JP2005344408A - Road surface evaluation method - Google Patents

Road surface evaluation method Download PDF

Info

Publication number
JP2005344408A
JP2005344408A JP2004166637A JP2004166637A JP2005344408A JP 2005344408 A JP2005344408 A JP 2005344408A JP 2004166637 A JP2004166637 A JP 2004166637A JP 2004166637 A JP2004166637 A JP 2004166637A JP 2005344408 A JP2005344408 A JP 2005344408A
Authority
JP
Japan
Prior art keywords
flatness
road surface
repair
road
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004166637A
Other languages
Japanese (ja)
Other versions
JP4691325B2 (en
Inventor
Toshihiko Fukuhara
敏彦 福原
Shuichi Kameyama
修一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUNWAY BUREKKUSU KK
Original Assignee
SUNWAY BUREKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUNWAY BUREKKUSU KK filed Critical SUNWAY BUREKKUSU KK
Priority to JP2004166637A priority Critical patent/JP4691325B2/en
Publication of JP2005344408A publication Critical patent/JP2005344408A/en
Application granted granted Critical
Publication of JP4691325B2 publication Critical patent/JP4691325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Road Repair (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road surface evaluation method for appropriately obtaining a repair required part in repairing a road provided with a bridge, a tunnel or the like, and easily computing cost or the like required for the repair. <P>SOLUTION: The road surface evaluation method comprises a longitudinal section profile acquisition procedure I for obtaining the longitudinal profile of the road surface; a road surface flatness computing procedure II for obtaining the flatness of the road surface from an international roughness index IRI for every section of the predetermined length of the road based on longitudinal section profile data; a repaired part survey procedure III for specifying target flatness for every section of the predetermined length of the road beforehand and comparing the flatness data with the target flatness to determine the repair required part; a repaired amount computing procedure IV for obtaining the repaired amount by correcting the flatness data with linear design connected by an N-th curve for every repair required part to obtain the target flatness; and an estimate computing procedure V for acquiring public repair data on the type and cost of the road surface repair work of the road to compute the estimate of the road surface repair work based on the repair data. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、道路の路面の平坦度について、特に橋、トンネル等の構造物が設けられた道路の平坦度を評価するための道路路面の評価方法に関する。   The present invention relates to a road road surface evaluation method for evaluating the flatness of a road surface, in particular, the flatness of a road provided with a structure such as a bridge or a tunnel.

従来、道路路面の補修については、道路維持修繕指数(メンテナンスコントロールインデックス)MCIが3.5以上になれば工事が行われていた。さらに、補修工事後の検査では、疲労破壊輪数、塑性変形輪数、平坦性の3つの舗装の必須の性能指標を満たしているか否かで判断されていた。例えば路面の平坦性としては、特許文献1に示すように、道路の全体について、国際路面粗さ指標IRIや、互いに平行でかつ所定間隔を隔てて整列された3本のプローブを設けてなる測定具を、縦断プロファイルに沿ってその両側のプローブを縦断プロファイル上に接触した状態で所定間隔単位で移動させ、各移動単位毎に、測定具の真中のプローブの縦断プロファイルからの外れ寸法を求め、外れ寸法の測定値の標準偏差を算出することにより得られたもので評価されている。
特許第3329796号
Conventionally, for road surface repairs, construction has been carried out when the road maintenance and repair index (maintenance control index) MCI is 3.5 or more. Furthermore, in the inspection after the repair work, it was judged whether or not the three essential pavement performance indexes of the number of fatigue fracture wheels, the number of plastic deformation wheels, and flatness were satisfied. For example, as the flatness of the road surface, as shown in Patent Document 1, the entire road is measured by providing an international road surface roughness index IRI and three probes that are parallel to each other and arranged at a predetermined interval. The tool is moved along the longitudinal profile by a predetermined interval while the probes on both sides of the tool are in contact with the longitudinal profile, and for each moving unit, the deviation dimension from the longitudinal profile of the probe in the middle of the measuring tool is obtained, It is evaluated by the one obtained by calculating the standard deviation of the measured value of the outlier.
Japanese Patent No. 3329796

しかし、道路は、盛り土/切り土の舗装以外に橋やトンネル等の構造物を含んでおり、それら構造物の舗装との接合部で段差を生じるため、道路全体に対して上記平坦性を適用しても適正な評価ができなかった。そのため、このような接合部の段差に対しては、補修時には線形設計を採用せずに、補修作業者の経験的な判断により舗装を盛り付けるいわゆるすり付が行われていた。しかし、このような補修作業者の経験的な対処では、道路全体にわたって適正な補修が行われ難く、さらには補修についての見積も正確には行われ難かった。このような接合部の段差が、車両における荷崩れや、荷物の破損、乗り心地の低下といった問題を生じており、適正な補修が必要とされている。   However, the road includes structures such as bridges and tunnels in addition to the embankment / cut pavement, and steps are created at the joints with the pavement of those structures, so the above flatness is applied to the entire road. Even so, proper evaluation was not possible. Therefore, a so-called rubbing in which a pavement is installed based on an empirical judgment of a repair operator is performed on such a step of the joint portion without adopting a linear design at the time of repair. However, with such empirical measures by repair workers, it is difficult to perform appropriate repairs over the entire road, and it is also difficult to accurately estimate the repairs. Such a step in the joint causes problems such as load collapse in the vehicle, damage to the load, and a decrease in ride comfort, and appropriate repair is required.

本発明は、上記した問題を解決しようとするもので、橋、トンネル等の構造物が設けられた道路の路面の補修に際して、適正に補修必要箇所を求めることができ、さらに補修工事の程度とそれに要するコスト等を簡単に算出することができる道路路面の評価方法を提供することを目的とする。   The present invention is intended to solve the above-mentioned problems, and when repairing a road surface provided with a structure such as a bridge or a tunnel, it is possible to appropriately obtain a repair-necessary portion, and further, the degree of repair work. It is an object of the present invention to provide a road road surface evaluation method capable of easily calculating the cost required for it.

上記目的を達成するために、本発明の構成上の特徴は、道路の路面の縦方向の縦断プロファイルをプロファイル測定手段により求める縦断プロファイル取得手順と、縦断プロファイルデータに基づいて、道路の所定長さの区間毎に路面の平坦度を求める路面平坦度算出手順と、予め所定長さの区間毎に目標平坦度を規定しておき、路面平坦度算出手順で求められた路面の平坦度データと目標平坦度を比較し、平坦度データが目標平坦度より劣る箇所を路面の補修必要箇所と判定する補修箇所調査手順と、補修必要箇所と判定された区間毎に、平坦度データに対してN次曲線で接続する線形設計により修正し、線形設計の繰り返しにより目標平坦度を得るようにすることにより、補修必要箇所の補修量を求める補修量算出手順とからなることにある。   In order to achieve the above object, the structural feature of the present invention is that a longitudinal profile acquisition procedure for obtaining a longitudinal profile of a road surface of a road by a profile measuring means and a predetermined length of the road based on longitudinal profile data. Road surface flatness calculation procedure for determining the road surface flatness for each section of the road, and target flatness for each section of a predetermined length is defined in advance, and the road surface flatness data and target determined by the road surface flatness calculation procedure Comparing the flatness, the repair location investigation procedure for determining the location where the flatness data is inferior to the target flatness as the location requiring repair on the road surface, and the Nth order for the flatness data for each section determined as the location requiring repair It is composed of a repair amount calculation procedure for obtaining a repair amount of a repair-necessary portion by correcting by linear design connected by a curve and obtaining target flatness by repeating linear design. That.

上記のように構成した本発明においては、縦断プロファイル取得手順でプロファイル測定手段により求められた縦断プロファイルデータに基づいて、路面平坦度算出手順で道路の所定長さの区間毎に路面の平坦度が演算される。つづいて、補修箇所調査手順で、路面の区間毎に求められた平坦度データと、予め規定された所定長さの区間毎の目標平坦度を比較することにより、平坦度データが目標平坦度より劣る箇所が路面の補修必要箇所と判定される。その結果、道路の補修必要箇所を適正に求めることができる。さらに、補修量算出手順で、補修必要箇所に対してN次曲線で接続する線形設計により修正が行われ、修正した結果の平坦度が目標平坦度と同等程度になるまで線形設計の繰り返しにより修正が行われる。その結果、本発明によれば、道路の補修必要箇所における補修量を適正に求めることができる。   In the present invention configured as described above, based on the longitudinal profile data obtained by the profile measuring means in the longitudinal profile acquisition procedure, the road surface flatness is calculated for each section of a predetermined length of the road in the road surface flatness calculation procedure. Calculated. Subsequently, the flatness data is obtained from the target flatness by comparing the flatness data obtained for each section of the road surface with the target flatness for each section of a predetermined length specified in the repair site survey procedure. The inferior part is determined to be a part requiring road repair. As a result, it is possible to appropriately obtain the roads requiring repair. Furthermore, in the repair amount calculation procedure, correction is performed by linear design that connects N-curve to the points that require repair, and correction is performed by repeating linear design until the flatness of the corrected result is equivalent to the target flatness. Is done. As a result, according to the present invention, it is possible to appropriately determine the amount of repair at a location where road repair is necessary.

さらに、本発明において、評価対象道路の路面補修工事の種類及び費用についての公共の補修データを取得して、補修量を公共の補修データに適用することにより路面補修工事の見積を算出する見積算出手順を加えることができる。このように、評価対象道路の路面補修工事の種類及び費用についての公共の補修データを取得して、補修量を公共の補修データに適用することにより、簡単にかつ正確な路面補修工事の見積を算出することができる。   Further, in the present invention, estimate calculation is performed to obtain public repair data on the type and cost of road repair work on the road to be evaluated, and to calculate an estimate of road repair work by applying the repair amount to the public repair data. Procedures can be added. In this way, it is possible to easily and accurately estimate road repair work by obtaining public repair data on the type and cost of road repair work on the evaluation target road and applying the repair amount to the public repair data. Can be calculated.

また、本発明において、路面の平坦度が、所定のばね定数の線状ばね材の一端に所定重量の重りを取り付けてなる測定具を、線状ばね材を上下に向けかつ重りを上端側に配置し、下端を縦断プロファイルに接触させた状態で、所定速度で縦方向に移動させ、その際の重りの上下方向の変位を積分して、その積分値を算出することにより得られる国際路面粗さ指標IRIにより表されてもよい。これにより、区間毎の路面の平坦度が適正に求められる。   Further, in the present invention, the road surface flatness is determined by attaching a weight having a predetermined weight to one end of a linear spring material having a predetermined spring constant. Place the lower end in contact with the longitudinal profile, move it vertically at a predetermined speed, integrate the vertical displacement of the weight at that time, and calculate the integrated value to obtain the international road surface roughness. It may be represented by an index IRI. Thereby, the flatness of the road surface for every section is calculated | required appropriately.

また、本発明において、路面の平坦度が、互いに平行でかつ所定間隔を隔てて整列された3本のプローブを設けてなる測定具を、縦断プロファイルに沿って測定具をその両側のプローブを縦断プロファイル上に接触した状態で所定間隔単位で移動させ、各移動単位毎に、測定具の真中のプローブの縦断プロファイルからの外れ寸法を求め、外れ寸法の測定値の標準偏差を算出することにより得られるものであってもよい。これにより、区間毎の路面の平坦度が適正に求められる。   Further, in the present invention, a measuring tool provided with three probes whose road surface flatness is parallel to each other and arranged at a predetermined interval, and the measuring tool is vertically cut along the longitudinal profile. It is obtained by moving in units of a predetermined interval while in contact with the profile, calculating the standard deviation of the measurement value of the measurement of the out-of-dimension, and determining the out-of-range from the longitudinal profile of the probe in the middle of the measuring tool. May be used. Thereby, the flatness of the road surface for every section is calculated | required appropriately.

本発明によれば、プロファイル測定手段により求めた縦断プロファイルデータに基づいて、道路の所定長さの区間毎に求めた路面の平坦度データと、予め規定された所定長さの区間毎の目標平坦度を比較することにより、平坦度データが目標平坦度より劣る箇所を路面の補修必要箇所として適正に判定することができ、この補修必要箇所に対してN次曲線で接続する線形設計によって修正することにより、道路の補修必要箇所における補修量を適正に求めることができる。また、評価対象道路の路面補修工事の種類及び費用についての公共の補修データを取得して、補修量を公共の補修データに適用することにより簡単にかつ正確な路面補修工事の見積を算出することができる。   According to the present invention, the road surface flatness data obtained for each predetermined length section of the road based on the longitudinal profile data obtained by the profile measuring means and the target flatness for each predetermined length section. By comparing the degrees, it is possible to appropriately determine a place where the flatness data is inferior to the target flatness as a place where the road surface needs to be repaired. By doing this, the amount of repairs at the roads requiring repair can be determined appropriately. Also, obtain public repair data on the types and costs of road repair work on the roads to be evaluated, and calculate the simple and accurate estimate of road repair work by applying the repair amount to the public repair data. Can do.

以下、本発明の一実施例である道路路面の評価方法について図面を用いて説明する。
実施例の評価方法は、道路の路面の縦方向の縦断プロファイルをプロファイル測定手段である測定ブロック10により求める縦断プロファイル取得手順Iと、縦断プロファイルデータに基づいて道路の所定長さの区間毎に国際粗さ指標IRIにより路面の平坦度を求める路面平坦度算出手順IIと、予め所定長さの区間毎に目標平坦度を規定しておき、路面平坦度算出手順IIで求められた路面の平坦度データと目標平坦度を比較し、平坦度データが目標平坦度より劣る箇所を路面の補修必要箇所と判定する補修箇所調査手順IIIと、補修必要箇所と判定された区間毎に、平坦度データに対してN次曲線で接続する線形設計により修正し、線形設計の繰り返しにより目標平坦度を得るようにすることにより、補修必要箇所の補修量を求める補修量算出手順IVと、評価対象道路の路面補修工事の種類及び費用についての公共の補修データを取得して、補修量を公共の補修データに適用することにより路面補修工事の見積を算出する見積算出手順Vとからなる。
Hereinafter, a road surface evaluation method according to an embodiment of the present invention will be described with reference to the drawings.
In the evaluation method of the embodiment, a longitudinal profile acquisition procedure I for obtaining a longitudinal profile of a road surface of a road by a measurement block 10 which is a profile measuring means, and an interval of a predetermined length of a road based on longitudinal profile data. The road surface flatness calculation procedure II for obtaining the road surface flatness by the roughness index IRI, and the target flatness for each section of a predetermined length are defined in advance, and the road surface flatness obtained by the road surface flatness calculation procedure II Comparing the data with the target flatness, the repair point survey procedure III for determining the place where the flatness data is inferior to the target flatness as the repair required part of the road surface, and the flatness data for each section determined as the repair required part On the other hand, it is corrected by linear design connected by Nth-order curve, and the target flatness is obtained by repeating linear design, so that the repair amount for the required repair point is obtained. Calculation procedure IV and estimate calculation procedure to calculate the estimate of road repair work by obtaining public repair data on the type and cost of road repair work on the target road and applying the repair amount to the public repair data V.

(1)縦断プロファイル取得手順I
縦断プロファイル取得手順では、図1及び図2に示すような、道路Rの路面の縦断方向のプロファイルを計測するために測定ブロック10が用いられる。なお、道路Rの縦断プロファイル計測位置は、路面の摩耗の最も激しいアウトホイールパス(OWP)といわれる車両の左車輪の通過位置について行われる。この道路のアウトホイールパスは、車両の70〜80%が通過する位置であることが明らかになっている。
(1) Profile acquisition procedure I
In the profile acquisition procedure, the measurement block 10 is used to measure the profile in the longitudinal direction of the road surface of the road R as shown in FIGS. Note that the longitudinal profile measurement position of the road R is performed with respect to the passing position of the left wheel of the vehicle, which is called the out-wheel path (OWP) in which the road surface is most worn. It has become clear that the out-wheel path of this road is the position through which 70-80% of the vehicle passes.

測定ブロック10は、進行方向(図1の右方向)に向って後中前の3個の円盤形の第1、第2及び第3ローラ11,12,13を有している。各ローラ11,12,13は、硬質のゴムあるいはプラスチック製であって、同一直線上に回転方向を同一直線方向に合わせて配列されている。第1、第2及び第3ローラ11,12,13の外径は、本実施例では10cmφになっている。第1、第2及び第3ローラ11,12,13には、それぞれ回転軸11a,12a,13aが貫通固定されている。第1ローラ11と第2ローラ12の回転軸11a,12aの両端側には、長尺板状の一対の第1連結棒14が回転軸11a,12aが回転自在なように固定されている。また、第2ローラ12と第3ローラ13の回転軸12a,13aの両端には、長尺板状の一対の第2連結棒15が回転軸12a,13aが回転自在なように固定されている。本実施例では、ローラ11,12間及び及ローラ12,13間の距離がいずれも測定ピッチである25cmにされており、したがって各ローラ11,12,13が一直線上に配列されたときの第1ローラ11と第3ローラ13の中心間の寸法である基準距離が50cmになっている。   The measurement block 10 has three disc-shaped first, second, and third rollers 11, 12, and 13 in the rear, middle, and front in the traveling direction (the right direction in FIG. 1). Each of the rollers 11, 12, and 13 is made of hard rubber or plastic, and is arranged on the same straight line with the rotation direction aligned with the same straight line direction. The outer diameters of the first, second and third rollers 11, 12, 13 are 10 cmφ in this embodiment. Rotating shafts 11a, 12a, and 13a are fixed to the first, second, and third rollers 11, 12, and 13, respectively. A pair of long plate-like first connecting rods 14 are fixed to both ends of the rotation shafts 11a and 12a of the first roller 11 and the second roller 12 so that the rotation shafts 11a and 12a are rotatable. A pair of long plate-like second connecting rods 15 are fixed to both ends of the rotation shafts 12a and 13a of the second roller 12 and the third roller 13 so that the rotation shafts 12a and 13a can rotate freely. . In this embodiment, the distance between the rollers 11 and 12 and the distance between the rollers 12 and 13 are set to 25 cm, which is the measurement pitch, and therefore, when the rollers 11, 12, 13 are arranged in a straight line, A reference distance, which is a dimension between the centers of the first roller 11 and the third roller 13, is 50 cm.

第1連結棒14(又は第2連結棒15)には、いずれかのローラ11,12,13の回転数から測定ブロックの移動距離を検出する距離測定器16が取り付けられている。また、第1連結棒14には、第1連結棒14の初期角度θを検出する傾斜計17が取り付けられている。さらに、第2連結棒15(又は第1連結棒14)には、第1連結棒14と第2連結棒15が互いに真直な状態から回動した変位角度θを検出する角度検出手段であるロータリエンコーダ18が取り付けられている。 A distance measuring device 16 is attached to the first connecting rod 14 (or the second connecting rod 15) to detect the moving distance of the measurement block from the number of rotations of any of the rollers 11, 12, and 13. In addition, an inclinometer 17 that detects the initial angle θ B of the first connecting rod 14 is attached to the first connecting rod 14. Further, the second connecting rod 15 (or the first connecting rod 14) is a rotary which is an angle detecting means for detecting a displacement angle θ in which the first connecting rod 14 and the second connecting rod 15 are rotated from a straight state. An encoder 18 is attached.

測定ブロック10は、第1連結棒14にて連結支持棒19によって測定車Mに連結されている。連結支持棒19は、第1連結棒14及び測定車Mに対して、それぞれ回動自在に取り付けられている。さらに、連結支持棒19は、長さ方向中間位置にて、コイルバネ19aにより測定車Mと弾性的に連結されており、コイルバネ19aによって測定ブロック10を道路Rにわずかに押し付ける方向に付勢している。これにより、測定ブロック10は、測定車Mの移動に伴って道路Rに軽く押しつけられた状態で移動できるようになっている。   The measurement block 10 is connected to the measurement wheel M by a connection support bar 19 by a first connection bar 14. The connection support bar 19 is rotatably attached to the first connection bar 14 and the measuring wheel M, respectively. Further, the connection support bar 19 is elastically connected to the measuring wheel M by a coil spring 19a at an intermediate position in the length direction, and is biased in a direction in which the measurement block 10 is slightly pressed against the road R by the coil spring 19a. Yes. As a result, the measurement block 10 can move while being pressed lightly against the road R as the measurement vehicle M moves.

測定車Mには、コンピュータからなる制御装置21が設けられている。制御装置21の記憶部には、測定ピッチである第1,第2ローラ11,12間、及び第2,第3及ローラ12,13間の距離に相当する25cmが設定入力されている。また、制御装置21の入力側には、上記距離測定器16、傾斜計17及びロータリエンコーダ18が接続されており、出力側には図示しないプリンタ等の記録装置が接続されている。   The measuring wheel M is provided with a control device 21 composed of a computer. In the storage unit of the control device 21, 25 cm corresponding to the distance between the first and second rollers 11 and 12 and the distance between the second and third rollers 12 and 13 as the measurement pitch is set and input. Further, the distance measuring device 16, the inclinometer 17, and the rotary encoder 18 are connected to the input side of the control device 21, and a recording device such as a printer (not shown) is connected to the output side.

つぎに、上記実施例の測定系による道路Rの凹凸の測定について説明する。
図3に示すように、測定ブロック10を、道路RのOWP位置に合せてかつ第1ローラ11を基準位置Bにセットした状態で、測定車Mを前方(縦方向)に進行させることにより、測定ブロック10も移動する。これに伴い、距離測定器16、傾斜計17及びロータリエンコーダ18の測定結果が制御装置21に入力される。ここで、制御装置21の記憶部に記憶された測定ピッチに基づいて、測定ブロック10が25cm移動する毎に、移動前の第3ローラ13及び第2ローラ12の位置に、移動後の第2ローラ12及び第1ローラ11が位置することになり、ここでの距離測定器16及びロータリエンコーダ18による測定結果が制御装置21において記憶される。これにより、移動距離25cm毎に、第1連結棒14に対する第2連結棒15の回動の角度θが逐次得られる。
Next, measurement of the unevenness of the road R by the measurement system of the above embodiment will be described.
As shown in FIG. 3, with the measurement block 10 set to the OWP position on the road R and the first roller 11 set to the reference position B, the measurement vehicle M is advanced forward (vertically), The measurement block 10 also moves. Accordingly, the measurement results of the distance measuring device 16, the inclinometer 17 and the rotary encoder 18 are input to the control device 21. Here, based on the measurement pitch stored in the storage unit of the control device 21, every time the measurement block 10 moves 25 cm, the second roller after the movement is moved to the position of the third roller 13 and the second roller 12 before the movement. The roller 12 and the first roller 11 are positioned, and the measurement results by the distance measuring device 16 and the rotary encoder 18 here are stored in the control device 21. Thereby, the rotation angle θ of the second connecting rod 15 with respect to the first connecting rod 14 is successively obtained for every movement distance of 25 cm.

図4に示すように、測定ブロック10の初期位置#1における第1連結棒14の初期角度θを求めておき、第1連結棒14に対する第2連結棒15の回動の角度θ1−1が、ロータリエンコーダ18の計測値として求められる。次に、測定ブロック10が1測定ピッチ移動した位置#2において、第1連結棒14に対する第2連結棒15の回動の角度θ1−2が、ロータリエンコーダ18の計測値として求められる。以下同様に、測定ブロック10の1測定ピッチ移動した位置#3,#4,#5…において、第1連結棒14に対する第2連結棒15の回動の角度θ1−3,θ1−4,θ1−5…が、ロータリエンコーダ18の計測値として求められる。この1ピッチ25cmの距離と角度θのデータからコンピュータ処理により、図5に示すような道路のOWPの適正な縦断プロファイルf(x)が得られる。すなわち、このように第1連結棒14に対する第2連結棒15の回動角度を逐次検出する逐次二角法を用いることにより、従来の逐次二点法のように変位計を平行に維持するといった煩雑さがなく、簡易にかつ精度良く路面の縦断プロファイルを作成することができる。 As shown in FIG. 4, the initial angle θ B of the first connecting rod 14 at the initial position # 1 of the measurement block 10 is obtained, and the rotation angle θ 1− of the second connecting rod 15 with respect to the first connecting rod 14 is obtained. 1 is obtained as a measured value of the rotary encoder 18. Next, at the position # 2 where the measurement block 10 has moved by one measurement pitch, the rotation angle θ 1-2 of the second connecting rod 15 with respect to the first connecting rod 14 is obtained as a measured value of the rotary encoder 18. Similarly, at the positions # 3, # 4, # 5... Moved by one measurement pitch of the measurement block 10, the rotation angles θ 1-3 and θ 1-4 of the second connecting rod 15 with respect to the first connecting rod 14 are set. , Θ 1-5 ... Are obtained as measured values of the rotary encoder 18. An appropriate longitudinal profile f (x) of the road OWP as shown in FIG. 5 is obtained by computer processing from the data of the distance of 25 cm per pitch and the angle θ. That is, by using the sequential square method that sequentially detects the rotation angle of the second connecting rod 15 with respect to the first connecting rod 14 in this way, the displacement meter is maintained in parallel as in the conventional sequential two-point method. There is no complication, and a longitudinal profile of the road surface can be created easily and accurately.

(2)路面平坦度算出手順II
上記縦断プロファイルに関して、上記制御装置21の演算処理により、道路の所定長さである10mの区間毎に、路面の平坦度として国際粗さ指標IRI(International Roughness Index)が求められる。国際粗さ指標IRIの算出方法は、バネ上質量、サスペンション、バネ下質量、タイヤを順次接続してなる測定具が用いられる。IRIの算出をコンピュータにより行う場合は、測定具25は、図6に示すように、所定のばね定数の線状ばね材26の一端に所定重量の重り27を取り付けたものとして等価的に表される。測定具25を、線状ばね材26を上下に向けかつ重り27を上端側に配置し、下端を縦断プロファイルf(x)に接触させた状態で、所定速度v例えば80km/hで縦方向に移動させ、その際の重りの上下方向の変位を積分して、その積分値を算出することにより求められるもので、ソフトウエア処理により、迅速にかつ精度の良い結果を得ることができる。この国際粗さ指標IRIによれば、道路を走行する車両の立場から、現実的な路面の粗さを得ることができる。制御装置21により演算された10mの区間毎の国際粗さ指標IRIデータについては、記憶部に記憶される。
(2) Road surface flatness calculation procedure II
Regarding the longitudinal profile, an international roughness index (IRI) is obtained as the road surface flatness for each 10 m section, which is the predetermined length of the road, by the calculation process of the control device 21. As a method of calculating the international roughness index IRI, a measuring tool is used in which the sprung mass, the suspension, the unsprung mass, and the tire are sequentially connected. When the calculation of IRI is performed by a computer, the measuring tool 25 is equivalently expressed as a weight 27 having a predetermined weight attached to one end of a linear spring material 26 having a predetermined spring constant, as shown in FIG. The The measuring tool 25 is vertically oriented at a predetermined speed v, for example, 80 km / h, with the linear spring member 26 facing up and down, the weight 27 disposed on the upper end side, and the lower end in contact with the longitudinal profile f (x). It is obtained by integrating the displacement in the vertical direction of the weight at that time and calculating the integral value, and it is possible to obtain a quick and accurate result by software processing. According to the international roughness index IRI, realistic road surface roughness can be obtained from the standpoint of a vehicle traveling on a road. The international roughness index IRI data for each 10 m section calculated by the control device 21 is stored in the storage unit.

(3)補修箇所調査手順III、補修量算出手順IV及び見積算出手順V
本実施例では、補修箇所調査手順III、補修量算出手順IV及び見積算出手順Vの3つの手順が制御装置21の演算処理により一括して行われる。補修量算出手順IVとしては、図7に示すように、例えば橋の端部において、N次曲線S1,S2で接続する線形設計により平坦性を補修し、補修した路面について、国際粗さ指標IRIである平坦度データS(IRI−10k)Dを求めて、後述する目標平坦度データM(IRI−10k)と比較して略同一になるまで線形設計が繰り返し行われる。なお、k=1〜nは道路全体において10m毎の区間を順次表すものであり、Dは線形設計による補修の回数、すなわち実質的な工事量を表すものである。
(3) Repair location survey procedure III, repair amount calculation procedure IV and estimate calculation procedure V
In this embodiment, the three procedures of the repair location investigation procedure III, the repair amount calculation procedure IV, and the estimate calculation procedure V are performed collectively by the arithmetic processing of the control device 21. As shown in FIG. 7, the repair amount calculation procedure IV includes, for example, the flatness repaired by the linear design connected by the Nth-order curves S1 and S2 at the end of the bridge. The flatness data S (IRI-10k) D is obtained, and the linear design is repeatedly performed until the flatness data S (IRI-10k) D is substantially the same as compared with later-described target flatness data M (IRI-10k). Note that k = 1 to n sequentially represents sections of every 10 m in the entire road, and D represents the number of repairs by linear design, that is, a substantial construction amount.

上記制御装置21の記憶部には、10mの区間毎の国際粗さ指標IRIについて予め規定された目標値M(IRI−10k)が記憶されており、さらに評価道路についての公共のデータベースから読み取られた補修データが記憶されている。また、制御装置21は、記憶部に記憶した図8〜図10に示す「路面補修データ演算プログラム」を実行する。   The storage unit of the control device 21 stores a target value M (IRI-10k) defined in advance for the international roughness index IRI for each 10 m section, and is further read from a public database for the evaluation road. Repair data is stored. Further, the control device 21 executes the “road surface repair data calculation program” shown in FIGS. 8 to 10 stored in the storage unit.

つぎに、上記3つの手順の実施について説明する。
制御装置21は、「路面補修データ演算プログラム」の実行をステップ30にて開始し、各種初期化処理を行った後、記憶部に記憶された評価対象道路の全区間の平坦度データS(IRI−10k)Dの内の第1区間(k=1)について平坦度データを読み取ると共に、補修回数Dを「0」とし(ステップ31〜33)、さらに第1区間の平坦度の目標値M(IRI−10k)を記憶部から読み込む(ステップ34)。つぎに、第1区間(k=1)について、平坦度データS(IRI−10k)Dと予め規定された目標平坦度M(IRI−10k)の大小が比較される(ステップ35)。平坦度データS(IRI−10k)Dと目標平坦度M(IRI−10k)が等しければ、プログラムはステップ36に移され、平坦度データS(IRI−10k)0として記憶され、さらに第1区間での工事量が0に設定される(ステップ37)。
Next, the implementation of the above three procedures will be described.
The control device 21 starts the execution of the “road surface repair data calculation program” in step 30, performs various initialization processes, and then stores the flatness data S (IRI of all sections of the evaluation target road stored in the storage unit. −10k) The flatness data is read for the first section (k = 1) of D, the number of repairs D is set to “0” (steps 31 to 33), and the flatness target value M ( IRI-10k) is read from the storage unit (step 34). Next, for the first section (k = 1), the flatness data S (IRI-10k) D is compared with the size of the predetermined target flatness M (IRI-10k) (step 35). If the flatness data S (IRI-10k) D and the target flatness M (IRI-10k) are equal, the program is moved to step 36, stored as flatness data S (IRI-10k) 0, and further in the first interval. The amount of construction at is set to 0 (step 37).

平坦度データS(IRI−10k)Dと目標平坦度M(IRI−10k)が等しくない場合は、プログラムはステップ38に移されて、局部的な線形設計によりN次曲線で補修されると共に、補修回数Dが1だけプラスされ(ステップ39)、さらに補修に応じて平坦度データS(IRI−10k)Dが更新される(ステップ40)。つづいて、補修された平坦度データS(IRI−10k)Dと予め規定された目標平坦度M(IRI−10k)の大小が比較され(ステップ41)、両者が等しくないすなわち補修が十分でない場合は、再度線形設計による補修が行われ、補修回数Dが1だけプラスされると共に補修に応じて平坦度データS(IRI−10k)Dが更新される(ステップ38〜40)。補修された平坦度データS(IRI−10k)Dと予め規定された目標平坦度M(IRI−10k)の比較により(ステップ41)等しいと判定されると、プログラムはステップ42に移され、平坦度データS(IRI−10k)Dとして記憶される。さらに、第1区間での工事量が補修回数Dに基づいて設定される(ステップ43)。   If the flatness data S (IRI-10k) D and the target flatness M (IRI-10k) are not equal, the program moves to step 38 and is repaired with an Nth order curve by local linear design; The repair count D is incremented by 1 (step 39), and the flatness data S (IRI-10k) D is updated according to the repair (step 40). Subsequently, the repaired flatness data S (IRI-10k) D is compared with the target flatness M (IRI-10k) defined in advance (step 41), and the two are not equal, that is, the repair is not sufficient. Is repaired again by linear design, the repair count D is incremented by 1, and the flatness data S (IRI-10k) D is updated according to the repair (steps 38 to 40). When the repaired flatness data S (IRI-10k) D is compared with the predetermined target flatness M (IRI-10k) (step 41), if it is determined that they are equal, the program is moved to step 42, and the flatness data It is stored as degree data S (IRI-10k) D. Further, the construction amount in the first section is set based on the number of repairs D (step 43).

さらに、区間数kが1プラスされて2にされ(ステップ44)、第2区間での平坦度データS(IRI−10k)Dと目標平坦度M(IRI−10k)が読み込まれ、補修回数Dが0にされる(ステップ45,46)。その後、区間数kがnに等しいか否かが判定されるが(ステップ47)、ここではまだ第2区間なので、「NO」と判定されてプログラムはステップ35に戻され、第2区間について、上記第1区間で実行されたと同様にステップ35〜ステップ43の処理が繰り返され、第2区間での補修された平坦度S(IRI−10k)Dと工事量が算出される。同様に、順次第3区間から第n区間での補修された平坦度S(IRI−10k)Dと工事量が算出された後、ステップ47にてk=nに応じて「YES」と判定され、プログラムはステップ48に移され、工事データベースが読み込まれる。この工事データベースと、第1区間から第n区間までの補修された平坦度S(IRI−10k)Dと工事量とに基づいて、図11に示すように工事見積表が作成される(ステップ49)。図11に示すように、種々の平坦度S(IRI−10k)Dにおける工事見積が作成され、プリンタから出力され、プログラムの実行が終了する(ステップ50〜ステップ52)。   Further, the number of sections k is incremented by 1 to 2 (step 44), flatness data S (IRI-10k) D and target flatness M (IRI-10k) in the second section are read, and the number of repairs D Is set to 0 (steps 45 and 46). Thereafter, it is determined whether or not the number of sections k is equal to n (step 47), but since it is still the second section here, it is determined as “NO” and the program returns to step 35. As in the first section, the processes in steps 35 to 43 are repeated, and the repaired flatness S (IRI-10k) D and the construction amount in the second section are calculated. Similarly, after the repaired flatness S (IRI-10k) D and the construction amount in the third to nth sections are calculated sequentially, in step 47, “YES” is determined according to k = n. The program is moved to step 48, and the construction database is read. Based on the construction database, the flatness S (IRI-10k) D repaired from the first section to the n-th section, and the construction amount, a construction estimation table is created as shown in FIG. 11 (step 49). ). As shown in FIG. 11, construction estimates at various flatnesses S (IRI-10k) D are created and output from the printer, and the execution of the program ends (steps 50 to 52).

以上に説明したように、上記実施例においては、縦断プロファイル取得手順Iで測定ブロック10により求められた縦断プロファイルデータに基づいて、路面平坦度算出手順IIで道路の所定長さの区間毎に国際粗さ指標IRIにより路面の平坦度が演算される。つづいて、補修箇所調査手順IIIで、路面の区間毎に求められた平坦度データS(IRI−10k)Dと、予め規定された所定長さの区間毎の目標平坦度M(IRI−10k)を比較することにより、平坦度データが目標平坦度より劣る箇所が路面の補修必要箇所と判定される。そのため、補修必要箇所が適正に求められる。さらに、補修量算出手順IVで、補修必要箇所に対してN次曲線で接続する線形設計により修正が行われ、補修した結果の平坦度が目標平坦度と同等程度になるまで線形設計の繰り返しにより修正が行われる。その結果、上記実施例によれば、道路の補修必要箇所における精度のよい補修量を求めることができる。例えば図12に示すように、路面平坦度が悪い橋の部分では路面Iで平坦度がIIのようになっているのに対して、橋と道路の接続部分を路面IIIのように補修することにより、平坦度がIVのように改善される。   As described above, in the above-described embodiment, based on the longitudinal profile data obtained by the measurement block 10 in the longitudinal profile acquisition procedure I, the road surface flatness calculation procedure II is performed for each section of a predetermined length of the road. The flatness of the road surface is calculated from the roughness index IRI. Subsequently, the flatness data S (IRI-10k) D obtained for each section of the road surface in the repair site investigation procedure III, and the target flatness M (IRI-10k) for each predetermined length of section. Are compared with each other, it is determined that a place where the flatness data is inferior to the target flatness is a road surface requiring repair. For this reason, the places where repairs are necessary are required. Furthermore, in the repair amount calculation procedure IV, correction is performed by linear design that connects N-order curves to the repair-necessary points, and the linear design is repeated until the flatness of the repaired result is approximately equal to the target flatness. Corrections are made. As a result, according to the above-described embodiment, it is possible to obtain a highly accurate repair amount at a road repair-necessary portion. For example, as shown in FIG. 12, in a portion of a bridge with poor road surface flatness, the road surface I has a flatness of II, whereas the bridge-road connection portion is repaired as road surface III. Thus, the flatness is improved like IV.

又、上記実施例においては、評価対象道路の路面補修工事の種類及び費用についての公共の補修データを取得して、見積算出手順Vで、補修量を公共の補修データに適用することにより、簡単にかつ正確な路面補修工事の見積を算出することができる。例えば、図11に示すように、平坦度S(IRI−10k)Dが8では、一般工事i,iiであり工事収計123となり、平坦度S(IRI−10k)Dが2になると、一般工事i,ii,iii及び付帯工事i,ii,iiiであり工事収計456となる。   Further, in the above embodiment, it is easy to obtain public repair data on the type and cost of road surface repair work on the evaluation target road and apply the repair amount to the public repair data in the estimation calculation procedure V. In addition, it is possible to calculate an accurate estimate of road repair work. For example, as shown in FIG. 11, when the flatness S (IRI-10k) D is 8, the general construction i and ii are the construction revenue 123, and when the flatness S (IRI-10k) D is 2, Work i, ii, and iii and incidental work i, ii, and iii, resulting in a work total 456.

なお、上記実施例において、路面の平坦度については、図6に示すような国際路面粗さ指標IRIを算出することにより求めているが、これに限らない。例えば、図13に示すように、互いに平行でかつ所定間隔t(例えば3m)を隔てて整列された3本のプローブ31a,31b,31cを設けてなる測定具31を、上記縦断プロファイルf(x)に沿ってその両側のプローブ31a,31cを縦断プロファイルf(x)上に接触した状態で所定間隔t単位で移動させ、各移動単位毎に、測定具31の真中のプローブ31bの縦断プロファイルf(x)からの外れ寸法hxを求め、各移動単位での外れ寸法hxの標準偏差σを算出することにより平坦度を求めてもよい。この場合も、測定処理は、通常はコンピュータを利用して行われ、それにより迅速にかつ正確な結果を得ることができる。   In the above-described embodiment, the road surface flatness is obtained by calculating the international road surface roughness index IRI as shown in FIG. 6, but is not limited thereto. For example, as shown in FIG. 13, a measuring tool 31 provided with three probes 31a, 31b, 31c that are parallel to each other and arranged at a predetermined interval t (for example, 3 m) is used as the longitudinal profile f (x ), The probes 31a and 31c on both sides thereof are moved in units of a predetermined interval t in contact with the longitudinal profile f (x), and the longitudinal profile f of the probe 31b in the middle of the measuring tool 31 is moved for each moving unit. The flatness may be obtained by obtaining a deviation dimension hx from (x) and calculating a standard deviation σ of the deviation dimension hx in each movement unit. In this case as well, the measurement process is usually performed using a computer, whereby a quick and accurate result can be obtained.

なお、上記実施例においては、縦断プロファイル取得手順I、路面平坦度算出手順II、補修箇所調査手順III、補修量算出手順IV及び見積算出手順Vのすべてについて、制御装置21により演算処理されているが、これに限るものではない。いずれかの手順において、得られたデータをCD−ROM等に格納して制御装置21から取り外し、測定車Mとは別の場所に設けた演算装置にデータを格納してこれにより続く手順の演算処理を行うようにすることもできる。その他、上記実施例に示した道路路面の評価方法については、一例であり、具体的な測定車あるいは演算方法等については、本発明の主旨を逸脱しない範囲で種々変更して実施することが可能である。   In the above-described embodiment, the longitudinal profile acquisition procedure I, the road surface flatness calculation procedure II, the repair location investigation procedure III, the repair amount calculation procedure IV, and the estimate calculation procedure V are all processed by the control device 21. However, it is not limited to this. In any procedure, the obtained data is stored in a CD-ROM or the like and removed from the control device 21, and the data is stored in an arithmetic device provided at a location different from the measuring vehicle M, thereby calculating the subsequent procedure. Processing can also be performed. In addition, the road surface evaluation method shown in the above embodiment is merely an example, and the specific measurement vehicle or calculation method can be implemented with various modifications without departing from the gist of the present invention. It is.

本発明によれば、縦断プロファイルデータに基づいて、評価対象道路の所定長さの区間毎に国際粗さ指標IRIにより路面の平坦度が演算される。この路面の区間毎に求められた平坦度データと、予め規定された道路の所定長さの区間毎の目標平坦度を比較することにより路面の補修必要箇所と判定され、補修必要箇所に対してN次曲線で接続する線形設計により修正が行われ、評価対象道路の路面補修工事の種類及び費用についての公共の補修データに補修量を適用することにより簡単にかつ正確な路面補修工事の見積を算出することができるので、有用である。   According to the present invention, the road surface flatness is calculated by the international roughness index IRI for each section of a predetermined length of the evaluation target road based on the longitudinal profile data. By comparing the flatness data obtained for each section of the road surface with the target flatness for each predetermined length section of the road, it is determined that the road surface needs repair, Corrections are made by linear design connected by Nth-order curves, and simple and accurate estimation of road repair work can be made by applying the repair amount to the public repair data on the type and cost of road repair work on the road to be evaluated. Since it can be calculated, it is useful.

本発明の一実施例である道路の路面の平坦度を計測するために測定車に取り付けられる測定ブロックを概略的に示す正面図である。It is a front view which shows roughly the measurement block attached to a measurement vehicle in order to measure the flatness of the road surface of the road which is one Example of this invention. 測定車両に取り付けられる測定ブロックを概略的に示す正面図である。It is a front view which shows roughly the measurement block attached to a measurement vehicle. 測定ブロックにより路面の凹凸を測定する過程を説明する説明図である。It is explanatory drawing explaining the process of measuring the unevenness | corrugation of a road surface by a measurement block. 測定ブロックの各測定地点における状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state in each measurement point of a measurement block. 測定ブロックによる測定結果を解析して路面形状として示した説明図である。It is explanatory drawing which analyzed the measurement result by the measurement block and showed as a road surface shape. 図5の結果を用いて路面の平坦性を解析する方法として、国際路面粗さ指標IRIを算出する方法を説明する説明図である。FIG. 6 is an explanatory diagram illustrating a method of calculating an international road surface roughness index IRI as a method of analyzing road surface flatness using the results of FIG. 5. 道路と橋の繋ぎ部分での補修について説明する模式図である。It is a schematic diagram explaining the repair in the connection part of a road and a bridge. 制御装置により実行される「路面補修データ演算プログラム」のフローチャートの一部である。It is a part of flowchart of the “road surface repair data calculation program” executed by the control device. 制御装置により実行される「路面補修データ演算プログラム」のフローチャートの一部である。It is a part of flowchart of the “road surface repair data calculation program” executed by the control device. 制御装置により実行される「路面補修データ演算プログラム」のフローチャートの一部である。It is a part of flowchart of the “road surface repair data calculation program” executed by the control device. 種々の平坦度における工事内容及び工事見積を説明する説明図である。It is explanatory drawing explaining the construction content and construction estimate in various flatness. 補修前の路面の凹凸状態及びその平坦度と、補修後の路面の凹凸状態及びその平坦度を示したグラフである。It is the graph which showed the uneven state of the road surface before repair, and its flatness, and the uneven state of the road surface after repair, and its flatness. 図5の結果を用いて路面の平坦性を解析する方法として、3本のプローブを設けた測定具を用いて算出する方法を説明する説明図である。It is explanatory drawing explaining the method of calculating using the measuring tool provided with three probes as a method of analyzing the flatness of a road surface using the result of FIG.

符号の説明Explanation of symbols

10…測定ブロック、11,12,13…第1,第2,第3ローラ、11a,12a,13a…回転軸、14…第1連結棒、15…第2連結棒、18…ロータリエンコーダ(角度検出手段)、21…制御装置。 DESCRIPTION OF SYMBOLS 10 ... Measuring block 11, 12, 13 ... 1st, 2nd, 3rd roller, 11a, 12a, 13a ... Rotating shaft, 14 ... 1st connecting rod, 15 ... 2nd connecting rod, 18 ... Rotary encoder (angle) Detection means), 21... Control device.

Claims (4)

道路の路面の縦方向の縦断プロファイルをプロファイル測定手段により求める縦断プロファイル取得手順と、
前記縦断プロファイルデータに基づいて、前記道路の所定長さの区間毎に路面の平坦度を求める路面平坦度算出手順と、
予め前記所定長さの区間毎に目標平坦度を規定しておき、前記路面平坦度算出手順で求められた該路面の平坦度データと該目標平坦度を比較し、該平坦度データが該目標平坦度より劣る箇所を路面の補修必要箇所と判定する補修箇所調査手順と、
該補修必要箇所と判定された区間毎に、該平坦度データに対してN次曲線で接続する線形設計により修正し、該線形設計の繰り返しにより目標平坦度を得るようにすることにより、該補修必要箇所の補修量を求める補修量算出手順と
からなることを特徴とする道路路面の評価方法。
A longitudinal profile acquisition procedure for obtaining a longitudinal profile of the road surface by profile measuring means,
A road surface flatness calculation procedure for obtaining a road surface flatness for each section of a predetermined length of the road based on the longitudinal profile data;
A target flatness is defined in advance for each section of the predetermined length, the road flatness data obtained in the road surface flatness calculation procedure is compared with the target flatness, and the flatness data is the target flatness. Repair location investigation procedure for determining a location inferior to flatness as a location requiring repair on the road surface,
By correcting the flatness data for each section determined to be repaired by an N-order curve with a linear design and obtaining the target flatness by repeating the linear design, the repair is performed. A method for evaluating a road surface, comprising a repair amount calculation procedure for determining a repair amount of a necessary portion.
前記評価対象道路の路面補修工事の種類及び費用についての公共の補修データを取得して、前記補修量を該公共の補修データに適用することにより該路面補修工事の見積を算出する見積算出手順を加えたことを特徴とする前記請求項1に記載の道路路面の評価方法。 An estimate calculation procedure for obtaining public repair data on the type and cost of road surface repair work of the evaluation target road and calculating an estimate of the road surface repair work by applying the repair amount to the public repair data. The road surface evaluation method according to claim 1, which is added. 前記路面の平坦度が、所定のばね定数の線状ばね材の一端に所定重量の重りを取り付けてなる測定具を、該線状ばね材を上下に向けかつ重りを上端側に配置し、下端を前記縦断プロファイルに接触させた状態で、所定速度で縦方向に移動させ、その際の重りの上下方向の変位を積分して、その積分値を算出することにより得られる国際路面粗さ指標IRIにより表されることを特徴とする前記請求項1又は2に記載の道路路面の評価方法。 The road surface flatness is a measuring tool in which a weight of a predetermined weight is attached to one end of a linear spring material having a predetermined spring constant. Is moved in the vertical direction at a predetermined speed in contact with the longitudinal profile, and the displacement in the vertical direction of the weight at that time is integrated, and the international road surface roughness index IRI obtained by calculating the integrated value is obtained. The road road surface evaluation method according to claim 1 or 2, characterized by: 前記路面の平坦度が、互いに平行でかつ所定間隔を隔てて整列された3本のプローブを設けてなる測定具を、前記縦断プロファイルに沿って該測定具をその両側のプローブを該縦断プロファイル上に接触した状態で前記所定間隔単位で移動させ、各移動単位毎に、該測定具の真中のプローブの該縦断プロファイルからの外れ寸法を求め、該外れ寸法の測定値の標準偏差を算出することにより得られるものであることを特徴とする前記請求項1又は2に記載の道路路面の評価方法。 The measuring tool is provided with three probes whose flatness of the road surface is parallel to each other and arranged at a predetermined interval, and the measuring tool is placed along the longitudinal profile with the probes on both sides thereof on the longitudinal profile. Moving in the unit of the predetermined interval while in contact with each other, obtaining a deviation dimension from the longitudinal profile of the center probe of the measuring tool for each movement unit, and calculating a standard deviation of the measurement value of the deviation dimension. The road road surface evaluation method according to claim 1, wherein the road road surface evaluation method is obtained by:
JP2004166637A 2004-06-04 2004-06-04 Evaluation method of road surface Expired - Fee Related JP4691325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166637A JP4691325B2 (en) 2004-06-04 2004-06-04 Evaluation method of road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166637A JP4691325B2 (en) 2004-06-04 2004-06-04 Evaluation method of road surface

Publications (2)

Publication Number Publication Date
JP2005344408A true JP2005344408A (en) 2005-12-15
JP4691325B2 JP4691325B2 (en) 2011-06-01

Family

ID=35497044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166637A Expired - Fee Related JP4691325B2 (en) 2004-06-04 2004-06-04 Evaluation method of road surface

Country Status (1)

Country Link
JP (1) JP4691325B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066040A (en) * 2008-09-09 2010-03-25 Kitami Institute Of Technology Apparatus for measuring road surface flatness
JP2012012792A (en) * 2010-06-30 2012-01-19 Takeo Yamamoto Road surface state measurement method, road surface state measurement apparatus and computer program
JP2015007341A (en) * 2013-06-25 2015-01-15 川田テクノシステム株式会社 Road surface repair support device, road surface repair support program and road surface repair support method
JP6261797B1 (en) * 2017-06-30 2018-01-17 ジオ・サーチ株式会社 Pavement damage diagnosis method
JP2019108755A (en) * 2017-12-19 2019-07-04 川田テクノシステム株式会社 Road surface repair support device, road surface repair support program, and road surface repair support method
CN111058360A (en) * 2019-11-07 2020-04-24 北京工业大学 Road surface flatness detection method based on driving vibration data
CN113340193A (en) * 2021-06-16 2021-09-03 赵文彬 Check out test set is used in road construction
CN113551636A (en) * 2021-07-02 2021-10-26 武汉光谷卓越科技股份有限公司 Flatness detection method based on abnormal data correction
CN114182592A (en) * 2021-12-28 2022-03-15 中交一航局第三工程有限公司 Construction method of covering soil of water-stable base layer
CN118007501A (en) * 2024-04-08 2024-05-10 广东省建筑工程监理有限公司 Road engineering pavement quality detection and evaluation method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233211A (en) * 1984-05-01 1985-11-19 国際航業株式会社 Measurement of longitudinal displacement of road surface
JPS6128601A (en) * 1984-07-17 1986-02-08 日瀝化学工業株式会社 Selection of construction kind for maintenance and repairingof road pavement
JPS63219707A (en) * 1987-03-10 1988-09-13 小島 寿穂 Road pavement control system
JPH026712U (en) * 1988-06-29 1990-01-17
JP2000283745A (en) * 1999-03-31 2000-10-13 Komatsu Engineering Kk On-board device for measuring shape in road surface extension direction
JP2000319815A (en) * 1999-05-13 2000-11-21 Nippon Hodo Co Ltd Road face information-systematizing method for pavement
JP2002099586A (en) * 2000-07-19 2002-04-05 Sanei Giken:Kk System and method for road design
JP2002121898A (en) * 2000-10-13 2002-04-26 Taisei Corp Support system for structure maintenance and control
JP2002222281A (en) * 2001-01-25 2002-08-09 Ohbayashi Corp Repairing cost calculating system, program for realizing repairing cost calculating system by computer, and computer readable record medium recording program
JP3329796B2 (en) * 2000-08-01 2002-09-30 株式会社 サンウェイ Road profile measurement method
JP2004100148A (en) * 2002-09-04 2004-04-02 Mitsubishi Research Institute Inc Road linear design method, device, and program
JP2004156417A (en) * 2002-11-05 2004-06-03 Chuo Fukken Consultants Co Ltd Method for determination of timing for degradation inspection or repairing of civil engineering facility, and supporting device for determination of timing for the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233211A (en) * 1984-05-01 1985-11-19 国際航業株式会社 Measurement of longitudinal displacement of road surface
JPS6128601A (en) * 1984-07-17 1986-02-08 日瀝化学工業株式会社 Selection of construction kind for maintenance and repairingof road pavement
JPS63219707A (en) * 1987-03-10 1988-09-13 小島 寿穂 Road pavement control system
JPH026712U (en) * 1988-06-29 1990-01-17
JP2000283745A (en) * 1999-03-31 2000-10-13 Komatsu Engineering Kk On-board device for measuring shape in road surface extension direction
JP2000319815A (en) * 1999-05-13 2000-11-21 Nippon Hodo Co Ltd Road face information-systematizing method for pavement
JP2002099586A (en) * 2000-07-19 2002-04-05 Sanei Giken:Kk System and method for road design
JP3329796B2 (en) * 2000-08-01 2002-09-30 株式会社 サンウェイ Road profile measurement method
JP2002121898A (en) * 2000-10-13 2002-04-26 Taisei Corp Support system for structure maintenance and control
JP2002222281A (en) * 2001-01-25 2002-08-09 Ohbayashi Corp Repairing cost calculating system, program for realizing repairing cost calculating system by computer, and computer readable record medium recording program
JP2004100148A (en) * 2002-09-04 2004-04-02 Mitsubishi Research Institute Inc Road linear design method, device, and program
JP2004156417A (en) * 2002-11-05 2004-06-03 Chuo Fukken Consultants Co Ltd Method for determination of timing for degradation inspection or repairing of civil engineering facility, and supporting device for determination of timing for the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066040A (en) * 2008-09-09 2010-03-25 Kitami Institute Of Technology Apparatus for measuring road surface flatness
JP2012012792A (en) * 2010-06-30 2012-01-19 Takeo Yamamoto Road surface state measurement method, road surface state measurement apparatus and computer program
JP2015007341A (en) * 2013-06-25 2015-01-15 川田テクノシステム株式会社 Road surface repair support device, road surface repair support program and road surface repair support method
JP6261797B1 (en) * 2017-06-30 2018-01-17 ジオ・サーチ株式会社 Pavement damage diagnosis method
JP2019011641A (en) * 2017-06-30 2019-01-24 ジオ・サーチ株式会社 Pavement damage diagnosis method
JP2019108755A (en) * 2017-12-19 2019-07-04 川田テクノシステム株式会社 Road surface repair support device, road surface repair support program, and road surface repair support method
CN111058360A (en) * 2019-11-07 2020-04-24 北京工业大学 Road surface flatness detection method based on driving vibration data
CN113340193A (en) * 2021-06-16 2021-09-03 赵文彬 Check out test set is used in road construction
CN113551636A (en) * 2021-07-02 2021-10-26 武汉光谷卓越科技股份有限公司 Flatness detection method based on abnormal data correction
CN114182592A (en) * 2021-12-28 2022-03-15 中交一航局第三工程有限公司 Construction method of covering soil of water-stable base layer
CN114182592B (en) * 2021-12-28 2022-12-13 中交一航局第三工程有限公司 Construction method of covering soil of water-stable base layer
CN118007501A (en) * 2024-04-08 2024-05-10 广东省建筑工程监理有限公司 Road engineering pavement quality detection and evaluation method

Also Published As

Publication number Publication date
JP4691325B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
US20030175077A1 (en) Method and apparatus for calculating and using the profile of a surface
JP7037948B2 (en) How to calculate the optimal orbit
US7850395B1 (en) Smoothness indicator analysis system
US8352188B2 (en) Apparatus for generating high resolution surface topology map using surface profiling and surveying instrumentation
JP4691325B2 (en) Evaluation method of road surface
US6647636B2 (en) Method for measuring road surface longitudinal profile
JP2014228480A (en) Device and method for passing vehicle weight analysis processing
JP6431157B1 (en) Apparatus and measuring method for building limit in railway
US8682622B1 (en) Smoothness indicator analysis system
Perera et al. Issues in pavement smoothness
US7428455B2 (en) Compaction indication by effective rolling radius
JP6663704B2 (en) Orbit correction point generation device, orbit correction point generation system, orbit correction point generation method and program
JP4602605B2 (en) Tire wear life prediction method
JP4536910B2 (en) Method for measuring road profile and method for measuring road profile
JP2009063541A (en) Geometric quantity measurement method and device
JP3329796B2 (en) Road profile measurement method
JP7091823B2 (en) Tire tread wear prediction method
JP2001317930A (en) Track maintenance system and rail shaving and correcting system
JP2000319815A (en) Road face information-systematizing method for pavement
JP4643537B2 (en) Adjusting the steering wheel spoke angle
US20190345678A1 (en) Road surface profiler, road surface profiler performance measuring instrument, and method for assessing performance of same road surface profiler by using same measuring instrument
CN205529820U (en) Experimental wheel crack center can be checked and approved and graceful roof beam benkelman beams deflectometer in bake of position is stopped
JP4615271B2 (en) Road surface profile measurement method
CN104390587B (en) Linear detection method based on rigid carrier running orbit analytical algorithm and device
JP2003004440A (en) Method of measuring longitudinal section profile of road surface

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4691325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees