JP2005336568A - High toughness aluminum-alloy casting and its production method - Google Patents

High toughness aluminum-alloy casting and its production method Download PDF

Info

Publication number
JP2005336568A
JP2005336568A JP2004158757A JP2004158757A JP2005336568A JP 2005336568 A JP2005336568 A JP 2005336568A JP 2004158757 A JP2004158757 A JP 2004158757A JP 2004158757 A JP2004158757 A JP 2004158757A JP 2005336568 A JP2005336568 A JP 2005336568A
Authority
JP
Japan
Prior art keywords
alloy casting
casting
alloy
elongation
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158757A
Other languages
Japanese (ja)
Other versions
JP4238180B2 (en
Inventor
Yusuke Toyoda
裕介 豊田
Katsuhiro Shibata
勝弘 柴田
Takahiro Mizukami
貴博 水上
Ryoichi Murakashi
良一 村樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004158757A priority Critical patent/JP4238180B2/en
Publication of JP2005336568A publication Critical patent/JP2005336568A/en
Application granted granted Critical
Publication of JP4238180B2 publication Critical patent/JP4238180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high toughness Al-alloy casting in which all of tensile strength, 0.2% proof stress and elongation can be obtained at high levels in a well balance. <P>SOLUTION: The high toughness Al-alloy casting contains, by mass, 2 to 4% Si, 0.2 to 0.5% Mg, 0.4 to 0.8% Cu, 0.1 to 0.4% Zr, and the balance Al with inevitable impurities. The casting has the tensile strength of ≥280 MPa, the 0.2% proof stress of ≥220 MPa, and the elongation of ≥10%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高靱性Al合金鋳物及びその製造方法に係り、特に、種々の機械的特性に優れたAl合金鋳物の製造技術に関する。   The present invention relates to a high toughness Al alloy casting and a method for producing the same, and more particularly to a technique for producing an Al alloy casting having various mechanical characteristics.

Al合金鋳物は、車体、サスペンション部材、サブフレーム部材、各種継手部材、及びアルミホイール等のシャーシ構成部品等に使用して好適であり、このような合金については種々の技術が開示されている。   Al alloy castings are suitable for use in chassis components such as vehicle bodies, suspension members, subframe members, various joint members, and aluminum wheels, and various techniques are disclosed for such alloys.

このようなAl合金鋳物としては、伸び、衝撃値、引張強さ、耐力、及び耐食性を向上させることを目的として、質量比で、Si:1.65〜4.0%、Mg:0.2〜0.4%、Fe:0.2%以下であり、残部が実質的にAl及び不可避的不純物の組成からなり、Al基地中の共晶Siの面積率が15%以下、伸びが15%以上、且つ衝撃値が30〜40×10J/m以上である高靱性Al鋳物が提案されている(特許文献1参照)。この高靱性Al鋳物は、Si含有量を低く抑えた組成で、鋳造後、共晶温度近傍の高温に急冷する高温溶体化処理を行い、しかる後に時効処理を適切に施すことで、優れた伸び及び衝撃値を実現することができる。また、このAl鋳物は、同様に、高温溶体化処理を行い、しかる後に長時間時効処理を行うことで、優れた引張強さ、耐力、及び耐食性を実現することができる。このような技術によれば、部品の薄肉化に伴う軽量化を図ることでき、しかも低圧鋳造又は重力鋳造を適用することができるため、生産性を向上させることができる。 Such an Al alloy casting has a mass ratio of Si: 1.65 to 4.0% and Mg: 0.2 for the purpose of improving elongation, impact value, tensile strength, yield strength, and corrosion resistance. -0.4%, Fe: 0.2% or less, the balance is substantially composed of Al and inevitable impurities, the area ratio of eutectic Si in the Al base is 15% or less, and the elongation is 15%. As described above, a high toughness Al casting having an impact value of 30 to 40 × 10 4 J / m 2 or more has been proposed (see Patent Document 1). This high toughness Al casting has a composition with a low Si content, and after casting it is subjected to a high temperature solution treatment that is rapidly cooled to a high temperature close to the eutectic temperature, and then an aging treatment is appropriately applied to achieve excellent elongation. And impact values can be realized. In addition, this Al casting can be similarly subjected to a high-temperature solution treatment, and then an aging treatment for a long time, thereby realizing excellent tensile strength, yield strength, and corrosion resistance. According to such a technique, it is possible to reduce the weight accompanying the thinning of the parts, and to apply low-pressure casting or gravity casting, so that productivity can be improved.

また、優れた靱性を実現するとともに、金型への焼き付きの発生を防止することを目的として、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.2%≦Fe≦0.5%、0.1%≦Ti≦0.3%、及び不可避的不純物を含み、残部がAlであり、金属組織におけるα相の粒径dが50μm以下である高靱性Al合金鋳物が提案されている(特許文献2参照)。この技術では、高靱性Al鋳物の組成を上記特許文献1と同等の組成とした上で、Feの含有量を画期的な0.2質量%を超えるものとすることにより、優れた靱性と金型への焼き付き防止とを共に実現することができる。なお、特許文献2に記載の高靱性Al合金鋳物は、上記組成のAl合金溶湯を加圧下で金型のキャビティに充填し、次いで溶湯の凝固が完了するまで冷却速度を5℃/Sに制御して得られるものであり、靱性等の物性は、特許文献1に記載の鋳物と同等であるが、生産性がさらに改善されている。   Further, for the purpose of realizing excellent toughness and preventing the occurrence of seizure on the mold, the mass ratio is 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0 .4% ≦ Cu ≦ 0.8%, 0.2% ≦ Fe ≦ 0.5%, 0.1% ≦ Ti ≦ 0.3%, and unavoidable impurities, the balance being Al, There has been proposed a high toughness Al alloy casting in which the particle size d of the α phase is 50 μm or less (see Patent Document 2). In this technique, the composition of the high toughness Al casting is made the same composition as that of the above-mentioned Patent Document 1, and the excellent toughness is achieved by making the content of Fe more than epoch-making 0.2% by mass. Both prevention of seizing on the mold can be realized. In addition, in the high toughness Al alloy casting described in Patent Document 2, the molten aluminum alloy having the above composition is filled into the mold cavity under pressure, and then the cooling rate is controlled to 5 ° C./S until the solidification of the molten metal is completed. The physical properties such as toughness are equivalent to those of the casting described in Patent Document 1, but the productivity is further improved.

特開平9−272942号公報(要約書)Japanese Laid-Open Patent Publication No. 9-272942 (Abstract) 特願2003−420405号Japanese Patent Application No. 2003-420405

しかしながら、上記特許文献1、2に記載された技術では、得られる鋳物の機械的諸性質のうち、特に伸びや衝撃強度等の靱性について、十分な値が得られているとは言い難い。例えば、特許文献1の請求項4に記載の鋳物では、引張強さが240MPa以上であり、しかも0.2%耐力が140MPa以上であるが、衝撃値が19×10と低い。よって、近年においては、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られるAl合金鋳物の技術開発が要請されていた。 However, in the techniques described in Patent Documents 1 and 2, it is difficult to say that sufficient values are obtained for toughness such as elongation and impact strength among mechanical properties of the obtained casting. For example, in the casting according to claim 4 of Patent Document 1, the tensile strength is 240 MPa or more and the 0.2% proof stress is 140 MPa or more, but the impact value is as low as 19 × 10 4 . Therefore, in recent years, there has been a demand for the technical development of Al alloy castings in which all of tensile strength, 0.2% proof stress and elongation can be obtained at a high level with good balance.

本発明は、上記要請に鑑みてなされたものであり、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られる高靱性Al合金鋳物及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above requirements, and aims to provide a high-toughness Al alloy casting in which all of tensile strength, 0.2% proof stress and elongation can be obtained in a well-balanced and high level and a method for producing the same. Yes.

本発明者らは、上記のように、抗張力、0.2%耐力及び伸びが、バランス良く高いレベルで得られる、高靱性Al合金鋳物について、鋭意、研究を重ねた。その結果、上記特許文献2に示すように合金成分中のFe及びTi含有量を限定する代わりに、Zr含有量を限定することで、上記課題を解決することができるとの知見を得た。本発明は、このような知見に鑑みてなされたものである。   As described above, the present inventors diligently researched a high toughness Al alloy casting in which tensile strength, 0.2% proof stress and elongation can be obtained at a high level in a balanced manner. As a result, as shown in the above-mentioned Patent Document 2, instead of limiting the Fe and Ti contents in the alloy components, the inventors have found that the above problem can be solved by limiting the Zr content. The present invention has been made in view of such knowledge.

即ち、本発明の高靱性Al合金鋳物は、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが10%以上であることを特徴としている。なお、本発明の高靱性Al合金鋳物には、Sr、Na等の共晶Si微細化剤を含有させることができる。   That is, the high toughness Al alloy casting of the present invention has a mass ratio of 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.8%. 1% ≦ Zr ≦ 0.4% and containing inevitable impurities, the balance being Al, tensile strength is 280 MPa or more, 0.2% proof stress is 220 MPa or more, and elongation is 10% or more. . The high toughness Al alloy casting of the present invention can contain a eutectic Si refiner such as Sr or Na.

また、本発明の高靱性Al合金鋳物の製造方法は、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが10%以上である高靱性Al合金鋳物を製造するにあたり、上記組成の合金を鋳造し、500〜540℃の高温熱処理を施した後、急冷処理を施し、次いで160〜185℃の温度で時効処理を施すことを特徴としている。   Moreover, the manufacturing method of the high toughness Al alloy casting of this invention is 2% <= Si <= 4%, 0.2% <= Mg <= 0.5%, 0.4% <= Cu <= 0.8% by mass ratio. 0.1% ≦ Zr ≦ 0.4% and inevitable impurities, the balance being Al, the tensile strength is 280 MPa or more, the 0.2% proof stress is 220 MPa or more, and the elongation is 10% or more In producing an Al alloy casting, an alloy having the above composition is cast, subjected to high-temperature heat treatment at 500 to 540 ° C., then subjected to rapid cooling treatment, and then subjected to aging treatment at a temperature of 160 to 185 ° C. .

本発明の高靱性Al合金鋳物によれば、合金中のZr含有量の適正化を図ることにより、Al合金鋳物の、優れた抗張力、0.2%耐力及び伸びをバランス良く高いレベルで実現することができる。   According to the high toughness Al alloy casting of the present invention, by optimizing the Zr content in the alloy, the Al alloy casting achieves excellent tensile strength, 0.2% proof stress and elongation at a high level in a balanced manner. be able to.

以下に、本発明の好適な実施形態を説明する。
本発明の高靱性Al合金鋳物は、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが10%以上である。このような合金中の各元素の含有理由、及びその含有量限定理由は、以下のとおりである。
The preferred embodiments of the present invention will be described below.
The high toughness Al alloy casting of the present invention has a mass ratio of 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.1%. ≦ Zr ≦ 0.4%, and inevitable impurities are contained, the balance is Al, the tensile strength is 280 MPa or more, the 0.2% proof stress is 220 MPa or more, and the elongation is 10% or more. The reasons for the inclusion of each element in such an alloy and the reasons for limiting its content are as follows.

Siは、溶湯の流動性を良好にし、またAl合金鋳物の機械的特性を向上させる効果を有する。但し、Si含有量が2質量%未満の場合には、溶湯の流動性が悪化するため、Al合金鋳物において鋳造欠陥の発生が著しく増大する。一方、Si含有量が4質量%を超える場合には、α−Al相の結晶粒界に分布するSi結晶の量が増大するため、Al合金鋳物の靱性が低下する。従って、Siの含有量は、2〜4質量%とした。   Si has the effect of improving the fluidity of the molten metal and improving the mechanical properties of the Al alloy casting. However, when the Si content is less than 2% by mass, the fluidity of the molten metal is deteriorated, so that the occurrence of casting defects is remarkably increased in the Al alloy casting. On the other hand, when the Si content exceeds 4% by mass, the amount of Si crystals distributed at the crystal grain boundaries of the α-Al phase increases, so that the toughness of the Al alloy casting decreases. Therefore, the content of Si is set to 2 to 4% by mass.

Mgは、T6処理によりMgSiを微細に分散析出させてAl合金鋳物の強度を向上させる効果を有する。但し、Mg含有量が0.2質量%未満の場合には、上記効果が不十分である。一方、Mg含有量が0.5質量%を超える場合には、MgSiの析出量が過多となるため、Al合金鋳物の靱性が低下する。従って、Mgの含有量は、0.2〜0.5質量%とした。 Mg has the effect of improving the strength of the Al alloy casting by finely dispersing and precipitating Mg 2 Si by T6 treatment. However, when the Mg content is less than 0.2% by mass, the above effect is insufficient. On the other hand, when the Mg content exceeds 0.5% by mass, the amount of Mg 2 Si precipitated becomes excessive, and the toughness of the Al alloy casting is lowered. Therefore, the content of Mg is set to 0.2 to 0.5% by mass.

Cuは、Alへの高い固溶限に基づいてAl合金鋳物の金属組織を固溶強化し、また、T6処理による分散析出により上記金属組織を分散強化する効果を有する。但し、Cu含有量が0.4質量%未満の場合には、Al合金鋳物における強度向上効果が十分でない。一方、Cu含有量が0.8質量%を超える場合には、Al合金鋳物の耐応力腐食割れ性が低下するのみならず、耐食性も悪化する。従って、Cu含有量は、0.4〜0.8質量%とした。   Cu has the effect of solid-solution strengthening the metal structure of the Al alloy casting based on the high solid solubility limit in Al, and also has the effect of dispersion strengthening the metal structure by dispersion precipitation by T6 treatment. However, when the Cu content is less than 0.4 mass%, the strength improvement effect in the Al alloy casting is not sufficient. On the other hand, when the Cu content exceeds 0.8% by mass, not only the stress corrosion cracking resistance of the Al alloy casting is lowered but also the corrosion resistance is deteriorated. Therefore, the Cu content is set to 0.4 to 0.8 mass%.

Zrは、結晶粒を微細化する効果を有する。但し、Zrの含有量が0.1質量%未満の場合には、上記効果が不十分である。一方、Zrの含有量が0.4質量%を超える場合には、ZrAl系高温晶出物であるAlZrが粗大に成長するため、溶湯の流動性が悪化して鋳造欠陥が生じ易くなる。従って、Zrの含有量は、0.1〜0.4質量%とした。 Zr has the effect of refining crystal grains. However, when the Zr content is less than 0.1% by mass, the above effect is insufficient. On the other hand, when the Zr content exceeds 0.4% by mass, Al 3 Zr which is a ZrAl-based high-temperature crystallized product grows coarsely, so that the fluidity of the molten metal is deteriorated and casting defects are likely to occur. . Therefore, the content of Zr is set to 0.1 to 0.4% by mass.

次に、本発明の高靱性Al合金鋳物の製造方法についての、各限定理由を詳細に説明する。
即ち、上記高靱性Al合金鋳物を製造する場合には、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが10%以上である高靱性Al合金鋳物を製造するにあたり、上記組成の合金を鋳造し、500〜540℃の高温熱処理を施した後、急冷処理を施し、次いで160〜185℃の温度で時効処理を施す。
Next, each limitation reason is demonstrated in detail about the manufacturing method of the high toughness Al alloy casting of this invention.
That is, when manufacturing the above-mentioned high toughness Al alloy casting, the mass ratio is 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%. 0.1% ≦ Zr ≦ 0.4% and inevitable impurities, the balance being Al, the tensile strength is 280 MPa or more, the 0.2% proof stress is 220 MPa or more, and the elongation is 10% or more In producing an Al alloy casting, an alloy having the above composition is cast, subjected to high-temperature heat treatment at 500 to 540 ° C., then subjected to rapid cooling treatment, and then subjected to aging treatment at a temperature of 160 to 185 ° C.

各合金元素の含有理由、及びその含有量限定理由は、上記したとおりである。鋳造法としては、例えば、金型重力鋳造法や一般的なダイカスト法を適用することができ、鋳造温度は720〜730℃、金型温度は金型重力鋳造法では250〜300℃、ダイカスト法では150〜250℃が好ましい。   The reason for containing each alloy element and the reason for limiting its content are as described above. As the casting method, for example, a die gravity casting method or a general die casting method can be applied, the casting temperature is 720 to 730 ° C., the die temperature is 250 to 300 ° C. in the die gravity casting method, and the die casting method. Then, 150-250 degreeC is preferable.

また、上記高温熱処理(溶体化処理)温度が500℃未満では、強化相と核サイト原子との均質化が十分進まない一方、540℃を超える場合には、部分的なバーニングが発生し、粒界強度が著しく低下するので好ましくない。従って、熱処理温度は500〜540℃とした。なお、この高温熱処理時間は、製品の寸法によるが、概して4〜10時間で十分な均質化が実現される。   When the temperature of the high-temperature heat treatment (solution treatment) is less than 500 ° C., homogenization between the strengthening phase and the nucleus site atoms does not proceed sufficiently, whereas when it exceeds 540 ° C., partial burning occurs, This is not preferable because the field strength is significantly reduced. Therefore, the heat treatment temperature was set to 500 to 540 ° C. In addition, although this high temperature heat processing time is based on the dimension of a product, sufficient homogenization is generally implement | achieved in 4 to 10 hours.

さらに、時効処理温度が160℃未満では、強化相の析出が十分に得られないばかりでなく、処理時間が増大するため、不経済的である一方、185℃を超える場合には、析出時の強化相が成長し過ぎて、Zrによって微細化核サイトを形成した効果がなくなるため好ましくない。従って、時効処理温度は160〜185℃とした。なお、時効処理時間は、概して5〜14時間が好ましい。   Furthermore, if the aging treatment temperature is less than 160 ° C, not only the precipitation of the strengthening phase is not sufficiently obtained, but also the treatment time is increased, which is uneconomical. This is not preferable because the strengthening phase grows too much and the effect of forming fine nucleation sites by Zr is lost. Therefore, the aging treatment temperature was set to 160 to 185 ° C. In general, the aging treatment time is preferably 5 to 14 hours.

以下、本発明を実施例により、さらに詳細に説明する。
表1に示す各組成の合金に、表1,2に示す熱処理を施して、比較例1〜9及び発明例1〜10のAl合金鋳物をそれぞれ得た。なお、各比較例のAl合金鋳物は、上記特許文献2に示す成分組成を適用したものであり、各発明例のAl合金鋳物は、本発明の成分組成を適用したものである。また、各比較例及び発明例の鋳物中のFe含有量は0.2質量%未満である。比較例1〜9及び発明例1〜10の各Al合金鋳物についての、抗張力、0.2%耐力及び伸びを測定した結果を表1に併記するとともに、図1,2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
The alloys having the compositions shown in Table 1 were subjected to the heat treatments shown in Tables 1 and 2 to obtain Al alloy castings of Comparative Examples 1 to 9 and Invention Examples 1 to 10, respectively. In addition, the Al alloy casting of each comparative example applies the component composition shown in the above-mentioned patent document 2, and the Al alloy casting of each invention example applies the component composition of the present invention. Moreover, Fe content in the casting of each comparative example and invention example is less than 0.2% by mass. The results of measuring the tensile strength, 0.2% proof stress and elongation of the Al alloy castings of Comparative Examples 1 to 9 and Invention Examples 1 to 10 are shown in Table 1 and shown in FIGS.

Figure 2005336568
Figure 2005336568

Figure 2005336568
Figure 2005336568

図1は、比較例1〜9及び発明例1〜10の各Al合金鋳物についての、伸びと0.2%耐力との関係を示すグラフであり、図2は、同様に、伸びと抗張力との関係を示すグラフである。これらの結果から、発明例は全て、各比較例よりも、抗張力、0.2%耐力及び伸びの全てがバランス良く高いレベルで得られていることが判る。以上より、本発明のAl合金鋳物の組成、及びAl合金鋳物の製造方法における熱処理の限定根拠の有効性が実証された。   FIG. 1 is a graph showing the relationship between elongation and 0.2% proof stress for each Al alloy casting of Comparative Examples 1 to 9 and Invention Examples 1 to 10, and FIG. It is a graph which shows the relationship. From these results, it can be seen that all of the inventive examples were obtained in a high level with good balance of tensile strength, 0.2% proof stress and elongation, as compared with the comparative examples. From the above, the composition of the Al alloy casting of the present invention and the effectiveness of the grounds for limiting the heat treatment in the method for producing the Al alloy casting were proved.

次に、本発明の合金組成及び上記特許文献2の合金組成において、晶出するAlTi及びAlZrの、溶湯の流動性への影響を比較検討する。Al−3Si−0.4Mg−0.6Cuの組成中に、下記の表3に示すように、Ti又はZrを含有させて、AlTiとAlZrとの各晶出温度を測定した。その結果を表3に併記するとともに、図3に示す。 Next, the effects of the crystallized Al 3 Ti and Al 3 Zr on the fluidity of the molten metal in the alloy composition of the present invention and the alloy composition of Patent Document 2 will be compared. As shown in Table 3 below, Ti or Zr was contained in the composition of Al-3Si-0.4Mg-0.6Cu, and the crystallization temperatures of Al 3 Ti and Al 3 Zr were measured. The results are shown in Table 3 and shown in FIG.

Figure 2005336568
Figure 2005336568

さらに、Al−3Si−0.4Mg−0.6Cuの組成中に、Tiを0.15質量%含有させたAl合金鋳物と、Zrを0.2質量%含有させたAl合金鋳物とについて、溶湯温度715℃及び730℃でのMIT式流動長を測定した。なお、本測定は各5回行い、その平均値を算出した。その結果を図4に示す。   Furthermore, in the composition of Al-3Si-0.4Mg-0.6Cu, an Al alloy casting containing 0.15% by mass of Ti and an Al alloy casting containing 0.2% by mass of Zr, The MIT flow length at temperatures of 715 ° C. and 730 ° C. was measured. In addition, this measurement was performed 5 times each and the average value was computed. The result is shown in FIG.

図3及び図4から明らかなように、含有元素としてZrを用いた場合には、Tiを用いた場合よりも晶出温度が低く、これにより、流動性が向上するので、鋳造性及び鋳造品の品質が向上する。また、低Si合金にZrを含有させると、粒界のまだらなSi共晶の間にZr化合物が微細析出するため、強度及び靱性が向上する。このような作用は、従来技術としてTiを含有させた鋳物では実現されない。また、この作用は、TiとZrとが同じ微細化効果を生じさせる元素であっても、TiとAlとの原子半径の差が小さく、ZrとAlとの原子半径の差が大きいことに起因する。以上より、鋳造性及び鋳造品の品質、並びに鋳造品の靱性を向上させるためには、Al合金中にTiを含有させるよりも、Zrを含有させる方が有効であることが実証された。   As is apparent from FIGS. 3 and 4, when Zr is used as the contained element, the crystallization temperature is lower than when Ti is used, thereby improving the fluidity. Improve the quality. Further, when Zr is contained in the low Si alloy, the Zr compound is finely precipitated between the mottled Si eutectics at the grain boundaries, so that the strength and toughness are improved. Such an effect is not realized in a casting containing Ti as a conventional technique. In addition, this action is caused by the fact that the difference in atomic radius between Ti and Al is small and the difference in atomic radius between Zr and Al is large even when Ti and Zr are elements that produce the same refinement effect. To do. From the above, it has been proved that inclusion of Zr is more effective than inclusion of Ti in the Al alloy in order to improve castability, cast product quality, and cast product toughness.

さらに、Al−3Si−0.4Mg−0.6Cuの組成中に、Tiを0〜0.3質量%含有させたものと、Zrを0〜0.5質量%含有させたものとについて、抗張力、0.2%耐力及び伸びを測定した。その結果を図5,6に示す。   Furthermore, in the composition of Al-3Si-0.4Mg-0.6Cu, the tensile strength of those containing 0 to 0.3% by mass of Ti and those containing 0 to 0.5% by mass of Zr. 0.2% proof stress and elongation were measured. The results are shown in FIGS.

図5,6によれば、抗張力、0.2%耐力及び伸びの向上には、Zrの含有量は0.1質量%以上が好ましいことが判る。また、Zrの含有量が0.4質量%を超えると、実用鋳造温度域で化合物(AlZr)が生成されるため、この化合物が坩堝内で沈殿し、溶湯の流動性を悪化させ鋳造欠陥が生じ易くなる。また、図5,6から明らかなように、Zrの含有量が0.3質量%を超えれば、各機械的性質はほぼ飽和状態に達し、0.4質量%を超えても、各性質は向上しない。以上により、本発明のZr含有量(0.1%≦Zr≦0.4%)の限定根拠の有効性が実証された。 5 and 6, it can be seen that the Zr content is preferably 0.1% by mass or more for improvement of tensile strength, 0.2% proof stress and elongation. Further, if the content of Zr exceeds 0.4% by mass, a compound (Al 3 Zr) is generated in a practical casting temperature range, so that this compound precipitates in the crucible and deteriorates the fluidity of the molten metal. Defects are likely to occur. Further, as apparent from FIGS. 5 and 6, if the Zr content exceeds 0.3 mass%, each mechanical property reaches a substantially saturated state, and even if it exceeds 0.4 mass%, each property is Does not improve. From the above, the effectiveness of the grounds for limiting the Zr content (0.1% ≦ Zr ≦ 0.4%) of the present invention was proved.

最後に、本発明の高靱性Al合金鋳物の構成元素である、Si、Mg、及びCuについての好適範囲を実証する。
表4に示す各組成の合金を鋳造し、525℃で4時間の高温熱処理を施した後、急冷処理を施し、次いで175℃で5時間の時効処理を施して各比較例10〜19、及び発明例11〜18のAl合金鋳物をそれぞれ得た。これらの各Al合金鋳物について、抗張力、0.2%耐力及び伸びを測定し、さらに応力腐食割れについて調査した。これらの結果を表4に併記するとともに、図7〜9に示す。なお、応力腐食割れの調査については、Cリングをクロム酸へ浸漬することにより行い、応力は耐力の90%とした。
Finally, the preferred ranges for Si, Mg, and Cu, which are constituent elements of the high toughness Al alloy casting of the present invention, will be demonstrated.
Each alloy shown in Table 4 was cast and subjected to high-temperature heat treatment at 525 ° C. for 4 hours, followed by quenching treatment, and then aging treatment at 175 ° C. for 5 hours. The Al alloy castings of Invention Examples 11 to 18 were obtained. For each of these Al alloy castings, tensile strength, 0.2% proof stress and elongation were measured, and further stress corrosion cracking was investigated. These results are shown in Table 4 and shown in FIGS. The stress corrosion cracking was investigated by immersing the C ring in chromic acid, and the stress was 90% of the proof stress.

Figure 2005336568
Figure 2005336568

表4及び図7〜9から明らかなように、質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%の範囲(本発明の範囲)である、発明例11〜18では、抗張力、0.2%耐力及び伸びについて、バランス良く高い値が得られた。これに対し、本発明の範囲外である、比較例11〜19では、抗張力、0.2%耐力及び伸びの少なくとも一方について好適な結果が得られていない。以上により、本発明のSi,Mg,Cu含有量の限定根拠の有効性が実証された。   As is apparent from Table 4 and FIGS. 7 to 9, the mass ratio is 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0 In Invention Examples 11 to 18 in the range of 0.1% ≦ Zr ≦ 0.4% (the range of the present invention), high values were obtained with good balance in terms of tensile strength, 0.2% proof stress and elongation. On the other hand, in Comparative Examples 11 to 19, which are outside the scope of the present invention, no suitable results have been obtained for at least one of tensile strength, 0.2% proof stress, and elongation. From the above, the effectiveness of the grounds for limiting the Si, Mg, and Cu contents of the present invention was proved.

以上説明したように、本発明の高靱性Al合金鋳物では、特に、Zrの含有量の適正化を図ることにより、高靱性Al合金鋳物の、優れた抗張力、0.2%耐力及び伸びをバランス良く高いレベルで実現することができる。従って、本発明は、今後益々高度な機械的諸性質が要求されることが予想される、車体、サスペンション部材等に適用することができる点で、有用である。   As described above, the high toughness Al alloy casting of the present invention balances the excellent tensile strength, 0.2% proof stress and elongation of the high toughness Al alloy casting, particularly by optimizing the content of Zr. It can be realized at a high level. Therefore, the present invention is useful in that it can be applied to a vehicle body, a suspension member, and the like, which are expected to require more advanced mechanical properties in the future.

比較例1〜9及び発明例1〜10についての、伸びと0.2%耐力との関係を示すグラフである。It is a graph which shows the relationship between elongation and 0.2% yield strength about Comparative Examples 1-9 and Invention Examples 1-10. 比較例1〜9及び発明例1〜10についての、伸びと抗張力との関係を示すグラフである。It is a graph which shows the relationship between elongation and tensile strength about Comparative Examples 1-9 and Invention Examples 1-10. AlTi及びAlZrの晶出温度とTi又はZr含有量との関係を示すグラフである。Al 3 is a graph showing the relationship between the crystallization temperature of the Ti and Al 3 Zr and Ti or Zr content. MIT式流動長と溶湯温度との関係を示すグラフである。It is a graph which shows the relationship between MIT type | mold flow length and molten metal temperature. Al−3Si−0.4Mg−0.6Cuの組成中に、Tiを0〜0.3質量%含有させたAl合金鋳物と、Zrを0〜0.5質量%含有させたAl合金鋳物とについての、抗張力及び0.2%耐力と、Ti又はZr含有量との関係を示すグラフである。About the Al alloy casting in which 0 to 0.3% by mass of Ti is contained in the composition of Al-3Si-0.4Mg-0.6Cu and the Al alloy casting in which 0 to 0.5% by mass of Zr is contained It is a graph which shows the relationship between tensile strength and 0.2% yield strength, and Ti or Zr content. Al−3Si−0.4Mg−0.6Cuの組成中に、Tiを0〜0.3質量%含有させたAl合金鋳物と、Zrを0〜0.5質量%含有させたAl合金鋳物とについての、伸びとTi又はZr含有量との関係を示すグラフである。About the Al alloy casting in which 0 to 0.3% by mass of Ti is contained in the composition of Al-3Si-0.4Mg-0.6Cu and the Al alloy casting in which 0 to 0.5% by mass of Zr is contained It is a graph which shows the relationship between elongation and Ti or Zr content. 抗張力及び伸びとSi含有量との関係を示すグラフである。It is a graph which shows the relationship between tensile strength and elongation, and Si content. 抗張力及び伸びとMg含有量との関係を示すグラフである。It is a graph which shows the relationship between tensile strength and elongation, and Mg content. 抗張力及び伸びとCu含有量との関係を示すグラフである。It is a graph which shows the relationship between tensile strength and elongation, and Cu content.

Claims (2)

質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが10%以上であることを特徴とする高靱性Al合金鋳物。   In mass ratio, 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.1% ≦ Zr ≦ 0.4%, and inevitable A high-toughness Al alloy casting characterized by containing a general impurity, the balance being Al, a tensile strength of 280 MPa or more, a 0.2% proof stress of 220 MPa or more, and an elongation of 10% or more. 質量比で、2%≦Si≦4%、0.2%≦Mg≦0.5%、0.4%≦Cu≦0.8%、0.1%≦Zr≦0.4%、及び不可避的不純物を含み、残部がAlであり、抗張力が280MPa以上、0.2%耐力が220MPa以上、且つ伸びが10%以上である高靱性Al合金鋳物を製造するにあたり、前記組成の合金を鋳造し、500〜540℃の高温熱処理を施した後、急冷処理を施し、次いで160〜185℃の温度で時効処理を施すことを特徴とする高靱性Al合金鋳物の製造方法。   In mass ratio, 2% ≦ Si ≦ 4%, 0.2% ≦ Mg ≦ 0.5%, 0.4% ≦ Cu ≦ 0.8%, 0.1% ≦ Zr ≦ 0.4%, and inevitable In producing a high toughness Al alloy casting containing a general impurity, the balance being Al, the tensile strength is 280 MPa or more, the 0.2% proof stress is 220 MPa or more, and the elongation is 10% or more, an alloy having the above composition is cast. A method for producing a high toughness Al alloy casting, characterized by performing a high-temperature heat treatment at 500 to 540 ° C., followed by a rapid cooling treatment and then an aging treatment at a temperature of 160 to 185 ° C.
JP2004158757A 2004-05-28 2004-05-28 High toughness Al alloy casting and method for producing the same Expired - Fee Related JP4238180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158757A JP4238180B2 (en) 2004-05-28 2004-05-28 High toughness Al alloy casting and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158757A JP4238180B2 (en) 2004-05-28 2004-05-28 High toughness Al alloy casting and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005336568A true JP2005336568A (en) 2005-12-08
JP4238180B2 JP4238180B2 (en) 2009-03-11

Family

ID=35490455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158757A Expired - Fee Related JP4238180B2 (en) 2004-05-28 2004-05-28 High toughness Al alloy casting and method for producing the same

Country Status (1)

Country Link
JP (1) JP4238180B2 (en)

Also Published As

Publication number Publication date
JP4238180B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US7108042B2 (en) Aluminum diecasting alloy
US6824737B2 (en) Casting alloy
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2017210653A (en) Aluminum alloy and casting
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JPH1112673A (en) Aluminum alloy casting and its production
JP6726058B2 (en) Manufacturing method of Al alloy casting
EP3613866A1 (en) Al-Si-Fe ALUMINUM ALLOY CASTING MATERIAL AND PRODUCTION METHOD THEREFOR
JP4238180B2 (en) High toughness Al alloy casting and method for producing the same
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
JP7438134B2 (en) Al-Mg-Si-Mn-Fe casting alloy
JP2021070871A (en) Aluminum alloy forging and production method thereof
JP2022093988A (en) Aluminum alloy forging and method for producing the same
JPH09296245A (en) Aluminum alloy for casting
JP2021143373A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP4238181B2 (en) High toughness Al alloy casting
JP5435371B2 (en) Aluminum alloy ingot for plastic working
JP2020152956A (en) Aluminum alloy and aluminum alloy die-casting material
JP2006022385A (en) HIGH TOUGHNESS Al ALLOY CASTING AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees