JP2005339926A - Strip electrode and battery using it - Google Patents

Strip electrode and battery using it Download PDF

Info

Publication number
JP2005339926A
JP2005339926A JP2004155560A JP2004155560A JP2005339926A JP 2005339926 A JP2005339926 A JP 2005339926A JP 2004155560 A JP2004155560 A JP 2004155560A JP 2004155560 A JP2004155560 A JP 2004155560A JP 2005339926 A JP2005339926 A JP 2005339926A
Authority
JP
Japan
Prior art keywords
electrode
strip
uncoated
width
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004155560A
Other languages
Japanese (ja)
Inventor
Junichi Kuratomi
純一 倉富
Takaaki Iguchi
隆明 井口
Kenji Kono
健次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2004155560A priority Critical patent/JP2005339926A/en
Publication of JP2005339926A publication Critical patent/JP2005339926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that when an uncoated part continuing in the length direction is installed at the end part in the width direction, an electrode is easily deformed in a strip electrode having an active material layer on a current collector. <P>SOLUTION: The uncoated part along the length direction is installed even in a part other than the end part in the width direction in addition to the uncoated part at the end part in the width direction along the length direction in the strip electrode. Applying to the strip electrode in which width of the uncoated part at the end part is 5 mm or more or to the strip electrode in which linear pressure in roll press of the active material layer is 250 kg/cm or more is effective. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、幅方向の少なくとも一方の端部に長さ方向に沿った未塗工部を有する帯状電極に関する。また、前記帯状電極を用いた電池に関する。   The present invention relates to a strip electrode having an uncoated portion along the length direction at at least one end in the width direction. The present invention also relates to a battery using the strip electrode.

セパレータを介して帯状電極(帯状正極、帯状負極)を重ね合わせて構成した発電要素を備えた電池がある。また、セパレータを介して帯状電極(帯状正極、帯状負極)重ね合わせ、真円状、楕円状又は扁平状に捲回し、あるいは折り畳んで構成した発電要素を備えた電池がある。電極材料含有層が集電体上に形成された帯状電極(帯状正極、帯状負極)は、例えば、帯状の集電体上に、電極材料(活物質)を含み溶剤を用いて混練した電極合剤ペーストを塗工し、必要に応じて溶剤を揮発させた後、電極面をプレスすることによって得られる。ここで、前記プレスは、電極材料含有層の電極材料密度や空隙率を最適化するため、一般的にはロールを用いて連続的なロールプレスにより行われる。ところで、前記帯状電極から集電を取るために、集電体上に、活物質層が形成されていない未塗工部を設ける必要がある。   There is a battery including a power generation element configured by stacking strip electrodes (a strip positive electrode and a strip negative electrode) through a separator. In addition, there is a battery including a power generation element configured such that a strip electrode (a strip positive electrode, a strip negative electrode) is overlapped via a separator, wound into a perfect circle, an ellipse, or a flat shape, or folded. A strip electrode (a strip positive electrode or a strip negative electrode) in which an electrode material-containing layer is formed on a current collector is, for example, an electrode composite in which an electrode material (active material) is mixed and kneaded using a solvent on a strip current collector. It is obtained by applying an agent paste, volatilizing the solvent as required, and then pressing the electrode surface. Here, in order to optimize the electrode material density and porosity of an electrode material content layer, the said press is generally performed by continuous roll press using a roll. By the way, in order to collect current from the belt-like electrode, it is necessary to provide an uncoated portion where no active material layer is formed on the current collector.

集電を取るための未塗工部としては、帯状電極の長さ方向の端部又は中間部に幅方向に沿って設けたものや、帯状電極の幅方向の端部に長さ方向に沿って設けたもの、あるいはそれらを併用したものがある(例えば特許文献1〜3参照)。特許文献2,3記載のように、帯状電極の幅方向の端部に長さ方向に沿って設けた未塗工部から集電を取る構成は、帯状電極の長さ方向の端部に幅さ方向に沿って設けた未塗工部から集電を取る構成に比べ、電極からの集電が充分となるので、高出力が求められる電池に適する。   As an uncoated portion for collecting current, one provided along the width direction at the end or intermediate portion in the length direction of the strip electrode, or along the length direction at the end in the width direction of the strip electrode Provided, or a combination thereof (for example, see Patent Documents 1 to 3). As described in Patent Documents 2 and 3, the configuration in which current is collected from an uncoated portion provided along the length direction at the end portion in the width direction of the strip electrode has a width at the end portion in the length direction of the strip electrode. Compared with a configuration in which current is collected from an uncoated portion provided along the vertical direction, current collection from the electrode is sufficient, which is suitable for a battery that requires high output.

近年、特にリチウムイオン電池等の非水電解質電池の分野において、優れた電極活物質材料の出現や、大きな寸法の帯状電極を安定に連続生産可能な製造技術の開発により、セル当たりの容量が大きい大型で大容量の電池(以下「大容量電池」という)の安定供給能力が高まっており、ハイブリッドカー、電気自動車、電力貯蔵等の用途向け電池として今後生産量が増大すると予測される。   In recent years, especially in the field of non-aqueous electrolyte batteries such as lithium-ion batteries, the capacity per cell is large due to the emergence of excellent electrode active material materials and the development of manufacturing technology that can stably and continuously produce strip electrodes with large dimensions. The stable supply capacity of large-sized and large-capacity batteries (hereinafter referred to as “large-capacity batteries”) is increasing, and it is expected that the production volume will increase in the future as batteries for applications such as hybrid cars, electric vehicles, and power storage.

このような大容量電池を、特許文献4の例示に基づいて説明する。帯状負極は、負極集電体の両面に電極材料(負極活物質)を含む層が形成され、幅方向端部から負極集電体が所定幅で露出するように、長さ方向に沿った未塗工部が形成されている。帯状正極は、同様に正極集電体の両面に電極材料(正極活物質)を含む層が形成され、幅方向端部から正極集電体が所定幅で露出するように、長さ方向に沿った未塗工部が形成されている。   Such a large-capacity battery will be described based on the example of Patent Document 4. The strip-shaped negative electrode has a layer including an electrode material (negative electrode active material) formed on both sides of the negative electrode current collector, and is not aligned along the length direction so that the negative electrode current collector is exposed with a predetermined width from the end in the width direction. A coating part is formed. Similarly, the belt-like positive electrode is formed along the length direction so that layers containing an electrode material (positive electrode active material) are formed on both surfaces of the positive electrode current collector, and the positive electrode current collector is exposed at a predetermined width from the end in the width direction. An uncoated portion is formed.

発電要素は、帯状負極、セパレータおよび帯状正極をあらかじめ互いに幅方向に沿って位相配置するように積層してから扁平に巻回しているため、負極の幅方向端部に形成した未塗工部が渦巻状に露出して軸方向一端部に形成され、負極集電部材を取り付け可能となる。同時に、正極の幅方向端部に形成した未塗工部が渦巻状に露出して軸方向他端部に形成され、正極集電部材が取り付け可能となる。ここで、未塗工部に集電部材をこのように取り付けるためには、特許文献4の例に示した大容量電池では未塗工部の幅を20mm以上とする必要がある。   The power generation element is formed by laminating a strip-shaped negative electrode, a separator, and a strip-shaped positive electrode in advance so as to be phase-aligned with each other in the width direction, and then winding it flat, so that the uncoated portion formed at the width-direction end of the negative electrode It is exposed in a spiral shape and is formed at one end in the axial direction, and a negative electrode current collecting member can be attached. At the same time, the uncoated portion formed at the end portion in the width direction of the positive electrode is spirally exposed and formed at the other end portion in the axial direction, and the positive electrode current collecting member can be attached. Here, in order to attach the current collecting member to the uncoated part in this way, in the large capacity battery shown in the example of Patent Document 4, the width of the uncoated part needs to be 20 mm or more.

特許文献5には、長く連続した帯状集電体の表裏に未塗工部を間欠に設け、該未塗工部で切断して長さ方向の端部に未塗工部を設けた帯状電極を電池に用いることが記載されているが、幅方向の端部に長さ方向に沿った未塗工部を設けることについては記載がなく、幅方向の端部に長さ方向に沿った未塗工部を設けた帯状電極において長さ方向端部以外の部分に幅方向に沿った中間未塗工部を設けることによって帯状電極の変形を低減させることや、これによって電池性能が向上することについても記載がない。
特開2000−164041号公報 特開2000−251927号公報 特開2003−338276号公報 特開2002−279962号公報 特開平11−354110号公報
Patent Document 5 discloses a strip electrode in which an uncoated portion is provided intermittently on the front and back of a long and continuous strip-shaped current collector, and the uncoated portion is cut at the uncoated portion to provide an uncoated portion at the end in the length direction. However, there is no description about providing an uncoated portion along the length direction at the end portion in the width direction, and it is not described along the length direction at the end portion in the width direction. In the strip electrode provided with the coating portion, the deformation of the strip electrode can be reduced by providing an intermediate uncoated portion along the width direction in a portion other than the end portion in the length direction, and thereby the battery performance can be improved. There is no description about.
JP 2000-164041 A JP 2000-251927 A JP 2003-338276 A JP 2002-279962 A JP 11-354110 A

従来、帯状電極は、図6に示すように、一定の幅を有する長尺の帯状集電体1に、所定の塗布幅wに電極材料を含むペーストを塗工し、必要に応じ乾燥する。次に、電極材料の充填密度や空隙率を調整するため、ローププレスする。その後、スリット機に通し、幅方向の一方の端部又は両端部の余分な未塗工部を長さ方向に沿って切除する。例えば図6に示した例では、スリット機によって幅方向の両方の端部を一点鎖線に沿って切除する。これにより、集電体上1に電極材料含有層2が形成されてなる帯状電極を得る。ところが、幅方向の端部に設けられた未塗工部を切除して得られる帯状電極は、変形したものとなりやすいといった問題点があった。   Conventionally, as shown in FIG. 6, a strip-shaped electrode is formed by applying a paste containing an electrode material to a predetermined strip width w on a long strip-shaped current collector 1 having a certain width, and drying it as necessary. Next, a rope press is performed to adjust the packing density and porosity of the electrode material. Then, it passes through a slitting machine and cuts off an uncoated part at one end or both ends in the width direction along the length direction. For example, in the example shown in FIG. 6, both ends in the width direction are cut out along the alternate long and short dash line by a slitting machine. As a result, a band-like electrode is obtained in which the electrode material-containing layer 2 is formed on the current collector 1. However, the belt-like electrode obtained by cutting off the uncoated portion provided at the end in the width direction has a problem that it tends to be deformed.

変形が生じた帯状電極を用いてセパレータを介して重ね合わせると、帯状電極とセパレータ間の距離が不均一となる場所が生じ、その結果、発電要素内での電極反応が不均一となる虞があり、特に、充放電サイクル性能、高率充放電性能、低温性能といった電池性能に悪影響を与える原因となっていた。また、通称タケノコと呼ばれる帯状電極の幅方向への巻きずれを起こしやすく、生産効率上問題となっていた。   When the deformed strip electrode is overlapped via the separator, there is a place where the distance between the strip electrode and the separator is non-uniform, and as a result, the electrode reaction in the power generation element may be non-uniform. In particular, battery performance such as charge / discharge cycle performance, high rate charge / discharge performance, and low temperature performance is adversely affected. In addition, the strip-shaped electrode, commonly called a bamboo shoot, is liable to be displaced in the width direction, which has been a problem in production efficiency.

帯状電極の幅方向端部の未塗工部を切除しないか、又は未塗工部幅を広く残して切除すると、上記問題点は生じないものの、集電部材を取り付ける必要のない片側の端部に広い幅の未塗工部を残すことは、電池のエネルギー密度を低下させることとなり、電池設計上採用し難いものであった。また、帯状電極の幅方向端部を切除する必要がないような幅にあらかじめ未塗工部を設けて塗工すると、ロールプレス後の帯状電極はやはり変形を伴ったものとなりやすいといった問題点があった。   If the uncoated part at the widthwise end of the belt-like electrode is not excised, or if it is excised leaving a wide uncoated part width, the above problem does not occur, but the end on one side where the current collecting member does not need to be attached Leaving an uncoated part with a wide width reduces the energy density of the battery and is difficult to adopt in battery design. In addition, if an uncoated portion is provided in advance in such a width that it is not necessary to cut the width direction end of the strip electrode, the strip electrode after roll press tends to be accompanied by deformation. there were.

本発明は、上記問題点に鑑みなされたものであって、変形の少ない帯状電極と、それを用いた電池を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a belt-like electrode with little deformation and a battery using the same.

本発明の構成と作用効果は次の通りである。但し、作用機構については推定を含んでおり、その作用機構の成否は、本発明を制限するものではない。   The configuration and operational effects of the present invention are as follows. However, the action mechanism includes estimation, and the success or failure of the action mechanism does not limit the present invention.

本発明は、第1項として、電極材料含有層が集電体上に形成されてなる帯状電極の幅方向の少なくとも一方の端部に長さ方向に沿った未塗工部が設けられている帯状電極であって、一方の端部の前記未塗工部の幅をa、もう一方の前記未塗工部の幅をbとしたとき、a>0、b≧0且つa≠bであり、且つ、前記帯状電極の長さ方向端部以外の部分に、幅方向に沿った中間未塗工部が設けられている帯状電極である。   In the present invention, as the first term, an uncoated portion along the length direction is provided at least at one end in the width direction of the belt-like electrode in which the electrode material-containing layer is formed on the current collector. A strip-shaped electrode, where a> 0, b ≧ 0, and a ≠ b, where a is the width of the uncoated portion at one end and b is the width of the other uncoated portion. And it is a strip | belt-shaped electrode by which the intermediate | middle uncoated part along the width direction is provided in parts other than the longitudinal direction edge part of the said strip | belt-shaped electrode.

本明細書において、電極材料含有層とは、電極を構成する材料のうち電極材料を含有している層であって集電体を除く部分をいう。ここで、電極材料とは、正極活物質や負極活物質であり、例えばリチウム電池においては遷移金属カルコゲン化合物、負極用炭素材料、リチウム合金粉末等である。電極材料含有層には、電極材料の他、導電剤、結着剤等を含んでいてもよい。   In this specification, an electrode material content layer is a layer which contains electrode material among materials which constitute an electrode, and means a portion except a current collector. Here, the electrode material is a positive electrode active material or a negative electrode active material. For example, in a lithium battery, a transition metal chalcogen compound, a carbon material for a negative electrode, a lithium alloy powder, and the like. In addition to the electrode material, the electrode material-containing layer may contain a conductive agent, a binder, and the like.

帯状電極の幅方向の端部に設けられている長さ方向に沿った未塗工部は、一方の端部に設けられていても良く、両方の端部に設けられていても良い。但し、両方の端部に設けられている場合においては、一方の端部の前記未塗工部の幅をa(mm)、もう一方の前記未塗工部の幅をb(mm)としたとき、a≠bであるものとする。このような帯状電極が、長さ方向端部以外の部分に、幅方向に沿った中間未塗工部が設けられていることにより、変形が少ない帯状電極を提供できる。   The uncoated part along the length direction provided at the end in the width direction of the belt-like electrode may be provided at one end or may be provided at both ends. However, when it is provided at both ends, the width of the uncoated part at one end is a (mm), and the width of the other uncoated part is b (mm). It is assumed that a ≠ b. Such a strip-shaped electrode is provided with an intermediate uncoated portion along the width direction at a portion other than the end portion in the length direction, whereby a strip-shaped electrode with little deformation can be provided.

このような構成により、変形が少ない帯状電極を提供できる作用機構については必ずしも明らかではないが、本発明者らは次のように推察している。集電体上に形成されている電極材料含有層がロールプレスされるとき、電極材料含有層の圧縮変形に伴って、該電極材料含有層と接している集電体もまた変形する。ところが、未塗工部分の集電体についてはロールが接触しないこともあり変形しないことから、電極材料含有層と接している部分の集電体と未塗工部分の集電体との間に物理的な応力が蓄積される。ここで、ロールプレス後、前記未塗工部を切除すると、前記応力が開放されるため前記切除部近傍が変形する。これが帯状電極が変形を生じやすい原因であると推察している。この変形は、a=0且つb=0とした場合や、a>0且つb>0であってもa=bである場合には比較的小さいものの、a≠bである場合には大きなものとなる。これは、a≠bである場合には未塗工部の前記切除により応力が開放されることによる変形量が帯状電極の幅方向の両端で異なるためであると推察している。ここで、本発明が特徴とする中間未塗工部を設けておくことにより、実に驚くべきことに、未塗工部がa≠bとなるように切除した場合においても、帯状電極の変形を効果的に低減できることを見いだし、本発明に至った。前記集電体は、例えばアルミニウム製であって、厚さが100μm以下、さらには厚さが20μm以下である場合に、本発明を適用すると、本発明の効果を特に大きく発揮させることができる。また、前記電極材料含有層は、集電体の片側に形成された電極材料含有層の厚さがロールプレス前において200μm以下、あるいはロールプレス後において160μm以下であるとき、本発明を適用することによって、本発明の効果を特に大きく発揮させることができる。   Although it is not necessarily clear about the action mechanism which can provide a strip | belt-shaped electrode with few deformation | transformation by such a structure, the present inventors guess as follows. When the electrode material-containing layer formed on the current collector is roll-pressed, the current collector in contact with the electrode material-containing layer is also deformed along with the compression deformation of the electrode material-containing layer. However, the current collector of the uncoated part is not deformed because the roll may not come in contact, so the current collector between the part in contact with the electrode material-containing layer and the current collector of the uncoated part Physical stress is accumulated. Here, after the roll press, when the uncoated part is excised, the stress is released and the vicinity of the excised part is deformed. It is presumed that this is the reason why the strip electrode is easily deformed. This deformation is relatively small when a = 0 and b = 0, or when a> 0 and b> 0 and a = b, but large when a ≠ b. It becomes. This is presumed to be because when a ≠ b, the amount of deformation due to the release of stress by the excision of the uncoated portion differs at both ends in the width direction of the strip electrode. Here, by providing the intermediate uncoated part, which is a feature of the present invention, it is surprisingly surprising that even when the uncoated part is cut out so that a ≠ b, the deformation of the strip electrode is performed. It has been found that it can be effectively reduced and has led to the present invention. When the current collector is made of, for example, aluminum and has a thickness of 100 μm or less, and further a thickness of 20 μm or less, the effect of the present invention can be exhibited particularly greatly when the present invention is applied. The electrode material-containing layer applies the present invention when the thickness of the electrode material-containing layer formed on one side of the current collector is 200 μm or less before roll press or 160 μm or less after roll press. Thus, the effect of the present invention can be exhibited particularly greatly.

ところで、一般に、電解液は、電池内において電極材料含有層の空隙やセパレータの細孔内に配置され、充・放電に伴う電極反応時におけるリチウムイオン輸送の媒体として作用するが、電池の使用条件によっては前記電解液が偏在し、あるいは部分的に枯渇状態となることがあり、電池性能が充分に発揮できない原因となる。そこで、電極材料含有層が集電体上に形成されてなる帯状電極の長さ方向端部以外の部分に幅方向に沿った中間未塗工部が設けられている本発明の構成によれば、電解液の前記偏在や枯渇部分に前記中間未塗工部に保持されている電解液が補われ、前記電池性能が充分に発揮できない原因が緩和される。中間未塗工部を設けることによるこのような効果は、大電流で充電や放電が行われる場合や、低温や高温環境下で電池が使用される場合において、特に顕著に現れる。   By the way, in general, the electrolytic solution is disposed in the gap of the electrode material-containing layer or the pore of the separator in the battery, and acts as a lithium ion transport medium during the electrode reaction accompanying charging / discharging. Depending on the case, the electrolyte solution may be unevenly distributed or partially depleted, resulting in insufficient battery performance. Therefore, according to the configuration of the present invention, the intermediate uncoated portion along the width direction is provided in a portion other than the end portion in the length direction of the strip-shaped electrode in which the electrode material-containing layer is formed on the current collector. Then, the unevenly distributed or depleted portion of the electrolytic solution is supplemented with the electrolytic solution held in the intermediate uncoated portion, and the reason why the battery performance cannot be sufficiently exhibited is alleviated. Such an effect by providing the intermediate uncoated portion is particularly noticeable when charging or discharging is performed with a large current or when the battery is used in a low temperature or high temperature environment.

本発明は、第2項として、前記中間未塗工部は、前記帯状電極の長さ方向端部又は他の中間未塗工部との最短距離が200mm以下となるように設けられている前記1項記載の帯状電極である。   In the present invention, as the second term, the intermediate uncoated portion is provided such that the shortest distance from the longitudinal end portion of the belt-shaped electrode or another intermediate uncoated portion is 200 mm or less. It is a strip electrode according to item 1.

ここで、中間未塗工部は一箇所であっても複数箇所設けられていてもよいが、帯状電極の長さ方向端部から中間未塗工部までの最短距離、又は、中間未塗工部が複数箇所設けられている場合に、特定の中間未塗工部と最も近い他の中間未塗工部との最短距離を200mm以下に設定することによって、換言すれば、長さ方向に少なくとも200mm以内の間隔で中間未塗工部を設けることによって、帯状電極の変形を特に効果的に低減できる。この間隔は、狭く設けるほど帯状電極の変形を低減させる効果が発揮できるが、100mm以上とすることにより、未塗工部を多く設けることによる電極のエネルギー密度の低下が大きくなりすぎないので、好ましい。   Here, the intermediate uncoated portion may be provided at a single location or a plurality of locations, but the shortest distance from the end in the longitudinal direction of the strip electrode to the intermediate uncoated portion, or intermediate uncoated When a plurality of parts are provided, by setting the shortest distance between the specific intermediate uncoated part and the nearest other intermediate uncoated part to 200 mm or less, in other words, at least in the length direction By providing intermediate uncoated portions at intervals of 200 mm or less, deformation of the strip electrode can be particularly effectively reduced. As this interval is narrower, the effect of reducing the deformation of the strip electrode can be exhibited. However, by setting it to 100 mm or more, the decrease in the energy density of the electrode due to providing many uncoated parts does not become too large, which is preferable. .

本発明は、第3項として、前記中間未塗工部の幅が1mm以上である前記1項又は2項記載の帯状電極である。   This invention is a strip | belt-shaped electrode of said 1 or 2 whose width | variety of the said intermediate | middle uncoated part is 1 mm or more as 3rd term | claim.

ここで、中間未塗工部の幅とは、帯状電極の幅方向に沿って設けられた中間未塗工部の長さ方向の距離である。前記中間未塗工部の幅を1mm以上とすることによって、帯状電極の変形を低減する効果を十分なものとすることができる。なかでも、前記中間未塗工部の幅を2mm以上とすることによって、特殊な製造装置を準備することなく容易に中間未塗工部を設けることができるので、帯状電極の製造コストが高くなりすぎることがなく、より好ましい。前記未塗工部の幅は1mm以上で上記効果が十分に発揮されるので、この幅を5mmを超えるものとすることによる益は認められない。前記未塗工部の幅は、5mm以下とすることによって、未塗工部を設けたことによる電極のエネルギー密度の低下が大きくなりすぎないので、好ましい。   Here, the width of the intermediate uncoated part is the distance in the length direction of the intermediate uncoated part provided along the width direction of the strip electrode. By setting the width of the intermediate uncoated portion to 1 mm or more, the effect of reducing the deformation of the strip electrode can be made sufficient. In particular, by setting the width of the intermediate uncoated portion to 2 mm or more, the intermediate uncoated portion can be easily provided without preparing a special manufacturing apparatus, which increases the manufacturing cost of the strip electrode. It is more preferable. Since the above effect is sufficiently exhibited when the width of the uncoated portion is 1 mm or more, no benefit is gained by making this width exceed 5 mm. By setting the width of the uncoated portion to 5 mm or less, it is preferable because the decrease in the energy density of the electrode due to the provision of the uncoated portion does not become too large.

本発明は、第4項として、前記電極材料含有層が集電体上の両面に形成され、一方の面における前記中間未塗工部の裏面の対応する部分に、中間未塗工部が設けられていないことを特徴とする前記1項〜3項のいずれかに記載の帯状電極である。   In the present invention, as the fourth item, the electrode material-containing layer is formed on both surfaces of the current collector, and an intermediate uncoated portion is provided on a corresponding portion of the back surface of the intermediate uncoated portion on one surface. It is not carried out, It is a strip | belt-shaped electrode in any one of said 1-3 term | claim characterized by the above-mentioned.

また、本発明は、第5項として、前記中間未塗工部が帯状電極の両面に設けられている前記1項〜4項のいずれかに記載の帯状電極である。   Moreover, this invention is a strip | belt-shaped electrode in any one of said 1st-4th with which the said intermediate | middle uncoated part is provided in both surfaces of the strip | belt-shaped electrode as 5th term | claim.

電極材料含有層が集電体の両面に形成されている帯状電極においては、前記中間未塗工部は、集電体の一方の面のみに設けても良く、両方の面に設けても良い。前記第4項において、「裏面の対応する部分に中間未塗工部が設けられていない」とは、中間未塗工部が裏面に全く設けられていない構成を含む。前記未塗工部は、片面に設けた場合よりも両面に設けた方が、帯状電極の変形を低減する効果がより発揮されるが、このとき、長さ方向端部から中間未塗工部までの距離を表裏で一致させた場合に比べ、長さ方向端部から中間未塗工部までの距離を表裏で異なるように設けた場合の方が、本発明の効果がより有効に発揮できるため、好ましい。換言すれば、中間未塗工部は表裏で異なる場所に設けることが好ましい。   In the strip electrode in which the electrode material-containing layer is formed on both sides of the current collector, the intermediate uncoated portion may be provided only on one side of the current collector or on both sides. . In the fourth item, “the intermediate uncoated portion is not provided in the corresponding portion of the back surface” includes a configuration in which the intermediate uncoated portion is not provided at all on the back surface. The uncoated part is more effective in reducing the deformation of the strip electrode when it is provided on both sides than when it is provided on one side, but at this time, the intermediate uncoated part from the end in the length direction The effect of the present invention can be more effectively exhibited when the distance from the end in the length direction to the intermediate uncoated part is different on the front and back sides compared to the case where the distance to the front and back is matched. Therefore, it is preferable. In other words, the intermediate uncoated portion is preferably provided at different locations on the front and back sides.

本発明は、第6項として、前記aとbの差の絶対値|a−b|が2mm以上である前記1項〜5項のいずれかに記載の帯状電極である。   This invention is a strip | belt-shaped electrode in any one of said 1st-5th whose absolute value | a-b | of the difference of said a and b is 2 mm or more as 6th term | claim.

前記したように、帯状電極の変形の問題は、帯状電極の幅方向の両方の端部に同じ幅の未塗工部を設けることで、ある程度軽減させることができるものの、集電部材を取り付ける必要のない側の端部に広い幅の未塗工部を残すことは、電池のエネルギー密度を著しく低下させることとなり、集電部材を取り付ける必要のない側の端部未塗工部の幅は、電池設計上できる限り小さくすることが望まれる。しかしながら、帯状電極の幅方向の両方の端部の未塗工部の幅が異なっていると、なかでもその幅の差が2mm以上であると、帯状電極の変形は避けられない大きな問題として残る。本発明によれば、このような場合にも本発明の効果を充分に発揮できるので、前記aとbの差の絶対値|a−b|が2mm以上である帯状電極に本発明を適用することによって、本発明の効果が特に有効に発揮できる。   As described above, the problem of deformation of the strip electrode can be reduced to some extent by providing uncoated portions having the same width at both ends in the width direction of the strip electrode, but it is necessary to attach a current collecting member. Leaving an uncoated part with a wide width at the end on the side where there is no current will significantly reduce the energy density of the battery, and the width of the end uncoated part on the side where the current collector is not required is It is desirable to make it as small as possible in battery design. However, if the widths of the uncoated parts at both ends in the width direction of the strip electrode are different, the deformation of the strip electrode remains an inevitable major problem if the width difference is 2 mm or more. . According to the present invention, the effect of the present invention can be sufficiently exerted even in such a case. Therefore, the present invention is applied to a strip electrode in which the absolute value | a−b | of the difference between a and b is 2 mm or more. As a result, the effects of the present invention can be exhibited particularly effectively.

このとき、a>bである場合に、bは小さい方が好ましく、具体的には6mm以下が好ましいが、5mm以上とすることにより、帯状電極の変形はより確実に抑えることができる。   At this time, when a> b, it is preferable that b is smaller, specifically 6 mm or less, but by setting it to 5 mm or more, deformation of the strip electrode can be more reliably suppressed.

本発明は、第7項として、前記電極材料含有層は、線圧250kg/cm以上のロールプレスを施されたものである前記1項〜6項のいずれかに記載の帯状電極である。   This invention is a strip | belt-shaped electrode in any one of said 1st-6th to which the said electrode material content layer is roll-pressed with the linear pressure of 250 kg / cm or more as 7th term | claim.

前記したように、ロールプレスの目的は、電極材料含有層をプレスすることにより、該層の充填密度及び空隙率を最適化することにあり、該層に接している集電体が該層の変形に伴って変形する一方、該層が形成されていない未塗工部の集電体はロールプレスによって変形しないことから、未塗工部を切除したときに変形が生じる。しかし、電極材料含有層の圧縮に伴う変形の程度については、電極材料含有層の種類により異なる。ロールプレスによって達成させようとする電極材料含有層の充填密度や空隙率は、電極の種類によって異なることはいうまでもないが、たとえ、集電体の材質が同じで、ロールプレス前の充填密度・空隙率が同じで、ロールプレスによって達成させようとする充填密度・空隙率が同じであっても、電極材料の物性が異なれば電極材料含有層に接している集電体の変形の程度は異なる場合がある。具体的には、電極材料含有層が、粒子同士の滑りが比較的悪い材料を多く含んでいる場合には、ロールプレス時の集電体の変形が比較的大きく、粒子同士の滑りが比較的良好な材料を多く含んでいる場合には、ロールプレス時の集電体の変形が比較的小さい。このような集電体の変形の程度は、ロールプレス時の線圧と対応する。線圧は、ロールの単位長さ当たりにかかる圧力で表し、単位はkg/cmである。本発明者らの検討によれば、電極材料含有層を所望する充填密度・空隙率とするために要するロールの線圧が250kg/cm以上である場合には、帯状電極の変形が特に問題となる。従って、前記電極材料含有層は、ロールプレス時の線圧が250kg/cm以上である帯状電極に本発明を適用することで本発明の効果が有効に得られる。   As mentioned above, the purpose of the roll press is to optimize the packing density and porosity of the layer by pressing the electrode material-containing layer, and the current collector in contact with the layer is On the other hand, the current collector of the uncoated part where the layer is not formed is not deformed by the roll press while being deformed along with the deformation, so that the deformation occurs when the uncoated part is cut off. However, the degree of deformation accompanying compression of the electrode material-containing layer varies depending on the type of the electrode material-containing layer. Needless to say, the packing density and porosity of the electrode material-containing layer to be achieved by roll pressing differ depending on the type of electrode, but even if the current collector material is the same, the packing density before roll pressing is the same. Even if the porosity is the same and the packing density to be achieved by the roll press is the same, the degree of deformation of the current collector in contact with the electrode material-containing layer is different if the physical properties of the electrode material are different. May be different. Specifically, when the electrode material-containing layer contains a large amount of material with relatively poor sliding between particles, the deformation of the current collector during roll pressing is relatively large, and the sliding between particles is relatively When many good materials are included, the deformation of the current collector during roll pressing is relatively small. The degree of deformation of such a current collector corresponds to the linear pressure during roll pressing. The linear pressure is expressed as the pressure applied per unit length of the roll, and the unit is kg / cm. According to the study by the present inventors, when the linear pressure of the roll required for the electrode material-containing layer to have a desired packing density and porosity is 250 kg / cm or more, the deformation of the strip electrode is particularly problematic. Become. Therefore, the effect of the present invention can be effectively obtained by applying the present invention to a strip electrode having a linear pressure of 250 kg / cm or more at the time of roll pressing.

本発明は、第8項として、前記電極材料は、遷移金属カルコゲン化合物を含む前記1項〜7項のいずれかに記載の帯状電極である。   The present invention provides, as an eighth item, the strip electrode according to any one of the first to seventh items, wherein the electrode material includes a transition metal chalcogen compound.

一般に電池に用いられる電極材料としては、遷移金属酸化物や炭素材料等があるが、炭素材料にはその粒子同士の滑りが比較的良好であるものが多いのに対し、例えばリチウム遷移金属複合酸化物等の遷移金属カルコゲン化合物材料は概して粒子同士の滑りが良好でない。従って、電極材料含有層が遷移金属カルコゲン化合物を含んでいる帯状電極に本発明を適用することで本発明の効果が特に有効に発揮できる。前記電極材料は、遷移金属カルコゲン化合物を50重量%以上、さらには80%以上含むものである場合に本発明を適用すると、本発明の効果を特に大きく発揮させることができる。   Generally, electrode materials used in batteries include transition metal oxides and carbon materials, but many carbon materials have relatively good sliding between particles, for example, lithium transition metal composite oxidation. Transition metal chalcogen compound materials such as materials generally do not slide well between particles. Therefore, the effect of the present invention can be exhibited particularly effectively by applying the present invention to a strip electrode in which the electrode material-containing layer contains a transition metal chalcogen compound. When the electrode material contains a transition metal chalcogen compound in an amount of 50% by weight or more, further 80% or more, the effect of the present invention can be exhibited particularly greatly when the present invention is applied.

本発明は、第9項として、前記中間未塗工部は、幅方向の一方の端部に設けられた長さ方向に沿った未塗工部から、幅方向のもう一方の端部又は該端部に設けられた長さ方向に沿った未塗工部に至って、連続している前記1項〜8項のいずれかに記載の帯状電極である。   According to the ninth aspect of the present invention, as the ninth aspect, the intermediate uncoated portion is formed from the uncoated portion along the length direction provided at one end portion in the width direction, or the other end portion in the width direction or the end portion. The strip-shaped electrode according to any one of Items 1 to 8, which is continuous to an uncoated portion along a length direction provided at an end portion.

このような構成によれば、帯状電極の変形を特に効果的に低減することができる。また、電池がこのような帯状電極を用いた発電要素を備えることにより、電解液の発電要素へのしみ込みが極めて良好となるため、電池性能に優れた電池を提供することのできる帯状電極となる。   According to such a configuration, the deformation of the strip electrode can be particularly effectively reduced. In addition, since the battery includes a power generation element using such a strip electrode, since the penetration of the electrolyte into the power generation element becomes extremely good, the strip electrode that can provide a battery with excellent battery performance and Become.

本発明は、第10項として、前記1項〜9項のいずれかに記載の帯状電極を用いた電池である。   This invention is a battery using the strip | belt-shaped electrode in any one of said 1-9 as 10th term | claim.

このような構成により、帯状電極の変形を効果的に低減できるので、製造工程の歩留まりが飛躍的に向上する。しかも、正極、負極、セパレータの各要素間の距離が均一となるので、完成した電池は、電極反応を均一に行うことができ、特に、充放電サイクル性能、高率充放電性能、低温性能といった電池性能に優れた電池を安価に提供できる。   With such a configuration, the deformation of the strip electrode can be effectively reduced, so that the yield of the manufacturing process is dramatically improved. In addition, since the distance between each element of the positive electrode, the negative electrode, and the separator becomes uniform, the completed battery can perform the electrode reaction uniformly, in particular, charge / discharge cycle performance, high rate charge / discharge performance, low temperature performance, etc. A battery excellent in battery performance can be provided at low cost.

本発明は、第11項として、前記1項〜10項のいずれかに記載の帯状電極が捲回され、又は折り畳まれてなる発電要素を備えた電池である。   This invention is a battery provided with the electric power generation element by which the strip | belt-shaped electrode in any one of said 1st-10th item is wound or folded as 11th term | claim.

このような構成によれば、変形が低減された帯状電極を用いているので、捲回時に巻きずれを起こしにくく、生産効率が飛躍的に向上する。また、本発明が特徴とする中間未塗工部は帯状電極の幅方向に沿っていることから、捲回電極においては該中間未塗工部が捲回軸に沿ったもの、又は折り目に平行なものとなるので、電解液が該中間未塗工部に沿って速やかに発電要素内部に導入され、電解液を発電要素内に十分に行き渡らすことができ、従って、電池性能に優れた電池を提供できる。この効果は、前記中間未塗工部を、幅方向の一方の端部に設けられた長さ方向に沿った未塗工部から、幅方向のもう一方の端部又は該端部に設けられた長さ方向に沿った未塗工部に至って、連続しているものとすると、より顕著なものとなる。この観点から、電極材料含有層には、前記中間未塗工部の他に、前記中間未塗工部と連続する方向任意の未塗工部を設けておくことにより、電解液を発電要素内により速やかに十分に行き渡らすことができるため、好ましい。方向任意の未塗工部としては、例えば、帯状電極の長さ方向に沿った未塗工部を幅方向端部以外の部分に設けること等が挙げられる。   According to such a configuration, since the belt-like electrode with reduced deformation is used, winding deviation hardly occurs during winding, and the production efficiency is dramatically improved. Further, since the intermediate uncoated portion characterized by the present invention is along the width direction of the strip electrode, in the wound electrode, the intermediate uncoated portion is along the winding axis or parallel to the fold. Therefore, the electrolyte can be quickly introduced into the power generation element along the intermediate uncoated portion, and the electrolyte can be sufficiently distributed in the power generation element. Can provide. The effect is that the intermediate uncoated portion is provided from the uncoated portion along the length direction provided at one end portion in the width direction to the other end portion in the width direction or the end portion. If it reaches the uncoated part along the length direction and is continuous, it becomes more remarkable. From this point of view, the electrode material-containing layer is provided with an uncoated portion having an arbitrary direction in a direction continuous with the intermediate uncoated portion in addition to the intermediate uncoated portion, so that the electrolytic solution is contained in the power generation element. It is preferable because it can be quickly and sufficiently distributed. As an uncoated part of arbitrary direction, providing the uncoated part along the length direction of a strip | belt-shaped electrode in parts other than the width direction edge part etc. is mentioned, for example.

本発明によれば、変形の少ない帯状電極を提供することができる。また、それを用いた電池を提供できる。   According to the present invention, it is possible to provide a strip electrode with less deformation. In addition, a battery using the same can be provided.

本明細書においては、多くの部分において、リチウム二次電池を例に挙げて説明するが、本発明はリチウム二次電池に代表される非水電解質電池に限定されるものではなく、ニッケル水素電池、鉛電池、等にも適用することができる。   In this specification, a lithium secondary battery will be described as an example in many parts, but the present invention is not limited to a nonaqueous electrolyte battery typified by a lithium secondary battery. It can also be applied to lead batteries and the like.

電極材料について、例示により、以下説明する。リチウム二次電池の正極における電極材料は、正極活物質を主要構成成分とし、前記正極活物質としては、リチウム含有遷移金属酸化物、リチウム含有リン酸塩、リチウム含有硫酸塩などを単独あるいは混合して用いることが望ましい。リチウム含有遷移金属酸化物としては、Li−Co系複合酸化物やLi−Mn系複合酸化物等が挙げられる。ここで、前記CoやMnの一部が周期律表I族〜VIII族の金属(例えば、Li,Ca,Cr,Ni,Fe,Co,Mnから選ばれる1種類以上の元素が好ましい)で置換されたものも好適に使用できる。前記Li−Mn系複合酸化物としては、スピネル型結晶構造を有するものやα−NaFeO2型結晶構造を有するものがあり、いずれも好適に用いられる。これらのリチウム含有遷移金属酸化物は、電池設計に応じて適宜選択し、又は混合して用いることができる。 The electrode material will be described below by way of illustration. The electrode material in the positive electrode of the lithium secondary battery has a positive electrode active material as a main component, and the positive electrode active material is a lithium-containing transition metal oxide, a lithium-containing phosphate, a lithium-containing sulfate, etc. It is desirable to use. Examples of the lithium-containing transition metal oxide include Li—Co composite oxide and Li—Mn composite oxide. Here, a part of the Co or Mn is substituted with a metal of Group I to Group VIII of the periodic table (for example, one or more elements selected from Li, Ca, Cr, Ni, Fe, Co, and Mn are preferable). What was made can also be used conveniently. Examples of the Li—Mn composite oxide include those having a spinel crystal structure and those having an α-NaFeO 2 crystal structure, and any of them is preferably used. These lithium-containing transition metal oxides can be appropriately selected according to the battery design, or can be used in combination.

また、前記リチウム含有化合物に他の正極活物質を混合して用いてもよく、他の正極活物質としては、CuO,Cu2O,Ag2O,CuS,CuSO4等のI族金属化合物、TiS2,SiO2,SnO等のIV族金属化合物、V25,V612,VOx,Nb25,Bi23,Sb23等のV族金属化合物、CrO3,Cr23,MoO3,MoS2,WO3,SeO2等のVI族金属化合物、MnO2,Mn23等のVII族金属化合物、Fe23,FeO,Fe34,Ni23,NiO,CoO3,CoO等のVIII族金属化合物等で表される、例えばリチウム−コバルト系複合酸化物やリチウム−マンガン系複合酸化物等の金属化合物、さらに、ジスルフィド,ポリピロール,ポリアニリン,ポリパラフェニレン,ポリアセチレン,ポリアセン系材料等の導電性高分子化合物等が挙げられるが、これらに限定されるものではない。 Alternatively, it is also possible to use a mixture of other positive electrode active material in the lithium-containing compound, other positive electrode active material, CuO, Cu 2 O, Ag 2 O, CuS, I metal compounds such as CuSO 4, Group IV metal compounds such as TiS 2 , SiO 2 and SnO, Group V metal compounds such as V 2 O 5 , V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 and Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 , SeO 2 and other group VI metal compounds, MnO 2 , Mn 2 O 3 and other group VII metal compounds, Fe 2 O 3 , FeO, Fe 3 O 4 , Represented by a Group VIII metal compound such as Ni 2 O 3 , NiO, CoO 3 , CoO, etc., for example, a metal compound such as a lithium-cobalt composite oxide or a lithium-manganese composite oxide, further disulfide, polypyrrole, Polyaniline, polyparaphenylene, polyacetylene Emissions, but a conductive polymer compounds such as polyacene-based material include, but are not limited thereto.

正極は、前記リチウム含有遷移金属酸化物を導電剤および結着剤、さらに必要に応じてフィラーと混練して正極合剤とした後、この正極合剤を集電体としての箔やラス板等に塗布、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより作製される。   For the positive electrode, the lithium-containing transition metal oxide is kneaded with a conductive agent and a binder and, if necessary, a filler to form a positive electrode mixture, and then the positive electrode mixture is used as a current collector foil, lath plate, or the like It is manufactured by applying or press-bonding to a heat treatment at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.

負極材料としては、リチウム金属、リチウム合金(リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有するので電解質塩としてリチウム塩を採用した場合に自己放電を少なくでき、かつ充放電における不可逆容量を少なくできるので、負極材料として好ましい。例えば、人造黒鉛、天然黒鉛が好ましい。特に,負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。
以下に、好適に用いることのできるグラファイトのエックス線回折等による分析結果を示す;
格子面間隔(d002) 0.333〜0.350nm
a軸方向の結晶子の大きさLa 20nm 以上
c軸方向の結晶子の大きさLc 20nm 以上
真密度 2.00〜2.25g/cm3
Negative electrode materials include lithium metal and lithium alloys (lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), as well as occlusion of lithium. Examples include releasable alloys and carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.). Among these, graphite has a working potential very close to that of metallic lithium, so that when lithium salt is employed as the electrolyte salt, self-discharge can be reduced, and irreversible capacity in charge / discharge can be reduced, so that graphite is preferable. For example, artificial graphite and natural graphite are preferable. In particular, graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is desirable because it generates less gas during charging.
The analysis results by X-ray diffraction or the like of graphite that can be suitably used are shown below;
Lattice spacing (d 002 ) 0.333 to 0.350 nm
a-axis direction crystallite size La 20 nm or more c-axis direction crystallite size Lc 20 nm or more True density 2.00 to 2.25 g / cm 3

また、グラファイトに、スズ酸化物,ケイ素酸化物等の金属酸化物、リン、ホウ素、アモルファスカーボン等を添加して改質を行うことも可能である。特に、グラファイトの表面を上記の方法によって改質することで、電解質の分解を抑制し電池特性を高めることが可能であり望ましい。さらに、グラファイトに対して、リチウム金属、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,およびウッド合金等のリチウム金属含有合金等を併用することや、あらかじめ電気化学的に還元することによってリチウムが挿入されたグラファイト等も負極活物質として使用可能である。   It is also possible to modify graphite by adding a metal oxide such as tin oxide or silicon oxide, phosphorus, boron, amorphous carbon or the like. In particular, by modifying the surface of graphite by the above-described method, it is possible to suppress the decomposition of the electrolyte and improve the battery characteristics, which is desirable. In addition to graphite, lithium metal-containing alloys such as lithium metal, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys can be used in combination. Graphite in which lithium is inserted by chemical reduction can also be used as the negative electrode active material.

また、正極活物質の粉体及び負極材料の粉体の少なくとも表面層部分を電子伝導性やイオン伝導性の良いもの、あるいは疎水基を有する化合物で修飾することも可能である。例えば、金,銀,カーボン,ニッケル,銅等の電子伝導性のよい物質や、炭酸リチウム,ホウ素ガラス,固体電解質等のイオン伝導性のよい物質、あるいはシリコーンオイル等の疎水基を有する物質をメッキ,焼結,メカノフュージョン,蒸着,焼き付け、化学蒸着処理法、等の技術を応用して被覆することが挙げられる。   It is also possible to modify at least the surface layer portion of the positive electrode active material powder and the negative electrode material powder with a material having good electron conductivity or ion conductivity, or a compound having a hydrophobic group. For example, plating materials with good electron conductivity such as gold, silver, carbon, nickel, copper, materials with good ion conductivity such as lithium carbonate, boron glass, solid electrolyte, or materials having hydrophobic groups such as silicone oil , Sintering, mechanofusion, vapor deposition, baking, chemical vapor deposition, and the like.

正極活物質の粉体及び負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。   It is desirable that the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane can also be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   In the positive electrode and the negative electrode, in addition to the main constituent components, a conductive agent, a binder, a thickener, a filler, and the like may be contained as other constituent components.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, it is possible to mix a powder mixer such as a V-type mixer, an S-type mixer, a grinding machine, a ball mill, and a planetary ball mill in a dry type or a wet type.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。   The binder is usually a thermoplastic resin such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

前記増粘剤としては、通常、カルボキシメチルセルロース、メチルセルロース等の多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する増粘剤は、例えばメチル化する等してその官能基を失活させておくことが望ましい。増粘剤の添加量は、正極または負極の総重量に対して0.5〜10重量%が好ましく、特に1〜2重量%が好ましい。   As said thickener, polysaccharides, such as carboxymethylcellulose and methylcellulose, can be normally used as 1 type, or 2 or more types of mixtures. Moreover, it is desirable that the thickener having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount of the thickener is preferably 0.5 to 10% by weight, particularly preferably 1 to 2% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。   As the filler, any material that does not adversely affect battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極および負極は、前記活物質、導電剤および結着剤をN−メチルピロリドン,トルエン等の有機溶媒に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、乾燥することによって、好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by mixing the active material, the conductive agent and the binder in an organic solvent such as N-methylpyrrolidone and toluene, and then applying the obtained mixture onto the current collector described in detail below. Then, it is preferably produced by drying. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

即ち、電極材料含有層を集電体に形成する方法は、上記のように電極材料を含むペーストを塗工することによってもよく、スパッタリング、蒸着法、ガスデポジション法等の方法によってもよい。従って、端部未塗工部や昼間部未塗工部を形成する方法についても、上記の電極材料含有層を集電体に形成する各種方法に応じペーストを塗工する方法においてはペースト吐出ノズルの幅を制限することにより、あるいは、全面に塗工した後除去することにより未塗工部を形成させることができる。蒸着法やスパッタリング法においては、マスキング等の方法により、未塗工部を形成させてもよい。   That is, the electrode material-containing layer may be formed on the current collector by applying a paste containing the electrode material as described above, or by a method such as sputtering, vapor deposition, or gas deposition. Therefore, as for the method of forming the end uncoated portion and the daytime uncoated portion, the paste discharge nozzle is used in the method of applying the paste according to the various methods of forming the electrode material-containing layer on the current collector. The uncoated part can be formed by restricting the width of the film or by removing it after coating the entire surface. In the vapor deposition method or the sputtering method, the uncoated portion may be formed by a method such as masking.

集電体について、例示により、以下説明する。正極活物質が正極用集電体に密着し、負極材料が負極用集電体に密着するように構成されることが好ましく、例えば、正極集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理してもよい。   The current collector will be described below by way of example. The positive electrode active material is preferably in close contact with the positive electrode current collector, and the negative electrode material is preferably in close contact with the negative electrode current collector. Examples of the positive electrode current collector include aluminum, titanium, stainless steel, nickel In addition to baked carbon, conductive polymer, conductive glass, etc., the surface of aluminum, copper, etc. treated with carbon, nickel, titanium, silver, etc. for the purpose of improving adhesion, conductivity and oxidation resistance Can be used. In addition to copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as negative electrode current collector, adhesiveness, conductivity, oxidation resistance For the purpose of improvement, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials may be oxidized.

集電体の形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発砲体、繊維群の形成体等が用いることができる。前記集電体の厚さについては限定されないが、1〜500μmのものが用いられる。これらの集電体の中で、正極集電体としては、耐酸化性に優れているアルミニウム箔が、負極集電体としては、還元場において安定であり、且つ導電性に優れ、安価な銅箔、ニッケル箔、鉄箔、及びそれらの一部を含む合金箔を使用することが好ましい。さらに、粗面表面粗さが0.2μmRa以上の箔であることが好ましく、これにより正極及び負極と集電体との密着性は優れたものとなる。よって、このような粗面を有することから、電解箔を使用するのが好ましい。特に、ハナ付き処理を施した電解箔は最も好ましい。   Regarding the shape of the current collector, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like can be used. . The thickness of the current collector is not limited, but one having a thickness of 1 to 500 μm is used. Among these current collectors, an aluminum foil excellent in oxidation resistance is used as a positive electrode current collector, and copper as a negative electrode current collector is stable in a reduction field and has excellent conductivity and is inexpensive. It is preferable to use foil, nickel foil, iron foil, and alloy foil containing a part thereof. Furthermore, the foil preferably has a rough surface surface roughness of 0.2 μm Ra or more, whereby the adhesion between the positive and negative electrodes and the current collector is excellent. Therefore, it is preferable to use an electrolytic foil because it has such a rough surface. In particular, an electrolytic foil that has been subjected to a cracking treatment is most preferable.

本発明者らは、種々の条件が帯状電極の変形に与える影響について検討した結果、次のことがわかった。   As a result of examining the influence of various conditions on the deformation of the strip electrode, the present inventors have found the following.

第一に、帯状電極の幅方向の一方の端部にのみ、長さ方向に沿った未塗工部を10mmの幅で設けた帯状電極について、ロール線圧を変化させながら帯状電極の変形の程度を評価したところ、ロール線圧が小さい場合には変形は問題とならない程度であったが、ロール線圧が250kg/cm以上とすると、にわかに帯状電極の変形が大きくなった。   First, with respect to a strip electrode in which an uncoated portion along the length direction is provided at a width of 10 mm only at one end portion in the width direction of the strip electrode, the deformation of the strip electrode is changed while changing the roll linear pressure. When the roll linear pressure was low, the deformation did not cause a problem. However, when the roll linear pressure was 250 kg / cm or more, the deformation of the band-shaped electrode suddenly increased.

第二に、帯状電極の幅方向の両端に長さ方向に沿った未塗工部を設け、幅aが10mmであり、幅bを種々の幅とした帯状電極について、ロール線圧を320kg/cmとして帯状電極の変形の程度を評価したところ、bが5mm以上であれば帯状電極の変形が非常に効果的に抑えられることがわかった。   Secondly, with respect to the belt-like electrodes in which uncoated portions along the length direction are provided at both ends in the width direction of the belt-like electrode, the width a is 10 mm, and the width b is various widths, the roll linear pressure is 320 kg / When the degree of deformation of the strip electrode was evaluated as cm, it was found that if b is 5 mm or more, the deformation of the strip electrode can be very effectively suppressed.

第三に、帯状電極の幅方向の両端に長さ方向に沿った未塗工部を設け、幅aが5mmであり、幅bを種々の幅とした帯状電極について、ロール線圧を320kg/cmとして帯状電極の変形の程度を評価したところ、bが5mm又は4mmの場合には帯状電極の変形は問題とならない程度であったが、bが3mm以下(|a―b|≧2mm)となると、変形の程度が大きくなり、問題となることがわかった。   Thirdly, with respect to the strip-shaped electrodes in which uncoated portions along the length direction are provided at both ends in the width direction of the strip-shaped electrode, the width a is 5 mm, and the width b is various widths, the roll linear pressure is 320 kg / When the degree of deformation of the strip electrode was evaluated as cm, the deformation of the strip electrode was not a problem when b was 5 mm or 4 mm, but b was 3 mm or less (| ab− ≧ 2 mm). As a result, it has been found that the degree of deformation increases and becomes a problem.

第四に、中間未塗工部の幅cは1mm以上であれば十分に帯状電極の変形が抑えられ、その幅cを広くしても帯状電極の変形に与える影響は同程度であった。   Fourth, if the width c of the intermediate uncoated portion is 1 mm or more, the deformation of the strip electrode is sufficiently suppressed, and even if the width c is widened, the influence on the deformation of the strip electrode is similar.

第五に、中間未塗工部の間隔dは、短くするほど帯状電極の変形が抑えられ、特にdを200mm以下とすることにより、帯状電極の変形が顕著に抑えられることがわかった。   Fifth, it has been found that as the distance d between the intermediate uncoated portions is shortened, the deformation of the strip electrode is suppressed, and in particular, when d is 200 mm or less, the deformation of the strip electrode is remarkably suppressed.

第六に、中間未塗工部を集電体の表と裏で異なる位置に設けた場合には、対応する同じ位置に設けた場合に比べ、帯状電極の変形がより抑えられることがわかった。ここで、表裏の中間未塗工部のギャップ(図1における幅g)は、g>0であれば変形を抑える効果が発揮されるが、なかでも、中間未塗工部の間隔dの寸法の1/3〜2/3の寸法とすることが好ましいことがわかった。   Sixth, it was found that when the intermediate uncoated part was provided at different positions on the front and back of the current collector, the deformation of the strip electrode was more suppressed than when it was provided at the same corresponding position. . Here, the gap between the front and back intermediate uncoated portions (width g in FIG. 1) exhibits an effect of suppressing deformation if g> 0, and in particular, the dimension of the interval d between the intermediate uncoated portions. It was found that it is preferable to set the size to 1/3 to 2/3.

これらの検討結果の一部について、表1に示す。ところで、帯状電極の変形の程度を評価する指標としては、湾曲量やたわみ量が挙げられる。帯状電極製造工程の歩留まりを充分なものとし、電池性能を充分なものとするためには、1mあたりの湾曲量を5mm以下、より好ましくは2mm以下とし、且つ、たわみ量を10mm以下とすることが望まれる。なお、本明細書において、「湾曲」とは、図5(a)に示すように、長方形の帯状電極の長さ方向に沿う一辺を基準線に合わせたとき、長さ方向に1m進んだときの同辺の基準線からのずれ寸法(mm)で表し、「たわみ」とは、図5(b)に示すように、帯状電極を水平な板上に置いたとき、板面からの最大浮き上がり寸法(mm)で表すものとする。   Some of these results are shown in Table 1. By the way, as an index for evaluating the degree of deformation of the strip electrode, the amount of bending and the amount of deflection can be cited. In order to ensure sufficient yield in the strip electrode manufacturing process and sufficient battery performance, the amount of bending per meter is 5 mm or less, more preferably 2 mm or less, and the amount of deflection is 10 mm or less. Is desired. In this specification, as shown in FIG. 5 (a), “curved” means when one side along the length direction of a rectangular strip electrode is aligned with a reference line, and when it advances 1 m in the length direction. The deviation from the reference line of the same side (mm) is expressed as “deflection”, as shown in FIG. 5 (b), when the strip electrode is placed on a horizontal plate, the maximum lift from the plate surface It shall be expressed in dimensions (mm).

Figure 2005339926
Figure 2005339926

表1から明らかなように、本発明に係る帯状電極は、比較例の帯状電極に比べ、帯状電極の変形、特に湾曲の少ない帯状電極となっていることがわかる。   As is apparent from Table 1, it can be seen that the band-shaped electrode according to the present invention is a band-shaped electrode with less deformation of the band-shaped electrode, in particular, less bending than the band-shaped electrode of the comparative example.

(帯状正極の作製)
前掲(表1)の「本発明電極3」に係る帯状電極につき、作製手順を詳細に説明するが、特に断らない限り、使用した材料や電極の構成については全ての実施例、比較例に共通している。正極に用いる電極材料(正極活物質)として、α−NaFeO2型結晶構造を有し、LiNi0.165Mn0.165Co0.672をの組成式で表されるリチウム遷移金属複合酸化物を用いた。該電極材料、導電剤としてのアセチレンブラック及びポリフッ化ビニリデン(PVdF)を重量比90:5:5の割合で混合し、分散媒としてN−メチルピロリドン(NMP)を加えて混練分散し、正極ペーストを調製した。なお、PVdFはNMP溶液として用い、前記重量比は固形重量換算したものである。
(Production of strip-shaped positive electrode)
The production procedure of the strip electrode according to “Invention electrode 3” in the above table (Table 1) will be described in detail. Unless otherwise specified, the materials used and the configuration of the electrodes are common to all examples and comparative examples. doing. As an electrode material (positive electrode active material) used for the positive electrode, a lithium transition metal composite oxide having an α-NaFeO 2 type crystal structure and represented by a composition formula of LiNi 0.165 Mn 0.165 Co 0.67 O 2 was used. The electrode material, acetylene black as a conductive agent and polyvinylidene fluoride (PVdF) are mixed at a weight ratio of 90: 5: 5, and N-methylpyrrolidone (NMP) is added as a dispersion medium and kneaded and dispersed. Was prepared. PVdF is used as an NMP solution, and the weight ratio is calculated in terms of solid weight.

正極集電体としてアルミニウム製(アルミニウム99.85%、厚さ100μm、幅100mm)の長尺巻き連続フォイルを用いた。該正極集電体の表面に、コンマコータを用いて前記正極ペーストを間欠塗工し、120℃の熱風中で揮発分であるNMPを除去した。次いで、片面塗工された前記正極集電体の裏面に、同様に前記正極ペーストを間欠塗工し、120℃の熱風中で揮発分であるNMPを除去した。ここで、帯状正極集電体の幅方向の両方の端部に連続した未塗工部を設けるため、前記コンマコータには塗布幅を制限するスリットを設けた。また、前記間欠塗工により、幅方向に連続した中間未塗工部及び端部未塗工部を設けた。図2は、前記塗工後の長尺巻き連続フォイルの状態を示した図である。   A continuous winding continuous foil made of aluminum (aluminum 99.85%, thickness 100 μm, width 100 mm) was used as the positive electrode current collector. The positive electrode paste was intermittently applied to the surface of the positive electrode current collector using a comma coater to remove NMP as a volatile component in hot air at 120 ° C. Subsequently, the positive electrode paste was similarly intermittently applied to the back surface of the positive electrode current collector coated on one side, and NMP, which is a volatile component, was removed in hot air at 120 ° C. Here, in order to provide continuous uncoated portions at both ends in the width direction of the belt-like positive electrode current collector, the comma coater was provided with a slit for limiting the coating width. Moreover, the intermediate | middle uncoated part and edge part uncoated part which followed in the width direction were provided by the said intermittent coating. FIG. 2 is a view showing a state of the continuous winding continuous foil after the coating.

次に、上記により正極集電体の両面に電極材料が間欠塗工されたシートをロール機に通し、線圧320kg/cmにてロールプレスした。これにより、正極集電体の表面及び裏面に形成された電極材料含有層の厚さ、充填密度及び空隙率を設計通りに調整した。ここで、ロールプレス前の帯状電極のトータル厚さ(集電体、表面の電極材料含有層及び裏面の電極材料含有層の厚さの和)は200μmであり、電極材料含有層の空隙率は53%であった。そして、ロールプレス後の帯状電極のトータル厚さは147μmであり、電極材料含有層の空隙率は35%であった。   Next, the sheet in which the electrode material was intermittently coated on both surfaces of the positive electrode current collector as described above was passed through a roll machine and roll-pressed at a linear pressure of 320 kg / cm. Thereby, the thickness, the packing density, and the porosity of the electrode material-containing layer formed on the front and back surfaces of the positive electrode current collector were adjusted as designed. Here, the total thickness of the strip-shaped electrode before roll press (the current collector, the sum of the thicknesses of the electrode material-containing layer on the front surface and the electrode material-containing layer on the back surface) is 200 μm, and the porosity of the electrode material-containing layer is 53%. And the total thickness of the strip | belt-shaped electrode after roll press was 147 micrometers, and the porosity of the electrode material content layer was 35%.

次に、スリット機により、幅方向の一方の端部に設けられた未塗工部の一部を図2中一点鎖線に沿って切除した。また、端部未塗工部にて図2中二点鎖線に沿って切断し、図1に示す1枚の帯状電極を得た。なお、この帯状正極の長さは5mである。   Next, a part of the uncoated portion provided at one end in the width direction was cut out along the alternate long and short dash line in FIG. Moreover, it cut | disconnected along the dashed-two dotted line in FIG. 2 in the edge part uncoated part, and obtained the 1 sheet | seat-like electrode shown in FIG. In addition, the length of this strip | belt-shaped positive electrode is 5 m.

前記帯状電極とその各部分の寸法関係について図1により説明する。本発明に係る帯状電極は、集電体1の両面に電極材料を含む層2が形成されている。帯状電極の幅方向の一方の端部に長さ方向に沿った未塗工部3Aが幅aを伴って連続して設けられ、もう一方の端部に長さ方向に沿った未塗工部3Bが幅bを伴って連続して設けられている。長さ方向の両端部には幅方向に沿った端部未塗工部4,4が設けられ、長さ方向端部以外の部分に、幅方向に沿った中間未塗工部5が幅cを伴ってdの間隔でそれぞれ連続して設けられている。前記中間未塗工部5は集電体の表裏で長さ方向のギャップgを伴って異なる場所に設けられている。   The dimensional relationship between the belt-like electrode and each part will be described with reference to FIG. In the strip electrode according to the present invention, the layer 2 containing the electrode material is formed on both surfaces of the current collector 1. An uncoated portion 3A along the length direction is continuously provided with a width a at one end portion in the width direction of the strip electrode, and an uncoated portion along the length direction at the other end portion 3B is provided continuously with a width b. End uncoated portions 4 and 4 along the width direction are provided at both ends in the length direction, and an intermediate uncoated portion 5 along the width direction has a width c at a portion other than the end in the length direction. Are continuously provided at intervals of d. The intermediate uncoated portions 5 are provided at different locations with a gap g in the length direction on the front and back of the current collector.

上記実施例において、aは20mmとし、bは5mmとし、cは2mmとし、dは180mmとし、gは90mmとした。このとき、帯状正極1mあたりの湾曲量は1.3mmであり、たわみ量は8mmであった。   In the above embodiment, a was 20 mm, b was 5 mm, c was 2 mm, d was 180 mm, and g was 90 mm. At this time, the bending amount per 1 m of the strip-shaped positive electrode was 1.3 mm, and the deflection amount was 8 mm.

(帯状負極の作製)
負極に用いる電極材料(負極活物質)として人造黒鉛を用いた。該電極材料及びポリフッ化ビニリデン(PVdF)を重量比95:5の割合で混合し、分散媒としてN−メチルピロリドン(NMP)を加えて混練分散し、負極ペーストを調製した。なお、PVdFはNMP溶液として用い、前記重量比は固形重量換算したものである。帯状負極集電体として厚さ80μmの電解銅箔を用い、前記負極ペーストを負極集電体に片面ずつ塗工、乾燥し、次いでロールプレスを行い、帯状負極を得た。この帯状電極の幅方向の一方の端部には長さ方向に沿って幅20mmの未塗工部を設け、幅方向のもう一方の端部には長さ方向に沿って5mmの未塗工部を設けた。以上の工程の処方は上記帯状正極の場合とほぼ同様である。但し、本実施例における帯状負極には中間未塗工部を設けなかった。これは、負極集電体の表面及び裏面に形成された電極材料含有層の厚さ、充填密度及び空隙率を設計通りに調整するために要するロールの線圧は100kgであり、このような場合、帯状電極の幅方向の両端に幅の異なる長さ方向に沿った連続した未塗工部を設けた場合であっても、中間未塗工部を設けなくても帯状電極の変形が問題とならないためである。
(Preparation of strip-shaped negative electrode)
Artificial graphite was used as an electrode material (negative electrode active material) used for the negative electrode. The electrode material and polyvinylidene fluoride (PVdF) were mixed at a weight ratio of 95: 5, and N-methylpyrrolidone (NMP) was added and dispersed as a dispersion medium to prepare a negative electrode paste. PVdF is used as an NMP solution, and the weight ratio is calculated in terms of solid weight. An electrolytic copper foil having a thickness of 80 μm was used as the strip-shaped negative electrode current collector, and the negative electrode paste was applied to the negative electrode current collector one by one and dried, followed by roll pressing to obtain a strip-shaped negative electrode. One end of the strip electrode in the width direction is provided with an uncoated part having a width of 20 mm along the length direction, and the other end in the width direction is provided with an uncoated part of 5 mm along the length direction. Set up a section. The prescription for the above steps is almost the same as that for the above-described belt-like positive electrode. However, no intermediate uncoated portion was provided on the strip-shaped negative electrode in this example. This is because the roll linear pressure required to adjust the thickness, packing density and porosity of the electrode material-containing layer formed on the front and back surfaces of the negative electrode current collector as designed is 100 kg. Even if a continuous uncoated part along the length direction with different widths is provided at both ends in the width direction of the strip electrode, deformation of the strip electrode is a problem without providing an intermediate uncoated part. This is because it must not.

(電池の作製)
前記帯状正極と前記帯状負極をセパレータを介して重ね合わせ、扁平状に捲回し、捲回電極6を作製した。このとき、帯状正極の幅方向端部に長さ方向に沿って幅20mmの未塗工部が設けられた側と、帯状正極の幅方向端部に長さ方向に沿って幅20mmの未塗工部が設けられた側側とが、幅方向に対向するように配置した。これにより、該捲回電極は、帯状電極の幅方向に沿った捲回軸の一端においては帯状正極の幅方向端部に長さ方向に沿って20mmの幅で設けた側の未塗工部3Aが露出し、他端においては帯状負極の幅方向端部に長さ方向に沿って20mmの幅で設けた側の未塗工部(図示せず)が露出し、それぞれの露出部は正極集電板8及び負極集電板8をそれぞれ接続可能となっている。同様の捲回電極6を3個用意し、図3、図4に示すように、該露出部に正極端子8ポール付きの正極集電板7及び負極端子ポール8付きの負極集電板7を取りつけ、レーザー溶接で接続した。次いで、電槽缶9に収納し、前記正極端子ポール8及び負極端子ポール8を貫通しうる穴を設けた蓋板(図示せず)を上部からはめ込み、前記電槽缶と前記蓋板とを溶接した。蓋板に設けた注液孔(図示せず)から電解液を注液後、注液孔を封鎖した。この後、0.1ItAの電流値を用いた充放電を3サイクル行うことにより初期化成を行った。以上の手順により、設計容量25Ahの電池を作製した。
(Production of battery)
The strip-shaped positive electrode and the strip-shaped negative electrode were overlapped via a separator and wound into a flat shape to produce a wound electrode 6. At this time, an uncoated portion with a width of 20 mm along the length direction is provided at the widthwise end of the belt-like positive electrode, and an uncoated portion with a width of 20 mm along the length direction at the widthwise end of the belt-like positive electrode. It arrange | positioned so that the side side in which the process part was provided opposes the width direction. As a result, the wound electrode has an uncoated portion on the side provided with a width of 20 mm along the length direction at the width direction end of the belt-like positive electrode at one end of the winding shaft along the width direction of the belt-like electrode. 3A is exposed, and at the other end, an uncoated portion (not shown) on the side provided with a width of 20 mm along the length direction is exposed at the widthwise end of the strip-shaped negative electrode, and each exposed portion is a positive electrode. The current collector plate 8 and the negative electrode current collector plate 8 can be connected to each other. Three similar wound electrodes 6 are prepared. As shown in FIGS. 3 and 4, a positive electrode current collector plate 7 with a positive electrode terminal 8 pole and a negative electrode current collector plate 7 with a negative electrode terminal pole 8 are formed on the exposed portion. Installed and connected by laser welding. Next, the battery case can 9 is accommodated from above, and a lid plate (not shown) provided with a hole through which the positive electrode terminal pole 8 and the negative electrode terminal pole 8 can be inserted is fitted. Welded. After injecting the electrolyte from an injection hole (not shown) provided in the lid plate, the injection hole was sealed. Then, initialization was performed by performing charge / discharge using a current value of 0.1 ItA for 3 cycles. A battery with a design capacity of 25 Ah was produced by the above procedure.

(高率放電試験)
前掲の表1における本発明電極3及び比較電極1に対応する帯状正極を作製し、それぞれの帯状正極を用いて上記手順に従って電池を作製した。これをそれぞれ本発明電池及び比較電池とする。以下に述べる充電条件は全て1ItA、4.2V、1.5時間の定電流定電圧充電である。充電後、1.0ItA、終止電圧3.0Vの定電流放電を行ない、放電容量がいずれも設計容量通りの25Ahを示すことを確認した。再充電後、20ItA、終止電圧3.0Vの高率定電流放電を行なった。このときの放電カーブを図7に示す。
(High rate discharge test)
Band-shaped positive electrodes corresponding to the electrode 3 of the present invention and the comparative electrode 1 in Table 1 described above were prepared, and batteries were manufactured according to the above procedure using the respective band-shaped positive electrodes. These are designated as the battery of the present invention and the comparative battery, respectively. All the charging conditions described below are constant current and constant voltage charging of 1 ItA, 4.2 V, and 1.5 hours. After charging, a constant current discharge of 1.0 ItA and a final voltage of 3.0 V was performed, and it was confirmed that both discharge capacities were 25 Ah as designed. After recharging, high-rate constant current discharge with 20 ItA and a final voltage of 3.0 V was performed. The discharge curve at this time is shown in FIG.

図7に示すように、本発明電池と比較電池を比べると、20ItAという高率放電においては、放電性能に差がみられた。この原因については、本発明者らは次のように考えている。比較電池においては、高率放電によりリチウムイオンの急速な移動が起こり、それに伴い、電解液が偏在又は部分的な枯渇状態となったため、本発明電池に比べ放電性能が劣る結果となったと考えられる。一方、本発明電池においては、リチウムイオンの急速な移動に伴う電解液の偏在は生じようとするが、幅方向に沿って一定間隔で複数設けた中間未塗工部に保持されている電解液が補われることで、比較電池に比べて高率放電性能に優れる結果となったものと考えられる。   As shown in FIG. 7, when the battery of the present invention and the comparative battery were compared, there was a difference in discharge performance in a high rate discharge of 20 ItA. The inventors consider the cause as follows. In the comparative battery, rapid movement of lithium ions occurred due to high-rate discharge, and the electrolyte solution was unevenly distributed or partially depleted, and thus it was considered that the discharge performance was inferior to the battery of the present invention. . On the other hand, in the battery of the present invention, although the electrolyte solution is likely to be unevenly distributed due to the rapid movement of lithium ions, the electrolyte solution held in a plurality of intermediate uncoated portions provided at regular intervals along the width direction As a result, it is considered that the high-rate discharge performance was superior to that of the comparative battery.

なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上記した実施の形態若しくは実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiments or examples are merely examples in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the scope of claims, and is not restricted to the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

また、以上の説明は、ロールプレス後に幅方向の端部に有する未塗工部を切除することを前提として述べたが、本発明の構成を採用することにより、ロールプレス後の未塗工部の切除工程を不要とすることもできる。即ち、本発明が特徴とする中間未塗工部を設けていない従来の技術であれば、ロールプレス後の未塗工部の切除工程を不要とする目的でa>0、b≧0且つa≠bとなるように電極材料を含む層を塗布した場合には、ロールプレス時に看過できない変形を生じてしまう。ところが、本発明が特徴とする中間未塗工部を設けることにより、ロールプレス後の未塗工部の切除工程を不要とする目的でa>0、b≧0且つa≠bとなるように電極材料を含む層を塗布した場合であっても、ロールプレス時に帯状電極が大きく変形することがない。従って、本発明により、ロールプレス後の未塗工部切除工程を不要とした製造方法を提供できる。   Moreover, although the above description was described on the assumption that the uncoated part at the end in the width direction was cut after roll pressing, by adopting the configuration of the present invention, the uncoated part after roll pressing. This excision step can be eliminated. That is, in the case of the conventional technique that does not provide the intermediate uncoated part, which is a feature of the present invention, a> 0, b ≧ 0, and a for the purpose of eliminating the cutting process of the uncoated part after the roll press. If a layer containing an electrode material is applied so that ≠ b, deformation that cannot be overlooked during roll pressing occurs. However, by providing the intermediate uncoated portion, which is a feature of the present invention, a> 0, b ≧ 0, and a ≠ b for the purpose of eliminating the step of removing the uncoated portion after roll press. Even when a layer containing an electrode material is applied, the strip electrode is not greatly deformed during roll pressing. Therefore, according to the present invention, it is possible to provide a manufacturing method that does not require an uncoated part excision step after roll pressing.

本発明に係る帯状電極の上面及び側面を示す概念図である。It is a conceptual diagram which shows the upper surface and side surface of the strip | belt-shaped electrode which concern on this invention. 実施例に係る帯状電極を得るための切除部及び切断部を示す概念図である。It is a conceptual diagram which shows the cutting part and cutting part for obtaining the strip | belt-shaped electrode which concerns on an Example. 実施例に係る捲回電極を用いた発電要素の要部を示す図である。It is a figure which shows the principal part of the electric power generation element using the winding electrode which concerns on an Example. 実施例に係る捲回電極を用いた発電要素を示す図である。It is a figure which shows the electric power generation element using the winding electrode which concerns on an Example. 湾曲量及びたわみ量を説明する説明図である。It is explanatory drawing explaining the bending amount and the deflection amount. 帯状集電体に電極材料を含むペーストを塗工した状態を示す説明図である。It is explanatory drawing which shows the state which applied the paste containing an electrode material to a strip | belt-shaped collector. 本発明電池及び比較電池の放電性能を示す図である。It is a figure which shows the discharge performance of this invention battery and a comparison battery.

符号の説明Explanation of symbols

1 集電体
2 電極材料含有層
3A 幅方向端部未塗工部
3B 幅方向端部未塗工部
4 長さ方向端部未塗工部
5 中間未塗工部
6 捲回電極
7 集電板
8 端子ポール
9 電槽
DESCRIPTION OF SYMBOLS 1 Current collector 2 Electrode material containing layer 3A Width direction edge uncoated part 3B Width direction edge uncoated part 4 Length direction edge uncoated part 5 Intermediate uncoated part 6 Winding electrode 7 Current collection Board 8 Terminal pole 9 Battery case

Claims (11)

電極材料含有層が集電体上に形成されてなる帯状電極の幅方向の少なくとも一方の端部に長さ方向に沿った未塗工部が設けられている帯状電極であって、一方の端部の前記未塗工部の幅をa、もう一方の前記未塗工部の幅をbとしたとき、a>0、b≧0且つa≠bであり、且つ、前記帯状電極の長さ方向端部以外の部分に、幅方向に沿った中間未塗工部が設けられている帯状電極。 A band-shaped electrode in which an uncoated part along the length direction is provided at least at one end in the width direction of a band-shaped electrode in which an electrode material-containing layer is formed on a current collector, A> 0, b ≧ 0, and a ≠ b, where a is the width of the uncoated part of the part and b is the width of the other uncoated part, and the length of the strip electrode A strip electrode in which an intermediate uncoated portion is provided along the width direction at a portion other than the end portion in the direction. 前記中間未塗工部は、前記帯状電極の長さ方向端部又は他の中間未塗工部との最短距離が200mm以下となるように設けられている請求項1記載の帯状電極。 2. The strip electrode according to claim 1, wherein the intermediate uncoated portion is provided so that a shortest distance between the end portion in the length direction of the strip electrode or another intermediate uncoated portion is 200 mm or less. 前記中間未塗工部の幅が1mm以上である請求項1又は2記載の帯状電極。 The strip electrode according to claim 1 or 2, wherein a width of the intermediate uncoated portion is 1 mm or more. 前記電極材料含有層が集電体上の両面に形成され、一方の面における前記中間未塗工部の裏面の対応する部分に、中間未塗工部が設けられていないことを特徴とする請求項1〜3のいずれかに記載の帯状電極。 The electrode material-containing layer is formed on both surfaces of a current collector, and an intermediate uncoated portion is not provided in a corresponding portion of the back surface of the intermediate uncoated portion on one surface. Item 4. A strip electrode according to any one of Items 1 to 3. 前記中間未塗工部が帯状電極の両面に設けられている請求項1〜4のいずれかに記載の帯状電極。 The strip electrode according to any one of claims 1 to 4, wherein the intermediate uncoated portion is provided on both surfaces of the strip electrode. 前記aとbの差の絶対値|a−b|が2mm以上である請求項1〜5のいずれかに記載の帯状電極。 The strip electrode according to claim 1, wherein an absolute value | a−b | of a difference between the a and b is 2 mm or more. 前記電極材料含有層は、線圧250kg/cm以上のロールプレスを施されたものである請求項1〜6のいずれかに記載の帯状電極。 The strip electrode according to any one of claims 1 to 6, wherein the electrode material-containing layer is subjected to a roll press with a linear pressure of 250 kg / cm or more. 前記電極材料は、遷移金属カルコゲン化合物を含む請求項1〜7のいずれかに記載の帯状電極。 The strip electrode according to any one of claims 1 to 7, wherein the electrode material contains a transition metal chalcogen compound. 前記中間未塗工部は、幅方向の一方の端部に設けられた長さ方向に沿った未塗工部から、幅方向のもう一方の端部又は該端部に設けられた長さ方向に沿った未塗工部に至って、連続している請求項1〜8のいずれかに記載の帯状電極。 The intermediate uncoated portion is from the uncoated portion along the length direction provided at one end portion in the width direction to the other end portion in the width direction or the length direction provided at the end portion. The strip-shaped electrode according to any one of claims 1 to 8, which is continuous to an uncoated portion along the line. 請求項1〜9のいずれかに記載の帯状電極を用いた電池。 A battery using the strip electrode according to claim 1. 請求項1〜10のいずれかに記載の帯状電極が捲回され、又は折り畳まれてなる発電要素を備えた電池。 The battery provided with the electric power generation element by which the strip | belt-shaped electrode in any one of Claims 1-10 is wound or folded.
JP2004155560A 2004-05-26 2004-05-26 Strip electrode and battery using it Pending JP2005339926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155560A JP2005339926A (en) 2004-05-26 2004-05-26 Strip electrode and battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155560A JP2005339926A (en) 2004-05-26 2004-05-26 Strip electrode and battery using it

Publications (1)

Publication Number Publication Date
JP2005339926A true JP2005339926A (en) 2005-12-08

Family

ID=35493257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155560A Pending JP2005339926A (en) 2004-05-26 2004-05-26 Strip electrode and battery using it

Country Status (1)

Country Link
JP (1) JP2005339926A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design
JP2008226555A (en) * 2007-03-09 2008-09-25 Toshiba Corp Nonaqueous electrolyte battery
JP2009093859A (en) * 2007-10-05 2009-04-30 Panasonic Corp Manufacturing method of electrode plate for lithium secondary battery
JP2009176449A (en) * 2008-01-22 2009-08-06 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2010113920A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Lithium-ion secondary battery, vehicle, battery mounted equipment, and method for manufacturing lithium-ion secondary battery
JP2011134564A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Lithium-ion secondary battery, and vehicle and apparatus with the lithium-ion secondary battery thereon
WO2012086690A1 (en) * 2010-12-24 2012-06-28 日立ビークルエナジー株式会社 Lithium ion secondary battery
JP2015057796A (en) * 2010-08-18 2015-03-26 株式会社Gsユアサ Electrode sheet for battery and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064521A (en) * 1996-08-12 1998-03-06 Toshiba Battery Co Ltd Manufacture of sheet-like electrode plate and nonaqueous electrolyte battery
JP2000173656A (en) * 1998-12-10 2000-06-23 Sony Corp Manufacture of nonaqueous secondary battery, and the nonaqueous secondary battery
JP2000311677A (en) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd Rolled type cylindrical lithium secondary battery
JP2001006749A (en) * 1999-06-25 2001-01-12 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003092145A (en) * 2001-09-19 2003-03-28 Mitsubishi Materials Corp Lithiumion polymer secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064521A (en) * 1996-08-12 1998-03-06 Toshiba Battery Co Ltd Manufacture of sheet-like electrode plate and nonaqueous electrolyte battery
JP2000173656A (en) * 1998-12-10 2000-06-23 Sony Corp Manufacture of nonaqueous secondary battery, and the nonaqueous secondary battery
JP2000311677A (en) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd Rolled type cylindrical lithium secondary battery
JP2001006749A (en) * 1999-06-25 2001-01-12 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003092145A (en) * 2001-09-19 2003-03-28 Mitsubishi Materials Corp Lithiumion polymer secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design
JP2008226555A (en) * 2007-03-09 2008-09-25 Toshiba Corp Nonaqueous electrolyte battery
JP2009093859A (en) * 2007-10-05 2009-04-30 Panasonic Corp Manufacturing method of electrode plate for lithium secondary battery
JP2009176449A (en) * 2008-01-22 2009-08-06 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2010113920A (en) * 2008-11-05 2010-05-20 Toyota Motor Corp Lithium-ion secondary battery, vehicle, battery mounted equipment, and method for manufacturing lithium-ion secondary battery
JP2011134564A (en) * 2009-12-24 2011-07-07 Toyota Motor Corp Lithium-ion secondary battery, and vehicle and apparatus with the lithium-ion secondary battery thereon
JP2015057796A (en) * 2010-08-18 2015-03-26 株式会社Gsユアサ Electrode sheet for battery and manufacturing method thereof
WO2012086690A1 (en) * 2010-12-24 2012-06-28 日立ビークルエナジー株式会社 Lithium ion secondary battery
JP2012138194A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
CN103270625A (en) * 2010-12-24 2013-08-28 日立车辆能源株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6465538B2 (en) Method for producing solid solution lithium-containing transition metal oxide, method for producing positive electrode for nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP5175826B2 (en) Active material particles and use thereof
JP5648869B2 (en) Battery electrode and use thereof
KR102378118B1 (en) Method for Preparing Electrode for Secondary Battery And Electrode Prepared by the Same
JP6267423B2 (en) Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
EP3579310B1 (en) Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2015045385A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP2010080392A (en) Electrode for battery and method of manufacturing the same
US11876214B2 (en) Electrode mixture manufacturing method and electrode mixture
JP5807599B2 (en) Active material and lithium ion secondary battery
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2005339926A (en) Strip electrode and battery using it
US8734538B2 (en) Preparation process of electrode for battery
KR20160023809A (en) Non-aqueous electrolyte secondary cell and method for manufacturing same
KR101708361B1 (en) Composite negative electrode active material, method for preparing the same, and lithium battery including the same
WO2023127228A1 (en) Secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery
JP2019160517A (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
EP4235901A1 (en) Electrode assembly including coating layer formed on other surface of single-sided positive electrode and secondary battery comprising same
US20230378441A1 (en) Positive Electrode Active Material for Secondary Battery, Manufacturing Method Thereof, Freestanding Film Comprising the Same, Dry Electrode and Secondary Battery Comprising Dry Electrode
JP6939045B2 (en) Electrical device
EP4030508A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011222258A (en) Lithium ion secondary battery
JP2011171177A (en) Lithium ion secondary battery
JP2008204836A (en) Negative electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2003059532A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109