JP2005339960A - Object lens, electron beam device and defect inspection method - Google Patents

Object lens, electron beam device and defect inspection method Download PDF

Info

Publication number
JP2005339960A
JP2005339960A JP2004156386A JP2004156386A JP2005339960A JP 2005339960 A JP2005339960 A JP 2005339960A JP 2004156386 A JP2004156386 A JP 2004156386A JP 2004156386 A JP2004156386 A JP 2004156386A JP 2005339960 A JP2005339960 A JP 2005339960A
Authority
JP
Japan
Prior art keywords
sample
lens
objective lens
optical axis
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004156386A
Other languages
Japanese (ja)
Other versions
JP2005339960A5 (en
Inventor
Mamoru Nakasuji
護 中筋
Toru Satake
徹 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004156386A priority Critical patent/JP2005339960A/en
Priority to US11/136,668 priority patent/US7420164B2/en
Publication of JP2005339960A publication Critical patent/JP2005339960A/en
Publication of JP2005339960A5 publication Critical patent/JP2005339960A5/ja
Priority to US12/219,802 priority patent/US20080315090A1/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an AT number necessary for executing a lens operation and magnetic flux density in a magnetic pole from increasing, in an object lens for focusing an electron beam on a sample. <P>SOLUTION: This electron beam device is characterized by that a magnetic gap formed by an inner magnetic pole and an outer magnetic pole of this object lens is formed on the side of a sample; the outside surface and the inside surface of the inner magnetic pole and the outer magnetic pole forming the magnetic gap have a shape of a part of a cone having an apex angle in which an angle formed by an optical axis and itself is not smaller than 45°; and cross-sectional shapes of the magnetic poles in the vicinity of the sample have an angle not smaller than 90°. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は最小線幅0.1μm以下のパターを有する試料、例えば、基板のパターン評価を高スループットで行う装置及び方法及びこれらに用いる対物レンズに関する。   The present invention relates to an apparatus and method for performing pattern evaluation of a sample having a minimum line width of 0.1 μm or less, for example, a substrate at a high throughput, and an objective lens used therefor.

従来の技術とその問題点Conventional technology and its problems

従来、基板上に形成されたパターンの評価を電子線装置を用いて行う際に、電子線を試料上に結像させる対物レンズであって、光軸側の内側電極とこれに対向する外側電極が作る磁気ギャップが試料側にある電磁レンズでは、レンズ動作を行うのに必要なAT(アンペア・ターン)数が大きくなる問題があり、さらに磁気ギャップの場所とビームが通る場所が遠いことによって磁極内の磁束密度が大きくなり過ぎ、磁性材料の透磁率が飽和して、必要な軸上磁場分布が得られない問題があった。本願発明は、合焦条件を得るための励磁電流のAT数が大きくならず、また、磁極の磁束密度も大きくならない対物レンズを提供することを目的とする。   2. Description of the Related Art Conventionally, an objective lens for imaging an electron beam on a sample when a pattern formed on a substrate is evaluated using an electron beam apparatus, an inner electrode on the optical axis side and an outer electrode opposite to the inner electrode There is a problem that the number of ATs (ampere turns) required for lens operation increases, and the magnetic gap is far away from the place where the beam passes. There is a problem that the magnetic flux density inside becomes too large, the magnetic permeability of the magnetic material is saturated, and the necessary on-axis magnetic field distribution cannot be obtained. An object of the present invention is to provide an objective lens in which the AT number of the excitation current for obtaining the focusing condition is not increased and the magnetic flux density of the magnetic pole is not increased.

さらに磁気レンズは静電レンズよりも収差係数が小さいにもかかわらず、対物レンズとして使う場合に、試料面で軸上磁場がゼロでない場合は、試料面から法線方向に放出された電子は対物レンズによって集束された時に、光軸と交わらず、このため、クロスオーバ位置でNA開口を設けることができず高解像度の像を得られないという問題があった。すなわち、そこにNA開口を設けると、光軸から離れた位置から来た電子が必要以上にNA開口で遮られ、周辺部の像が暗くなる欠点がある。本願発明は、磁気レンズを使用し、しかも光軸上にクロスオーバを作りそこにNA開口を設けて収差低減を図ることを目的とする。   Furthermore, even though the magnetic lens has a smaller aberration coefficient than the electrostatic lens, when it is used as an objective lens, if the axial magnetic field is not zero on the sample surface, electrons emitted from the sample surface in the normal direction are not objective. When focused by the lens, there is a problem that an NA aperture cannot be provided at the crossover position and a high-resolution image cannot be obtained without crossing the optical axis. That is, if an NA aperture is provided there, there is a drawback that electrons coming from a position away from the optical axis are blocked by the NA aperture more than necessary, and the image of the peripheral portion becomes dark. An object of the present invention is to reduce aberration by using a magnetic lens, making a crossover on the optical axis, and providing an NA aperture there.

また、スループットを向上させるためマルチビームを作り試料上を走査して試料から放出された2次電子を検出器上に投影する従来の光学系では、対物レンズに静電レンズを用いていたので、収差が大きく、ビームを小さく絞ったときに大きいビーム電流が得られないという問題があった。本願発明は、レンズギャップが試料側にある電磁レンズを用いてマルチビームを絞り、しかも大きいビーム電流が得られるようにすることを目的とする。   Further, in order to improve the throughput, the conventional optical system that scans the sample and scans the sample to project the secondary electrons emitted from the sample on the detector uses an electrostatic lens as the objective lens. There is a problem that a large beam current cannot be obtained when the beam is narrowed down because the aberration is large. It is an object of the present invention to stop a multi-beam using an electromagnetic lens having a lens gap on the sample side and to obtain a large beam current.

また、試料上に磁場があると、試料から垂直に出たビームが光軸と交わらないのでNA開口を設けられず、2次ビームの隣のビームとのクロストークが大きい問題があった。本願発明は、かかる場合においても、隣のビームとのクロストークを小さくして高精度の画像が得られるようにすることを目的とする。   Further, when there is a magnetic field on the sample, a beam perpendicularly emitted from the sample does not intersect the optical axis, so that an NA aperture cannot be provided, and there is a problem that crosstalk with a beam adjacent to the secondary beam is large. Even in such a case, the present invention has an object to reduce the crosstalk with the adjacent beam so that a highly accurate image can be obtained.

さらに、従来のマルチビームを用いる方法では、一次ビームのビーム寸法を小さく絞って解像度を良くしているが、ビーム径を小さくするとビーム電流がビーム径の4乗に比例して小さくなるので、S/N比のよい信号を得るには長時間を要する欠点がある。本願発明は、一次ビームの寸法を太いままで使用し、二次光学系の解像度を向上させることにより高解像度の画像が得られるようにすることを目的とする。   Furthermore, in the conventional method using a multi-beam, the beam size of the primary beam is reduced to improve the resolution. However, if the beam diameter is reduced, the beam current decreases in proportion to the fourth power of the beam diameter. There is a drawback that it takes a long time to obtain a signal with a good / N ratio. It is an object of the present invention to obtain a high-resolution image by using the primary beam size up to now and improving the resolution of the secondary optical system.

さらに、従来、電子線を試料に照射し、試料から放出あるいは反射される電子線を光学系で検出器面に結像させ又は集束させて試料の欠陥検出を行う検査においては、検査対象となるダイ全体を同一幅のストライプに分割し、ストライプごとに参照画像と被検査画像とを比較して欠陥検出を行っていたが、ダイ全体を同一幅のストライプに分割すると、一つのストライプ内の主視野内(x方向の走査範囲内)にダイツウダイ比較で検査を行わねばならない領域と、セルツウセル比較で検査が行わねばならない領域とが混在する問題があった。このため、一つのストライプの走査中にダイツウダイ比較を行う回路と、セルツウセル比較を行う回路の切り替えを行わねばならす、切換え作業は非常に困難であった。本願発明は、一つのストライプの走査中にかかる切換え作業を必要としない検査方法を提供することを目的とする。   Further, conventionally, in an inspection in which a sample is irradiated with an electron beam and the electron beam emitted or reflected from the sample is imaged or focused on a detector surface by an optical system, it is an inspection object. The entire die is divided into stripes of the same width, and defect detection is performed by comparing the reference image and the image to be inspected for each stripe. However, if the entire die is divided into stripes of the same width, the main image in one stripe is divided. There is a problem that a region where inspection must be performed by die-to-die comparison and a region where inspection must be performed by cell-to-cell comparison are mixed in the field of view (scanning range in the x direction). For this reason, it is very difficult to switch between a circuit that performs die-to-die comparison and a circuit that performs cell-to-cell comparison during scanning of one stripe. An object of the present invention is to provide an inspection method that does not require such switching work during scanning of one stripe.

上記目的を達成するために、請求項1の発明では、電子線を試料上に結像させる対物レンズであって、光軸側の内側磁極及びこれに対向する外側磁極が作る磁気ギャップが試料側に形成され、上記磁気ギャップを形成している内側磁極及び外側磁極のそれぞれ外側面及び内側面は光軸とのなす角が45度以上の頂角を有する円錐の一部の形状を有し、且つ、これらの磁極の試料付近の断面形状は90゜以上の角度を有する事を特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided an objective lens for imaging an electron beam on a sample, wherein the magnetic gap formed by the inner magnetic pole on the optical axis side and the outer magnetic pole opposite thereto is provided on the sample side. And the outer and inner surfaces of the inner and outer magnetic poles forming the magnetic gap have the shape of a part of a cone having an apex angle of 45 degrees or more with the optical axis, The cross-sectional shape of these magnetic poles near the sample is characterized by having an angle of 90 ° or more.

請求項2の発明では、電子線装置であって、電子銃、照射光学系、電子線透過性試料、結像光学系を一本の光軸上に配置し、電子銃が作るクロスオーバ像を上記結像光学系の磁気レンズを含む対物レンズの主面近傍に結像させ、照視野を決める開口の像を上記試料に結像させ、試料を透過した電子を上記対物レンズで拡大し、後方の拡大レンズの手前に拡大像を作り、さらに上記拡大レンズで検出器に拡大像を形成する事を特徴とする。   The invention of claim 2 is an electron beam apparatus, wherein an electron gun, an irradiation optical system, an electron beam transmissive sample, and an imaging optical system are arranged on one optical axis, and a crossover image formed by the electron gun is obtained. An image is formed near the main surface of the objective lens including the magnetic lens of the imaging optical system, an image of an aperture that determines the irradiation field is formed on the sample, and the electron that has passed through the sample is enlarged by the objective lens, A magnified image is formed in front of the magnifier lens, and a magnified image is formed on the detector by the magnifier lens.

請求項3の発明では、一本の光軸の近傍に複数のビームを形成し、対物レンズで試料面に結像させ、対物レンズの電子銃側に設けた2段の偏向器で試料面上を走査し、走査点から放出された2次電子を対物レンズを通過後、レンズ内部に設けたE×B分離器で一次光学系から分離し、少なくとも1段の拡大レンズで検出器面に結像させ検出する電子線装置に於て、上記2段の偏向器による偏向中心を上記対物レンズの主面より電子銃側で、且つ、偏向時のコマ収差が最小になる位置と、偏向色収差が最小になる位置との間になる様に上記2段の偏向器の偏向感度比を調整した事を特徴とする。   In the invention of claim 3, a plurality of beams are formed in the vicinity of one optical axis, imaged on the sample surface by the objective lens, and the two-stage deflector provided on the electron gun side of the objective lens on the sample surface. After the secondary electron emitted from the scanning point passes through the objective lens, it is separated from the primary optical system by the E × B separator provided inside the lens, and is connected to the detector surface by at least one stage of the magnifying lens. In the electron beam apparatus for imaging and detecting, the deflection center by the two-stage deflector is closer to the electron gun side than the main surface of the objective lens, and the position where the coma aberration at the time of deflection is minimized, and the deflection chromatic aberration is It is characterized in that the deflection sensitivity ratio of the two-stage deflector is adjusted so as to be between the minimum position.

請求項4の発明は、電子銃から放出された電子線を成形開口で成形し試料面に結像させ、試料から放出された電子を対物レンズを通過後E×B分離器で一次ビームから分離後複数のレンズで拡大し検出器に結像させる電子線装置であって、電子銃が作るクロスオーバ像を1段の磁気レンズで対物レンズの主面に結像させ、且つ少なくともE×B分離器と試料面間は一次ビームと二次ビームの主光線が異る場所を通る事を特徴とする。   According to a fourth aspect of the present invention, an electron beam emitted from an electron gun is shaped by a shaping aperture to form an image on a sample surface, and electrons emitted from the sample are separated from a primary beam by an E × B separator after passing through an objective lens. This is an electron beam device that is magnified by a plurality of lenses and forms an image on a detector. A crossover image formed by an electron gun is formed on the main surface of an objective lens by a single stage magnetic lens, and at least E × B separation is performed. The primary beam and the secondary beam pass through different locations between the vessel and the sample surface.

請求項5の発明は、電子線を試料に照射し、試料を通過し、試料から放出され、試料から反射し、あるいは試料に入射前に反射される電子を写像投影光学系で検出器面に結像又は集束させて検出することにより欠陥を検出する方法であって、試料面をダイツウダイで欠陥検出を行うべき領域とセルツウセルで欠陥検出を行う領域とを認識するステップと、
上記2つの領域間の境界のx座標を認識するステップと、
試料台をy方向に連続移動させながら試料像を取得するストライプにダイ全体を分割するステップと、
ストライプ単位で試料像を取得し欠陥検出を行うステップとを有し、
ストライプの端のx座標を上記2つの境界のx座標とを一致させる様に上記ストライプの分割を行う事を特徴とする。
The invention according to claim 5 irradiates the sample with an electron beam, passes through the sample, is emitted from the sample, is reflected from the sample, or is reflected from the sample before being incident on the sample surface by the mapping projection optical system. A method of detecting defects by imaging or focusing and detecting, the step of recognizing a region on the sample surface where defect detection should be performed with a die-to-die and a region where defect detection is performed with a cell-to-cell;
Recognizing the x coordinate of the boundary between the two regions;
Dividing the entire die into stripes for acquiring sample images while continuously moving the sample stage in the y direction;
Obtaining a sample image in stripe units and performing defect detection,
The stripe is divided so that the x coordinate of the end of the stripe matches the x coordinate of the two boundaries.

請求項6の発明は、電子線装置であって、電子銃、コンデンサレンズ、偏向器が一つの光軸上にあり、対物レンズ、E×B分離器が上記光軸と離れた別の光軸上に配置し、上記偏向器で上記E×B分離の中心方向に電子線を偏向させる事を特徴とする。   The invention of claim 6 is an electron beam apparatus, wherein the electron gun, the condenser lens, and the deflector are on one optical axis, and the objective lens and the E × B separator are separated from the optical axis. The electron beam is arranged above and deflects the electron beam toward the center of the E × B separation by the deflector.

請求項7の発明は、電子線装置であって、電子銃から放出された電子線をE×B分離器で偏向し、試料に垂直入射させ、試料から放出された2次的粒子をE×B分離器で、試料の法線方向と平行な別の光軸を有する偏向器の中心方向へ偏向し、該偏向器で上記別の光軸に合せる事を特徴とする。   The invention of claim 7 is an electron beam apparatus, in which an electron beam emitted from an electron gun is deflected by an E × B separator, vertically incident on a sample, and secondary particles emitted from the sample are converted to E × The B separator is characterized by deflecting toward the center of a deflector having another optical axis parallel to the normal direction of the sample, and aligning with the other optical axis by the deflector.

請求項8の発明は、デバイスを製造する方法であって、
ウェーハを準備するステップと、
ウェーハプロセスを行うステップと、
請求項1〜4、6、7のいずれかにに示した電子線装置を用いてプロセス後のウェーハを評価するステップとからなり、
上記ステップを必要な数くり返すことによりデバイスに組み上げることを特徴とする。
The invention of claim 8 is a method of manufacturing a device, comprising:
Preparing a wafer;
Performing the wafer process;
And evaluating the post-process wafer using the electron beam apparatus according to any one of claims 1 to 4, 6, and 7.
The above steps are assembled into a device by repeating as many times as necessary.

発明実施の形態Embodiment of the Invention

(第1の実施例)
図1は本発明の電子線装置に使われる対物レンズ100の断面形状を示したものである。光軸101の回りに回転したものが実際の構造である。
図の上方には電子銃(図示せず)が備えられ、この電子銃から放出される一次電子線を光軸を通して当該対物レンズによって試料113の表面に集束するようになっている。この対物レンズは、光軸側の内側磁極103と、これに対向する外側磁極105と、磁気回路107とで励磁コイル109を囲む構造を有し、レンズギャップ111が試料113側に向かって開口するように形成されている。115は、試料から放出される2次電子を検出器(図示せず)の方へ曲げるE×B分離器で静電偏向器117と電磁偏向器119とを含む。121は2次電子の主光線の軌道である。試料113には負の高電圧が印加される。
(First embodiment)
FIG. 1 shows a cross-sectional shape of an objective lens 100 used in the electron beam apparatus of the present invention. What is rotated around the optical axis 101 is the actual structure.
An electron gun (not shown) is provided above the drawing, and a primary electron beam emitted from the electron gun is focused on the surface of the sample 113 by the objective lens through the optical axis. This objective lens has a structure in which an excitation coil 109 is surrounded by an inner magnetic pole 103 on the optical axis side, an outer magnetic pole 105 opposite to the inner magnetic pole 105, and a magnetic circuit 107, and a lens gap 111 opens toward the sample 113 side. It is formed as follows. Reference numeral 115 denotes an E × B separator that bends secondary electrons emitted from the sample toward a detector (not shown), and includes an electrostatic deflector 117 and an electromagnetic deflector 119. Reference numeral 121 denotes a trajectory of a principal ray of secondary electrons. A negative high voltage is applied to the sample 113.

当該対物レンズ100は、従来の対物レンズと異なり、レンズギャップの断面形状が光軸と平行ではなく、試料側で半径が小さく、電子銃側で半径が大きい円錐台のような形状を有する。このような円錐台形状とすることにより、合焦条件を得るための励起電流のAT(アンペアターン)数が、光軸に平行なレンズギャップの場合に比べて半分程度に減少することがシュミレーションで確かめられている。   Unlike the conventional objective lens, the objective lens 100 has a shape like a truncated cone in which the sectional shape of the lens gap is not parallel to the optical axis, the radius is small on the sample side, and the radius is large on the electron gun side. By using such a truncated cone shape, the simulation shows that the AT (ampere turn) number of the excitation current for obtaining the focusing condition is reduced by about half compared to the case of the lens gap parallel to the optical axis. It has been confirmed.

内側磁極103はE×B分離器115を配置するため、光軸と45゜より大きい角度を持つ円錐の一部の構造となっている。外側磁極105も同様な円錐の内側の一部の構造を有する。内側磁極103及び外側磁極105の円錐面と光軸101とのなす角度を45°以上とすると、磁極の磁束密度が小さく、低飽和磁束密度の材料も使用可能となる。しかし、磁極をこのような構造にすると、各磁極を通る磁束密度が、内側磁極103と外側磁極105の対抗部分で大きくなり、材料の飽和磁束密度に近くなるという問題を生ずる。とくに外側磁極105の内面がこのように円錐形状を有すると、123の部分で鋭角の断面を有する部分がレンズギャップの試料側に形成される。このままにしておくと、この鋭角部に磁束が集中し、磁束密度が大きくなり過ぎ強磁性材料の透磁率が飽和する。透磁率が飽和すると、磁束が本来の場所を通らなくなり、それに伴って軸上磁気密度が軸方向に広がり、収差特性を悪くすることになる。これを避けるため、123部分の角が鈍角になり、しかも円錐の内面形状を変えないようにするために125の部材を追加する様にした。このように、内側磁極及び外側磁極の試料付近の断面形状を90°以上の角度を持たせることにより、磁性材料の透磁率が飽和する問題を回避することができる。   Since the E × B separator 115 is disposed, the inner magnetic pole 103 has a structure of a part of a cone having an angle larger than 45 ° with respect to the optical axis. The outer magnetic pole 105 has a similar partial structure inside the cone. When the angle formed between the conical surfaces of the inner magnetic pole 103 and the outer magnetic pole 105 and the optical axis 101 is 45 ° or more, the magnetic flux density of the magnetic pole is small, and a material having a low saturation magnetic flux density can be used. However, when the magnetic poles have such a structure, the magnetic flux density passing through each magnetic pole becomes large at the opposing portion of the inner magnetic pole 103 and the outer magnetic pole 105, which causes a problem that the magnetic flux density approaches the saturation magnetic flux density of the material. In particular, when the inner surface of the outer magnetic pole 105 has such a conical shape, a portion having an acute cross section at the portion 123 is formed on the sample side of the lens gap. If this is left as it is, the magnetic flux concentrates at this acute angle portion, the magnetic flux density becomes too high, and the magnetic permeability of the ferromagnetic material is saturated. When the magnetic permeability is saturated, the magnetic flux does not pass through the original place, and accordingly, the on-axis magnetic density spreads in the axial direction and the aberration characteristic is deteriorated. In order to avoid this, the angle of the 123 portion becomes an obtuse angle, and 125 members are added in order not to change the inner shape of the cone. As described above, the cross section of the inner magnetic pole and the outer magnetic pole in the vicinity of the sample has an angle of 90 ° or more, thereby avoiding the problem of saturation of the magnetic material permeability.

109の励磁コイルは、実際は外径をさらに大きくし、Z方向の寸法も大きくして太い線を多く巻ける様にする。127は軸上磁場が大きい場所での電位を大きくするための正の高電圧を印加する軸対称円盤型の電極である。この電極は外側磁極105に絶縁スペーサー(図示せず)で固定され、内側磁極103の穴と本電極のボーアの同軸度が良くなる様、レンズ全体を組み立てた後電極部127の穴を最終加工し、一度分解、洗條後再組み立てを行っても良い。電極127に電圧を印加するリード線は両磁極の間にハーメチックシール129を設けて外部へ取り出しても良いし、あるいは外側磁極105の下から取り出しても良い。131はコイル部109を大気下に置くため、該コイル部を電子線装置の真空部分から分離するための真空壁部材であってO−リング133で真空シールが行われる。   The exciting coil 109 actually has a larger outer diameter and a larger dimension in the Z direction so that many thick wires can be wound. Reference numeral 127 denotes an axisymmetric disk-type electrode that applies a positive high voltage for increasing the potential at a location where the axial magnetic field is large. This electrode is fixed to the outer magnetic pole 105 with an insulating spacer (not shown), and the hole of the electrode part 127 is finally processed after the entire lens is assembled so that the coaxiality of the hole of the inner magnetic pole 103 and the bore of the main electrode is improved. However, it may be reassembled after being disassembled and washed. A lead wire for applying a voltage to the electrode 127 may be taken out by providing a hermetic seal 129 between both magnetic poles, or may be taken out from under the outer magnetic pole 105. Reference numeral 131 denotes a vacuum wall member for separating the coil unit 109 from the vacuum part of the electron beam apparatus in order to place the coil unit 109 in the atmosphere, and vacuum sealing is performed by an O-ring 133.

E×B分離機115の電磁偏向器119のコアを内側磁極103と共通にする事により、対物レンズ100とE×B分離器115の各偏向器との同軸度を向上させることができる。117はE×B分離機の静電偏向器でセラミックスの一体構造にすることによって小外径寸法にしている。なお、図示の実施例では外側磁極の円錐面105a、105bがそれぞれ光軸となす角度が異なっているが、たまたまシュミレーションでこの形状が良かったためであり、同じ円錐面であってもよい。   By making the core of the electromagnetic deflector 119 of the E × B separator 115 common to the inner magnetic pole 103, the coaxiality between the objective lens 100 and each deflector of the E × B separator 115 can be improved. Reference numeral 117 denotes an electrostatic deflector of an E × B separator, which has a small outer diameter by making an integrated ceramic structure. In the illustrated embodiment, the angles formed by the conical surfaces 105a and 105b of the outer magnetic pole and the optical axis are different from each other. However, this is because the shape is good by simulation and may be the same conical surface.

以上のように、本実施例によれば、合焦条件を得るための励起電流のAT(アンペアターン)数を減少させることができ、また、磁性材料の透磁率が飽和する問題を回避できる対物レンズを提供することができる。   As described above, according to this embodiment, it is possible to reduce the AT (ampere turn) number of the excitation current for obtaining the focusing condition, and to avoid the problem that the magnetic material permeability is saturated. A lens can be provided.

(第2の実施例)
図2は本発明の対物レンズを用いた透過マスクの検査装置の光学系を示したものである。LaBカソード電子銃201を空間電荷制限条件で動作させ、電子銃201から放出された電子をコンデンサレンズ203で集束し、長方形の整形開口205を一様な強度で照射し、照射レンズ207でステンシルマスク(試料)209に結像させる。そして電子銃が作るクロスオーバ像を対物レンズ211の主面に結像させる。対物レンズ211はその軸上磁場が試料209の位置でまだ大きい値になっている。従って試料209から法線方向に放出された電子はクロスオーバ213で光軸と交叉しない。
(Second embodiment)
FIG. 2 shows an optical system of a transmission mask inspection apparatus using the objective lens of the present invention. The LaB 6 cathode electron gun 201 is operated under the space charge limiting condition, the electrons emitted from the electron gun 201 are focused by the condenser lens 203, the rectangular shaped opening 205 is irradiated with uniform intensity, and the stencil is irradiated by the irradiation lens 207. An image is formed on a mask (sample) 209. Then, a crossover image formed by the electron gun is formed on the main surface of the objective lens 211. The objective lens 211 has a large magnetic field on the axis at the position of the sample 209. Therefore, electrons emitted from the sample 209 in the normal direction do not cross the optical axis at the crossover 213.

従来は、レンズ207による主光線の軌道をステンシルマスク209に垂直に入射させていた。このため、軸上磁場がゼロでない場所にあるステンシルマスク209から垂直に出たビームは、クロスオーバ213で光軸と交わらず、従って、ここにNA開口を設けると、光軸から離れた位置から来たビームが必要以上にNA開口で遮られ、周辺部の像が暗くなる欠点があった。   Conventionally, the principal ray trajectory by the lens 207 is incident on the stencil mask 209 perpendicularly. For this reason, the beam emitted perpendicularly from the stencil mask 209 where the on-axis magnetic field is not zero does not intersect the optical axis at the crossover 213. Therefore, if an NA aperture is provided here, the beam is separated from the position away from the optical axis. The incoming beam was blocked by the NA aperture more than necessary, and the peripheral image was darkened.

本発明では、レンズ207による主光線の軌道を215で示したように試料209に垂直に入射させるのではなく、対物レンズ211の主面でクロスするような角度で入射させるようにしたので、213にクロスオーバを作ることができ、従って、ここにNA開口217を設けて収差低減を計ることができる。   In the present invention, the principal ray trajectory by the lens 207 is not incident on the sample 209 perpendicularly as indicated by reference numeral 215, but is incident at an angle that crosses the principal surface of the objective lens 211. Therefore, the NA aperture 217 can be provided here to reduce the aberration.

これをさらに説明すると、磁気レンズは電子線を光軸まわりに回転させながら集束作用を行う。従って、図2Bに示すように、試料が軸上磁場分布がゼロの場所にあると、そこから垂直に出たビーム、例えば試料のA,B点から出たビームは点線で示す仮想面では図2Cに示すようにA’,B’点へ回転している。従って、A’,B’点では軌道はZ軸(光軸)に平行ではなく、「速度ベクトル」で示したように回転方向の成分を持つ。このような軌道のビームのみがC点でクロスオーバを作る(光軸と交わる)。もし仮想面の位置に試料があると、そこから垂直に出たビームは回転方向の速度ベクトルを持っていないのでC点で光軸と交わらない。A,B点から出るビームが垂直ではなく、放射方向の成分のみを持っているビームであればレンズの軸上磁場がゼロになっている場所でフォーカスされる場合はクロスオーバを作る。一般に、軸上磁場がゼロの場所でクロスオーバを作っていたビームがレンズの軸上磁場がゼロの場所でフォーカスされる場合はクロスオーバを作る。   To explain this further, the magnetic lens performs the focusing action while rotating the electron beam around the optical axis. Therefore, as shown in FIG. 2B, when the sample is at a position where the axial magnetic field distribution is zero, the beam vertically emitted from the sample, for example, the beam emitted from points A and B of the sample is not shown in the virtual plane indicated by the dotted line. As shown in 2C, it is rotating to the points A ′ and B ′. Therefore, at the points A ′ and B ′, the trajectory is not parallel to the Z axis (optical axis) but has a component in the rotation direction as indicated by the “velocity vector”. Only such orbital beams make a crossover at point C (intersect the optical axis). If there is a sample at the position of the imaginary plane, the beam emitted perpendicularly from the sample does not have a velocity vector in the rotation direction, and therefore does not intersect the optical axis at point C. If the beam emitted from the points A and B is not vertical but has only a component in the radial direction, a crossover is created when the beam is focused at a position where the on-axis magnetic field of the lens is zero. Generally, if a beam that has made a crossover at a location where the on-axis magnetic field is zero is focused at a location where the on-axis magnetic field of the lens is zero, a crossover is made.

図示例では、ステンシルマスク209から出る電子線の主光線は放射方向は集束ビームであるが、方位角方向も法線と角度を有するビームで、回転しながら対物レンズ211の主面に向かい、そこでクロスオーバを作ると同時に光軸と交わる。従って拡大レンズ219が作るクロスオーバ213で光軸と交わるので213の位置にNA開口217を設けることができ高解像度の像を得ることができる。   In the illustrated example, the principal ray of the electron beam exiting from the stencil mask 209 is a focused beam in the radiation direction, but the azimuth direction is also a beam having a normal and an angle, and is directed to the principal surface of the objective lens 211 while rotating. At the same time as creating a crossover, it intersects the optical axis. Accordingly, since the crossover 213 formed by the magnifying lens 219 intersects the optical axis, the NA aperture 217 can be provided at the position 213, and a high-resolution image can be obtained.

215はクロスオーバの結像線である。ステンシルマスク209はステージに固定されていて、長方形の照射領域の短辺方向に試料台221を連続移動させながら検査を行う。ステンシルマスク209から放出された透過電子は223で拡大像を作り、さらに拡大レンズ219でさらに拡大してシンチレータを塗布したFOP(ファイバ オプティックス プレート)窓225に像形成を行い、このシンチレータ面で光の像に変えられ、FOP窓で真空外へ取り出され光学レンズでTDI又はCCD検出器(図示せず)の検出面で検出され電気信号に変換され画像が形成され、欠陥検出が行われる。   Reference numeral 215 denotes a crossover imaging line. The stencil mask 209 is fixed to the stage, and the inspection is performed while continuously moving the sample table 221 in the short side direction of the rectangular irradiation region. The transmitted electrons emitted from the stencil mask 209 form an enlarged image at 223, and further enlarges the image with a magnifying lens 219 to form an image on a FOP (fiber optics plate) window 225 coated with a scintillator. The image is taken out of the vacuum through the FOP window, detected by the optical lens on the detection surface of the TDI or CCD detector (not shown), converted into an electrical signal, an image is formed, and defect detection is performed.

(第3実施例)
図3はマルチビームを照射する光学系で本発明の対物レンズを用いた本発明の第3の実施の形態を示したものである。電子銃301は図2の実施例と同様LaBカソード電子銃を空間電荷制限条件で動作させる。電子銃301から出た電子線はコンデンサレンズ303と回転調整可能な回転レンズ305とでNA開口307にクロスオーバを作る。回転レンズ305の手前にマルチ開口309を設けマルチビームを形成する。コンデンサレンズ303は次のレンズ305との間にクロスオーバを作らないでNA開口307でのクロスオーバ倍率を変えることによってマルチ開口でのビーム電流密度を調整する。この光学系ではレンズはすべて電磁レンズであるのでマルチビームの姿勢を試料上の座標に合せる必要がある。回転レンズ305は2つのレンズギャップを有し、各レンズギャップで発生する磁場の方向が逆になる様に設定されていて、両方のギャップで発生する磁場によるレンズ強度を変えないで回転量を調整することができる。マルチ開口309でマルチビームに成形されたビームは縮小レンズ311と対物レンズ313とで縮小され、試料315上に細く絞られたマルチビームを合焦させる。ここでNA開口309の寸法を最適化することによって収差とビーム電流の値を最適化できる。対物レンズ313は磁気ギャップが試料315側にあり、試料との間に正の高電圧を印加する軸対称円盤型の穴あき電極317を設け、収差係数を小さくしている。
(Third embodiment)
FIG. 3 shows a third embodiment of the present invention using an objective lens of the present invention in an optical system for irradiating a multi-beam. The electron gun 301 operates a LaB 6 cathode electron gun under the space charge limiting condition as in the embodiment of FIG. The electron beam emitted from the electron gun 301 creates a crossover at the NA aperture 307 by the condenser lens 303 and the rotatable rotating lens 305. A multi-aperture 309 is provided in front of the rotating lens 305 to form a multi-beam. The condenser lens 303 adjusts the beam current density at the multi-aperture by changing the crossover magnification at the NA aperture 307 without creating a crossover with the next lens 305. In this optical system, all the lenses are electromagnetic lenses, so it is necessary to match the attitude of the multi-beam to the coordinates on the sample. The rotating lens 305 has two lens gaps, and the direction of the magnetic field generated in each lens gap is set to be reversed, and the amount of rotation is adjusted without changing the lens intensity due to the magnetic field generated in both gaps. can do. The beam formed into a multi-beam by the multi-opening 309 is reduced by the reduction lens 311 and the objective lens 313, and the multi-beam narrowed down on the sample 315 is focused. Here, the value of the aberration and the beam current can be optimized by optimizing the size of the NA aperture 309. The objective lens 313 has a magnetic gap on the sample 315 side, and is provided with an axially symmetric disk-shaped perforated electrode 317 for applying a positive high voltage to the sample 315 to reduce the aberration coefficient.

対物レンズ313の内部には静電偏向器319と電磁偏向器321とを含むE×B分離器323が設けられ、試料315から放出された2次電子を対物レンズ313で加速、集束し、E×B分離器323で図の右側に偏向し、2次光学系へ向かわせる。シュミレーションによると一次電子は103゜程度対物レンズ313で回転し、2次電子は115゜程度反対方向へ回転させる。   An E × B separator 323 including an electrostatic deflector 319 and an electromagnetic deflector 321 is provided inside the objective lens 313, and secondary electrons emitted from the sample 315 are accelerated and focused by the objective lens 313, and E The light is deflected to the right side of the figure by the xB separator 323 and directed to the secondary optical system. According to the simulation, the primary electrons are rotated by the objective lens 313 by about 103 °, and the secondary electrons are rotated in the opposite direction by about 115 °.

E×B分離器323には偏向のために直流電圧、直流電流が与えられ、走査には無関係に常時同じ値の電圧及び電流が与えられている。これに対して、走査のために三角波が与えられ、交流電圧が静電偏向器325とE×B分離器323の静電偏向器319とに与えられる。従って、E×B分離器323の静電偏向器319には2次電子の分離動作のための直流電圧と1次電子の走査のための三角波とが重畳して与えられることになる。   The E × B separator 323 is supplied with a DC voltage and a DC current for deflection, and is always supplied with the same voltage and current regardless of scanning. In contrast, a triangular wave is applied for scanning, and an AC voltage is applied to the electrostatic deflector 325 and the electrostatic deflector 319 of the E × B separator 323. Therefore, the electrostatic deflector 319 of the E × B separator 323 is supplied with a DC voltage for secondary electron separation operation and a triangular wave for scanning primary electrons superimposed.

E×B分離器313は一次ビームを偏向させないが偏向色収差は発生させる。すなわち、E×B分離器は一定のビームエネルギーを持った一次ビームを直進させるが、そのエネルギーと若干異なるエネルギーを持った電子線は直進させずに、わずかに偏向させる、すなわち、色収差が発生する。E×B分離器323が発生させる偏向収差の方向と走査偏向器325が発生させる偏向収差の方向を90゜変えると両者の偏向収差が加算される事がない。試料台をy方向に連続移動させながら検査を行う装置では、走査方向はx方向が大きいから、E×B分離器323の偏向方向は試料面でy方向とし、従って対物レンズ313を通過した後、2次光学系の方向をy方向から対物レンズで115゜回転した方向が良い。この事を説明する図を図3(b)に示す。即ち、同図で327は試料上での走査方向(静電偏向器325とE×B分離器の静電偏向器319の三角波による)、329は試料上でのE×B分離器の偏向方向(静電偏向器319の直流電圧及び電磁偏向器321の電圧による)、331は2次光学系の方向、333は対物レンズ313による2次電子の回転である。   The E × B separator 313 does not deflect the primary beam but generates deflection chromatic aberration. That is, the E × B separator linearly travels a primary beam having a constant beam energy, but an electron beam having an energy slightly different from that energy is slightly deflected, that is, chromatic aberration is generated. . If the direction of the deflection aberration generated by the E × B separator 323 and the direction of the deflection aberration generated by the scanning deflector 325 are changed by 90 °, the deflection aberrations of both are not added. In an apparatus that inspects while continuously moving the sample stage in the y direction, the scanning direction is large in the x direction. Therefore, the deflection direction of the E × B separator 323 is set to the y direction on the sample surface, and thus after passing through the objective lens 313. A direction in which the direction of the secondary optical system is rotated by 115 ° with the objective lens from the y direction is preferable. A diagram for explaining this is shown in FIG. That is, in the figure, reference numeral 327 denotes a scanning direction on the sample (by the triangular wave of the electrostatic deflector 319 and the electrostatic deflector 319 of the E × B separator), and 329 denotes a deflection direction of the E × B separator on the sample. (Depending on the DC voltage of the electrostatic deflector 319 and the voltage of the electromagnetic deflector 321) 331 is the direction of the secondary optical system, 333 is the rotation of secondary electrons by the objective lens 313.

走査時の主光線の軌道は静電偏向器325で偏向され、E×B分離器323の静電偏向器319で振り戻され、偏向中心335を中心として偏向される。この偏向中心335の位置は2段の静電偏向器325及び319の偏向量比を変えることにより調整することができる。偏向中心335の位置はシュミレ−ションあるいは実測により、収差が最小になる値として求めればよい。すなわち、図3Bに示すように、偏向中心が対物レンズ313の主面より電子銃側で、且つ、偏向時のコマ収差が最小となる位置Aと、偏向色収差が最小になる位置Bとの間Lに来るように、好ましくは収差が最小になる位置Cに来るように上記2段の偏向器の偏向感度比を調整すればよい。   The trajectory of the principal ray at the time of scanning is deflected by the electrostatic deflector 325, returned by the electrostatic deflector 319 of the E × B separator 323, and deflected around the deflection center 335. The position of the deflection center 335 can be adjusted by changing the deflection amount ratio of the two-stage electrostatic deflectors 325 and 319. The position of the deflection center 335 may be obtained as a value at which aberration is minimized by simulation or actual measurement. That is, as shown in FIG. 3B, between the position A where the deflection center is closer to the electron gun side than the main surface of the objective lens 313 and the coma at the time of deflection is minimum, and the position B where the deflection chromatic aberration is minimum. The deflection sensitivity ratio of the two-stage deflector may be adjusted so as to be at L, preferably at position C where the aberration is minimized.

試料から放出された2次電子は対物レンズ313で集束され、E×B分離器323の偏向主面の近傍に拡大像を作る様に設計した。これによってE×B分離器の偏向色収差が拡大像に発生させる偏向色収差をほぼゼロにできる。E×B分離器の主面近傍で像を作った2次電子像はE×B分離器の静電偏向器319によって光軸方向へ戻されるので、試料上で100μm程度走査しても、E×B分離器を通過した後光軸近くを通るので、2段目の拡大レンズ337のボーア径を比較的小さくすることができる。ただし、レンズギャップ339から漏れた磁場が一次ビームの非点を発生させない様にレンズ337の下部磁極341の光軸方向の長さをボーア径の2倍以上にした。さらに一次ビームの真空壁をパーマロイとするとさらに確実に防止できる。すなわち、パーマロイは強磁性体であるためレンズギャップ339で発生して下部磁極341から漏れ出た磁束を磁気シールドすることができる。レンズ337はレンズ調整を行っても回転が生じない静電レンズとしてもよい。   The secondary electrons emitted from the sample were focused by the objective lens 313 and designed to create an enlarged image in the vicinity of the deflection main surface of the E × B separator 323. As a result, the deflection chromatic aberration generated by the deflection chromatic aberration of the E × B separator in the enlarged image can be made substantially zero. Since the secondary electron image formed in the vicinity of the main surface of the E × B separator is returned to the optical axis direction by the electrostatic deflector 319 of the E × B separator, even if the sample is scanned about 100 μm, E Since it passes near the optical axis after passing through the × B separator, the Bohr diameter of the second-stage magnifying lens 337 can be made relatively small. However, the length in the optical axis direction of the lower magnetic pole 341 of the lens 337 is set to be twice or more the Bohr diameter so that the magnetic field leaking from the lens gap 339 does not generate astigmatism of the primary beam. Furthermore, if the vacuum wall of the primary beam is made of permalloy, it can be prevented more reliably. That is, since permalloy is a ferromagnetic material, the magnetic flux generated at the lens gap 339 and leaking from the lower magnetic pole 341 can be magnetically shielded. The lens 337 may be an electrostatic lens that does not rotate even when lens adjustment is performed.

343は長焦点距離のレンズで結像条件はほとんど変えずに回転量を変え、マルチビームの姿勢と検出器の並び方向を調整する電磁レンズである。345はFOP(ファイバーオプティックスプレート)を有する真空窓で真空側にシンチレータが塗布してある。347は光学レンズで市販のカメラのズーム機構とオートフォーカス機構がそのまま使える。349はPMTアレーで8行8列のPMTを1個にまとめたものが市販されている。349は光軸と直角方向に移動可能なX−Yステージに乗せ、マルチビームからの光信号の位置とPMTの位置とを合せる。この代替案として、拡大レンズ337の後に8極の静電偏向器を設け、345の面のマルチビームの位置を合せる様にしてもよい。この8極の電極には、一次ビームの走査に同期した信号を与えることによって、走査位置に依存せず同じビームからの2次電子が常に同じ位置のシンチレータに入射する様にできる。さらに非点補正信号をこの電極に入れ、シンチレータ面で発生する非点も補正することができる。   A long focal length lens 343 is an electromagnetic lens that adjusts the orientation of the multi-beam and the arrangement direction of the detectors by changing the rotation amount with almost no change in the imaging condition. Reference numeral 345 denotes a vacuum window having an FOP (fiber optics plate), and a scintillator is applied to the vacuum side. An optical lens 347 can be used as it is with a zoom mechanism and an autofocus mechanism of a commercially available camera. Reference numeral 349 denotes a PMT array, which is a PMT array in which 8 rows and 8 columns of PMTs are combined into one. 349 is placed on an XY stage movable in a direction perpendicular to the optical axis, and the position of the optical signal from the multi-beam and the position of the PMT are matched. As an alternative, an 8-pole electrostatic deflector may be provided after the magnifying lens 337 so that the positions of the multi-beams on the surface of 345 are aligned. By giving a signal synchronized with the scanning of the primary beam to the eight-pole electrode, secondary electrons from the same beam can always enter the scintillator at the same position regardless of the scanning position. Furthermore, an astigmatism signal generated on the scintillator surface can be corrected by inputting an astigmatism correction signal to this electrode.

図3の(b)に2次光学系の方向を示す説明図がある。試料上を一次ビームが走査する方向はx軸に平行な走査327であり、E×B分離器323による偏向方向は試料上で329で示した様に静電偏向器319,電磁偏向器321共y軸に平行である。E×B分離器323の偏向方向を試料上で329の方向にすると対物レンズ313による二次ビームの回転量333を考慮し、331の方向に一次ビームが偏向されることになる。この結果二次ビームは331の方向に偏向されるので二次光学系を331の方向に設ける。   FIG. 3B is an explanatory diagram showing the direction of the secondary optical system. The scanning direction of the primary beam on the sample is scanning 327 parallel to the x axis, and the deflection direction by the E × B separator 323 is the same for both the electrostatic deflector 319 and the electromagnetic deflector 321 as indicated by 329 on the sample. Parallel to the y-axis. When the deflection direction of the E × B separator 323 is 329 on the sample, the primary beam is deflected in the direction 331 in consideration of the secondary beam rotation amount 333 by the objective lens 313. As a result, since the secondary beam is deflected in the direction of 331, a secondary optical system is provided in the direction of 331.

レンズ337のシンチレータでの焦点深度は十分深いので、2次ビームの回転量を変えてもシンチレータ面でビームのボケが増えることはない。従ってレンズ337を回転調整レンズとし、電磁レンズ343を省くことも可能である。351はPMT349の前面に設けられた光量調整用のマルチ開口である。光軸近くでは一次ビームの強度も強く、2次電子像の収差も小さいので信号量が大きいが、光軸から離れた周辺部では一次ビームの強度が小さく、2次系の収差も大きく信号量が小さくなる。従って、マルチ開口351を光軸近くでは小面積しと、光軸から遠くでは大面積とするとよい。特に各行、列の端では隣に検出器が無いので外側の開口無しでもクロストークは小さい。   Since the focal depth of the lens 337 in the scintillator is sufficiently deep, even if the amount of rotation of the secondary beam is changed, the blur of the beam does not increase on the scintillator surface. Therefore, the lens 337 can be a rotation adjustment lens, and the electromagnetic lens 343 can be omitted. Reference numeral 351 denotes a multi-aperture for adjusting the amount of light provided on the front surface of the PMT 349. Near the optical axis, the intensity of the primary beam is strong and the secondary electron image aberration is small, so the signal amount is large. However, in the peripheral part away from the optical axis, the intensity of the primary beam is small and the secondary system aberration is large and the signal amount is large. Becomes smaller. Therefore, it is preferable that the multi-aperture 351 has a small area near the optical axis and a large area far from the optical axis. In particular, since there is no detector next to the end of each row and column, crosstalk is small even without an outer opening.

なお、図において353はダイナミック補正のための偏向器、355は対物レンズ313の励磁コイル、357は該励磁コイルを大気中に置くため電子線装置の真空部から分離するためのシールリング、357は該シールリングのためのO−リングである。   In the figure, 353 is a deflector for dynamic correction, 355 is an excitation coil of the objective lens 313, 357 is a seal ring for separating the excitation coil from the vacuum part of the electron beam apparatus in order to place the excitation coil in the atmosphere, 357 An O-ring for the seal ring.

以上のように、本実施例では、電磁レンズ、しかもレンズギャップが試料側にあるレンズを用いてマルチビームを絞るので、ビームを小さく絞っても大きいビーム電流を得ることができる。また、試料上に磁場があるので試料から垂直に出たビームが光軸と交わらずNA開口を設けられず、隣のビームとのクロストークが大きいという問題があったが、本実施例ではNA開口を設ける代わりに、検出器の前に小開口を設けることにより、隣のビームとのクロストークを小さくして高精度の画像を得ることができる。   As described above, in this embodiment, since the multi-beam is focused using the electromagnetic lens and the lens having the lens gap on the sample side, a large beam current can be obtained even if the beam is narrowed down. Further, since there is a magnetic field on the sample, the beam perpendicular to the sample does not cross the optical axis and the NA aperture is not provided, and there is a problem that the crosstalk with the adjacent beam is large. By providing a small aperture in front of the detector instead of providing an aperture, crosstalk with the adjacent beam can be reduced and a highly accurate image can be obtained.

(第4実施例)
図4は一次ビームは大電流ではあるが低分解能のビームで試料上を走査し、2次電子像を拡大2次光学系で検出面に拡大して、この面に高解像にするための開口を設ける電子線装置に関する説明図である。一次ビーム(右側)は試料409の法線と約30度傾いた方向から入射させる。電子銃401から放出されたビームは開口403を照射し、その縮小像がコンデンサレンズ405と対物レンズ407とで試料面409に結像させる。電子銃が作るクロスオーバ411は1段の磁気レンズ405で対物レンズ407の主面に形成させる。開口403は単一でも複数でもよい。E×B分離器413が一次ビームを偏向して試料409の方向へビームを向かわせ、415の軌道を通り、対物レンズ407の主面417にクロスオーバを作る。静電偏向器419とE×B分離器413の静電偏向器とで試料上をラスタ走査する。試料409には数kvの負の電圧が印加されている。対物レンズ407は図1に示したレンズあるいは通常の電磁レンズと静電レンズとの組み合せレンズ、あるいは静電レンズから選ぶことができる。但し図1のレンズを選択した場合は二次光学系にNA開口421を設けることができない。すなわち、この場合は磁気レンズ407の軸上磁場が試料面でゼロでないから、試料から法線方向に放出された2次電子がクロスオーバを作らず(光軸と交わらない)NA開口を設けることができない。
(Fourth embodiment)
FIG. 4 shows a case where the primary beam is a large current but scans the sample with a low resolution beam, and the secondary electron image is enlarged on the detection surface by the enlarged secondary optical system to obtain a high resolution on this surface. It is explanatory drawing regarding the electron beam apparatus which provides opening. The primary beam (right side) is incident from a direction inclined about 30 degrees with respect to the normal line of the sample 409. The beam emitted from the electron gun 401 irradiates the aperture 403, and a reduced image is formed on the sample surface 409 by the condenser lens 405 and the objective lens 407. A crossover 411 formed by the electron gun is formed on the main surface of the objective lens 407 by a single stage magnetic lens 405. The opening 403 may be single or plural. The E × B separator 413 deflects the primary beam to direct the beam in the direction of the sample 409, passes through the orbit 415, and creates a crossover on the main surface 417 of the objective lens 407. The sample is raster-scanned by the electrostatic deflector 419 and the electrostatic deflector of the E × B separator 413. A negative voltage of several kv is applied to the sample 409. The objective lens 407 can be selected from the lens shown in FIG. 1, a combination lens of a normal electromagnetic lens and an electrostatic lens, or an electrostatic lens. However, when the lens of FIG. 1 is selected, the NA aperture 421 cannot be provided in the secondary optical system. That is, in this case, since the on-axis magnetic field of the magnetic lens 407 is not zero on the sample surface, the secondary electrons emitted from the sample in the normal direction do not form a crossover (do not cross the optical axis) and provide an NA aperture. I can't.

図1以外のいずれの対物レンズを選んだ場合でも試料409と対物レンズ407との間は2次電子に対する加速電界が形成されているため、試料面の法線と大きい角度で放出された2次電子も小さく収束されるためNA開口421は小寸法の開口でよく2次電子の検出効率を落さないで良い解像度が得られる。図示のように、一次ビームと二次ビームとは、E×B分離器413と試料面409との間は少なくとも主光線が異なる場所を通る。これにより、二次ビームが一次ビームの空間電荷効果によってボケが増えることがない。また、2次電子像はE×B分離器413の偏向主面423に作られるため、偏向色収差はここでは発生せず、さらに電磁偏向量が静電偏向量の2倍であるので色収差は発生しない。これは、E×B分離器413の電磁偏向器による偏向色収差は静電偏向器(静電偏向器419とE×B分離器の静電偏向器)の色収差と絶対値が等しく、偏向方向が互いに逆であるためである。E×B分離器の偏向主面423で作られた2次電子像は拡大レンズ425でさらに拡大されFOP(ファイバオプティクスプレート)427が中心部に形成された真空窓の内面に塗られたシンチレータに拡大像を作る。429はダイナミック補正のための偏向器、431は光拡大レンズ、433はPMTアレーである。この装置で図3の場合と大きく異るのは、図3の場合は一次ビームの解像度を良くする必要があるのに対して、図4の場合は二次ビームの解像度を良くする必要があり、このため二次電子像をE×B分離器の偏向主面に形成して2次ビームをE×B分離器で偏向する時の偏向色収差を消せる様にした。   Even if any objective lens other than FIG. 1 is selected, an acceleration electric field for secondary electrons is formed between the sample 409 and the objective lens 407, so that the secondary emitted at a large angle with the normal of the sample surface. Since the electrons are also converged to be small, the NA aperture 421 may be a small size aperture, and a good resolution can be obtained without reducing the detection efficiency of secondary electrons. As shown in the figure, the primary beam and the secondary beam pass between the E × B separator 413 and the sample surface 409 at least where the chief rays are different. As a result, the secondary beam is not blurred due to the space charge effect of the primary beam. Further, since the secondary electron image is formed on the deflection main surface 423 of the E × B separator 413, no deflection chromatic aberration occurs here, and further, chromatic aberration occurs because the electromagnetic deflection amount is twice the electrostatic deflection amount. do not do. This is because the deflection chromatic aberration by the electromagnetic deflector of the E × B separator 413 is equal to the absolute value of the chromatic aberration of the electrostatic deflector (the electrostatic deflector 419 and the electrostatic deflector of the E × B separator), and the deflection direction is the same. This is because they are opposite to each other. The secondary electron image created by the deflection main surface 423 of the E × B separator is further magnified by a magnifying lens 425 and applied to a scintillator coated on the inner surface of a vacuum window in which an FOP (fiber optics plate) 427 is formed at the center. Make a magnified image. 429 is a deflector for dynamic correction, 431 is a light magnifying lens, and 433 is a PMT array. This apparatus differs greatly from the case of FIG. 3 in the case of FIG. 3 where the primary beam resolution needs to be improved, whereas in FIG. 4 the secondary beam resolution needs to be improved. Therefore, a secondary electron image is formed on the deflection main surface of the E × B separator so that the deflection chromatic aberration when the secondary beam is deflected by the E × B separator can be eliminated.

以上のように、本実施例では、一次ビームの寸法は太いままにして、二次光学系の解像度をよくすることにより、試料上の小領域から放出された二次電子を検出器に入射するようにしたので、一次ビームのビーム寸法を大きくしたまま高解像度の画像を得ることができる。一次ビームの寸法を大きくしたまま一定のビーム径で走査すると、ピクセルに入射するビーム電流は(ピクセル寸法)に比例して小さくなるので、従来のビーム寸法を絞った場合の(ビーム径)に比例してビーム電流が小さくなる場合と比較して信号の弱くなり方が遅いので、高解像度でのスループットの低下が小さい。 As described above, in this embodiment, the secondary beam emitted from a small area on the sample is made incident on the detector by keeping the size of the primary beam large and improving the resolution of the secondary optical system. Since it did in this way, a high-resolution image can be obtained with the beam dimension of a primary beam enlarged. When scanning with a constant beam diameter while keeping the primary beam size large, the beam current incident on the pixel becomes smaller in proportion to (pixel size) 2. Therefore, when the conventional beam size is reduced (beam diameter) 4 Compared with the case where the beam current becomes smaller in proportion to the signal, the signal weakens more slowly, so that the decrease in throughput at high resolution is small.

(第5実施例)
図5は本発明の第5の実施の形態である。図4の実施例では一次光学系も二次光学系も試料面と垂直でないため、片方の光軸での偏向色収差は消せるが光学系を実際に製作するには精度を出すのが困難である。図5では一次光学系と二次光学系のいずれかを試料に対して直角に作り、高精度な鏡筒が製作可能な電子線装置である。図5は一次光学系が試料に直角な場合を示したものであるが、逆に電子銃を図の右側に配置し、矢印の逆の方向へ電子線が進む様にして二次光学系を試料に対して直角にしてもよい。以下、説明は図示のように、一次光学系が試料に対し直角の場合についてのみ行う。
(Fifth embodiment)
FIG. 5 shows a fifth embodiment of the present invention. In the embodiment of FIG. 4, since the primary optical system and the secondary optical system are not perpendicular to the sample surface, the deflection chromatic aberration at one optical axis can be eliminated, but it is difficult to achieve accuracy in actually manufacturing the optical system. . FIG. 5 shows an electron beam apparatus in which either a primary optical system or a secondary optical system is formed at right angles to a sample, and a highly accurate lens barrel can be manufactured. FIG. 5 shows the case where the primary optical system is perpendicular to the sample. Conversely, an electron gun is arranged on the right side of the figure, and the secondary optical system is moved so that the electron beam advances in the direction opposite to the arrow. It may be perpendicular to the sample. Hereinafter, as shown in the figure, description will be made only when the primary optical system is perpendicular to the sample.

図は、実施例による電子線装置の主要部を示すものであって、同図において、501は電子銃、503はコンデンサレンズ、505は軸合わせ偏向器、507は一次ビームの主光線の軌道、509は静電偏向器511と電磁偏向器513を含むE×B分離器、515は対物レンズ、517は試料、519は電磁偏向器513による偏向量、521は静電偏向器511による偏向量、523は二次ビームの主光線の軌道である。   The figure shows the main part of the electron beam apparatus according to the embodiment, in which 501 is an electron gun, 503 is a condenser lens, 505 is an axial deflector, 507 is the trajectory of the primary beam of the primary beam, 509 is an E × B separator including an electrostatic deflector 511 and an electromagnetic deflector 513, 515 is an objective lens, 517 is a sample, 519 is a deflection amount by the electromagnetic deflector 513, 521 is a deflection amount by the electrostatic deflector 511, Reference numeral 523 denotes the principal ray trajectory of the secondary beam.

電子銃501、コンデンサ・レンズ503、偏向器505が一つの光軸上にあり、対物レンズ515、E×B分離器509が上記光軸と離れた別の光軸上に配置されており、上記偏向器505でE×B分離器509の中心に電子線を偏向させる。   The electron gun 501, the condenser lens 503, and the deflector 505 are on one optical axis, and the objective lens 515 and the E × B separator 509 are arranged on another optical axis that is separated from the optical axis. A deflector 505 deflects the electron beam to the center of the E × B separator 509.

偏向器505とE×B分離器509間のZ方向距離をLとする。E×B分離器509で試料517からの反射電子を3α図の右側へ偏向したい場合、2つの光軸間のズレ量DはD=Lαとなる。そして、偏向色収差を消す条件より次の式が導かれる。   The distance in the Z direction between the deflector 505 and the E × B separator 509 is L. When it is desired to deflect the reflected electrons from the sample 517 to the right side of the 3α diagram by the E × B separator 509, the deviation D between the two optical axes is D = Lα. Then, the following equation is derived from the condition for eliminating the deflection chromatic aberration.

(i)偏向器505が静電偏向器である場合、
偏向器513による一次ビームの偏向量519−偏向器511
による一次ビームの偏向量521=α (1)

2×(偏向器511による偏向量521+偏向器505による偏向量α×l/L)=偏向器513による偏向量519 (2)

上記(1)、(2)の連立方程式を解けば、偏向器511、513の偏向量が決定できる。
(I) When the deflector 505 is an electrostatic deflector,
Deflection amount 519 of primary beam by deflector 513-deflector 511
Deflection amount 521 of the primary beam by α = α (1)

2 × (deflection amount 521 by deflector 511 + deflection amount α × l / L by deflector 505) = deflection amount 519 by deflector 513 (2)

By solving the simultaneous equations (1) and (2), the deflection amounts of the deflectors 511 and 513 can be determined.

(ii)偏向器505が電磁偏向器の場合は、上記(1)式は同じで、(2)式は(2)′となる。即ち、

2×(偏向器511による偏向量521)=偏向器513による偏向量519−偏向器505による偏向量α×l/L (2)′

であり、(1)と(2)′から成る連立方程式を解けば偏向器511、513の偏向量が決定できる。
(Ii) When the deflector 505 is an electromagnetic deflector, the above equation (1) is the same, and the equation (2) becomes (2) ′. That is,

2 × (deflection amount 521 by deflector 511) = deflection amount 519 by deflector 513−deflection amount α × l / L by deflector 505 (2) ′

The deflection amounts of the deflectors 511 and 513 can be determined by solving the simultaneous equations consisting of (1) and (2) ′.

(2)又は(2)′は共に、電磁偏向器による偏向量=2×静電偏向器による偏向量とする事で偏向色収差が消せる条件から与えられる。但し、偏向器505による偏向色収差は、E×B分離器による偏向色収差のl/Lの割合で小さくなる事が考慮されている。ここでは対物レンズ515による試料面517との共役点525と偏向器505との距離がlである。   Both (2) and (2) ′ are given from the condition that the deflection chromatic aberration can be eliminated by setting the deflection amount by the electromagnetic deflector = 2 × the deflection amount by the electrostatic deflector. However, it is considered that the deflection chromatic aberration caused by the deflector 505 becomes smaller at a ratio of 1 / L of the deflection chromatic aberration caused by the E × B separator. Here, the distance between the conjugate point 525 between the objective lens 515 and the sample surface 517 and the deflector 505 is l.

電子銃が図の右側にあり、矢印の逆方向へ電子線が進む場合は、電子銃から放出された電子線をE×B分離器509で偏向し、試料517に垂直に入射させ、試料から放出された二次電子をE×B分離器509で試料と法線方向と平行な別の光軸を有する偏向器505の中心方向へ偏向し、該偏向器で該別の光軸に合わせればよい。   When the electron gun is on the right side of the figure and the electron beam travels in the opposite direction of the arrow, the electron beam emitted from the electron gun is deflected by the E × B separator 509 and is incident on the sample 517 perpendicularly. The emitted secondary electrons are deflected by the E × B separator 509 toward the center of the deflector 505 having another optical axis parallel to the sample and the normal direction, and aligned with the other optical axis by the deflector. Good.

以上のように、本実施例によれば、一次光学系と二次光学系のいずれかを試料に対して直角に作ることができ、これにより高精度な鏡筒の製作が可能となる。   As described above, according to the present embodiment, either the primary optical system or the secondary optical system can be formed at right angles to the sample, which makes it possible to manufacture a highly accurate lens barrel.

(第6の実施例)
図6は本発明の第6の実施の形態の説明図である。
電子線を試料に照射し、試料を通過し、試料から放出され、試料から反射され、あるいは試料に入射する前に反射される電子線(例えば、ネガティブにバイアスされた電子ミラー表面を持つ試料に入射された電子線)を写像投影光学系で検出器面に結像させ又は集束させて試料の欠陥検出を行う方法においては、基準となる参照画像と被検査画像との比較をダイごとに行うダイツウダイ方法と、セルごとに行うセルツウセル方法とがあるが、試料面上のダイ601の中にはダイツウダイでしか検査できない領域603とセルツウセルでも検査が行える領域605とが混在している。欠陥検査はy軸方向にステージを連続移動させながら、ダイ又はセルの分割されたストライプごとに試料像を取得して行われる。この場合、画像処理部の回路はダイツウダイ比較を行う回路とセルツウセル比較行う回路は異なる場合があり、たとえ回路が同じであってもソフトウェアが異る場合が多く、取り込んだ画像をダイツウダイ比較用回路に入れたり、セルツウセル比較回路に入れたりする切換には多少時間がかかるので、ストライプをx方向に走査中にこの様な切換を行いたくない。すなわち、例えば、ピクセル周波数を100MHzとすると、走査の途中にダイツウダイ用の回路へ画像信号を入れていたのをセルツウセル用の回路へ画像信号を入れるように切換えを行うには10ns以内で行う必要があり、作業はきわめて困難である。本願発明では、このようなストライプ走査途中での切換えを行わないようにするために、ストライプの境界を両者の領域、すなわち、ダイツウダイで欠陥検出を行うべき領域B,B’とセルツウセルで欠陥検出を行う領域Aとの境界と一致する様にストライプの分割を行った。そしてセルツウセル比較を行う領域Aではストライプ607のx方向幅aはセルのピッチの整数倍とし、ダイツウダイ比較を行う領域B及びB’でのストライプ609のx方向の幅bは電子光学系の視野寸法、すなわちビームの走査幅(写像投影方式の場合はビーム寸法)と等しいx方向寸法とした。これによって、従来のように一つのストライプの走査中における回路の切り替えが不要となり、切換え作業が容易となる。
(Sixth embodiment)
FIG. 6 is an explanatory diagram of the sixth embodiment of the present invention.
An electron beam is irradiated onto the sample, passes through the sample, is emitted from the sample, reflected from the sample, or reflected before entering the sample (e.g., on a sample having a negatively biased electron mirror surface) In a method for detecting defects of a sample by forming or focusing an incident electron beam) on a detector surface with a mapping projection optical system, a reference image as a reference and an image to be inspected are compared for each die. There are a die-to-die method and a cell-to-cell method performed for each cell. A die 601 on the sample surface includes a region 603 that can be inspected only by a die-to-die and a region 605 that can be inspected by a cell-to-cell. The defect inspection is performed by acquiring a sample image for each divided stripe of the die or cell while continuously moving the stage in the y-axis direction. In this case, the circuit of the image processing unit may be different from the circuit that performs the die-to-die comparison and the circuit that performs the cell-to-cell comparison, and even if the circuit is the same, the software is often different, and the captured image is used as the circuit for the die-to-die comparison. Since it takes some time to switch in and into the cell-to-cell comparison circuit, it is not desired to perform such switching while scanning the stripe in the x direction. That is, for example, when the pixel frequency is set to 100 MHz, it is necessary to perform switching within 10 ns in order to switch the image signal input to the circuit for die-to-cell during the scanning to input the image signal to the circuit for cell-to-cell. Yes, work is extremely difficult. In the present invention, in order to prevent such switching in the middle of stripe scanning, the boundary of the stripe is defined as the boundary between the two regions, that is, the regions B and B ′ where defect detection should be performed with the die-to-die and the cell-to-cell. The stripe was divided so as to coincide with the boundary with the region A to be performed. In the region A where the cell-to-cell comparison is performed, the x-direction width a of the stripe 607 is an integral multiple of the cell pitch, and the width b in the x-direction of the stripe 609 in the regions B and B ′ where the die-to-die comparison is performed is the field size of the electron optical system. That is, the dimension in the x direction is equal to the scanning width of the beam (the beam dimension in the case of the mapping projection method). This eliminates the need to switch circuits during scanning of one stripe as in the prior art, and facilitates the switching operation.

(第7の実施例)
図7は、上記実施形態で示した電子線装置を半導体デバイス製造工程におけるウェーハの評価に適用したものである。
デバイス製造工程の一例を図7のフローチャートに従って説明する。
この製造工程例は以下の各主工程を含む。
(1) ウェーハを製造するウェーハ製造工程(又はウェハを準備する準備工程)(ステップ10)
(2) 露光に使用するマスクを製作するマスク製造工程(又はマスクを準備するマスク準備工程)(ステップ11)
(3) ウェーハに必要な加工処理を行うウェーハプロセッシング工程(ステップ12)
(4) ウェーハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程(ステップ13)
(5) 組み立てられたチップを検査するチップ検査工程(ステップ14)
なお、各々の工程は、更に幾つかのサブ工程からなっている。
(Seventh embodiment)
FIG. 7 shows an example in which the electron beam apparatus shown in the above embodiment is applied to wafer evaluation in a semiconductor device manufacturing process.
An example of the device manufacturing process will be described with reference to the flowchart of FIG.
This manufacturing process example includes the following main processes.
(1) Wafer manufacturing process for manufacturing a wafer (or preparation process for preparing a wafer) (Step 10)
(2) Mask manufacturing process for manufacturing a mask used for exposure (or mask preparation process for preparing a mask) (step 11)
(3) Wafer processing process for performing necessary processing on the wafer (Step 12)
(4) Chip assembly process for cutting out chips formed on the wafer one by one and making them operable (step 13)
(5) Chip inspection process for inspecting assembled chips (step 14)
Each process is further composed of several sub-processes.

これらの主工程の中で、半導体デバイスの性能に決定的な影響を及ぼす主工程がウェーハプロセッシング工程である。この工程では、設計された回路パターンをウェーハ上に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウェーハプロセッシング工程は以下の各工程を含む。
(1) 絶縁層となる誘電体薄膜や配線部、或いは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリング等を用いる)
(2) 形成された薄膜層やウェーハ基板を酸化する酸化工程
(3) 薄膜層やウェーハ基板等を選択的に加工するためにマスク(レチクル)を用いてレジストのパターンを形成するリソグラフィー工程
(4) レジストパターンに従って薄膜層や基板を加工するエッチング工程(例えばドライエッチング技術を用いる)
(5) イオン・不純物注入拡散工程
(6) レジスト剥離工程
(7) 加工されたウェーハを検査する検査工程
なお、ウェーハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する半導体デバイスを製造する。
Among these main processes, the main process that has a decisive influence on the performance of the semiconductor device is a wafer processing process. In this process, designed circuit patterns are sequentially stacked on a wafer to form a large number of chips that operate as memories and MPUs. This wafer processing step includes the following steps.
(1) A thin film forming process for forming a dielectric thin film to be an insulating layer, a wiring part, or a metal thin film for forming an electrode part (using CVD, sputtering, etc.)
(2) Oxidation process for oxidizing the formed thin film layer and wafer substrate (3) Lithography process for forming a resist pattern using a mask (reticle) to selectively process the thin film layer and wafer substrate (4) ) Etching process (for example, using dry etching technology) that processes thin film layers and substrates according to resist patterns
(5) Ion / impurity implantation / diffusion process (6) Resist stripping process (7) Inspection process for inspecting the processed wafer The wafer processing process is repeated for the required number of layers to produce a semiconductor device that operates as designed. .

上記ウェーハプロセッシング工程の中核をなすリソグラフィー工程を図8のフローチャートに示す。このリソグラフィー工程は以下の各工程を含む。
(1) 前段の工程で回路パターンが形成されたウェーハ上にレジストをコートするレジスト塗布工程(ステップ20)
(2) レジストを露光する露光工程(ステップ21)
(3) 露光されたレジストを現像してレジストのパターンを得る現像工程(ステップ22)
(4) 現像されたパターンを安定化させるためのアニール工程(ステップ23)
以上の半導体デバイス製造工程、ウェーハプロセッシング工程、リソグラフィー工程には周知の工程が適用される。
The lithography process that forms the core of the wafer processing process is shown in the flowchart of FIG. This lithography process includes the following steps.
(1) Resist coating process for coating a resist on the wafer on which the circuit pattern is formed in the preceding process (step 20)
(2) Exposure process for exposing resist (step 21)
(3) Development step of developing the exposed resist to obtain a resist pattern (step 22)
(4) Annealing process for stabilizing the developed pattern (step 23)
Known processes are applied to the semiconductor device manufacturing process, the wafer processing process, and the lithography process.

上記(7)のウェーハ検査工程において、本発明の上記各実施形態に係る欠陥検査装置を用いた場合、微細なパターンを有する半導体デバイスでも、2次電子画像の像障害が無い状態で高精度に欠陥を検査できるので、製品の歩留向上、欠陥製品の出荷防止が可能となる。   When the defect inspection apparatus according to each of the embodiments of the present invention is used in the wafer inspection process of (7) above, even with a semiconductor device having a fine pattern, it is highly accurate in a state where there is no image defect of the secondary electron image. Since defects can be inspected, product yield can be improved and shipment of defective products can be prevented.

なお、本発明によるパターン評価は、フォトマスクやレクチル、ウエハ等の試料の欠陥検査、線幅測定、合わせ精度、電位コントラスト測定等広く試料のパターン評価に適用することができる。     The pattern evaluation according to the present invention can be widely applied to the pattern evaluation of samples such as defect inspection, line width measurement, alignment accuracy, potential contrast measurement of samples such as photomasks, reticles, and wafers.

電磁レンズと静電レンズとを組み合せた本発明の対物レンズの一実施例を示す断面図である。It is sectional drawing which shows one Example of the objective lens of this invention which combined the electromagnetic lens and the electrostatic lens. 試料面上に磁場が存在する対物レンズを用いたステンシルマスク用欠陥検査装置の電子光学系を含む本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention containing the electron optical system of the defect inspection apparatus for stencil masks using the objective lens which has a magnetic field on a sample surface. 磁気レンズの軸上磁場とビームとの関係を示す図である。It is a figure which shows the relationship between the on-axis magnetic field of a magnetic lens, and a beam. 図2Bの仮想面におけるビームの速度ベクトルについての説明図である。It is explanatory drawing about the velocity vector of the beam in the virtual surface of FIG. 2B. マルチビーム用の電子光学系を含む本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention containing the electron optical system for multi beams. 図3の電子光学系における偏向中心位置と収差との関係を示す図である。It is a figure which shows the relationship between the deflection | deviation center position and aberration in the electron optical system of FIG. 太いビームで走査し、検出面の寸法を小さくして解像度を出す電子光学系を含む本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention containing the electron optical system which scans with a thick beam, makes the dimension of a detection surface small, and produces a resolution. E×B分離器の偏向色収差を消す光学系を含む本発明の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of this invention containing the optical system which erases the deflection chromatic aberration of an E * B separator. 本発明の欠陥検査方法におけるストライプの分割方法を示す概略構成図である。It is a schematic block diagram which shows the division | segmentation method of the stripe in the defect inspection method of this invention. 本発明の電子線装置を使用した半導体デバイス製造プロセスを示すフローチャートである。It is a flowchart which shows the semiconductor device manufacturing process using the electron beam apparatus of this invention. 図7の半導体デバイス製造プロセスのうちリソグラフィープロセスを示すフローチャートである。It is a flowchart which shows a lithography process among the semiconductor device manufacturing processes of FIG.

主要部分の符号の説明Explanation of main part codes

101:光軸、103:内側磁極、105:外側磁極、105a:外側磁極の磁気ギャップ形成面、105b:外側磁極の磁気ギャップ形成面の奥側、109:励磁コイル、113:試料、117同左用静電偏向器、119:E×B分離器用電磁偏向器、121:2次的ビーム軌道、123:鈍角の断面、125:磁気材料の鋭角部を無くす追加部材、127:軸対称電極、129:ハーメチックシ−ル、131:真空シール材、133:0リング、
201:電子銃、205:成形開口、207:照射レンズ、
211:対物レンズ、219:拡大レンズ、223:第1拡大像、
225:シンチレータ塗布したFOP窓
303:コンデンサレンズ、309:マルチ開口、305:回転レンズ
307:NA開口、311:縮小レンズ、313:対物レンズ、315:試料、317:軸対称電極、323:E×B分離器、325:走査偏向器、327:試料面でのE×Bの偏向方向、329:E×Bの偏向方向、331:2次光学系方向、333:対物レンズによる2次電子の回転、335:走査偏向支点、337:第2拡大レンズ、339:レンズギャップ、341:磁場もれを少くする磁気シールド、343:第3拡大レンズ、345:シンチレータ面、347:光学レンズ、349:PMTアレー、351:信号強度を調節する開口、353:ダイナミック補正のための偏向器、355:励磁コイル、359:0リング、357:真空シールリング
401:電子銃、403:マルチ開口、405:コンデンサレンズ、407:対物レンズ、409:試料、411:クロスオーバ、413:E×B分離器、415:一次ビーム主光線軌道、417:クロスオーバ像、419:走査偏向器、423:2次的ビームの像、427:MCP、429:ダイナミック補正偏向器、431:光拡大レンズ、433:PMTアレー
501:電子銃、503:コンデンサレンズ、505:軸合せ偏向器
507:一次ビーム主光線軌道、511:E×B分離器用静電偏向器
513:同上用電磁偏向器、515:対物レンズ、517:試料
519:電磁偏向器による偏向量,521:静電偏向器による偏向量
523:2次的ビームの軌道。525:2次的ビームの第2拡大レンズ、
601:ダイ、603:ダイツウダイでの検査領域、605:セルツウセル検査可能領域、607:セルツウセル検査可能領域を含むストライプのストライプ幅、609:ダイツウダイの検査領域でのストライプ、
101: Optical axis, 103: Inner magnetic pole, 105: Outer magnetic pole, 105a: Outer magnetic pole magnetic gap forming surface, 105b: Outer magnetic pole magnetic gap forming surface, 109: Excitation coil, 113: Sample, 117 Electrostatic deflector, 119: electromagnetic deflector for E × B separator, 121: secondary beam trajectory, 123: obtuse angle cross section, 125: additional member for eliminating acute angle part of magnetic material, 127: axisymmetric electrode, 129: Hermetic seal, 131: vacuum seal, 133: 0 ring,
201: electron gun, 205: shaping aperture, 207: irradiation lens,
211: Objective lens, 219: Magnifying lens, 223: First magnified image,
225: FOP window coated with scintillator
303: Condenser lens, 309: Multi-aperture, 305: Rotating lens 307: NA aperture, 311: Reduction lens, 313: Objective lens, 315: Sample, 317: Axisymmetric electrode, 323: E × B separator, 325: Scanning Deflector, 327: E × B deflection direction on the sample surface, 329: E × B deflection direction, 331: Secondary optical system direction, 333: Secondary electron rotation by objective lens, 335: Scanning deflection fulcrum, 337: second magnifying lens, 339: lens gap, 341: magnetic shield for reducing magnetic field leakage, 343: third magnifying lens, 345: scintillator surface, 347: optical lens, 349: PMT array, 351: signal strength Adjustable aperture, 353: deflector for dynamic correction, 355: excitation coil, 359: 0 ring, 357: vacuum seal ring 401: electronic Gun, 403: Multi-aperture, 405: Condenser lens, 407: Objective lens, 409: Sample, 411: Crossover, 413: E × B separator, 415: Primary beam principal ray trajectory, 417: Crossover image, 419: Scanning deflector, 423: secondary beam image, 427: MCP, 429: dynamic correction deflector, 431: light magnifying lens, 433: PMT array 501: electron gun, 503: condenser lens, 505: axial deflector 507: primary beam principal ray trajectory, 511: electrostatic deflector for E × B separator 513: electromagnetic deflector for the same as above, 515: objective lens, 517: sample 519: deflection amount by electromagnetic deflector, 521: electrostatic deflector Deflection amount 523: secondary beam trajectory. 525: secondary magnifying lens of secondary beam,
601: a die, 603: an inspection area at the die-to-die, 605: an area where the cell-to-cell inspection is possible, 607: a stripe width including the area where the cell-to-cell inspection is possible, 609: a stripe at the inspection area of the die-to-die

Claims (8)

電子線を試料上に結像させる対物レンズであって、光軸側の内側磁極及びこれに対向する外側磁極が作る磁気ギャップが試料側に形成され、上記磁気ギャップを形成している内側磁極及び外側磁極のそれぞれ外側面及び内側面は光軸とのなす角が45度以上の頂角を有する円錐の一部の形状を有し、且つ、これらの磁極の試料付近の断面形状が90゜以上の角度を有する事を特徴とする対物レンズ。   An objective lens for imaging an electron beam on a sample, wherein a magnetic gap formed by an inner magnetic pole on the optical axis side and an outer magnetic pole opposite thereto is formed on the sample side, and the inner magnetic pole forming the magnetic gap and Each of the outer and inner surfaces of the outer magnetic pole has a part of a cone having an apex angle of 45 degrees or more with the optical axis, and the cross-sectional shape of these magnetic poles near the sample is 90 ° or more. Objective lens characterized by having an angle of 電子銃、照射光学系、電子線透過性試料、結像光学系を一本の光軸上に配置し、電子銃が作るクロスオーバ像を上記結像光学系の磁気レンズを含む対物レンズの主面近傍に結像させ、照視野を決める開口の像を上記試料に結像させ、試料を透過した電子を上記対物レンズで拡大し、後方の拡大レンズの手前に拡大像を作り、さらに上記拡大レンズで検出器に拡大像を形成する事を特徴とする電子線装置。 An electron gun, an irradiation optical system, an electron beam transmissive sample, and an imaging optical system are arranged on one optical axis, and a crossover image created by the electron gun is a main objective lens including the magnetic lens of the imaging optical system. Form an image near the surface, image an aperture that determines the illumination field on the sample, enlarge the electrons transmitted through the sample with the objective lens, create an enlarged image in front of the rear magnification lens, and then expand the magnification An electron beam apparatus characterized by forming an enlarged image on a detector with a lens. 一本の光軸の近傍に複数のビームを形成し、対物レンズで試料面に結像させ、対物レンズの電子銃側に設けた2段の偏向器で試料面上を走査し、走査点から放出された2次電子を対物レンズを通過後、レンズ内部に設けたE×B分離器で一次光学系から分離し、少なくとも1段の拡大レンズで検出器面に結像させ検出する装置に於て、上記2段の偏向器による偏向中心を上記対物レンズの主面より電子銃側で、且つ、偏向時のコマ収差が最小になる位置と、偏向色収差が最小になる位置と間の間になる様に上記2段の偏向器の偏向感度比を調整した事を特徴とする電子線装置。   A plurality of beams are formed near one optical axis, imaged on the sample surface by the objective lens, scanned on the sample surface by a two-stage deflector provided on the electron gun side of the objective lens, and from the scanning point In an apparatus for detecting the emitted secondary electrons after passing through the objective lens, separating them from the primary optical system with an E × B separator provided inside the lens, and forming an image on the detector surface with at least one magnifying lens. Thus, the center of deflection by the two-stage deflector is on the electron gun side of the main surface of the objective lens, and between the position where the coma aberration during deflection is minimized and the position where the deflection chromatic aberration is minimized. An electron beam apparatus characterized in that the deflection sensitivity ratio of the two-stage deflector is adjusted. 電子銃から放出された電子線を成形開口で成形し試料面に結像させ、試料から放出された電子を対物レンズを通過した後E×B分離器で一次ビームから分離し、さらに複数のレンズで拡大し検出器に結像させる装置であって、電子銃が作るクロスオーバ像を1段の磁気レンズで対物レンズの主面に結像させ、かつ少なくともE×B分離器と試料面間は一次ビームと二次ビームの主光線が異る場所を通る事を特徴とする電子線装置。 The electron beam emitted from the electron gun is shaped at the shaping aperture and imaged on the sample surface. After passing through the objective lens, the electron emitted from the sample is separated from the primary beam by the E × B separator, and a plurality of lenses. The crossover image formed by the electron gun is imaged on the main surface of the objective lens by a single stage magnetic lens, and at least between the E × B separator and the sample surface. An electron beam apparatus characterized in that a primary beam of a primary beam and a secondary beam pass through different places. 電子線を試料に照射し、試料を通過し、試料から放出され、試料から反射し、あるいは試料に入射前に反射される電子を写像投影光学系で検出器面に結像又は集束させて検出することによって欠陥を検出する方法であって、試料面をダイツウダイで欠陥検出を行うべき領域とセルツウセルで欠陥検出を行う領域とを認識するステップと、
上記2つの領域間の境界のx座標を認識するステップと、
試料台をy方向に連続移動させながら試料像を取得するストライプにダイ全体を分割するステップと、
ストライプ単位で試料像を取得し欠陥検出を行うステップとを有し、
ストライプの端のx座標を上記2つの境界のx座標とを一致させる様に上記ストライプ分割を行う事を特徴とする欠陥検査方法。
Electrons are irradiated onto the sample, passed through the sample, emitted from the sample, reflected from the sample, or reflected before being incident on the sample, and imaged or focused on the detector surface by the projection optical system and detected. A method for detecting defects by recognizing a region on the sample surface where defect detection should be performed with a die-to-die and a region where defect detection is performed with a cell-to-cell; and
Recognizing the x coordinate of the boundary between the two regions;
Dividing the entire die into stripes for acquiring sample images while continuously moving the sample stage in the y direction;
Obtaining a sample image in stripe units and performing defect detection,
A defect inspection method, wherein the stripe division is performed so that the x coordinate of the end of the stripe matches the x coordinate of the two boundaries.
電子銃、コンデンサレンズ、偏向器が一つの光軸上にあり、対物レンズ、E×B分離器が上記光軸と離れた別の光軸上に配置されており,上記偏向器で上記E×B分離器の中心方向に電子線を偏向させる事を特徴とする電子線装置。   An electron gun, a condenser lens, and a deflector are on one optical axis, and an objective lens and an E × B separator are arranged on another optical axis that is separated from the optical axis. An electron beam apparatus characterized by deflecting an electron beam toward the center of the B separator. 電子銃から放出された電子線をE×B分離器で偏向し、試料に垂直入射させ、試料から放出された2次的粒子をE×B分離器で試料の法線方向と平行な別の光軸を有する偏向器の中心方向へ偏向し、該偏向器で上記別の光軸に合せる事を特徴とする電子線装置。   The electron beam emitted from the electron gun is deflected by an E × B separator and perpendicularly incident on the sample, and the secondary particles emitted from the sample are separated by another parallel to the normal direction of the sample by the E × B separator. An electron beam apparatus characterized by deflecting toward the center of a deflector having an optical axis and aligning with the other optical axis by the deflector. デバイスを製造する方法であって、
ウェーハを準備するステップと、
ウェーハプロセスを行うステップと、
請求項1〜4、6、7のいずれかに示した対物レンズ又は電子線装置を用いてプロセス後のウェーハを評価するステップとからなり、
上記ステップを必要な数くり返すことによりデバイスに組み上げることを特徴とするデバイス製造方法。
A method of manufacturing a device comprising:
Preparing a wafer;
Performing the wafer process;
And evaluating the post-process wafer using the objective lens or the electron beam apparatus according to any one of claims 1 to 4, 6, and 7.
A device manufacturing method comprising assembling a device by repeating the above steps as many times as necessary.
JP2004156386A 2004-05-26 2004-05-26 Object lens, electron beam device and defect inspection method Withdrawn JP2005339960A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004156386A JP2005339960A (en) 2004-05-26 2004-05-26 Object lens, electron beam device and defect inspection method
US11/136,668 US7420164B2 (en) 2004-05-26 2005-05-25 Objective lens, electron beam system and method of inspecting defect
US12/219,802 US20080315090A1 (en) 2004-05-26 2008-07-29 Objective lens, electron beam system and method of inspecting defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156386A JP2005339960A (en) 2004-05-26 2004-05-26 Object lens, electron beam device and defect inspection method

Publications (2)

Publication Number Publication Date
JP2005339960A true JP2005339960A (en) 2005-12-08
JP2005339960A5 JP2005339960A5 (en) 2007-06-14

Family

ID=35493285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156386A Withdrawn JP2005339960A (en) 2004-05-26 2004-05-26 Object lens, electron beam device and defect inspection method

Country Status (1)

Country Link
JP (1) JP2005339960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317467A (en) * 2006-05-25 2007-12-06 Hitachi High-Technologies Corp Charged particle beam application device
JP2017151155A (en) * 2016-02-22 2017-08-31 株式会社ニューフレアテクノロジー Inspection apparatus and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317467A (en) * 2006-05-25 2007-12-06 Hitachi High-Technologies Corp Charged particle beam application device
JP2017151155A (en) * 2016-02-22 2017-08-31 株式会社ニューフレアテクノロジー Inspection apparatus and inspection method

Similar Documents

Publication Publication Date Title
USRE49784E1 (en) Apparatus of plural charged-particle beams
US7385197B2 (en) Electron beam apparatus and a device manufacturing method using the same apparatus
US20090014649A1 (en) Electron beam apparatus
US20060219909A1 (en) Detecting apparatus and device manufacturing method
JP2006277996A (en) Electron beam device and device manufacturing method using it
JP2006278029A (en) Electron beam device and method for manufacturing device using it
JP3782692B2 (en) Electron beam apparatus and semiconductor device manufacturing method using the apparatus
JP2005339960A (en) Object lens, electron beam device and defect inspection method
JP2003187733A (en) Electron beam apparatus and method for manufacturing device using the same
JP2004335193A (en) Sample evaluation method using electron beam and electron beam device
JPH1062149A (en) Defect inspection equipment
JP2003297278A (en) Inspection apparatus and inspection method
JP2006019032A (en) Pattern evaluation device, pattern evaluation method, and manufacturing method of device using the method
JP2001283763A (en) Filter, electron beam system and device manufacturing method using the same
JP2006032278A (en) Electron beam device, and device manufacturing method using the same
JP2006066181A (en) Electron beam device and manufacturing method of device using the same
JP3907943B2 (en) Defect inspection method and device manufacturing method using the method
US7135675B1 (en) Multi-pixel and multi-column electron emission inspector
JP3995479B2 (en) Electron beam apparatus and device manufacturing method using the electron beam apparatus
JP3723106B2 (en) Electron beam apparatus and device manufacturing method using the apparatus
JP2007087639A (en) Electron beam device and pattern evaluation method
JP4092257B2 (en) Electron beam apparatus and pattern evaluation method using the electron beam apparatus
JP2006278028A (en) Electron beam device and method of manufacturing device using it
JP2005158642A (en) Pattern evaluation method, and manufacturing method of device
JP2002157969A (en) Sample evaluating device using electron beam and method of manufacturing semiconductor device by using this device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825