided into heat transfer surfaces on the heating surface 28 which is the outer wall surface of the vaporizer 18. In the present embodiment, the sheathed heater is arranged on the heating surface 28 of one vaporizer 18 in six stages (books). Furthermore, a plurality of temperature sensors a39, b35, c36, d37, e42, and f44 for adjusting the temperature of the sheathed heater are disposed between the sheathed heaters a38, b32, c33, d34, e41, and f43 and the heating surface 28.

なお、ヒータはシーズヒータに限定するものではなく、尿素水25を気化させるのに充分な発熱量を保持できるヒータであれば、それに限定するものではない。たとえば、ヒータにPTC(Positive Temperature Coefficient Thermistor)ヒータのようなヒータを用いても良い。このヒータは、電極に電流を印加することにより、発熱を行うものであり、ヒータの温度が所定温度以上になると、電気抵抗が急増し電流が低下することにより、温度を一定に保持することのできるセラミックヒータである。この場合、ヒータが自己温度調節できるために、ヒータ温度調節のための温度センサは無くても良い。   The heater is not limited to a sheathed heater, and is not limited to this as long as it is a heater that can maintain a calorific value sufficient to vaporize the urea water 25. For example, a heater such as a PTC (Positive Temperature Coefficient Thermistor) heater may be used as the heater. This heater generates heat by applying an electric current to the electrodes. When the heater temperature exceeds a predetermined temperature, the electric resistance rapidly increases and the current decreases to keep the temperature constant. This is a ceramic heater. In this case, since the heater can adjust its own temperature, there may be no temperature sensor for adjusting the heater temperature.

気化器18の内側面である蒸発面26には、蒸発面26から所定高さをもったリング状の気化器18絞りa29,b30,c31が所定の間隔にて配設されている。ここで、気化器絞り29,30,31は3段に配設されているが、その段数を限定するものではない。さらに、絞りの下流側である気化器18内には、ハニカム(蜂の巣)状の加水分解触媒40が配設されている。ここで、加水分解触媒40は、ハニカム形状に限定するものではなく、ハニカム形状や板状のパラレルフロー型や粒状のものでも良い。加水分解触媒40の下流側には、分流ガス19取入口10の下流側である煙道a4内に開口する尿素蒸気出口47をもった尿素蒸気出口部材45が配設されている。   On the evaporation surface 26 which is the inner surface of the vaporizer 18, ring-shaped vaporizer 18 throttles a29, b30 and c31 having a predetermined height from the evaporation surface 26 are arranged at predetermined intervals. Here, the vaporizer throttles 29, 30, and 31 are arranged in three stages, but the number of stages is not limited. Further, a honeycomb (honeycomb) -like hydrolysis catalyst 40 is disposed in the vaporizer 18 on the downstream side of the throttle. Here, the hydrolysis catalyst 40 is not limited to a honeycomb shape, and may be a honeycomb-shaped or plate-shaped parallel flow type or granular. On the downstream side of the hydrolysis catalyst 40, a urea vapor outlet member 45 having a urea vapor outlet 47 that opens into a flue a4 that is downstream of the diverted gas 19 intake port 10 is disposed.

尿素蒸気出口部材45に開口している尿素蒸気出口47は、気化器18内通路断面積と比べて大きく、その尿素蒸気出口47は、煙道a4の軸流の下流方向に向けて配設されている。すなわち、分流ガス取入口10から尿素蒸気出口47までは、DPF7下流側の煙道a4に配設された分流ガス取入口10からボックス12内の空間13と、気化器18外壁面と外筒a14,b15,c16内壁面と天板17とで形成された通路a58と、気化器18の蒸発面26を有する内側の通路b59と、尿素蒸気出口47とを介して、分流ガス取入口10の煙道a4下流側に連通する構成である。   The urea vapor outlet 47 opened to the urea vapor outlet member 45 is larger than the passage cross-sectional area in the vaporizer 18, and the urea vapor outlet 47 is disposed toward the downstream direction of the axial flow of the flue a4. ing. That is, from the diverted gas intake 10 to the urea vapor outlet 47, the space 13 in the box 12 from the diverted gas intake 10 arranged in the flue a4 downstream of the DPF 7, the outer wall surface of the vaporizer 18 and the outer cylinder a14. , B15, c16 through the passage a58 formed by the inner wall surface and the top plate 17, the inner passage b59 having the evaporation surface 26 of the vaporizer 18, and the urea vapor outlet 47, the smoke in the split gas intake 10 It is the structure connected to the road a4 downstream side.

また、煙道a4内の尿素蒸気出口部材45下流側には、旋回部材b52が配設されている。旋回部材b52は、軸流方向に所定長さを持った円筒状のリング50の外周面に複数枚の翼51が形成された形状である。旋回部材b52の下流側には、煙道a4,b内周面から所定高さを持ったリング状の煙道絞りa53,b54,c55が配設されている。ここで、煙道絞りは3段配設されているが、その段数に限定するものではない。煙道絞りa53,b54,c55の下流には、煙道b5内周面に軸流方向垂直断面の周方向に複数個の段差のついた形状の壁流剥離部材56が配設されている。   A swiveling member b52 is disposed on the downstream side of the urea vapor outlet member 45 in the flue a4. The swivel member b52 has a shape in which a plurality of blades 51 are formed on the outer peripheral surface of a cylindrical ring 50 having a predetermined length in the axial direction. On the downstream side of the swivel member b52, ring-shaped flue restrictors a53, b54, and c55 having a predetermined height from the inner peripheral surface of the flue a4 and b are disposed. Here, although three stages of flue apertures are arranged, it is not limited to the number of stages. Downstream of the flue restrictors a53, b54, and c55, a wall flow separating member 56 having a plurality of steps in the circumferential direction of the vertical cross section in the axial direction is disposed on the inner peripheral surface of the flue b5.

ここで、煙道内には排気温センサ65、NOxセンサ66、NHセンサ67、および図示しないエンジンクランク角センサ等の各種センサが配設されている。これらのセンサによりディーセルエンジン1の運転条件等を把握し、複数のヒータの最適設定温度と尿素水噴射弁21からの噴射量制御等を行っている。尿素蒸気出口部材45の内周方向には、気化器18にて気化された尿素蒸気の温度を計測するための排気温センサ46が配設されている。 Here, various sensors of an engine crank angle sensor or the like, not the exhaust gas temperature sensor 65, NOx sensor 66, NH 3 sensor 67, and shown in the flue is disposed. The operation conditions of the diesel engine 1 are grasped by these sensors, and the optimum set temperature of the plurality of heaters and the injection amount control from the urea water injection valve 21 are performed. An exhaust temperature sensor 46 for measuring the temperature of urea vapor vaporized by the vaporizer 18 is disposed in the inner circumferential direction of the urea vapor outlet member 45.

また、尿素水タンク64内へ貯蔵されている尿素水25は、フィルタ63からポンプ62を介して尿素水噴射弁21へ供給される。また、尿素水噴射弁21への尿素水供給圧力は、レギュレータ60にて所定尿素水供給圧力に調圧されている。一方、レギュレータ60からの戻り尿素水25は、ホルダー22内に形成された尿素水循環通路23を介して、尿素水タンク64へ流入するように構成されている。なお、これらは、配管61にて接続されている。   The urea water 25 stored in the urea water tank 64 is supplied from the filter 63 to the urea water injection valve 21 via the pump 62. The urea water supply pressure to the urea water injection valve 21 is adjusted to a predetermined urea water supply pressure by the regulator 60. On the other hand, the return urea water 25 from the regulator 60 is configured to flow into the urea water tank 64 via the urea water circulation passage 23 formed in the holder 22. These are connected by a pipe 61.

図2は、図1中のA部拡大図を示す。図3は、図1中のA部拡大斜視図を示す。図4は、図3中のB部拡大図である。図2乃至図4を用いてエンジン排気ガス処理装置100の詳細な構成、および排気ガス流れと尿素水噴射弁21から噴射された噴霧27と排気ガス流れとの混合器流れについて説明する。   FIG. 2 shows an enlarged view of part A in FIG. FIG. 3 is an enlarged perspective view of a part A in FIG. FIG. 4 is an enlarged view of a portion B in FIG. A detailed configuration of the engine exhaust gas processing apparatus 100 and a mixer flow of the exhaust gas flow, the spray 27 injected from the urea water injection valve 21 and the exhaust gas flow will be described with reference to FIGS.

ディーゼルエンジン1から排出された排気ガスは、DPF7を通過後、煙道a4に配設された分流ガス取入口10と煙道a4の開口面積比にてその分流比が決まる。煙道a4側へは排気ガスが主流ガス48として流入し、排気ガスの一部であり分流ガス取入口10を介して、所定分流量がボックス12内へ分流ガス19として流入する。ボックス12内へ流入した分流ガス19は、気化器18外周部と外筒a14,b15,c16とで形成された環状形状の通路a58へと流入する。   After the exhaust gas discharged from the diesel engine 1 passes through the DPF 7, the diversion ratio is determined by the ratio of the area of the diversion gas intake 10 disposed in the flue a4 and the flue a4. Exhaust gas flows into the flue a4 side as the main flow gas 48, and a predetermined flow rate flows into the box 12 as the diverted gas 19 through the diverted gas intake 10 which is a part of the exhaust gas. The diverted gas 19 that has flowed into the box 12 flows into an annular passage a58 formed by the outer peripheral portion of the vaporizer 18 and the outer cylinders a14, b15, and c16.

ここで、高温の分流ガス19が、気化器18に巻きつけられたヒータa38,b32,c33,d34,e41,f43の外周部を通過することにより、気化器18の加熱面28への熱伝達が促進され、ヒータによる気化器18の加熱面28への熱の供給負担が大幅に低減できる。さらに、ディーゼルエンジン1の高負荷領域では、排気ガス流れは、高い温度であるために、ヒータ熱による尿素水噴霧27の気化の必要がなく、排気ガスの熱量のみにて供給される尿素水噴霧を気化促進可能である。   Here, the hot diverted gas 19 passes through the outer peripheral portions of the heaters a38, b32, c33, d34, e41, and f43 wound around the vaporizer 18, so that heat is transferred to the heating surface 28 of the vaporizer 18. The heat supply load to the heating surface 28 of the vaporizer 18 by the heater can be greatly reduced. Further, in the high load region of the diesel engine 1, since the exhaust gas flow is at a high temperature, it is not necessary to vaporize the urea water spray 27 by the heater heat, and the urea water spray supplied only by the heat quantity of the exhaust gas. It is possible to promote vaporization.

また、低負荷領域においても、排気ガス流れの排気ガス温度は、添加する尿素水温度と比べて比較的高いために、比較的少量のヒータ熱量にて尿素水噴霧27を気化可能となる効果がある。その後、分流ガス19が通路a58下流側に配設された旋回部材a20を介することにより、気化器18内部へ旋回流となって流入する。図示するように、ヒータを多段(例、6段)に設けることによって、内側通路59に噴霧された尿素水の気化促進を図るとともに、加水分解触媒を活性化温度以上にして尿素蒸気のアンモニアガス化促進を図っている。   Even in the low load region, the exhaust gas temperature of the exhaust gas flow is relatively higher than the urea water temperature to be added, so that the urea water spray 27 can be vaporized with a relatively small amount of heater heat. is there. Thereafter, the diverted gas 19 flows into the carburetor 18 as a swirl flow through the swivel member a20 disposed on the downstream side of the passage a58. As shown in the figure, by providing heaters in multiple stages (eg, 6 stages), the vaporization of urea water sprayed on the inner passage 59 is promoted, and the hydrolysis catalyst is set to an activation temperature or higher to make ammonia gas of urea vapor. We are trying to promote it.

また、気化器18内部へ向けて、ホルダー22内に配設された尿素水噴射弁21から、尿素水25がエンジンの運転状態(または、窒素酸化物(以下、NOxと記す)の排出量)に応じて噴霧27として所定量噴射される。ここで、尿素水噴射弁21は、噴霧の微粒化特性の優れた噴射弁噴孔の上流側にて、噴射流体を旋回供給し噴霧を供給する上流旋回式噴射弁を用いることが好ましい。しかし、噴射弁を上流旋回方式の噴射弁に限定するものではない。微粒化特性の優れた噴射弁であれば、多方式の噴射弁を用いることによっても本発明を実現することが可能である。   Further, the urea water 25 is in the operating state of the engine (or the discharge amount of nitrogen oxide (hereinafter referred to as NOx)) from the urea water injection valve 21 disposed in the holder 22 toward the inside of the vaporizer 18. Accordingly, a predetermined amount is sprayed as the spray 27. Here, it is preferable that the urea water injection valve 21 uses an upstream swirl type injection valve that swirls and supplies the spray fluid and supplies the spray on the upstream side of the spray valve nozzle hole having excellent atomization characteristics of the spray. However, the injection valve is not limited to the upstream turning type injection valve. If the injection valve has excellent atomization characteristics, the present invention can be realized by using a multi-type injection valve.

先述のごとく、エンジン1の運転状態に応じて微粒化特性の優れた噴霧27を所定量噴射することによって、気化器18内部の蒸発面26上を尿素水噴霧27が分流ガス19流れに乗って旋回流となって流れる。さらに、気化器18内部の蒸発面26上には、蒸発面26から所定高さを持ったリング状の絞りa29,b30,c31が配設されており、そのために絞りa29,b30,c31の上下流にて流れの「よどみ領域」が形成される。これらの構成と分流ガス19および尿素水噴霧27流れにより、気化器18内を軸流方向へそのまま通過する場合に比べて、より多くの尿素水噴霧27が蒸発面26上を接触しながら旋回することが可能となり、蒸発面26と尿素水噴霧27との滞留時間が確保でき気化促進が図れる。   As described above, by spraying a predetermined amount of the spray 27 having excellent atomization characteristics according to the operating state of the engine 1, the urea water spray 27 rides on the flow of the diverted gas 19 on the evaporation surface 26 inside the vaporizer 18. It flows as a swirling flow. Further, ring-shaped throttles a29, b30, c31 having a predetermined height from the evaporation surface 26 are disposed on the evaporation surface 26 inside the vaporizer 18, and for this purpose, the tops of the throttles a29, b30, c31 are arranged. A “stagnation region” of flow is formed downstream. With these configurations, the diverted gas 19 and the urea water spray 27 flow, more urea water spray 27 swirls while contacting the evaporation surface 26 as compared with the case where it passes through the vaporizer 18 in the axial direction. Therefore, the residence time of the evaporation surface 26 and the urea water spray 27 can be secured, and vaporization can be promoted.

さらに、図4中に記載のように、蒸発面26上の噴霧液滴粒子は、旋回部材a20を通過した分流ガス19流れの旋回流の影響によって、軸流方向(Y方向)の速度成分と、旋回方向(X方向)の速度成分をもっている。ここで、蒸発面26上に形成された絞り(絞りには、蒸発面26から内側通路59の中心軸方向に向けての環状凸部が形成されている)を配設したことにより、蒸発面26上を移動する噴霧粒子の軸流方向速度成分が、旋回方向速度成分へ変換される。言い換えると、軸流方向速度成分が小さく旋回方向速度成分が大きくなる。   Furthermore, as described in FIG. 4, the atomized droplet particles on the evaporation surface 26 have a velocity component in the axial flow direction (Y direction) due to the influence of the swirling flow of the diverted gas 19 flow that has passed through the swirling member a20. , Has a velocity component in the turning direction (X direction). Here, a diaphragm formed on the evaporation surface 26 (an annular convex portion formed from the evaporation surface 26 toward the central axis of the inner passage 59 is formed on the diaphragm), thereby providing an evaporation surface. The velocity component in the axial direction of the spray particles moving on 26 is converted into the velocity component in the swirling direction. In other words, the axial flow direction speed component is small and the turning direction speed component is large.

よって、旋回流と絞りによる「よどみ領域」の形成および旋回方向速度成分が拡大し、分流ガス19流れおよびこれに沿って流動する噴霧粒子の蒸発面26上での旋回数の増加が実現でき、蒸発面26上に尿素水噴霧27の滞留する時間が大幅に拡大できるために、尿素水噴霧27の気化向上が図られる。ここで、絞りの蒸発面26からの凸部の高さと絞りリングの段数により、容易に蒸発面上への尿素水噴霧27の滞留時間の確保が図れ、処理(気化)する尿素水噴霧27量と気化器18の大きさの調整が可能となる。これらの関係における実験結果を図6に示す。   Therefore, the formation of the “stagnation region” by the swirling flow and the restriction and the swirling direction velocity component are expanded, and the number of swirling on the evaporation surface 26 of the flow of the diverted gas 19 and the spray particles flowing along this can be realized. Since the time during which the urea water spray 27 stays on the evaporation surface 26 can be greatly increased, the vaporization of the urea water spray 27 can be improved. Here, the residence time of the urea water spray 27 on the evaporation surface can be easily secured by the height of the convex portion from the evaporation surface 26 of the throttle and the number of stages of the throttle ring, and the amount of the urea water spray 27 to be processed (vaporized). And the size of the vaporizer 18 can be adjusted. The experimental results in these relationships are shown in FIG.

図6は、円筒状の気化器18内部にある液体噴霧を所定流量噴射した場合の絞り段数に対する伝熱面(本実施形態における蒸発面に相当)滞留時間、液流率の関係を示す。伝熱面滞留時間は、気化器18の長さが100mmの所定内径を持つ気化器18の伝熱面上を通過する時間を表す。液流率は、噴射された全噴霧が気化器18(ヒータ)にて処理(気化)されずに、気化器18外へ液流として流出した割合を示す。すなわち、液流率0%の場合が、完全気化されたものと同等である。   FIG. 6 shows the relationship between the heat transfer surface (equivalent to the evaporation surface in this embodiment) residence time and the liquid flow rate with respect to the number of throttle stages when the liquid spray inside the cylindrical vaporizer 18 is jetted at a predetermined flow rate. The heat transfer surface residence time represents the time for the vaporizer 18 to pass over the heat transfer surface of the vaporizer 18 having a predetermined inner diameter of 100 mm. The liquid flow rate indicates a rate at which all the sprayed spray flows out of the vaporizer 18 as a liquid flow without being processed (vaporized) by the vaporizer 18 (heater). In other words, the case where the liquid flow rate is 0% is equivalent to that completely vaporized.

図示するように、絞り段数を多段化することにより、気化器18の伝熱上を通過する伝熱面滞留時間が拡大することが確認できる。さらに絞りの多段化による滞留時間の拡大とともに液流率が低減することが確認できる。よって、絞りの多段化により伝熱面上での噴霧の滞留時間が増加でき、液流率が低減でき、気化促進できることが確認でき、絞りの多段化が気化促進に有効であることを示している。   As shown in the figure, it can be confirmed that the residence time of the heat transfer surface passing through the heat transfer of the vaporizer 18 is increased by increasing the number of throttle stages. Furthermore, it can be confirmed that the liquid flow rate decreases as the residence time increases due to the multistage restriction. Therefore, it can be confirmed that the residence time of the spray on the heat transfer surface can be increased by increasing the number of stages of the throttle, the liquid flow rate can be reduced, and vaporization can be promoted. Yes.

本実施形態では、気化器18の蒸発面26に絞りa29,b30,c31を設けることにより、絞りの上下流に流れの「よどみ領域」が形成されるために、そこの蒸発面26上に尿素水噴霧27が比較的集中することになる。そのために蒸発面26上に形成される尿素水噴霧27の密度の濃い所と薄い所が生じる。ここで、蒸発面26の全面にて等しい熱量を発生する場合、蒸発面上の尿素水噴霧27密度の濃い所が、完全に気化するように設計する必要があり、それを実現するためには、所定量の尿素水噴霧27を気化する必要最低限以上のヒータ発熱量を必要とする。なお、本実施形態では分流ガス通路59と内側通路59は環状形状として例示したが、これに限らず、分流ガス通路と尿素蒸気通路が断面矩形形状であっても良い。   In this embodiment, by providing the throttles a29, b30, c31 on the evaporation surface 26 of the vaporizer 18, a “stagnation region” of the flow is formed upstream and downstream of the throttle, so that urea is formed on the evaporation surface 26 there. The water spray 27 is relatively concentrated. For this reason, a dense portion and a thin portion of the urea water spray 27 formed on the evaporation surface 26 are generated. Here, when the same amount of heat is generated on the entire surface of the evaporation surface 26, it is necessary to design the area where the density of the urea water spray 27 on the evaporation surface is dense so as to be completely vaporized. Further, the heater heat generation amount more than the minimum necessary for vaporizing the predetermined amount of urea water spray 27 is required. In the present embodiment, the diverted gas passage 59 and the inner passage 59 are illustrated as annular shapes. However, the present invention is not limited to this, and the diverted gas passage and the urea vapor passage may be rectangular in cross section.

「構成例1」
そこで、本発明の実施形態に係る排気ガス処理装置の構成例1においては、気化器18の蒸発面26上の噴霧27の密度の濃いところの絞りa29,b30,c31部分の加熱面28に、ヒータb32,c33,d34を配設し、それに対応して温度センサb35,c36,d37を配設することにより、噴霧27濃度の高い所のみに集中してヒータ熱量を供給する。ここで、蒸発面26に絞りa29,b30,c31を設けることにより、蒸発面積の拡大とフィンの放熱効果により、より効率的に絞りa29,b30,c31に集中した噴霧27の気化促進が図られる。
"Configuration example 1"
Therefore, in the configuration example 1 of the exhaust gas processing apparatus according to the embodiment of the present invention, the heating surface 28 of the throttles a29, b30, and c31 portions where the density of the spray 27 on the evaporation surface 26 of the vaporizer 18 is high, By arranging the heaters b32, c33, d34 and correspondingly providing the temperature sensors b35, c36, d37, the heat quantity of the heater is supplied concentratedly only in the high concentration of the spray 27. Here, by providing the apertures a29, b30, and c31 on the evaporation surface 26, vaporization of the spray 27 concentrated on the apertures a29, b30, and c31 can be more efficiently promoted due to the expansion of the evaporation area and the heat dissipation effect of the fins. .

さらに、気化器18の上流側の蒸発面26であって尿素水噴霧27が最初に衝突する蒸発面26では、尿素水噴霧27が高温の分流ガス19および蒸発面26に接する時間が短く、噴霧液滴群の温度がさほど上昇していない。そのため、気化器18の蒸発面26において、比較的ヒータ発熱量を必要となる。よって、気化部18上流側の領域には、ヒータa38を配設するととにも、それに対応して、温度センサa39を配設し、所定のヒータ熱量を供給する。   Further, on the evaporation surface 26 on the upstream side of the vaporizer 18 where the urea water spray 27 collides first, the time during which the urea water spray 27 is in contact with the high-temperature diverted gas 19 and the evaporation surface 26 is short, and the spray surface The temperature of the droplet group has not increased so much. Therefore, a relatively large amount of heat generated by the heater is required on the evaporation surface 26 of the vaporizer 18. Therefore, the heater a38 is disposed in the upstream area of the vaporizing section 18, and the temperature sensor a39 is disposed correspondingly to supply the heater a38, thereby supplying a predetermined amount of heater heat.

さらに、ハニカム状である加水分解触媒40の上流側の気化器18内蒸発面26付近でも加水分解触媒40の圧損により、比較的尿素水噴霧27のよどみが生じやすく、噴霧濃度が高くなる傾向にあるためにヒータe41およびそれに対応した温度センサe42を配設する。さらに、排気ガス11が比較的低温時から早期に活性化させるために、加水分解触媒40を活性化温度以上とする必要がある。そのために、加水分解触媒40の外周部である気化器18外周面の加熱面28にヒータf43およびそれに対応した温度センサf44を配設する。   Further, the stagnation of the urea water spray 27 is relatively likely to occur due to the pressure loss of the hydrolysis catalyst 40 in the vicinity of the evaporation surface 26 in the vaporizer 18 on the upstream side of the hydrolysis catalyst 40 having a honeycomb shape, and the spray concentration tends to increase. Therefore, a heater e41 and a temperature sensor e42 corresponding to the heater e41 are provided. Further, in order to activate the exhaust gas 11 at an early stage from a relatively low temperature, it is necessary to set the hydrolysis catalyst 40 to the activation temperature or higher. Therefore, a heater f43 and a temperature sensor f44 corresponding to the heater f43 are disposed on the heating surface 28 on the outer peripheral surface of the vaporizer 18, which is the outer peripheral portion of the hydrolysis catalyst 40.

以上により、蒸発面26へ供給するヒータ熱量を尿素水噴霧27の処理量に応じて、個別に制御し、個別に蒸発面26へ供給するヒータ発熱量にて調整することにより、必要最低限の供給熱量により制御可能となる。さらに、加水分解触媒40をヒータf43にて加熱することにより、ディーゼルエンジン1が低排気温度領域においても、加水分解触媒40を活性化でき、尿素蒸気を加水分解触媒40にて加水分解して、NHガスを連続して供給することが可能となる。 As described above, the heater heat amount supplied to the evaporation surface 26 is individually controlled according to the processing amount of the urea water spray 27, and adjusted by the heater heat generation amount supplied individually to the evaporation surface 26. It can be controlled by the amount of heat supplied. Furthermore, by heating the hydrolysis catalyst 40 with the heater f43, the diesel engine 1 can activate the hydrolysis catalyst 40 even in the low exhaust temperature region, and hydrolyze urea vapor with the hydrolysis catalyst 40, It becomes possible to supply NH 3 gas continuously.

なお、以上の説明ではヒータを6段(32,33,34,38,41,43)に設ける構成を示したが、これに限らず、尿素水噴霧が最初に当たる伝熱面箇所にのみヒータ38を設ける構造、絞りを設けた箇所にのみヒータを設ける構造、加水分解触媒の上端部のみにヒータを設ける構造、加水分解触媒の周辺部のみにヒータを設ける構造、であっても良く、また、それらの適宜組み合わせ構造であっても良い。   In the above description, the configuration in which the heaters are provided in six stages (32, 33, 34, 38, 41, 43) is shown. However, the present invention is not limited to this, and the heater 38 is applied only to the heat transfer surface portion where the urea water spray first hits. A structure in which a heater is provided only at a location where a restriction is provided, a structure in which a heater is provided only at the upper end of the hydrolysis catalyst, a structure in which a heater is provided only in the periphery of the hydrolysis catalyst, and These may be combined as appropriate.

「動作例1」
次に、本発明の実施形態に係る排気ガス処理装置の動作例1について、図5を用いて説明する。本動作例では、気化器18の蒸発面26温度についての動作である。図5は、尿素水噴霧27(32.5wt%)を蒸発面26に所定量と所定時間だけ吹き付けた時の蒸発面26温度と気化率の関係を検討した実験結果である。蒸発面26温度の変化に対して、尿素水噴霧27の気化率が変化することが確認できる。すなわち、蒸発面温度200℃近傍にて気化率がピークとなり、300℃以上では、ほぼ気化率が一定となる。ここで、蒸発面28に尿素水噴霧27が衝突する様子を観察すると図5中に図示のごとく、250℃以下が尿素水噴霧27の核沸騰領域であり、250から300℃が遷移領域、そして300℃以上が膜沸騰領域であることが確認できた。
"Operation example 1"
Next, an operation example 1 of the exhaust gas processing apparatus according to the embodiment of the present invention will be described with reference to FIG. In this operation example, the operation is for the temperature of the evaporation surface 26 of the vaporizer 18. FIG. 5 shows the experimental results of examining the relationship between the evaporation surface 26 temperature and the evaporation rate when urea water spray 27 (32.5 wt%) is sprayed onto the evaporation surface 26 for a predetermined amount and for a predetermined time. It can be confirmed that the vaporization rate of the urea water spray 27 changes with respect to the change in the temperature of the evaporation surface 26. That is, the vaporization rate reaches a peak near the evaporation surface temperature of 200 ° C., and the vaporization rate becomes substantially constant above 300 ° C. Here, when the state in which the urea water spray 27 collides with the evaporation surface 28 is observed, as shown in FIG. 5, 250 ° C. or lower is the nucleate boiling region of the urea water spray 27, 250 to 300 ° C. is the transition region, and It was confirmed that 300 ° C. or higher was the film boiling region.

すなわち、加熱温度が約300℃以上では完全に蒸発面28上で噴霧27が滴状のまま気化される様子が確認できた(膜沸騰領域では噴霧液滴と蒸発面との間に空気層が形成される)。また、250℃以上から300℃では、噴霧液滴の状態のまま気化される様子と蒸発面28上に液膜が形成し始めた瞬間に気化する様子が確認できた。さらに、250℃以下では、蒸発面28上に完全に液膜を形成して気化する様子が確認できた。また、250℃以下の核沸騰領域では、蒸発面28上に尿素析出が確認できた(核沸騰領域では噴霧液膜と蒸発面とが密着して気泡が発生し析出物が排出される)。   That is, when the heating temperature was about 300 ° C. or higher, it was confirmed that the spray 27 was completely vaporized on the evaporation surface 28 (in the film boiling region, there was an air layer between the spray droplet and the evaporation surface). It is formed). In addition, from 250 ° C. to 300 ° C., it was confirmed that vaporization was performed in the form of spray droplets and vaporization was started at the moment when a liquid film started to form on the evaporation surface 28. Furthermore, at 250 ° C. or lower, it was confirmed that a liquid film was completely formed on the evaporation surface 28 and vaporized. In the nucleate boiling region at 250 ° C. or lower, urea precipitation was confirmed on the evaporation surface 28 (in the nucleate boiling region, the spray liquid film and the evaporation surface were in close contact with each other to generate bubbles and discharge the precipitates).

ここで、蒸発面28に尿素析出を生じさせることは、尿素水噴霧27の気化効率の低下につながる(蒸発面に析出膜が形成されると熱効率が低下するので)。また、加水分解触媒40等への尿素析出を生じさせた場合、「つまり」が生じ、所定量のアンモニア(NH)の安定した生成が不可能となり、排気ガス11中のNOxの低減率(脱硝率)を悪化することとなる。さらに、尿素析出物が副生成物に変化することは排気ガス処理装置において好ましくない。したがって、蒸発面28及びその他の構成部品への尿素析出を生じさせることは好ましくない。 Here, causing urea precipitation on the evaporation surface 28 leads to a reduction in vaporization efficiency of the urea water spray 27 (because a thermal efficiency decreases when a deposition film is formed on the evaporation surface). In addition, when urea is precipitated on the hydrolysis catalyst 40 or the like, “that is,” occurs, which makes it impossible to stably generate a predetermined amount of ammonia (NH 3 ), and the reduction rate of NOx in the exhaust gas 11 ( Denitration rate) will be worsened. Furthermore, it is not preferable in the exhaust gas treatment device that the urea precipitate is changed into a by-product. Therefore, it is not preferable to cause urea precipitation on the evaporation surface 28 and other components.

以上を考慮して、蒸発面28上では、尿素析出を生じさせずに尿素水噴霧27を高い気化率で気化して脱硝触媒8へ供給することが好ましい。そのためには、蒸発面28上に尿素水噴霧27を液膜として形成させること(核沸騰領域)は好ましくなく、したがって、蒸発面28の蒸発面温度を250℃以上とすることが必要である。一方、これに対して、蒸発面28面を加熱するための消費電力を抑制し、より高い気化率を得るためには、蒸発面28を300℃以下とすることが好ましい。   In consideration of the above, it is preferable to vaporize the urea water spray 27 at a high vaporization rate on the evaporation surface 28 without causing urea precipitation and supply it to the denitration catalyst 8. For this purpose, it is not preferable to form the urea water spray 27 as a liquid film on the evaporation surface 28 (nuclear boiling region), and therefore the evaporation surface temperature of the evaporation surface 28 needs to be 250 ° C. or higher. On the other hand, in order to suppress the power consumption for heating the evaporation surface 28 and to obtain a higher vaporization rate, it is preferable that the evaporation surface 28 is set to 300 ° C. or lower.

よって、気化器の蒸発面の温度を250℃以上であり300℃以下とする動作においては、蒸発面28への尿素析出は一切生じず、比較的消費電力も抑制でき、ある程度の気化率を得ることができるために、連続的に効率的に尿素水噴霧27を処理でき、加水分解触媒40へ尿素蒸気49を供給可能となり、尿素蒸気49をNHガスに加水分解でき、NHガスを脱硝触媒8へ供給可能となる。このように、気化器の蒸発面の温度を250℃以上で300℃以下として動作させることが望ましいことが解った。 Therefore, in the operation in which the temperature of the evaporation surface of the vaporizer is 250 ° C. or more and 300 ° C. or less, urea precipitation on the evaporation surface 28 does not occur at all, power consumption can be suppressed relatively, and a certain vaporization rate can be obtained. Therefore, the urea water spray 27 can be processed continuously and efficiently, the urea vapor 49 can be supplied to the hydrolysis catalyst 40, the urea vapor 49 can be hydrolyzed to NH 3 gas, and the NH 3 gas is denitrated. Supply to the catalyst 8 becomes possible. Thus, it has been found desirable to operate with the temperature of the evaporation surface of the vaporizer set at 250 ° C. or higher and 300 ° C. or lower.

「動作例2」
次に、本発明の実施形態に係る排気ガス処理装置の動作例2について、図7を用いて説明する。図7は本発明の尿素水気化器出口温度の尿素水噴射と気化器(伝熱部)出口温度の経時変化パターンを示す図である。具体的には、図7は、本実施形態に係る排ガス処理装置100において、尿素水噴射弁21から尿素水噴霧27を噴射したとき、加水分解触媒40下流の尿素蒸気出口部材45内に排気温センサ46を配設し、その尿素蒸気出口47温度を排気温センサ46にて測定した実験結果である。この実験結果は、回転数および負荷を一定とした時の一例である。
"Operation example 2"
Next, an operation example 2 of the exhaust gas processing apparatus according to the embodiment of the present invention will be described with reference to FIG. FIG. 7 is a diagram showing a temporal change pattern of urea water injection of the urea water vaporizer outlet temperature and the vaporizer (heat transfer section) outlet temperature of the present invention. Specifically, FIG. 7 shows the exhaust gas temperature in the urea vapor outlet member 45 downstream of the hydrolysis catalyst 40 when the urea water spray 27 is injected from the urea water injection valve 21 in the exhaust gas treatment apparatus 100 according to the present embodiment. It is the experimental result which arrange | positioned the sensor 46 and measured the urea vapor | steam outlet 47 temperature with the exhaust temperature sensor 46. FIG. This experimental result is an example when the rotation speed and the load are constant.

図7中の上段に示す図は、気化器18を通過した尿素蒸気が蒸発(気化)限界温度を下回ることなく、安定してディーゼルエンジン1から排出された排気ガス中のNOxを処理できる正常な運転状態時の尿素蒸気出口47温度の波形を示している。図7中の中段に示す図は、ディーゼルエンジン1から排出された排気ガス中のNOxを安定して処理できるかできないかの運転状態を表す尿素蒸気出口47温度の波形を示している。図7中の下段に示す図は、ディーゼルエンジン1から排出された排気ガス中のNOxを安定して処理できない運転状態を表す尿素蒸気出口47温度の波形を示している。   The diagram shown in the upper part of FIG. 7 shows a normal state in which the NOx in the exhaust gas discharged from the diesel engine 1 can be processed stably without the urea vapor that has passed through the vaporizer 18 falling below the evaporation (vaporization) limit temperature. The waveform of the urea vapor outlet 47 temperature in the operating state is shown. The diagram shown in the middle part of FIG. 7 shows a waveform of the temperature of the urea vapor outlet 47 representing an operating state as to whether or not NOx in the exhaust gas discharged from the diesel engine 1 can be stably processed. The diagram shown in the lower part of FIG. 7 shows a waveform of the urea vapor outlet 47 temperature representing an operating state in which NOx in the exhaust gas discharged from the diesel engine 1 cannot be stably processed.

すなわち、本実施形態に係る排気ガス処理装置100において、正常な運転である図7中の上段に示す場合は、尿素蒸気出口47温度が、所定量の尿素水噴射量が噴射されると同時に、尿素水噴霧27の気化熱により熱量が奪われ、矢印(1)に示すごとく一端急激に低下する。その後、ヒータa38,b32,c33,d34,e41,f43からの熱の供給により所定温度に回復し、ほぼ一定の温度となる。また、矢印(2)に示すように、尿素水噴射量が少ない場合では、尿素水噴霧27の気化熱が少ないために、急激な尿素蒸気出口47温度の低下は生じず、若干低下した後にほぼ一定の温度となる。この運転状態の場合、連続して尿素噴霧27および尿素蒸気およびNHガス49を脱硝触媒8へ供給できるために、エンジン1より排出されたNOxを脱硝することが実現できる。 That is, in the exhaust gas processing apparatus 100 according to the present embodiment, in the case of the upper stage in FIG. 7 that is normal operation, the urea vapor outlet 47 temperature is simultaneously injected with a predetermined amount of urea water injection amount, The amount of heat is deprived by the heat of vaporization of the urea water spray 27 and suddenly decreases as shown by the arrow (1). Thereafter, the heat is supplied from the heaters a 38, b 32, c 33, d 34, e 41, and f 43 to recover to a predetermined temperature and become a substantially constant temperature. Further, as shown by the arrow (2), when the urea water injection amount is small, since the heat of vaporization of the urea water spray 27 is small, the temperature of the urea vapor outlet 47 does not rapidly decrease, and after the temperature slightly decreases, It becomes a constant temperature. In this operating state, since the urea spray 27, urea vapor, and NH 3 gas 49 can be continuously supplied to the denitration catalyst 8, it is possible to realize denitration of NOx discharged from the engine 1.

次に、図7中の中段に示す場合では、所定量の尿素水噴射量が噴射されると同時に、図7中の上段の尿素蒸気出口47温度の矢印(1)と同様の挙動を示したのち、エンジン回転数と負荷が一定の運転条件において、噴射中は所定の変動幅をもって、ほぼ周期的(図示のごとく規則的な周期とは限らず巨視的に見て所定の温度幅をもって変動が生じる場合である。なお、微視的に見れば常に温度制御させているために微少な温度変動は常に生じている)な温度の変動が生じる。ここで、前記周期的な尿素蒸気の出口温度の変動幅(全振幅)が、およそ10℃以下の運転状態の場合、連続して尿素水噴霧27および尿素蒸気およびNHガス49を脱硝触媒8へ供給できるために所定のNOxを脱硝することが実現できる(最初の下降幅は10℃を超えているが単発なので脱硝効果に影響はない)。 Next, in the case shown in the middle stage in FIG. 7, a predetermined amount of urea water injection amount is injected, and at the same time, the same behavior as the arrow (1) of the temperature of the urea vapor outlet 47 in the upper stage in FIG. After that, under the operating conditions where the engine speed and load are constant, the injection fluctuates with a predetermined fluctuation range and is almost periodic (as shown in FIG. Note that, when viewed microscopically, since temperature control is always performed, minute temperature fluctuations always occur). Here, when the fluctuation range (total amplitude) of the periodic outlet temperature of urea vapor is approximately 10 ° C. or less, the urea water spray 27, urea vapor, and NH 3 gas 49 are continuously removed from the denitration catalyst 8. Therefore, it is possible to denitrate a predetermined amount of NOx (the first descending range exceeds 10 ° C., but the denitration effect is not affected because it is a single shot).

しかし、前述した周期的な尿素蒸気の出口温度47の変動幅(全振幅)が10℃以上の運転状態の場合では、不連続に尿素蒸気およびNHガス49を発生する場合がある。すなわち、前記周期的な尿素蒸気出口47温度の変動にて、温度の高い「上に凸」の波形(図7中の中段における変動する温度波形で平均値より上の部分の波形)の時に所定量より多量の尿素蒸気およびNHガス49(加水分解を促進することで)を発生し、温度の低い「下に凸」の波形(前記平均値より下の部分の波形)の時に所定量より少量の尿素蒸気およびNHガス49を発生する。よって、脱硝触媒8へ連続して尿素蒸気およびNHガス49を供給することができず、ディーゼルエンジン1から排出したNOxを脱硝することができないために、所望の脱硝率と比べ、脱硝率が低下する原因となる。さらに前述のようなエンジン回転数が一定であり、一定の負荷の条件下では、尿素蒸気出口温度に周期的な変動(10℃以上)が生じたときは、脱硝触媒8へ連続して尿素蒸気およびNHガス49を供給することができないためにNHガスが脱硝触媒を通過して、リークアンモニアとして排気されるため環境への悪影響が懸念される。本動作例では、要は、尿素蒸気出口温度が、周期的な変動として約10℃の範囲内に収まるように、ヒータの通電制御(オンオフ制御)を行うものである。 However, when the fluctuation range (total amplitude) of the periodic urea vapor outlet temperature 47 is 10 ° C. or more as described above, urea vapor and NH 3 gas 49 may be generated discontinuously. That is, when the temperature of the urea urea outlet 47 changes periodically, the waveform is high when the temperature is “convex upward” (the temperature waveform fluctuates in the middle stage in FIG. 7 and the waveform above the average value). Generates a larger amount of urea vapor and NH 3 gas 49 (by promoting hydrolysis) than the fixed amount, and has a “convex downward” waveform (a waveform below the average value) at a lower temperature than the predetermined amount. A small amount of urea vapor and NH 3 gas 49 are generated. Therefore, since urea vapor and NH 3 gas 49 cannot be continuously supplied to the denitration catalyst 8 and NOx discharged from the diesel engine 1 cannot be denitrated, the denitration rate is higher than the desired denitration rate. It will cause a drop. Further, under the condition that the engine speed is constant and the load is constant as described above, when the urea steam outlet temperature varies periodically (10 ° C. or more), the urea steam is continuously supplied to the denitration catalyst 8. In addition, since NH 3 gas 49 cannot be supplied, NH 3 gas passes through the denitration catalyst and is exhausted as leaked ammonia. In this operation example, the main point is to perform energization control (on / off control) of the heater so that the urea vapor outlet temperature falls within a range of about 10 ° C. as a periodic variation.

次に、図7中の下段に示す場合では、所定量の尿素水噴射量が噴射されると同時に、尿素水噴霧27の気化熱のために、矢印(1)に示すごとく一端急激に低下する。その後、さらに、ヒータからの熱の供給と尿素水噴霧27の気化に必要とする熱量のバランスが崩れるために、一層、尿素蒸気出口47温度が低下する。そして、気化器18の蒸発面26での気化限界温度を下回る状況を表している。この場合、気化器18の蒸発面26において、噴霧液滴が液流となり、所望の気化が促進されない。よって、所望の尿素蒸気およびNHガス49を連続して脱硝触媒8へ供給することが不可能となり、ディーゼルエンジン1から排出したNOxを脱硝することができない。さらに、気化器18の伝熱面や脱硝触媒8および煙道の一部等に尿素を析出する可能性が大きい。よって、このような運転状況では、所望の脱硝性能を得られない排気ガス処理装置100となる。 Next, in the case shown in the lower part of FIG. 7, a predetermined amount of urea water injection amount is injected, and at the same time, due to the heat of vaporization of the urea water spray 27, it suddenly decreases as shown by the arrow (1). . Thereafter, the balance between the heat supply from the heater and the amount of heat required for vaporization of the urea water spray 27 is further lost, so that the temperature of the urea vapor outlet 47 further decreases. And the situation below the vaporization limit temperature in the evaporation surface 26 of the vaporizer | carburetor 18 is represented. In this case, the spray droplets become a liquid flow on the evaporation surface 26 of the vaporizer 18, and the desired vaporization is not promoted. Therefore, it is impossible to continuously supply the desired urea vapor and NH 3 gas 49 to the denitration catalyst 8, and NOx discharged from the diesel engine 1 cannot be denitrated. Further, there is a high possibility that urea is deposited on the heat transfer surface of the vaporizer 18, the denitration catalyst 8, and a part of the flue. Therefore, in such an operating situation, the exhaust gas processing apparatus 100 cannot obtain the desired denitration performance.

以上の結果より、尿素水噴射弁21から尿素水噴霧27を噴射した時の加水分解触媒(尿素+水+熱+触媒)40下流の尿素蒸気出口部材45内に排気温センサ46を配設し、エンジン回転数が一定であり、一定の負荷の条件下での尿素蒸気出口47温度を排気温センサ46にて検出し、その温度が尿素気化温度以上であり、或る周期的な温度変動幅(尿素蒸気出口変動温度幅10℃)以下にする。そのために、あらかじめエンジンの運転状態である排気ガス温度やNOx発生量および尿素水25添加量を推定し、前記気化器18の加熱面28に配設された各々のヒータa38,b32,c33,d34,e41,f43の投入電力を増減し発熱量を調整することにより、尿素蒸気出口47温度が尿素気化温度以上で、所定変動温度幅以下とすることにより実現可能である。図7およびこれに関連する上述の説明に記述するような条件が本実施形態に係る排気ガス処理装置の一動作例である。   From the above results, the exhaust temperature sensor 46 is disposed in the urea vapor outlet member 45 downstream of the hydrolysis catalyst (urea + water + heat + catalyst) 40 when the urea water spray 27 is injected from the urea water injection valve 21. The temperature of the urea vapor outlet 47 under the condition of a constant engine load and a constant load is detected by the exhaust temperature sensor 46, the temperature is equal to or higher than the urea vaporization temperature, and a certain periodic temperature fluctuation range (Urea vapor outlet fluctuation temperature range 10 ° C.) or less. For this purpose, the exhaust gas temperature, the NOx generation amount and the urea water 25 addition amount, which are the engine operating states, are estimated in advance, and the respective heaters a38, b32, c33, d34 disposed on the heating surface 28 of the vaporizer 18 are estimated. , E41, and f43, and by adjusting the heat generation amount by adjusting the input power, it is possible to make the urea vapor outlet 47 temperature not less than the urea vaporization temperature and not more than a predetermined fluctuation temperature range. The conditions described in FIG. 7 and the above description related thereto are one example of the operation of the exhaust gas processing apparatus according to the present embodiment.

「構成例2」
次に、本発明の実施形態に係る排気ガス処理装置の構成例2について説明する。図1乃至図3に図示するように、本実施形態では、気化器18内に内蔵されている加水分解触媒40の下流側には、尿素蒸気出口部材45が配設されており、その出口部材45の構成上の特徴は、尿素蒸気出口部材45に開口している尿素蒸気出口47が気化器18内通路断面積と比べて大きく、その尿素蒸気出口47が煙道a4の軸流の下流方向に向いて配設されていることにある。
"Configuration example 2"
Next, a configuration example 2 of the exhaust gas processing apparatus according to the embodiment of the present invention will be described. As shown in FIGS. 1 to 3, in this embodiment, a urea vapor outlet member 45 is disposed on the downstream side of the hydrolysis catalyst 40 built in the vaporizer 18, and the outlet member is provided therein. 45 is characterized in that the urea vapor outlet 47 opened to the urea vapor outlet member 45 is larger than the passage cross-sectional area in the vaporizer 18, and the urea vapor outlet 47 is in the downstream direction of the axial flow of the flue a4. It is that it is arranged to face.

この構成上の特徴によって、煙道a4内を流れる排気ガスの一部である主流排ガス48の流れの影響を受けにくい構成となり、気化器18内で生成された尿素蒸気およびNH3ガス49を煙道a4内へ供給することが可能となる。すなわち、尿素蒸気出口47が前述のごとく気化器18内通路断面積と比べ、大きく煙道a4に開口しているために、気化器18内で生成された尿素蒸気およびNH3ガス49と、主流ガス48との接触面積が大きくなり、混合促進が図られる。さらに、尿素蒸気出口47が、主流流れ48に対して下流方向に向いて配設されているために、主流流れ48の影響を受けにくい構造である。さらに、簡単な構造で任意の煙道a4内軸流方向垂直断面内の位置に尿素蒸気およびNH3ガス49を供給可能であり、主流流れ48の速い領域に尿素蒸気およびNH3ガス49を供給可能である。これらの構造や流れの影響によって、尿素蒸気出口47からの尿素蒸気およびNH3ガス49と主流流れ48との混合促進が図られる。   Due to this structural feature, the configuration is less susceptible to the flow of the mainstream exhaust gas 48 that is part of the exhaust gas flowing in the flue a4, and the urea vapor and NH3 gas 49 generated in the vaporizer 18 are removed from the flue. It becomes possible to supply into a4. That is, since the urea vapor outlet 47 is largely open to the flue a4 as compared with the passage cross-sectional area in the vaporizer 18 as described above, the urea vapor and the NH3 gas 49 generated in the vaporizer 18, and the mainstream gas The contact area with 48 is increased and mixing is promoted. Further, since the urea vapor outlet 47 is disposed in the downstream direction with respect to the main flow 48, the urea vapor outlet 47 is not easily affected by the main flow 48. Furthermore, urea vapor and NH3 gas 49 can be supplied to a position in an arbitrary vertical cross section in the axial direction of the flue a4 with a simple structure, and urea vapor and NH3 gas 49 can be supplied to a fast region of the main flow 48. is there. Due to the influence of these structures and flows, mixing of urea vapor and NH3 gas 49 from the urea vapor outlet 47 and the main flow 48 is promoted.

「構成例3」
次に、本発明の実施形態に係る排気ガス処理装置の構成例3について説明する。図1乃至図3に図示するように、本実施形態は、煙道軸流方向の尿素蒸気出口部材45の下流側で、煙道a4内に円筒状リング50の外周面に複数枚の翼51を形成した旋回部材b52が配設されている。さらに、旋回部材b52の下流側には、煙道a4および煙道b5の内周面から所定高さをもった煙道絞りa53,b54,c55が配設されている。さらに、その下流には、煙道b5の内周面に軸流方向垂直断面の周方向に複数個の段差のついた形状の壁流剥離部材56が配設されている。
"Configuration example 3"
Next, a configuration example 3 of the exhaust gas processing apparatus according to the embodiment of the present invention will be described. As shown in FIGS. 1 to 3, in the present embodiment, a plurality of blades 51 are provided on the outer peripheral surface of the cylindrical ring 50 in the flue a4 on the downstream side of the urea vapor outlet member 45 in the flue axial flow direction. A swivel member b52 is formed. Further, on the downstream side of the swivel member b52, flue restrictors a53, b54, and c55 having a predetermined height from the inner peripheral surfaces of the flue a4 and the flue b5 are disposed. Furthermore, a wall flow separation member 56 having a plurality of steps in the circumferential direction of the vertical cross section in the axial direction is disposed on the inner peripheral surface of the flue b5 downstream thereof.

上述した旋回部材、絞り及び壁流剥離部材の構成により、尿素蒸気出口部材45の尿素蒸気から噴出される尿素蒸気およびNHガス49は、第一に旋回部材b52にて煙道a4の軸流中心方向にリング50の内周側を軸流方向に沿って所定流量が流れ、リング50外周側を翼51にて旋回されながら煙道a4,bの内周壁面側へ流れる。その際に、尿素蒸気およびNHガス49は主流流れ48と混合促進が成される。さらに、旋回部材b52の下流側に煙道a4,b5内周面に配設された絞りa53,b54,c55により、主流流れ48と尿素蒸気およびNHガス49が各絞りa53,b54,c55の上下流で流れの「よどみ領域」が形成されるとともに乱れが生じる。このように、尿素蒸気出口部材45と旋回部材b52と各絞りa53,b54,c55の形状および配設により、主流流れ48と尿素蒸気およびNHガス49の混合促進が一層図られる。 Due to the configuration of the swirling member, the restrictor and the wall flow separating member described above, the urea vapor and NH 3 gas 49 ejected from the urea vapor of the urea vapor outlet member 45 are firstly axially flowed in the flue a4 by the swirling member b52. A predetermined flow rate flows along the axial direction in the inner circumferential side of the ring 50 in the central direction, and flows to the inner circumferential wall surface side of the flue a4, b while being swirled by the blades 51 on the outer circumferential side of the ring 50. At that time, urea vapor and NH 3 gas 49 are mixed with the main stream 48 to promote mixing. Further, the main flow 48, urea vapor, and NH 3 gas 49 are caused to flow through the restrictors a53, b54, and c55 by the restrictors a53, b54, and c55 disposed on the inner peripheral surfaces of the flues a4 and b5 on the downstream side of the swivel member b52. Turbulence occurs as the “stagnation region” of the flow is formed upstream and downstream. As described above, the mixing and mixing of the main flow 48, the urea vapor, and the NH 3 gas 49 are further promoted by the shape and arrangement of the urea vapor outlet member 45, the swivel member b52, and the throttles a53, b54, and c55.

加えて、煙道b5と脱硝触媒8との連結に際して、図1乃至図3に図示のように広がり管57を用いる場合には、壁流剥離部材56を広がり管57入口に設けることが好ましい。壁流剥離部材56の具体的構造は、部材56の内周壁に流体流れを軸心方向に変更する剥離片を断続的に配設するものであってよく、剥離片によって流体流れが軸心方向に向くとともに、剥離片の間の部片によって流体流れが煙道4の壁に沿った方向に向く。これにより、広がり管57内壁に集中する尿素蒸気およびNHガス49を抑制できる。すなわち、壁流剥離部材56を通過する主流流れ48と尿素蒸気およびNHガス49の混合ガスの一部を広がり管57内周壁面へ流入させ、一部を煙道b5軸流方向中心方向へ流入させることにより、脱硝触媒8への主流流れ48と尿素蒸気およびNHガス49の混合流の均一供給が可能となる。 In addition, when connecting the flue b5 and the denitration catalyst 8, when using the spreading pipe 57 as shown in FIGS. 1 to 3, it is preferable to provide the wall flow separation member 56 at the inlet of the spreading pipe 57. The specific structure of the wall flow separation member 56 may be that intermittently disposed separation pieces for changing the fluid flow in the axial direction are disposed on the inner peripheral wall of the member 56, and the fluid flow is axially directed by the separation pieces. And the fluid flow is directed in a direction along the wall of the flue 4 by the piece between the peeling pieces. Thereby, urea vapor and NH 3 gas 49 concentrated on the inner wall of the spread tube 57 can be suppressed. That is, a part of the mixed gas of the main flow 48 passing through the wall separation member 56 and urea vapor and NH 3 gas 49 is spread and flows into the inner peripheral wall surface of the pipe 57, and a part thereof is directed toward the center of the flue b5 axial direction. By making it flow, the main flow 48 and the mixed flow of urea vapor and NH 3 gas 49 to the denitration catalyst 8 can be supplied uniformly.

図8には、本発明の排気ガス処理装置100において、脱硝触媒8反応器直前のアンモニア濃度分布のシミュレーション結果を示す。図8中に図示する円内の数値は、NHガスの濃度分布を表している。NHガスの濃度分布幅が小さければ小さいほど均一に脱硝触媒8へ尿素蒸気およびNHガス49を混合促進できるとともに供給できることを表している。図8によると、尿素蒸気およびNHガス49と主流ガス48との混合促進を図っていない従来品では、NHガス濃度分布幅が20%程度の濃度分布バラツキがある。 FIG. 8 shows a simulation result of the ammonia concentration distribution immediately before the denitration catalyst 8 reactor in the exhaust gas treatment apparatus 100 of the present invention. The numerical values in the circles shown in FIG. 8 represent the NH 3 gas concentration distribution. The smaller the NH 3 gas concentration distribution width, the more uniformly the urea vapor and the NH 3 gas 49 can be promoted and supplied to the denitration catalyst 8. According to FIG. 8, the conventional product that does not promote the mixing of urea vapor and NH 3 gas 49 with mainstream gas 48 has a concentration distribution variation of about 20% in NH 3 gas concentration distribution.

本実施形態の構成例3によれば、前述した尿素蒸気出口部材45と旋回部材b52と絞りa53,b54,c55と壁流剥離部材56を配設することによって、主流ガス48と尿素蒸気およびNHガス49の混合促進を図り、従来品における20%程度のNHガス濃度分布バラツキに比べて、1%程度の濃度分布バラツキに抑えることが可能となる。 According to the configuration example 3 of the present embodiment, the above-described urea vapor outlet member 45, the swiveling member b52, the throttles a53, b54, c55, and the wall flow separation member 56 are disposed, whereby the mainstream gas 48, urea vapor, and NH are disposed. 3 aims to promote mixing of the gas 49, as compared with NH 3 gas concentration distribution variation of about 20% in conventional products, it is possible to suppress the concentration distribution variation of about 1%.

以上の述べてきた本発明の効果を示す結果の一例を図9に示す。図9は、本発明のエンジン用排ガス処理装置100において、触媒入口温度と脱硝率の関係についての実験結果であり、脱硝触媒8入口温度と脱硝率の関係を示す。図9によれば、低回転、低負荷領域である触媒入口温度の低い領域において、著しい脱硝率の向上が図れる。たとえば、触媒入口温度200℃において、NOxの脱硝率が得られなかったものが50%程度にまで改善できる効果がある。   An example of the results showing the effects of the present invention described above is shown in FIG. FIG. 9 shows the experimental results on the relationship between the catalyst inlet temperature and the denitration rate in the engine exhaust gas treatment apparatus 100 of the present invention, and shows the relationship between the denitration catalyst 8 inlet temperature and the denitration rate. According to FIG. 9, the NOx removal rate can be significantly improved in the low rotation and low load region where the catalyst inlet temperature is low. For example, at a catalyst inlet temperature of 200 ° C., there is an effect that the NOx removal rate that cannot be obtained can be improved to about 50%.

「構成例4」
次に、本発明の実施形態に係る排気ガス処理装置の構成例4について説明する。図1乃至図3に図示するように、本実施形態の構成例4は、尿素水タンク64に貯蔵された尿素水25を、昇圧器(ポンプ)62を介して尿素水噴射弁21へ供給するとともに、尿素水噴射弁21を内蔵するホルダー22内に尿素水循環通路23を設け、ポンプ62からの通路を分岐して調圧器(レギュレータ)60を介して循環通路23に連通する配管を設け、さらに循環通路23から尿素水タンク64へ連通する戻り配管61を設けることによって、尿素水噴射弁21を冷却するものである。
“Configuration Example 4”
Next, a configuration example 4 of the exhaust gas processing apparatus according to the embodiment of the present invention will be described. As shown in FIGS. 1 to 3, the configuration example 4 of the present embodiment supplies the urea water 25 stored in the urea water tank 64 to the urea water injection valve 21 via the booster (pump) 62. In addition, a urea water circulation passage 23 is provided in the holder 22 containing the urea water injection valve 21, a pipe branching from the pump 62 and communicating with the circulation passage 23 via a pressure regulator (regulator) 60 is provided. By providing a return pipe 61 communicating with the urea water tank 64 from the circulation passage 23, the urea water injection valve 21 is cooled.

このような尿素水噴射弁21の冷却構造により、電磁弁である尿素噴射弁21の磁気回路を安定して動作させるとともに、尿素噴射弁21内にて尿素水25の析出を防止させるものである。すなわち、高温の分流ガス19によってホルダー22へ伝達される熱が、噴射弁21へ伝達するのを抑制するものである。本構成例4により、尿素水噴射弁21の温度を所定温度以下に保持することが可能となり、安定して、所定量の尿素水噴霧27を供給することができる。   With such a cooling structure of the urea water injection valve 21, the magnetic circuit of the urea injection valve 21, which is an electromagnetic valve, is stably operated, and precipitation of the urea water 25 is prevented in the urea injection valve 21. . That is, the heat transmitted to the holder 22 by the high-temperature diverted gas 19 is suppressed from being transmitted to the injection valve 21. According to the fourth configuration example, the temperature of the urea water injection valve 21 can be maintained at a predetermined temperature or less, and a predetermined amount of the urea water spray 27 can be stably supplied.

以上説明したように、本発明の特徴は、次のような構成、機能又は作用を奏するものである。即ち、本発明では、尿素水の微粒化を図り、搬送気体として排気ガスを用い、エンジン始動時など排気ガス量、排気温度が低い運転領域においては、主にヒータ熱により尿素水を気化する。このとき、発生するNOxは少量であるため、処理すべき尿素水量は少なく、ヒータは必要最低限の消費電力量で気化することが可能となる。また、排気ガス温度が高く、大量のNOxを発生するときには、大量の尿素水を気化できるように排気ガスのもつ熱量を積極的に用いる。   As described above, the features of the present invention have the following configuration, function, or action. That is, in the present invention, urea water is atomized, exhaust gas is used as a carrier gas, and urea water is vaporized mainly by heater heat in an operation region where the exhaust gas amount and the exhaust temperature are low, such as when the engine is started. At this time, since a small amount of NOx is generated, the amount of urea water to be processed is small, and the heater can be vaporized with the minimum necessary power consumption. Further, when the exhaust gas temperature is high and a large amount of NOx is generated, the heat amount of the exhaust gas is positively used so that a large amount of urea water can be vaporized.

また、排気ガスの熱を有効に活用するために、気化器の加熱面側に分流した排気ガスの一部である分流ガスを流入させ、排気ガスの熱を加熱面へ熱伝達した後に、気化器の蒸発面側に分流ガスを流入させる構成とし、気化器の蒸発面を所定温度以上で、蒸発面に所定の温度分布を形成できるごとくヒータを複数個配設し、各々のヒータ毎に温度制御する。   In order to effectively use the heat of the exhaust gas, the diverted gas, which is a part of the exhaust gas that has been diverted to the heating surface side of the vaporizer, is introduced, the heat of the exhaust gas is transferred to the heating surface, and then the vaporization is performed. A diverted gas is allowed to flow into the evaporation surface side of the evaporator, and a plurality of heaters are provided so that the evaporation surface of the vaporizer is at a predetermined temperature or higher and a predetermined temperature distribution can be formed on the evaporation surface. Control.

尿素水の排気ガスとの熱交換や排気ガスとの混合を効果的に、省スペースで達成させるために尿素水と排気ガスを旋回させるとともに煙道および伝熱部の蒸発面内通路に複数個の絞りを設ける。さらに、伝熱部の蒸発面上を通過した排気ガスと尿素蒸気を煙道内へ供給する尿素蒸気出口形状を煙道内主通路に開口するとともに、気化部内通路断面積に比べて、尿素蒸気出口の開口の面積を大きくする構成とする。   In order to achieve heat exchange with the exhaust gas of urea water and mixing with the exhaust gas effectively and in a space-saving manner, the urea water and the exhaust gas are swirled and a plurality of passages in the flue and in the evaporation surface of the heat transfer section A diaphragm is provided. Furthermore, a urea vapor outlet shape for supplying exhaust gas and urea vapor that have passed on the evaporation surface of the heat transfer section into the flue is opened in the main passage in the flue, and compared with the cross-sectional area of the passage in the vaporization section, the urea vapor outlet The opening area is increased.

このように、本発明のディーゼルエンジン用の排気ガス処理装置に係る実施形態によれば、低消費電力であり、かつコンパクトな装置でありながら、排気ガス温度の低温域から高温域までの全てを、高い脱硝率でNOxを除去することが可能である。したがって、自動車産業をはじめとするディーゼルエンジンを開発・使用する産業への利用可能性は非常に高いと言える。   As described above, according to the embodiment of the exhaust gas treatment device for a diesel engine of the present invention, all of the exhaust gas temperature from the low temperature region to the high temperature region can be obtained while being a low power consumption and compact device. It is possible to remove NOx with a high denitration rate. Therefore, it can be said that the applicability to the industry that develops and uses diesel engines including the automobile industry is very high.

本発明の実施形態に係る排気ガス処理装置の全体構成とその周辺構成を示す図である。It is a figure which shows the whole structure of the exhaust gas processing apparatus which concerns on embodiment of this invention, and its periphery structure. 本実施形態に係る排気ガス処理装置の具体的構成を示す断面図である。It is sectional drawing which shows the specific structure of the exhaust-gas processing apparatus which concerns on this embodiment. 本実施形態に係る排気ガス処理装置の具体的構成を示す斜視図である。It is a perspective view which shows the specific structure of the exhaust-gas processing apparatus which concerns on this embodiment. 図3に示すB部の拡大図である。It is an enlarged view of the B section shown in FIG. 本発明の尿素水気化器における蒸発面温度と気化率および尿素水沸騰領域の分類を示す図である。It is a figure which shows the classification | category of the evaporation surface temperature and vaporization rate, and urea water boiling area | region in the urea water vaporizer of this invention. 本発明の尿素水気化器蒸発面への絞りを配設した場合の伝熱面における尿素水の滞留時間と液流率(気化率)の関係を示す図である。It is a figure which shows the relationship between the residence time of urea water in a heat-transfer surface at the time of arrange | positioning the throttle to the urea water vaporizer evaporation surface of this invention, and a liquid flow rate (vaporization rate). 本発明の尿素水気化器出口温度の尿素水噴射と気化器出口温度の経時変化パターンを示す図である。It is a figure which shows the time-dependent change pattern of urea water injection of the urea water vaporizer outlet temperature of this invention, and vaporizer outlet temperature. 本発明の排気ガス処理装置において、脱硝触媒反応器直前のアンモニア濃度分布のシミュレーション結果を示す図である。In the exhaust gas treatment apparatus of this invention, it is a figure which shows the simulation result of the ammonia concentration distribution just before a denitration catalyst reactor. 本発明の排気ガス処理装置において、脱硝触媒入口温度と脱硝率の関係を示す図である。In the exhaust gas treatment apparatus of the present invention, it is a diagram showing the relationship between the denitration catalyst inlet temperature and the denitration rate.

符号の説明Explanation of symbols

1 ディーゼルエンジン
3 煙道
4,5 煙道a,b
7 DPF
8 脱硝触媒
9 L字管
10 分流ガス取入口
18 気化器
19 分流ガス
23 尿素循環水通路
26 蒸発面
27 尿素水噴霧
28 加熱面
29,30,31 絞りa,b,c
38,32,33,34,41,43 ヒータa,b,c,d,e,f
40 加水分解触媒
46 排気温センサ
47 尿素蒸気出口
52 旋回部材b
53,54,55 煙道絞りa,b,c
56 壁流剥離部材
58,59 通路a,b
57 広がり管
100 排気ガス処理装置
1 Diesel engine 3 Flue 4, 5 Flue a, b
7 DPF
8 Denitration catalyst 9 L-shaped pipe 10 Split gas inlet 18 Vaporizer 19 Split gas 23 Urea circulation water passage 26 Evaporation surface 27 Urea water spray 28 Heating surface 29, 30, 31 Restriction a, b, c
38, 32, 33, 34, 41, 43 Heaters a, b, c, d, e, f
40 Hydrolysis catalyst 46 Exhaust temperature sensor 47 Urea vapor outlet 52 Rotating member b
53, 54, 55 Flue aperture a, b, c
56 Wall flow separation member 58, 59 Passage a, b
57 Spreading pipe 100 Exhaust gas treatment device

Claims (11)

排気ガス煙道に設けられた脱硝触媒反応器に排気ガスを導入する排気ガス処理装置において、
前記排気ガス煙道内を流れる排気ガスの一部を分流する分流部と、前記分流された排気ガスの流入するヒータ付設の気化器と、前記気化器内へ尿素水を噴射する尿素水噴射弁と、前記気化器を通過した前記排気ガスと前記尿素蒸気を前記分流部と前記脱硝触媒反応器との間の排気ガス煙道に連通する尿素蒸気出口部と、を備え、
前記分流部で分流された排気ガスは、前記尿素水噴射弁から噴射された尿素水の供給されない前記気化器の加熱面上を通過し、前記加熱面とは反対側の前記気化器の蒸発面を前記尿素水とともに通過する
ことを特徴とする排気ガス処理装置。
In an exhaust gas treatment device for introducing exhaust gas into a denitration catalyst reactor provided in an exhaust gas flue,
A diversion part for diverting a part of the exhaust gas flowing in the exhaust gas flue, a vaporizer with a heater into which the diverted exhaust gas flows, and a urea water injection valve for injecting urea water into the vaporizer A urea vapor outlet that communicates the exhaust gas that has passed through the vaporizer and the urea vapor to an exhaust gas flue between the diverter and the denitration catalyst reactor,
The exhaust gas diverted in the diverter passes through the heating surface of the vaporizer that is not supplied with the urea water injected from the urea water injection valve, and the evaporation surface of the vaporizer on the opposite side of the heating surface The exhaust gas treatment device is characterized in that it passes through with the urea water.
請求項1において、
前記気化器内には、絞りを配設するとともに加水分解触媒を設けることを特徴とする排気ガス処理装置。
In claim 1,
An exhaust gas processing apparatus, wherein a throttle is provided in the vaporizer and a hydrolysis catalyst is provided.
請求項1において、
前記気化器には、前記尿素水噴射弁から噴射された尿素水の流れに沿って複数のヒータが備えられ、
それぞれのヒータによって適宜に前記尿素水が温度制御される
ことを特徴とする排気ガス処理装置。
In claim 1,
The vaporizer is provided with a plurality of heaters along the flow of urea water injected from the urea water injection valve,
The temperature of the urea water is appropriately controlled by each heater.
請求項3において、
前記気化器には、前記尿素水噴射弁から噴射された尿素水が最初に当接する蒸発面を加熱するヒータと、前記排気ガスと前記尿素水とを蒸発面に滞留させる絞りを設けた箇所を加熱するヒータと、前記絞りの下流側に配設された加水分解触媒を加熱するヒータと、を設ける
ことを特徴とする排気ガス処理装置。
In claim 3,
The vaporizer is provided with a heater that heats the evaporation surface on which urea water injected from the urea water injection valve first contacts, and a throttle that retains the exhaust gas and the urea water on the evaporation surface. An exhaust gas processing apparatus comprising: a heater for heating; and a heater for heating a hydrolysis catalyst disposed downstream of the throttle.
請求項3において、
ヒータによる温度制御によって、前記気化器の前記蒸発面の温度を、蒸発面に尿素液膜が形成されない蒸発面温度以上で且つヒータによる消費電力を抑制しつつ比較的高い気化率を得る温度以下にする
ことを特徴とする排気ガス処理装置。
In claim 3,
By the temperature control by the heater, the temperature of the evaporation surface of the vaporizer is equal to or higher than the evaporation surface temperature at which no urea liquid film is formed on the evaporation surface, and below the temperature at which a relatively high vaporization rate is obtained while suppressing power consumption by the heater. An exhaust gas treatment device characterized by that.
請求項5において、
前記ヒータによる温度制御によって、前記蒸発面の温度を250℃以上で300℃以下にする
ことを特徴とする排気ガス処理装置。
In claim 5,
The exhaust gas processing apparatus, wherein the temperature of the evaporation surface is set to 250 ° C. or higher and 300 ° C. or lower by temperature control using the heater.
請求項1、2又は3において、
前記尿素蒸気出口部の温度を検出する温度検出手段を有し、
前記排気ガスを排出するエンジンの回転数及び負荷が一定の条件下において、前記温度検出手段からの温度の周期的な変動幅が10℃の範囲内に収まるように、前記ヒータの通電制御を行う
ことを特徴とする排気ガス処理装置。
In claim 1, 2 or 3,
Temperature detecting means for detecting the temperature of the urea vapor outlet,
Energization control of the heater is performed so that the periodic fluctuation width of the temperature from the temperature detection means is within a range of 10 ° C. under a condition where the engine speed and load of the engine that exhausts the exhaust gas are constant. An exhaust gas treatment apparatus characterized by that.
請求項1において、
前記尿素蒸気出口部は、前記排気ガス煙道内の通路に開口するとともに、前記気化部内の通路断面積に比べて、前記開口の面積を大きくする
ことを特徴とする排気ガス処理装置。
In claim 1,
The urea vapor outlet portion opens in a passage in the exhaust gas flue, and has an area of the opening larger than a passage cross-sectional area in the vaporization portion.
請求項8において、
前記尿素蒸気出口部の下流側の前記排気ガス煙道内の通路内に、前記通路内を通過する流体に旋回流を形成する旋回翼を配設するとともに、前記旋回翼の下流に前記排気ガス煙道内の軸流方向断面積を可変する絞りを少なくとも1つ配設する
ことを特徴とする排気ガス処理装置。
In claim 8,
A swirl vane that forms a swirl flow in the fluid passing through the passage is disposed in a passage in the exhaust gas flue downstream of the urea vapor outlet, and the exhaust gas smoke is disposed downstream of the swirl vane. An exhaust gas processing apparatus comprising: at least one throttle for changing an axial flow direction cross-sectional area in the road.
請求項9において、
前記絞りの下流側であって且つ前記脱硝触媒反応器の上流側の前記排気ガス煙道に、前記排気ガス煙道内を流れる流体の一部を前記煙道の内周壁に沿った流れから前記煙道の軸心方向に向ける壁流剥離部材を配設する
ことを特徴とする排気ガス処理装置。
In claim 9,
A part of the fluid flowing in the exhaust gas flue is transferred from the flow along the inner peripheral wall of the flue to the exhaust gas flue downstream of the throttle and upstream of the denitration catalytic reactor. An exhaust gas treatment device comprising a wall flow separation member directed in the axial direction of the road.
請求項1乃至10のいずれか1つの請求項における前記尿素水噴射弁を配設するホルダー内に前記尿素水噴射弁の周方向に尿素水を循環させるための循環室を設け、
尿素水タンクに貯蔵された尿素水を昇圧させて前記尿素水噴射弁へ供給する配管を分岐し、前記分岐した配管の下流側に調圧器を配設し、前記調圧器を介して前記循環室に連通する配管を設け、前記循環室から前記尿素水タンクへ連通する戻り配管を設けて、前記尿素水噴射弁を冷却する
ことを特徴とする排気ガス処理システム。
A circulation chamber for circulating urea water in a circumferential direction of the urea water injection valve is provided in a holder in which the urea water injection valve according to any one of claims 1 to 10 is disposed,
A pipe for increasing the pressure of the urea water stored in the urea water tank and supplying it to the urea water injection valve is branched, and a pressure regulator is disposed downstream of the branched pipe, and the circulation chamber is connected via the pressure regulator. The exhaust gas treatment system is characterized in that a piping that communicates with the urea water tank is provided, and a return piping that communicates from the circulation chamber to the urea water tank is provided to cool the urea water injection valve.
JP2004164740A 2004-06-02 2004-06-02 Exhaust gas treating device for engines Pending JP2005344597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164740A JP2005344597A (en) 2004-06-02 2004-06-02 Exhaust gas treating device for engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164740A JP2005344597A (en) 2004-06-02 2004-06-02 Exhaust gas treating device for engines

Publications (1)

Publication Number Publication Date
JP2005344597A true JP2005344597A (en) 2005-12-15

Family

ID=35497212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164740A Pending JP2005344597A (en) 2004-06-02 2004-06-02 Exhaust gas treating device for engines

Country Status (1)

Country Link
JP (1) JP2005344597A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075527A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Urea water injection device for exhaust treating device
JP2009503326A (en) * 2005-07-29 2009-01-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Selective catalytic reduction method and exhaust gas system of nitrogen oxides contained in exhaust gas of internal combustion engine
JP2009113581A (en) * 2007-11-05 2009-05-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for hybrid electric vehicle
EP2095866A1 (en) 2008-02-25 2009-09-02 JGC Catalysts and Chemicals Ltd. Exhaust gas treatment apparatus
JP2009537724A (en) * 2006-05-16 2009-10-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for treating exhaust gas of internal combustion engine
WO2009148024A1 (en) * 2008-06-03 2009-12-10 いすゞ自動車株式会社 Exhaust gas purifier and system for exhaust gas purification
JP2010506077A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Apparatus and method for evaporating reactants
JP2010121548A (en) * 2008-11-20 2010-06-03 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2011516769A (en) * 2008-02-29 2011-05-26 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Evaporator for producing gaseous ammonia
WO2012128145A1 (en) * 2011-03-18 2012-09-27 日野自動車株式会社 Urea solution reformer and exhaust gas purifier using same
JP2012197695A (en) * 2011-03-18 2012-10-18 Hino Motors Ltd Urea solution reformer and exhaust gas purifier using the same
WO2012161433A2 (en) * 2011-05-23 2012-11-29 세종공업 주식회사 Apparatus for reducing a mixing agent of an scr system
JP2013509995A (en) * 2009-11-05 2013-03-21 ジョンソン、マッセイ、インコーポレイテッド System and method for vaporizing hydrous urea (urea aqueous solution) into ammonia vapor using secondary combustion exhaust
WO2013183153A1 (en) 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
JPWO2012164722A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2014148506A1 (en) * 2013-03-22 2014-09-25 日本碍子株式会社 Reductant injection device, exhaust gas processing apparatus and exhaust gas processing method
KR101461325B1 (en) 2013-06-28 2014-11-13 두산엔진주식회사 Reducing agent Dosing System of selective catalytic reduction system
JP2016203032A (en) * 2015-04-15 2016-12-08 三菱日立パワーシステムズインダストリー株式会社 Mixer of fluid and denitration device provided with the mixer of fluid
KR101780141B1 (en) * 2013-06-05 2017-09-19 만 디젤 앤 터보 에스이 Ammonia generator
JP2017180298A (en) * 2016-03-30 2017-10-05 日本碍子株式会社 Reducer injection device, and exhaust gas treatment method
US10100694B2 (en) * 2016-03-30 2018-10-16 Ngk Insulators, Ltd. Reducing agent injection device and exhaust gas treatment device
WO2019203453A1 (en) * 2018-04-18 2019-10-24 최정선 Reducing agent supply device of scr system for nitrogen oxide treatment
WO2020115965A1 (en) * 2018-12-04 2020-06-11 日本碍子株式会社 Reducing agent injection device, exhaust gas treatment device, and exhaust gas treatment method
CN115126574A (en) * 2022-06-23 2022-09-30 江苏航运职业技术学院 Boats and ships waste gas denitrification facility
US11708777B2 (en) 2019-06-26 2023-07-25 Cummins Emission Solutions Inc. Liquid only lance injector

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511038A (en) * 1995-06-28 1998-10-27 シーメンス アクチエンゲゼルシヤフト Method and apparatus for purifying catalyst from exhaust gas from combustion equipment
JPH11166410A (en) * 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JP2000282843A (en) * 1999-03-31 2000-10-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001027112A (en) * 1999-07-13 2001-01-30 Meidensha Corp NOx REMOVAL SYSTEM
JP2001055918A (en) * 1999-08-12 2001-02-27 Mitsubishi Automob Eng Co Ltd Exhaust emission control device for internal combustion engine
JP2001159308A (en) * 1999-10-13 2001-06-12 Fev Motorentechnik Gmbh & Co Kg Device for generating gaseous reduction agent for exhaust emission control of internal combustion engine by catalyst
JP2002514495A (en) * 1998-05-11 2002-05-21 シーメンス アクチエンゲゼルシヤフト Method and apparatus for selective catalytic reduction of nitrogen oxides in oxygen-containing gaseous medium
JP2002147218A (en) * 2000-11-08 2002-05-22 Matsumoto Giken Kk Device of removing particulate material in exhaust gas of diesel engine
JP2002161732A (en) * 2000-11-30 2002-06-07 Hino Motors Ltd Exhaust gas cleaning device
JP2002213233A (en) * 2001-01-12 2002-07-31 Komatsu Ltd Exhaust emission control structure of engine
JP2002531745A (en) * 1998-12-01 2002-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Aftertreatment device for exhaust gas of internal combustion engine
JP2003505638A (en) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト Device for mixing active substances into exhaust gas
JP2004068659A (en) * 2002-08-05 2004-03-04 Nikki Co Ltd Exhaust emission control device
JP2004353523A (en) * 2003-05-28 2004-12-16 Hitachi Ltd Engine exhaust gas treatment system and exhaust gas treatment process
JP2005273614A (en) * 2004-03-26 2005-10-06 Hino Motors Ltd Urea water adding device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511038A (en) * 1995-06-28 1998-10-27 シーメンス アクチエンゲゼルシヤフト Method and apparatus for purifying catalyst from exhaust gas from combustion equipment
JPH11166410A (en) * 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JP2002514495A (en) * 1998-05-11 2002-05-21 シーメンス アクチエンゲゼルシヤフト Method and apparatus for selective catalytic reduction of nitrogen oxides in oxygen-containing gaseous medium
JP2002531745A (en) * 1998-12-01 2002-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Aftertreatment device for exhaust gas of internal combustion engine
JP2000282843A (en) * 1999-03-31 2000-10-10 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001027112A (en) * 1999-07-13 2001-01-30 Meidensha Corp NOx REMOVAL SYSTEM
JP2003505638A (en) * 1999-07-22 2003-02-12 シーメンス アクチエンゲゼルシヤフト Device for mixing active substances into exhaust gas
JP2001055918A (en) * 1999-08-12 2001-02-27 Mitsubishi Automob Eng Co Ltd Exhaust emission control device for internal combustion engine
JP2001159308A (en) * 1999-10-13 2001-06-12 Fev Motorentechnik Gmbh & Co Kg Device for generating gaseous reduction agent for exhaust emission control of internal combustion engine by catalyst
JP2002147218A (en) * 2000-11-08 2002-05-22 Matsumoto Giken Kk Device of removing particulate material in exhaust gas of diesel engine
JP2002161732A (en) * 2000-11-30 2002-06-07 Hino Motors Ltd Exhaust gas cleaning device
JP2002213233A (en) * 2001-01-12 2002-07-31 Komatsu Ltd Exhaust emission control structure of engine
JP2004068659A (en) * 2002-08-05 2004-03-04 Nikki Co Ltd Exhaust emission control device
JP2004353523A (en) * 2003-05-28 2004-12-16 Hitachi Ltd Engine exhaust gas treatment system and exhaust gas treatment process
JP2005273614A (en) * 2004-03-26 2005-10-06 Hino Motors Ltd Urea water adding device

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503326A (en) * 2005-07-29 2009-01-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Selective catalytic reduction method and exhaust gas system of nitrogen oxides contained in exhaust gas of internal combustion engine
JP2009537724A (en) * 2006-05-16 2009-10-29 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and apparatus for treating exhaust gas of internal combustion engine
JP4696039B2 (en) * 2006-09-21 2011-06-08 日立オートモティブシステムズ株式会社 Urea water injection device for exhaust treatment equipment
JP2008075527A (en) * 2006-09-21 2008-04-03 Hitachi Ltd Urea water injection device for exhaust treating device
JP2010506077A (en) * 2006-10-02 2010-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Apparatus and method for evaporating reactants
JP2009113581A (en) * 2007-11-05 2009-05-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for hybrid electric vehicle
EP2095866A1 (en) 2008-02-25 2009-09-02 JGC Catalysts and Chemicals Ltd. Exhaust gas treatment apparatus
US8080209B2 (en) 2008-02-25 2011-12-20 Jgc Catalysts And Chemicals Ltd. Exhaust gas treatment apparatus
EP2335812A1 (en) 2008-02-25 2011-06-22 JGC Catalysts and Chemicals Ltd. Exhaust gas treatment apparatus
JP2011516769A (en) * 2008-02-29 2011-05-26 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Evaporator for producing gaseous ammonia
JP2009293431A (en) * 2008-06-03 2009-12-17 Isuzu Motors Ltd Exhaust emission control device and exhaust emission control system
WO2009148024A1 (en) * 2008-06-03 2009-12-10 いすゞ自動車株式会社 Exhaust gas purifier and system for exhaust gas purification
AU2009255128B2 (en) * 2008-06-03 2012-02-02 Isuzu Motors Limited Exhaust gas purifier and system for exhaust gas purification
US8607551B2 (en) 2008-06-03 2013-12-17 Isuzu Motors Limited Exhaust gas purifier and system for exhaust gas purification
JP2010121548A (en) * 2008-11-20 2010-06-03 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2013509995A (en) * 2009-11-05 2013-03-21 ジョンソン、マッセイ、インコーポレイテッド System and method for vaporizing hydrous urea (urea aqueous solution) into ammonia vapor using secondary combustion exhaust
WO2012128145A1 (en) * 2011-03-18 2012-09-27 日野自動車株式会社 Urea solution reformer and exhaust gas purifier using same
JP2012197695A (en) * 2011-03-18 2012-10-18 Hino Motors Ltd Urea solution reformer and exhaust gas purifier using the same
US8875499B2 (en) 2011-03-18 2014-11-04 Hino Motors Ltd. Urea solution reformer and exhaust gas purifier using same
WO2012161433A3 (en) * 2011-05-23 2013-03-21 세종공업 주식회사 Apparatus for reducing a mixing agent of an scr system
WO2012161433A2 (en) * 2011-05-23 2012-11-29 세종공업 주식회사 Apparatus for reducing a mixing agent of an scr system
JPWO2012164722A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2013183153A1 (en) 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
US9243533B2 (en) 2012-06-07 2016-01-26 Toyota Jidosha Kabushiki Kaisha Engine system
WO2014148506A1 (en) * 2013-03-22 2014-09-25 日本碍子株式会社 Reductant injection device, exhaust gas processing apparatus and exhaust gas processing method
EP2977096A4 (en) * 2013-03-22 2016-11-16 Ngk Insulators Ltd Reductant injection device, exhaust gas processing apparatus and exhaust gas processing method
JPWO2014148506A1 (en) * 2013-03-22 2017-02-16 日本碍子株式会社 Reducing agent injection device, exhaust gas treatment device, and exhaust gas treatment method
US9759106B2 (en) 2013-03-22 2017-09-12 Ngk Insulators, Ltd. Reducing agent injection device, exhaust gas treatment device and exhaust gas treatment method
US20160017777A1 (en) * 2013-03-22 2016-01-21 Ngk Insulators, Ltd. Reducing agent injection device, exhaust gas treatment device and exhaust gas treatment method
KR101780141B1 (en) * 2013-06-05 2017-09-19 만 디젤 앤 터보 에스이 Ammonia generator
KR101461325B1 (en) 2013-06-28 2014-11-13 두산엔진주식회사 Reducing agent Dosing System of selective catalytic reduction system
JP2016203032A (en) * 2015-04-15 2016-12-08 三菱日立パワーシステムズインダストリー株式会社 Mixer of fluid and denitration device provided with the mixer of fluid
CN107261839B (en) * 2016-03-30 2021-08-20 日本碍子株式会社 Reducing agent injection device and exhaust gas treatment method
JP2017180298A (en) * 2016-03-30 2017-10-05 日本碍子株式会社 Reducer injection device, and exhaust gas treatment method
CN107261839A (en) * 2016-03-30 2017-10-20 日本碍子株式会社 Reducing agent injection apparatus and waste gas processing method
US10100694B2 (en) * 2016-03-30 2018-10-16 Ngk Insulators, Ltd. Reducing agent injection device and exhaust gas treatment device
US10519834B2 (en) 2016-03-30 2019-12-31 Ngk Insulators, Ltd. Reducing agent injection device and exhaust gas treatment method
WO2019203453A1 (en) * 2018-04-18 2019-10-24 최정선 Reducing agent supply device of scr system for nitrogen oxide treatment
CN113167156A (en) * 2018-12-04 2021-07-23 日本碍子株式会社 Reducing agent injection device, exhaust gas treatment device, and exhaust gas treatment method
WO2020115965A1 (en) * 2018-12-04 2020-06-11 日本碍子株式会社 Reducing agent injection device, exhaust gas treatment device, and exhaust gas treatment method
JPWO2020115965A1 (en) * 2018-12-04 2021-11-04 日本碍子株式会社 Reducing agent injection device, exhaust gas treatment device and exhaust gas treatment method
US11674425B2 (en) * 2018-12-04 2023-06-13 Ngk Insulators, Ltd. Reductant injecting device, exhaust gas processing device and exhaust gas processing method
US11708777B2 (en) 2019-06-26 2023-07-25 Cummins Emission Solutions Inc. Liquid only lance injector
US11834979B2 (en) 2019-06-26 2023-12-05 Cummins Emission Solutions Inc. Liquid only lance injector
CN115126574A (en) * 2022-06-23 2022-09-30 江苏航运职业技术学院 Boats and ships waste gas denitrification facility
CN115126574B (en) * 2022-06-23 2023-04-25 江苏航运职业技术学院 Ship exhaust gas denitration device

Similar Documents

Publication Publication Date Title
JP2005344597A (en) Exhaust gas treating device for engines
JP4262522B2 (en) Exhaust gas treatment device for engine and exhaust gas treatment method
KR101391534B1 (en) Compact exhaust gas treatment unit having reaction agent addition
JP4519173B2 (en) Device for supplying a liquid medium in an exhaust gas conduit of an internal combustion engine
RU2600051C2 (en) Generator of ammonia gas for ammonia production for reducing nitrogen oxides in exhaust gases
JP4430524B2 (en) Engine exhaust treatment device and treatment method
CN102071994B (en) For the device of reprocessing engine exhaust gas
EP2388451B1 (en) Exhaust purification apparatus for internal combustion engine
JP5635704B2 (en) Device for introducing a liquid medium into the exhaust gas from a combustion engine
US9371764B2 (en) After-treatment component
KR101615798B1 (en) Compact Exhaust-Gas Treatment Unit with Mixing Region, and Method for Mixing an Exhaust Gas
WO2003036054A1 (en) Gas treatment apparatus
KR102293521B1 (en) Compact selective catalytic reduction system for nitrogen oxide reduction in theoxygen-rich exhaust of 500 to 4500 kw internal combustion engines
JP2005127271A (en) Urea water vaporizer
CN101180456A (en) Exhaust gas system for a motor vehicle
US9644515B2 (en) Gaseous ammonia injection system
KR102003495B1 (en) System and method for introducing a reducing agent into the exhaust gas from an internal combustion engine
JP2008267269A (en) Exhaust treatment device for engine
JP2012197695A5 (en)
US11814999B2 (en) Mixing apparatus
US20170218821A1 (en) Apparatus for producing ammonia
US11506099B1 (en) Electrically-heated mix pipe for processing diesel exhaust fluid in a selective catalytic reduction system
EP2483534B1 (en) Exhaust line assembly and internal combustion engine comprising an exhaust line assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006