JP2005328832A - Method for promoting protein-mediated reaction and reactor - Google Patents

Method for promoting protein-mediated reaction and reactor Download PDF

Info

Publication number
JP2005328832A
JP2005328832A JP2004370279A JP2004370279A JP2005328832A JP 2005328832 A JP2005328832 A JP 2005328832A JP 2004370279 A JP2004370279 A JP 2004370279A JP 2004370279 A JP2004370279 A JP 2004370279A JP 2005328832 A JP2005328832 A JP 2005328832A
Authority
JP
Japan
Prior art keywords
protein
reaction
solvent
mediated
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004370279A
Other languages
Japanese (ja)
Inventor
Shin Hirayama
伸 平山
Ichiro Toyoda
一郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004370279A priority Critical patent/JP2005328832A/en
Publication of JP2005328832A publication Critical patent/JP2005328832A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for promoting protein-mediated reaction by which reduction of reaction efficiency caused by denaturation, deactivation, and the like, of proteins is prevented and desired reaction can be carried out in good reaction efficiency in a short time, and a protein mediated reactor. <P>SOLUTION: The protein mediated reactor has a reaction tank 10 for chemically reacting a substrate in a solvent 5 in the presence of the protein. The reactor is equipped with a pretreatment tank 4 for irradiating electromagnetic waves having about 1cm-100m wave length to the solvent 5 by a microwave irradiator 1 or treating the solvent 5 to boil by a heater 15 or a pressure reduction device, and a means for mixing the protein with the solvent 5. The reaction solution prepared by mixing the protein with the solvent is brought to react in the reaction tank 10. Preferably, a cooling tank 7 is installed to cool the solvent 5 heated in the pretreatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バイオテクノロジー分野、農林水産業分野、電気機器分野、食品加工業分野、製薬分野等におけるタンパク質を介在させた各種反応に関し、特に、酵素反応においてこれを安定的に促進するタンパク質介在反応促進方法及び反応装置に関する。   The present invention relates to various reactions mediated by proteins in the fields of biotechnology, agriculture, forestry and fisheries, electrical equipment, food processing, pharmaceuticals, etc., and in particular, protein-mediated reactions that stably promote this in enzyme reactions. The present invention relates to a promotion method and a reaction apparatus.

生体の主要構成物質であるタンパク質は、その構成成分であるアミノ酸の種類、数、結合順序等により様々な機能を有する。その中でも酵素は、化学反応を触媒してその酵素が関係する反応を加速する特性を有し、さらに酵素の反応特異性、基質特異性から特定の物質にのみ作用し、特定の反応のみを触媒するため、バイオテクノロジー分野、農林水産業分野、電気機器分野、食品加工業分野、製薬分野等の広い産業分野にて有効に利用されている。
一般に化学反応は、高温高圧条件下で行なうことにより反応を促進することができるが、これに対してタンパク質介在反応は常温常圧下の穏和な条件で化学反応を容易に起こすことができる。
Proteins, which are the main constituents of living organisms, have various functions depending on the type, number, binding order, and the like of the constituent amino acids. Among them, enzymes have the property of catalyzing chemical reactions and accelerating the reactions involved with the enzymes. Furthermore, they act only on specific substances due to their reaction specificity and substrate specificity, and catalyze only specific reactions. Therefore, it is effectively used in a wide range of industrial fields such as the biotechnology field, agriculture, forestry and fisheries field, electrical equipment field, food processing field and pharmaceutical field.
In general, a chemical reaction can be promoted by performing it under high temperature and high pressure conditions, whereas protein-mediated reactions can easily cause chemical reactions under mild conditions at normal temperature and pressure.

しかし、上記したようにタンパク質介在反応は穏和な条件で行なわれるため、反応速度が遅く、時間がかかるものが多かった。
そこで、タンパク質介在反応を実用化するに際して反応時間の短縮化が望まれていた。タンパク質は穏和な条件下では安定して存在するが、その大部分は酸、アルカリ、高温に弱くこのような環境ではすぐに変性し、失活してしまう。従って、タンパク質本来の性質を変えることなく、タンパク質を安定した状態で存在させながら反応のみを加速化することが必要となる。
従来は、反応場に光または熱等の外部エネルギーを与えて反応を促進させていたが、この方法ではタンパク質、酵素の失活が問題となるため、特許文献1(特開平2−312591号公報)では、特定の条件の超音波を連続またはパルスとして照射して反応を促進する方法を提案している。
However, since the protein-mediated reaction is performed under mild conditions as described above, the reaction rate is slow and often takes time.
Therefore, it has been desired to shorten the reaction time when putting the protein-mediated reaction into practical use. Proteins exist stably under mild conditions, but most of them are vulnerable to acids, alkalis, and high temperatures, and are quickly denatured and inactivated in such environments. Therefore, it is necessary to accelerate only the reaction while keeping the protein in a stable state without changing the original properties of the protein.
Conventionally, reaction has been promoted by applying external energy such as light or heat to the reaction field. However, in this method, inactivation of proteins and enzymes becomes a problem, so Patent Document 1 (Japanese Patent Laid-Open No. 2-312591). ) Proposes a method of accelerating the reaction by irradiating ultrasonic waves of specific conditions as continuous or pulsed.

また、超臨界流体存在下で酵素反応を行なうことが、例えば特許文献2(特開平8−256783号公報)等に提案されており、超臨界流体のもつ特異の性質により高速で反応が進行することが報告されている。特許文献2では、超臨界流体存在下かつ所定温度域にて固体エステラーゼ酵素を用いてポリエステル化又は重エステル交換反応を行なう方法が開示されている。
さらに、特許文献3(特開2003−265175号公報)では、酵素と基質が共存する反応溶液中に、波長約0.3〜300cm(周波数1〜100GHz)、好ましくは2.45GHzのマイクロ波を照射する方法が提案されている。これは、マイクロ波照射による誘電加熱により反応液中の分子にエネルギーが供給され、このエネルギーが基質等の分子の運動を活発にするため酵素反応が促進されると考えられている。
In addition, it has been proposed, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 8-256783) to perform an enzyme reaction in the presence of a supercritical fluid, and the reaction proceeds at a high speed due to the unique properties of the supercritical fluid. It has been reported. Patent Document 2 discloses a method for carrying out a polyesterification or heavy transesterification reaction using a solid esterase enzyme in the presence of a supercritical fluid and in a predetermined temperature range.
Furthermore, in Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-265175), a microwave having a wavelength of about 0.3 to 300 cm (frequency 1 to 100 GHz), preferably 2.45 GHz is applied to a reaction solution in which an enzyme and a substrate coexist. A method of irradiation has been proposed. It is considered that this is because energy is supplied to the molecules in the reaction solution by dielectric heating by microwave irradiation, and this energy activates the movement of molecules such as the substrate, thereby promoting the enzyme reaction.

特開平2−312591号公報JP-A-2-312591 特開平8−256783号公報JP-A-8-256783 特開2003−265175号公報JP 2003-265175 A

上記したように、従来のタンパク質介在反応では反応場に超音波やマイクロ波等の外部エネルギーを与えたり、超臨界流体を反応の媒体とすることにより反応の加速化を図っていた。しかし、特許文献1では超音波照射によるキャビテーション効果から、酵素自体にも機械的、熱的外部エネルギーが与えられ、酵素が不安定化し、失活してしまう惧れがある。また特許文献3においてもマイクロ波照射による誘電加熱にて酵素を含む反応場に熱が与えられ、熱による酵素の失活及びマイクロ波自体による酵素の部分的分解等の悪影響がある。酵素に影響を与えないように超音波やマイクロ波を制御することは非常に困難であり、また制御することにより十分な反応促進効果が得られなくなる惧れもある。従って、これらの方法では産業分野で使用される多様なタンパク質に対して反応の安定的な制御は困難であった。   As described above, in conventional protein-mediated reactions, external energy such as ultrasonic waves and microwaves is applied to the reaction field, or the reaction is accelerated by using a supercritical fluid as a reaction medium. However, in Patent Document 1, due to the cavitation effect caused by ultrasonic irradiation, mechanical and thermal external energy is also applied to the enzyme itself, which may cause the enzyme to become unstable and deactivate. Also in Patent Document 3, heat is applied to a reaction field containing an enzyme by dielectric heating by microwave irradiation, and there are adverse effects such as inactivation of the enzyme by heat and partial degradation of the enzyme by the microwave itself. It is very difficult to control ultrasonic waves and microwaves so as not to affect the enzyme, and there is a possibility that a sufficient reaction promoting effect cannot be obtained by controlling them. Therefore, it has been difficult for these methods to stably control the reaction for various proteins used in the industrial field.

また、特許文献2に記載されるように超臨界流体存在下で酵素反応を行なう方法では、反応が非常に高速であるため、生成物が不要な状態まで反応する惧れがあり、反応制御が非常に難しい。さらに、高温高圧に耐える反応容器、高温高圧を生成するエネルギーが必要となり装置コスト、ランニングコストが嵩み経済的でない等の多くの問題があり、実用化は困難である。
従って、本発明は上記従来技術の問題点に鑑み、タンパク質の変性、失活等による反応効率の低下を防止し、目的とするタンパク質介在反応を短時間でかつ反応効率良く行なうことができるタンパク質介在反応促進方法及び反応装置を提供することを目的とする。
In addition, as described in Patent Document 2, in the method in which an enzyme reaction is performed in the presence of a supercritical fluid, the reaction is very fast. extremely difficult. Further, there are many problems such as a reaction vessel that can withstand high temperature and high pressure, energy for generating high temperature and high pressure, and there are many problems such as high equipment cost and running cost, which is not economical, and it is difficult to put it to practical use.
Accordingly, in view of the above-mentioned problems of the prior art, the present invention prevents protein efficiency from being lowered due to protein denaturation, deactivation, etc., and can perform the target protein-mediated reaction in a short time and with high reaction efficiency. An object of the present invention is to provide a reaction promoting method and a reaction apparatus.

そこで、本発明はかかる課題を解決するために、
タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応工程を備えたタンパク質介在反応の促進方法において、
前記反応工程の前に、前記溶媒に波長約1cm〜100mの電磁波を照射する前処理工程を設け、該前処理した溶媒に前記タンパク質を混合して反応を行なうことを特徴とする。
また、前記電磁波がマイクロ波であることが好適である。このとき、前記マイクロ波は、好適には周波数2.45GHz程度を用い、照射時間を30秒〜30分間とすると良い。
本発明では前記溶媒に水又は有機溶媒を用いることができる。また本発明におけるタンパク質は生体触媒機能を有する酵素であることが好ましい。
Therefore, in order to solve this problem, the present invention provides
In a method for promoting a protein-mediated reaction comprising a reaction step of chemically reacting a substrate contained in a solvent in the presence of a protein,
Before the reaction step, a pretreatment step of irradiating the solvent with an electromagnetic wave having a wavelength of about 1 cm to 100 m is provided, and the protein is mixed with the pretreated solvent to perform the reaction.
The electromagnetic wave is preferably a microwave. At this time, the microwave preferably uses a frequency of about 2.45 GHz, and the irradiation time is 30 seconds to 30 minutes.
In the present invention, water or an organic solvent can be used as the solvent. The protein in the present invention is preferably an enzyme having a biocatalytic function.

また、タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応工程を備えたタンパク質介在反応の促進方法において、
前記反応工程の前に、加熱、減圧、減圧加熱の何れかにより前記溶媒を沸騰処理する前処理工程を設け、該前処理した溶媒に前記タンパク質と基質を混合して反応を行なうことを特徴とする。
このとき、前記前処理工程にて、前記沸騰処理における加熱は、火炎加熱、蒸気加熱、伝熱体加熱のうち少なくとも一若しくはこれらの組み合わせにより行なうことが好ましい。
In the method for promoting a protein-mediated reaction comprising a reaction step of chemically reacting a substrate contained in a solvent in the presence of a protein,
Before the reaction step, a pretreatment step of boiling the solvent by any one of heating, reduced pressure, and reduced pressure heating is provided, and the reaction is performed by mixing the protein and the substrate in the pretreated solvent. To do.
At this time, in the pretreatment step, the heating in the boiling treatment is preferably performed by at least one of flame heating, steam heating, and heat transfer body heating, or a combination thereof.

これらの発明によれば、前記溶媒に予め電磁波照射又は沸騰処理からなる前処理を施すことにより、前記溶媒が活性化され、タンパク質介在反応が促進されて反応効率の向上、反応時間の短縮化が可能となる。
前記前処理はタンパク質に直接作用しないため、タンパク質に機械・物理的エネルギー、熱的エネルギーが与えられることがなく、タンパク質の変性等による失活が回避できる。従って、タンパク質の触媒機能を十分に保持した状態で反応を行なうことができ、安定的に触媒反応を行なうことが可能となる。
According to these inventions, by pre-treating the solvent with electromagnetic wave irradiation or boiling treatment in advance, the solvent is activated, the protein-mediated reaction is promoted, the reaction efficiency is improved, and the reaction time is shortened. It becomes possible.
Since the pretreatment does not directly act on the protein, mechanical / physical energy and thermal energy are not given to the protein, and inactivation due to protein denaturation or the like can be avoided. Therefore, the reaction can be performed in a state where the catalytic function of the protein is sufficiently maintained, and the catalytic reaction can be stably performed.

前記前処理工程が電磁波照射の場合、短時間で前処理を行なうことが可能である。電磁波照射は、電磁波照射を開始後、数分間の僅かな時間にて溶媒が活性化されるため、処理時間の短縮化が図れる。前記前処理工程が沸騰処理の場合で、且つ火炎加熱、蒸気加熱、伝熱体加熱を行なう場合には簡単な装置構成で以って安全性の高い前処理を行なうことができる。前記火炎加熱の場合にはガス等の燃料を利用できるため取り扱い性が良好で、前記蒸気加熱の場合には工場等で発生する装置的に制御された蒸気を利用可能で、更に前記伝熱体加熱の場合は電気コンロ、蒸気配管熱等の装置的に制御された伝熱体を用いることで安全に処理を行なうことができる。
また、前記減圧、減圧加熱により沸騰処理を行う場合には、100℃以下の状態で溶媒を沸騰させることができ、前処理工程以降の冷却が不要又は僅かの冷却エネルギーの消費に抑えることができる。
尚、前記前処理として、電磁波照射と沸騰処理を組み合わせて行っても良い。
When the pretreatment process is electromagnetic wave irradiation, the pretreatment can be performed in a short time. In the electromagnetic wave irradiation, since the solvent is activated in a few minutes after the start of the electromagnetic wave irradiation, the processing time can be shortened. In the case where the pretreatment step is a boiling treatment and flame heating, steam heating, and heat transfer body heating are performed, a highly safe pretreatment can be performed with a simple apparatus configuration. In the case of the flame heating, a fuel such as a gas can be used, so that the handleability is good. In the case of the steam heating, an apparatus-controlled steam generated in a factory or the like can be used. In the case of heating, the heat treatment can be performed safely by using an apparatus-controlled heat transfer body such as an electric stove or steam pipe heat.
Moreover, when performing a boiling process by the said pressure reduction and pressure reduction heating, a solvent can be boiled in the state of 100 degrees C or less, and cooling after a pre-processing process can be suppressed to consumption of slight cooling energy. .
The pretreatment may be performed by combining electromagnetic wave irradiation and boiling treatment.

また、本発明においては前記溶媒が水であることが好適である。
一般的に、通常の水は水素結合やファンデルワールス力等によりクラスター(15〜37個程度)を形成していると云われているが、本発明のように、溶媒に電磁波を照射したり、加熱や減圧又はこれらの組み合わせにて沸騰させることにより前記クラスターは励起振動して水の重合が切断され、部分分解すると考えられる。分解して水分子単独、若しくは数個程度の水分子が重合した微小なクラスターを含む水が得られると考えられるが、この水は浸透性が非常に良く、またこの水を溶媒とした反応系は活性化されるため、触媒反応が促進されることとなる。
従って、本発明によれば、前記溶媒のみを活性化することができ、安定的に触媒反応を促進することが可能となる。
In the present invention, the solvent is preferably water.
In general, it is said that normal water forms clusters (about 15 to 37) by hydrogen bonds, van der Waals forces, etc., but as in the present invention, the solvent is irradiated with electromagnetic waves. By heating, depressurizing or a combination of these, the clusters are excited to vibrate and the water polymerization is cut and partially decomposed. It is thought that water can be obtained by decomposing to produce water molecules alone, or water containing minute clusters in which several water molecules are polymerized, but this water has very good permeability and is a reaction system using this water as a solvent. Since this is activated, the catalytic reaction is promoted.
Therefore, according to this invention, only the said solvent can be activated and it becomes possible to accelerate | stimulate a catalytic reaction stably.

このとき、前記前処理工程の後に、目的とする化学反応に適した温度になるように前記溶媒を温度調節する温度調節工程を設け、該温度調節した溶媒に前記タンパク質を混合することが好適である。これは、前記電磁波照射又は沸騰処理処理後に、目的とする反応に適した温度まで冷却または加熱するものである。
大部分のタンパク質は熱に弱く、タンパク質介在反応は常温付近の温度で反応させるものが多いため、前記温度調節では冷却を主とする。電磁波を溶媒に照射すると、溶媒の双極子を回転、衝突、振動、摩擦させながら溶媒内を伝播していき、これにより内部発熱を伴う誘導加熱により溶媒の温度が上昇してしまう。従って、電磁波を照射して温度が上昇した溶媒、又は沸騰処理により昇温した溶媒を、前記タンパク質が失活しない温度域まで冷却することにより、十分なタンパク質介在反応を達成することができる。
At this time, after the pretreatment step, it is preferable to provide a temperature adjusting step for adjusting the temperature of the solvent so that the temperature is suitable for a target chemical reaction, and to mix the protein in the temperature adjusted solvent. is there. This is to cool or heat to a temperature suitable for the intended reaction after the electromagnetic wave irradiation or boiling treatment.
Most proteins are vulnerable to heat, and many protein-mediated reactions are carried out at temperatures near room temperature, so cooling is mainly used in the temperature control. When an electromagnetic wave is irradiated to a solvent, it propagates through the solvent while rotating, colliding, vibrating, and rubbing the solvent dipole, thereby increasing the temperature of the solvent by induction heating accompanied by internal heat generation. Therefore, a sufficient protein-mediated reaction can be achieved by cooling a solvent whose temperature has been increased by irradiation with electromagnetic waves or a solvent whose temperature has been raised by boiling to a temperature range where the protein is not inactivated.

また、これらの発明を好適に実施する装置の発明として、
タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応槽を備えたタンパク質介在反応装置において、
前記溶媒に波長約1cm〜100mの電磁波を照射する前処理手段と、該電磁波を照射した溶媒に前記タンパク質を混合する手段とを備え、該混合して生成した反応溶液を前記反応槽にて反応させることを特徴とする。
In addition, as an invention of a device that suitably implements these inventions,
In a protein-mediated reaction apparatus equipped with a reaction vessel for chemically reacting a substrate contained in a solvent in the presence of protein,
A pretreatment means for irradiating the solvent with an electromagnetic wave having a wavelength of about 1 cm to 100 m and a means for mixing the protein with the solvent irradiated with the electromagnetic wave, and reacting the reaction solution produced by the mixing in the reaction vessel. It is characterized by making it.

また、タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応槽を備えたタンパク質介在反応装置において、
前記溶媒を加熱、減圧、減圧加熱の何れかにより沸騰処理する前処理手段と、該沸騰処理した溶媒に前記タンパク質と基質を混合する手段とを備え、該混合して生成した反応溶液を前記反応槽にて反応させることを特徴とする。
In addition, in a protein-mediated reaction apparatus equipped with a reaction tank that chemically reacts a substrate contained in a solvent in the presence of protein,
A pretreatment means for boiling the solvent by heating, reduced pressure, or reduced pressure heating; and a means for mixing the protein and the substrate in the boiled solvent, and reacting the reaction solution produced by the mixing with the reaction The reaction is performed in a tank.

さらに、前記前処理手段の後段に前記溶媒の温度調整をする温度調節手段を設け、目的とする反応に適した温度に温度調節した溶媒に前記タンパク質を混合することを特徴とする。
さらにまた、前記電磁波がマイクロ波であることを特徴とする。
また、前記タンパク質が酵素であることが好ましく、さらに前記溶媒が水であることが好適である。
Furthermore, a temperature adjusting means for adjusting the temperature of the solvent is provided after the pretreatment means, and the protein is mixed in a solvent whose temperature is adjusted to a temperature suitable for the intended reaction.
Furthermore, the electromagnetic wave is a microwave.
The protein is preferably an enzyme, and the solvent is preferably water.

以上記載のごとく本発明によれば、前記溶媒、若しくは前記基質を含む溶媒に予め電磁波照射又は沸騰処理による前処理を施すことにより、前記溶媒が活性化され、タンパク質介在反応が促進されて反応効率の向上、反応時間の短縮化が可能となる。
本発明ではタンパク質自体に電磁波照射又は沸騰処理を行なわないため、直接タンパク質に機械・物理的、熱的エネルギーが与えられることがなく、タンパク質の変性等による失活が回避できる。従って、タンパク質の触媒機能を十分に保持した状態で反応を行なうことができ、安定的に反応を促進することが可能となる。
また、前記前処理後に前記溶媒の温度調節を行い、溶媒温度が上昇しても目的とする反応に適した温度域に冷却することにより、タンパク質の変性、失活を防止し、十分に酵素反応を促進することができる。
As described above, according to the present invention, the solvent or the solvent containing the substrate is pretreated by electromagnetic wave irradiation or boiling treatment, whereby the solvent is activated and the protein-mediated reaction is promoted to increase the reaction efficiency. And the reaction time can be shortened.
In the present invention, since the protein itself is not subjected to electromagnetic wave irradiation or boiling treatment, mechanical / physical / thermal energy is not directly applied to the protein, and inactivation due to protein denaturation or the like can be avoided. Therefore, the reaction can be performed in a state where the catalytic function of the protein is sufficiently maintained, and the reaction can be stably promoted.
In addition, by adjusting the temperature of the solvent after the pretreatment and cooling to a temperature range suitable for the intended reaction even if the solvent temperature rises, protein denaturation and deactivation are prevented, and sufficient enzyme reaction Can be promoted.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施例に係るタンパク質介在反応の処理過程を示すフロー図、図2は本発明の一実施例における反応装置を示す概略構成図、図3は実施例1におけるセルラーゼ活性試験の結果を示すグラフ、図4乃至図6は実施例2乃至実施例4におけるアミラーゼ活性試験の結果を示すグラフである。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a flow chart showing the process of a protein-mediated reaction according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing a reaction apparatus in one embodiment of the present invention, and FIG. The graph which shows a result and FIG. 4 thru | or FIG. 6 are graphs which show the result of the amylase activity test in Example 2 thru | or Example 4. FIG.

本実施例で用いることができるタンパク質は、単独でまたは協同的あるいは連鎖的に反応系に作用して高効率かつ高選択性で化学的過程を促進させる機能を有するものとする。特に前記タンパク質は酵素であることが好ましい。
前記タンパク質(酵素を含む)は反応系において、水または有機溶媒に溶解させたもの、または固体担体上に固定化させたものから何れを用いても良い。
本実施例にて、基質は前記タンパク質を触媒として反応する物質である。
また、前記基質を溶解する溶媒には、水または有機溶媒を用いることができる。
The protein that can be used in this example has a function of promoting a chemical process with high efficiency and high selectivity by acting on a reaction system alone or in a cooperative or chained manner. In particular, the protein is preferably an enzyme.
The protein (including the enzyme) may be used in the reaction system from those dissolved in water or an organic solvent or those immobilized on a solid support.
In this embodiment, the substrate is a substance that reacts with the protein as a catalyst.
In addition, water or an organic solvent can be used as a solvent for dissolving the substrate.

図1により本実施例における処理フローを説明する。
本実施例では、まず前記溶媒に前記電磁波を所定時間照射(S1)、又は、加熱、減圧、減圧加熱の何れかにより沸騰処理(S2)することにより前処理を行う。この前処理を行なうことにより、前記溶媒は活性化される。
前記電磁波は、波長が約1cm〜100m(周波数3MHz〜30GHz程度に対応)の電磁波で、好ましくは波長が約1cm〜1m(周波数300MHz〜30GHz程度に対応)のマイクロ波であり、さらに好適には周波数2.45GHz程度のマイクロ波である。照射時間は30秒〜30分間の範囲内から反応効率が最適となる照射時間を設定すると良い。
前記沸騰処理は、火炎加熱、蒸気加熱、伝熱体加熱若しくは減圧の何れか一、或いはこれらの組み合わせにより行なう。
The processing flow in the present embodiment will be described with reference to FIG.
In this embodiment, first, the pretreatment is performed by irradiating the solvent with the electromagnetic wave for a predetermined time (S1), or by boiling (S2) by heating, decompressing, or heating under reduced pressure. By performing this pretreatment, the solvent is activated.
The electromagnetic wave is an electromagnetic wave having a wavelength of about 1 cm to 100 m (corresponding to a frequency of about 3 MHz to 30 GHz), preferably a microwave having a wavelength of about 1 cm to 1 m (corresponding to a frequency of about 300 MHz to 30 GHz), and more preferably. It is a microwave with a frequency of about 2.45 GHz. The irradiation time may be set within the range of 30 seconds to 30 minutes so that the reaction efficiency is optimal.
The boiling treatment is performed by any one of flame heating, steam heating, heat transfer body heating, reduced pressure, or a combination thereof.

そして、必要に応じて、前記前処理により温度が上昇した溶媒を、目的とする化学反応に適した温度でかつ使用するタンパク質が変性して失活しない温度域まで溶媒を冷却する(S3)。該冷却工程は設けない場合も考えられる。また、前記冷却工程は、前記溶媒の温度に応じて加温して前記温度域とする場合を含む温度調節工程としても良い。
さらに、電磁波照射若しくは沸騰処理からなる前処理により活性化した溶媒に前記タンパク質及び前記基質を混合し(S4)、目的とするタンパク質介在反応を行なう(S5)。
Then, if necessary, the solvent whose temperature has been raised by the pretreatment is cooled to a temperature suitable for the intended chemical reaction and to a temperature range where the protein to be used is not denatured and deactivated (S3). There may be a case where the cooling step is not provided. Further, the cooling step may be a temperature adjusting step including a case where the temperature is increased according to the temperature of the solvent to be the temperature range.
Further, the protein and the substrate are mixed in a solvent activated by pretreatment consisting of electromagnetic wave irradiation or boiling treatment (S4), and a target protein-mediated reaction is performed (S5).

かかる処理フローのごとく、前記溶媒、若しくは前記基質を含有する溶媒に予め電磁波照射又は沸騰処理、或いはこれらの組み合わせにより前処理することにより、前記溶媒が活性化され、タンパク質介在反応が促進されて反応効率の向上、反応時間の短縮化が可能となる。
前記前処理はタンパク質自体には直接作用しないため、タンパク質に機械・物理的、熱的エネルギーが与えられることがなく、タンパク質の変性等による失活が回避できる。従って、タンパク質の触媒機能を十分に保持した状態で反応を行なうことができ、安定的に反応を促進することができる。
As in this processing flow, the solvent or the substrate-containing solvent is pretreated by electromagnetic wave irradiation or boiling treatment, or a combination thereof, thereby activating the solvent and promoting a protein-mediated reaction. Efficiency can be improved and reaction time can be shortened.
Since the pretreatment does not directly act on the protein itself, mechanical / physical / thermal energy is not given to the protein, and inactivation due to protein denaturation or the like can be avoided. Therefore, the reaction can be performed in a state where the catalytic function of the protein is sufficiently maintained, and the reaction can be promoted stably.

次に、本実施例の具体的な構成の一例を図2を参照して説明する。
図2に示されるように、本実施例に係るタンパク質介在反応装置は、筐体3と、電磁波照射又は沸騰処理を行う前処理装置と、溶媒5が収容され前記筐体3内に載置されて前処理が施される前処理槽4と、該前処理槽4からポンプ6等により導かれた溶媒5を収容し、温調器(冷却ファン8、温度コントローラー等)などの冷却・加温手段を備えた温調槽7と、該温調槽7から導かれた溶媒5に基質タンク12及びタンパク質溶液タンク13から基質及びタンパク質溶液を添加して混合し、タンパク質介在反応を行なう反応槽10と、を備えた構成となっている。尚、図2における基質タンク12及びタンパク質溶液タンク13の溶媒に、溶媒5を利用することもできる。また、かかる装置では、前記温調槽7を具備しない構成とすることもできる。
Next, an example of a specific configuration of the present embodiment will be described with reference to FIG.
As shown in FIG. 2, the protein-mediated reaction apparatus according to the present embodiment includes a housing 3, a pretreatment device that performs electromagnetic wave irradiation or boiling treatment, and a solvent 5 that is placed in the housing 3. The pretreatment tank 4 to be pretreated and the solvent 5 introduced from the pretreatment tank 4 by the pump 6 and the like are accommodated, and the temperature controller (cooling fan 8, temperature controller, etc.) is cooled and heated. A temperature control tank 7 having means, and a reaction tank 10 for adding a substrate and a protein solution from the substrate tank 12 and the protein solution tank 13 to the solvent 5 introduced from the temperature control tank 7 and mixing them to perform a protein-mediated reaction. And, it has a configuration comprising. In addition, the solvent 5 can also be utilized for the solvent of the substrate tank 12 and the protein solution tank 13 in FIG. Moreover, in this apparatus, it can also be set as the structure which does not comprise the said temperature control tank 7. FIG.

前記前処理装置は、マイクロ波照射装置1、加熱器15、或いは減圧装置の少なくとも何れか一を具備するものとする。
前記マイクロ波照射装置1は、マイクロ波発信器2により波長が約1cm〜1mのマイクロ波を発生させて筐体3内の溶媒5にマイクロ波を照射する。
前記マイクロ波照射装置1は、波長が約1cm〜100mの電磁波(マイクロ波を含む)を照射する電磁波照射装置としても良い。前記温調槽7は、冷却、加温等の温度調整が可能な温度調節手段とすることもできる。また、前記反応槽10に前記温度調節手段を設けてもよく、タンパク質溶液を混合する前に温度調節を行なったり、タンパク質溶液、基質を混合後に目的とする反応に適した温度条件に調節したりすることもできる。
前記前処理槽4で生成した溶媒5を前記反応槽10へ移動する機構は、装置規模により形態が異なり、比較的小規模な装置では、前処理槽4から前記反応槽10までを直接連結することも可能であり、管により連結して接続部分に設置した弁9にて導入流量を制御したり、また弁を設置して自然落下により移動させることもできる。また、比較的大規模な装置で、各槽の間に距離がある場合には、槽の間を移送するベルトコンベヤー等の移送手段を設けても良い。
The pretreatment device includes at least one of the microwave irradiation device 1, the heater 15, and the decompression device.
The microwave irradiation apparatus 1 generates microwaves having a wavelength of about 1 cm to 1 m by a microwave transmitter 2 to irradiate the solvent 5 in the housing 3 with microwaves.
The microwave irradiation apparatus 1 may be an electromagnetic wave irradiation apparatus that irradiates electromagnetic waves (including microwaves) having a wavelength of about 1 cm to 100 m. The temperature control tank 7 may be temperature adjusting means capable of adjusting temperature such as cooling and heating. Further, the temperature adjusting means may be provided in the reaction tank 10 to adjust the temperature before mixing the protein solution, or to adjust the temperature condition suitable for the intended reaction after mixing the protein solution and the substrate. You can also
The mechanism for moving the solvent 5 generated in the pretreatment tank 4 to the reaction tank 10 varies depending on the scale of the apparatus. In a relatively small apparatus, the pretreatment tank 4 and the reaction tank 10 are directly connected. It is also possible to control the flow rate of introduction with a valve 9 connected to a connecting portion connected by a pipe, or to move by natural fall by installing a valve. Further, when a relatively large-scale apparatus has a distance between the tanks, a transfer means such as a belt conveyor for transferring between the tanks may be provided.

前記加熱器15は、沸騰を目的とした減圧装置、火炎等による加熱装置、蒸気を利用した加熱装置、伝導体を用いた加熱装置のうち少なくとも何れか一又はこれらの任意の組み合わせにより構成される。
前記減圧装置としては、溶媒5を入れる前処理槽4に真空ポンプ17を備え、減圧環境が保たれるよう密閉状態が可能な構造となし、減圧弁16により圧力の調整が可能となる。この減圧状態で同時に前記加熱器15により加温することで、100℃以下の状態で溶媒5を沸騰させることができ、以後の工程の冷却が不要、又は僅かな冷却エネルギーの消費に抑えることができる。
The heater 15 is configured by at least one of a decompression device for boiling, a heating device using a flame, a heating device using steam, a heating device using a conductor, or any combination thereof. .
As the pressure reducing device, the pretreatment tank 4 containing the solvent 5 is provided with a vacuum pump 17 and can be sealed so as to maintain a pressure reducing environment, and the pressure can be adjusted by the pressure reducing valve 16. By simultaneously heating with the heater 15 in this reduced pressure state, the solvent 5 can be boiled at a temperature of 100 ° C. or lower, and cooling in the subsequent process is unnecessary or suppressed to a small amount of cooling energy consumption. it can.

また、前記反応槽10は、使用するタンパク質と基質に応じて、前記温度調節手段、振とう手段、撹拌手段11、pH調整手段等を具備することが好ましく、適宜目的のタンパク質介在反応に適した条件を設定する。
本実施例におけるタンパク質介在反応装置によれば、迅速かつ簡便に目的とする反応を行なうことができ、タンパク質を失活させることなく安定的に反応を促進させることを可能とする。
The reaction vessel 10 preferably comprises the temperature adjusting means, shaking means, stirring means 11, pH adjusting means, etc. depending on the protein and substrate to be used, and is suitably suitable for the target protein-mediated reaction. Set conditions.
According to the protein-mediated reaction apparatus in this example, the intended reaction can be performed quickly and easily, and the reaction can be stably promoted without inactivating the protein.

本実施例1では、図2に示される装置を利用して酵素反応を行い、セルラーゼ活性を測定する試験を行なった。かかる試験では前記溶媒5として水を用い、前記前処理槽4に収容した水に周波数2.45GHzのマイクロ波を3分間照射した後、前記冷却槽7にて常温(約25℃)の水を調製した。
次に、前記マイクロ波を照射した水を反応槽10に移送し、該反応槽10内の水に酵素反応の基質となる水溶性セルロース(信越化学工業(株)製メトローズ)を溶解し、酵素反応に用いる基質として調製した。さらに、前記水を用いてセルラーゼ(合同酒精(株)製GODOTCD-H)を溶解し、反応溶液を調製した。
In Example 1, an enzyme reaction was performed using the apparatus shown in FIG. 2, and a test for measuring cellulase activity was performed. In this test, water was used as the solvent 5, and the microwave contained in the pretreatment tank 4 was irradiated with microwaves having a frequency of 2.45 GHz for 3 minutes, and then water at room temperature (about 25 ° C.) was added in the cooling tank 7. Prepared.
Next, the water irradiated with the microwave is transferred to the reaction tank 10, and water-soluble cellulose (Metroles manufactured by Shin-Etsu Chemical Co., Ltd.) serving as a substrate for the enzyme reaction is dissolved in the water in the reaction tank 10. It was prepared as a substrate used in the reaction. Furthermore, cellulase (GODOTCD-H manufactured by Godo Sakesei Co., Ltd.) was dissolved using the water to prepare a reaction solution.

また、比較例1としてマイクロ波を照射しない脱イオン水(約25℃)に、前記水溶性セルロースと前記セルラーゼを同じ濃度で溶解させた反応溶液を調製した。
これらの2つの水を溶媒に用いて、水溶性セルロースとセルラーゼを反応させ、セルラーゼによって水溶性セルロースから55℃で30分後に生成されるグルコース量を計測し、酵素活性を比較した。即ち、上記の比較により溶媒へのマイクロ波照射による酵素反応の促進の有無を評価、計測した。
その結果を図3に示す。図3に示すように、溶媒無処理の比較例1に比べ、マイクロ波を照射した実施例1の場合、セルラーゼ活性が26%向上することが明らかとなった。即ち、酵素に用いる溶媒へのマイクロ波照射により酵素活性が向上し、酵素使用量の低減や反応時間の短縮などに寄与できることが実証された。
Further, as Comparative Example 1, a reaction solution was prepared by dissolving the water-soluble cellulose and the cellulase at the same concentration in deionized water (about 25 ° C.) not irradiated with microwaves.
Using these two waters as a solvent, water-soluble cellulose and cellulase were reacted, and the amount of glucose produced from water-soluble cellulose after 30 minutes at 55 ° C. by cellulase was measured, and the enzyme activities were compared. That is, by the above comparison, the presence or absence of acceleration of the enzyme reaction by microwave irradiation to the solvent was evaluated and measured.
The result is shown in FIG. As shown in FIG. 3, it was revealed that the cellulase activity was improved by 26% in the case of Example 1 irradiated with microwaves as compared with Comparative Example 1 without solvent treatment. That is, it was proved that the enzyme activity was improved by microwave irradiation to the solvent used for the enzyme, which could contribute to the reduction of the amount of enzyme used and the reduction of the reaction time.

本実施例2では、前記実施例1と同様に図2に示される装置を利用して酵素反応を行い、アミラーゼ活性を測定する試験を行なった。かかる試験では前記溶媒5として水を用い、前記前処理槽4に収容した水に周波数2.45GHzのマイクロ波を3分間照射した後、前記冷却槽7にて常温(約25℃)の水を調製した。
次に、前記マイクロ波を照射した水を反応槽10に移送し、該反応槽10内の水に酵素反応の基質となるデンプン(和光純薬工業(株)製でんぷん、溶性)を溶解し、酵素反応に用いる基質として調整した。また、前記水を用いてアミラーゼ(和光純薬工業(株)製、αアミラーゼ)を溶解、反応溶液を調製した。
In the present Example 2, the test which measures an amylase activity by performing an enzyme reaction using the apparatus shown by FIG. 2 similarly to the said Example 1 was conducted. In this test, water was used as the solvent 5, and the microwave contained in the pretreatment tank 4 was irradiated with microwaves having a frequency of 2.45 GHz for 3 minutes, and then water at room temperature (about 25 ° C.) was added in the cooling tank 7. Prepared.
Next, the water irradiated with the microwave is transferred to the reaction vessel 10, and starch (starch, soluble, manufactured by Wako Pure Chemical Industries, Ltd.) serving as a substrate for the enzyme reaction is dissolved in the water in the reaction vessel 10, It adjusted as a substrate used for an enzyme reaction. Further, amylase (manufactured by Wako Pure Chemical Industries, Ltd., α-amylase) was dissolved using the water to prepare a reaction solution.

また、比較例2としてマイクロ波を照射しない水(約25℃)に、前記水溶性デンプンと前記アミラーゼを同じ濃度で溶解させた反応溶液を調製した。
これらの2つの水を溶媒に用いて、前記デンプンと前記アミラーゼを反応させ、アミラーゼによって65℃で8分後に分解されるデンプン量(デンプンの減少量)をヨウ素にて計測し、酵素活性を比較した。即ち、上記の比較により溶媒へのマイクロ波照射による酵素反応の促進の有無を評価、計測した。
その結果を図4に示す。図4に示すように、比較例2に比べ、マイクロ波照射した実施例2の場合、アミラーゼ活性が43%向上することが明らかとなった。即ち、酵素反応に用いる溶媒へのマイクロ波照射により酵素活性が大幅に向上し、酵素使用量の低減や反応時間の短縮などに寄与できることが実証された。
Further, as Comparative Example 2, a reaction solution was prepared by dissolving the water-soluble starch and the amylase at the same concentration in water not irradiated with microwaves (about 25 ° C.).
Using these two waters as solvents, the starch and the amylase are reacted, and the amount of starch degraded by amylase after 65 minutes at 65 ° C. (decrease in starch) is measured with iodine, and the enzyme activity is compared. did. That is, by the above comparison, the presence or absence of acceleration of the enzyme reaction by microwave irradiation to the solvent was evaluated and measured.
The result is shown in FIG. As shown in FIG. 4, it was revealed that the amylase activity was improved by 43% in the case of Example 2 where microwave irradiation was performed, as compared with Comparative Example 2. That is, it was proved that the enzyme activity was greatly improved by microwave irradiation to the solvent used in the enzyme reaction, which contributed to the reduction of the amount of enzyme used and the reduction of the reaction time.

本実施例3では、前記実施例1と同様に図2に示される装置を利用して酵素反応を行い、アミラーゼ活性を測定する試験を行なった。かかる試験では前記溶媒5として水を用い、前記前処理槽4に収容した水を火炎により1分間沸騰させた後、前記冷却槽7にて冷却し、常温(約25℃)の水を調製した。
次に、前記沸騰処理した水を反応槽10に移送し、該反応槽10内の水に酵素反応の基質となるデンプン(和光純薬工業(株)製でんぷん、溶性)を溶解し、酵素反応に用いる基質として調製した。また、前記水を用いてアミラーゼ(和光純薬工業(株)製、α−アミラーゼ)を溶解、反応溶液を調製した。
In Example 3, a test for measuring amylase activity was performed by performing an enzyme reaction using the apparatus shown in FIG. 2 in the same manner as in Example 1. In this test, water was used as the solvent 5 and the water contained in the pretreatment tank 4 was boiled for 1 minute with a flame and then cooled in the cooling tank 7 to prepare room temperature (about 25 ° C.) water. .
Next, the water that has been boiled is transferred to the reaction vessel 10, and starch (starch, soluble, manufactured by Wako Pure Chemical Industries, Ltd.) serving as a substrate for the enzyme reaction is dissolved in the water in the reaction vessel 10, and the enzyme reaction It was prepared as a substrate to be used in Further, amylase (manufactured by Wako Pure Chemical Industries, Ltd., α-amylase) was dissolved using the water to prepare a reaction solution.

また、比較例3として沸騰処理をしない水(約25℃)に、前記水溶性デンプンと前記アミラーゼを同じ濃度で溶解させた反応溶液を調製した。
これらの2つの水を溶媒に用いて、前記デンプンと前記アミラーゼを反応させ、アミラーゼによって65℃で8分後に分解されるデンプン量(デンプンの減少量)をヨウ素にて計測し、酵素活性を比較した。即ち、上記の比較により溶媒への火炎を用いた沸騰処理による酵素反応の促進の有無を評価、計測した。
その結果を図5に示す。図5に示すように、火炎沸騰処理した実施例3の場合、アミラーゼ活性が50%向上することが明らかとなった。即ち、酵素反応に用いる溶媒への沸騰処理により酵素活性が大幅に向上し、酵素使用量の低減や反応時間の短縮などに寄与できることが実証された。
Moreover, as Comparative Example 3, a reaction solution was prepared by dissolving the water-soluble starch and the amylase at the same concentration in water not subjected to boiling treatment (about 25 ° C.).
Using these two waters as solvents, the starch and the amylase are reacted, and the amount of starch degraded by amylase after 65 minutes at 65 ° C. (decrease in starch) is measured with iodine, and the enzyme activity is compared. did. That is, by the above comparison, the presence or absence of acceleration of the enzyme reaction by boiling treatment using a flame to the solvent was evaluated and measured.
The result is shown in FIG. As shown in FIG. 5, in the case of Example 3 subjected to the flame boiling treatment, it was revealed that the amylase activity was improved by 50%. That is, it was demonstrated that the enzyme activity is greatly improved by boiling the solvent used for the enzyme reaction, which can contribute to the reduction of the amount of enzyme used and the reduction of the reaction time.

本実施例4では、前記実施例1と同様に図2に示される装置を利用して酵素反応を行い、アミラーゼ活性を測定する試験を行なった。かかる試験では前記溶媒5として水を用い、前記前処理槽4に収容した水を減圧下で65℃により1分間沸騰させた後、前記冷却槽7にて冷却し、常温(約25℃)の水を調製した。
次に、前記沸騰処理した水を反応槽10に移送し、該反応槽10内の水に酵素反応の基質となるデンプン(和光純薬工業(株)製でんぷん、溶性)を溶解し、酵素反応に用いる基質として調製した。また、前記水を用いてアミラーゼ(和光純薬工業(株)製、α−アミラーゼ)を溶解、反応溶液を調製した。
In Example 4, a test for measuring amylase activity was performed by carrying out an enzyme reaction using the apparatus shown in FIG. In such a test, water was used as the solvent 5 and the water contained in the pretreatment tank 4 was boiled at 65 ° C. for 1 minute under reduced pressure, and then cooled in the cooling tank 7 to be room temperature (about 25 ° C.). Water was prepared.
Next, the water that has been boiled is transferred to the reaction vessel 10, and starch (starch, soluble, manufactured by Wako Pure Chemical Industries, Ltd.) serving as a substrate for the enzyme reaction is dissolved in the water in the reaction vessel 10, and the enzyme reaction It was prepared as a substrate to be used in Further, amylase (manufactured by Wako Pure Chemical Industries, Ltd., α-amylase) was dissolved using the water to prepare a reaction solution.

また、比較例4として沸騰処理をしない水(約25℃)に、前記水溶性デンプンと前記アミラーゼを同じ濃度で溶解させた反応溶液を調製した。
これらの2つの水を溶媒に用いて、前記デンプンと前記アミラーゼを反応させ、アミラーゼによって65℃で8分後に分解されるデンプン量(デンプンの減少量)をヨウ素にて計測し、酵素活性を比較した。即ち、上記の比較により溶媒への火炎を用いた沸騰処理による酵素反応の促進の有無を評価、計測した。
その結果を図6に示す。図6に示すように、減圧下で加温沸騰処理した実施例4の場合、アミラーゼ活性が無処理比に対し25%向上することが明らかとなった。即ち、酵素反応に用いる溶媒への沸騰処理により酵素活性が大幅に向上し、酵素使用量の低減や反応時間の短縮などに寄与できることが実証された。
また、減圧条件下で加温し、沸騰状態にした水を用いても同様の効果が得られた。即ち、減圧下での沸騰状態では、温度上昇が少なくてよく、酵素反応時の温度までの冷却が少ない等のエネルギーロスの低減や温度調整時間の短縮などの効果が得られる。
Further, as Comparative Example 4, a reaction solution was prepared by dissolving the water-soluble starch and the amylase at the same concentration in water not subjected to boiling treatment (about 25 ° C.).
Using these two waters as solvents, the starch and the amylase are reacted, and the amount of starch degraded by amylase after 65 minutes at 65 ° C. (decrease in starch) is measured with iodine, and the enzyme activity is compared. did. That is, by the above comparison, the presence or absence of acceleration of the enzyme reaction by boiling treatment using a flame to the solvent was evaluated and measured.
The result is shown in FIG. As shown in FIG. 6, in the case of Example 4 which was heated and boiled under reduced pressure, it was revealed that the amylase activity was improved by 25% with respect to the untreated ratio. That is, it was demonstrated that the enzyme activity is greatly improved by boiling the solvent used for the enzyme reaction, which can contribute to the reduction of the amount of enzyme used and the reduction of the reaction time.
Moreover, the same effect was acquired even if it used the water boiled and heated under pressure reduction conditions. That is, in the boiling state under reduced pressure, the temperature rise may be small, and effects such as reduction of energy loss and shortening of the temperature adjustment time such as less cooling to the temperature at the time of enzyme reaction can be obtained.

本実施例は、セルロース等のバイオマス資源の有用物変換、発酵、食器洗浄、洗濯、酵素利用空気清浄等、タンパク質が関わるバイオテクノロジー分野、農林水産業分野、製薬業、電気機器などにおけるアミラーゼをはじめとする各種タンパク質介在反応に関する多種多様な分野に適用できる。さらに、本実施例によって、反応促進の結果、タンパク質介在反応の時間短縮により、例えば食器洗い器等で見られるような高温度での加熱時間の短縮化が図れる等、使用目的によってはエネルギー消費の低減ができる等の副次的な効果を奏する。更に、空気中の湿度や加湿ミスト下での酵素利用空気清浄等、湿気程度の水存在下の酵素活性化等にも寄与するなど、様々な形態の水が寄与する酵素反応において、酵素反応の活性化に適用可能である。   This example includes amylase in biotechnology, agriculture, forestry and fisheries, pharmaceutical industry, electrical equipment, etc. related to proteins, such as conversion of useful resources of biomass resources such as cellulose, fermentation, dishwashing, washing, enzyme-based air cleaning, etc. It can be applied to various fields related to various protein-mediated reactions. Furthermore, according to this example, as a result of promoting the reaction, the time for the protein-mediated reaction can be shortened. For example, the heating time at a high temperature as seen in a dishwasher can be shortened. There are side effects such as Furthermore, in enzyme reactions that contribute to various forms of water, such as the use of enzyme in the presence of moisture in the presence of moisture such as humidity in the air or air purification using humidified mist, it also contributes to enzyme reactions. Applicable for activation.

本発明の実施例に係る酵素反応の処理過程を示すフロー図である。It is a flowchart which shows the process of the enzyme reaction which concerns on the Example of this invention. 本発明の一実施例における反応装置を示す概略構成図である。It is a schematic block diagram which shows the reaction apparatus in one Example of this invention. 実施例1におけるセルラーゼ活性試験の結果を示すグラフである。2 is a graph showing the results of a cellulase activity test in Example 1. 実施例2におけるアミラーゼ活性試験の結果を示すグラフである。3 is a graph showing the results of an amylase activity test in Example 2. 実施例3におけるアミラーゼ活性試験の結果を示すグラフである。6 is a graph showing the results of an amylase activity test in Example 3. 実施例4におけるアミラーゼ活性試験の結果を示すグラフである。4 is a graph showing the results of an amylase activity test in Example 4.

符号の説明Explanation of symbols

1 マイクロ波照射装置
4 前処理槽
5 溶媒
7 温調槽
8 温調器(温度コントローラー)
10 反応槽
11 撹拌手段
12 基質タンク
13 タンパク質溶液タンク
15 加熱器
16 減圧弁
17 真空ポンプ
1 Microwave irradiation device 4 Pretreatment tank 5 Solvent 7 Temperature control tank 8 Temperature controller (temperature controller)
DESCRIPTION OF SYMBOLS 10 Reaction tank 11 Stirring means 12 Substrate tank 13 Protein solution tank 15 Heater 16 Pressure reducing valve 17 Vacuum pump

Claims (13)

タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応工程を備えたタンパク質介在反応の促進方法において、
前記反応工程の前に、前記溶媒に波長約1cm〜100mの電磁波を照射する前処理工程を設け、該前処理した溶媒に前記タンパク質と基質を混合して反応を行なうことを特徴とするタンパク質介在反応促進方法。
In a method for promoting a protein-mediated reaction comprising a reaction step of chemically reacting a substrate contained in a solvent in the presence of a protein,
Before the reaction step, a pretreatment step of irradiating the solvent with an electromagnetic wave having a wavelength of about 1 cm to 100 m is provided, and the protein and the substrate are mixed with the pretreated solvent to perform the reaction. Reaction promotion method.
前記電磁波がマイクロ波であることを特徴とする請求項1記載のタンパク質介在反応促進方法。   The protein-mediated reaction promoting method according to claim 1, wherein the electromagnetic wave is a microwave. タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応工程を備えたタンパク質介在反応の促進方法において、
前記反応工程の前に、加熱、減圧、減圧加熱の何れかにより前記溶媒を沸騰処理する前処理工程を設け、該前処理した溶媒に前記タンパク質と基質を混合して反応を行なうことを特徴とするタンパク質介在反応促進方法。
In a method for promoting a protein-mediated reaction comprising a reaction step of chemically reacting a substrate contained in a solvent in the presence of a protein,
Before the reaction step, a pretreatment step of boiling the solvent by any one of heating, reduced pressure, and reduced pressure heating is provided, and the reaction is performed by mixing the protein and the substrate in the pretreated solvent. To promote protein-mediated reactions.
前記前処理工程にて、前記沸騰処理における加熱は、火炎加熱、蒸気加熱、伝熱体加熱のうち少なくとも一若しくはこれらの組み合わせにより行なうことを特徴とする請求項3記載のタンパク質介在反応促進方法。   The method for promoting a protein-mediated reaction according to claim 3, wherein in the pretreatment step, the heating in the boiling treatment is performed by at least one of flame heating, steam heating, or heat transfer body heating, or a combination thereof. 前記前処理工程の後に、目的とする化学反応に適した温度になるように前記溶媒を温度調節する温度調節工程を設け、該温度調節した溶媒に前記タンパク質と基質を混合することを特徴とする請求項1若しくは3記載のタンパク質介在反応促進方法。   After the pretreatment step, there is provided a temperature adjustment step for adjusting the temperature of the solvent so that the temperature is suitable for a target chemical reaction, and the protein and the substrate are mixed in the temperature adjusted solvent. The method for promoting a protein-mediated reaction according to claim 1 or 3. 前記タンパク質が酵素であることを特徴とする請求項1乃至5の何れかに記載のタンパク質介在反応促進方法。   The method for promoting a protein-mediated reaction according to any one of claims 1 to 5, wherein the protein is an enzyme. 前記溶媒が水であることを特徴とする請求項1若しくは3記載のタンパク質介在反応促進方法。   The method for promoting a protein-mediated reaction according to claim 1 or 3, wherein the solvent is water. タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応槽を備えたタンパク質介在反応装置において、
前記溶媒に波長約1cm〜100mの電磁波を照射する前処理手段と、該電磁波を照射した溶媒に前記タンパク質と基質を混合する手段とを備え、該混合して生成した反応溶液を前記反応槽にて反応させることを特徴とするタンパク質介在反応装置。
In a protein-mediated reaction apparatus equipped with a reaction vessel for chemically reacting a substrate contained in a solvent in the presence of protein,
A pretreatment means for irradiating the solvent with an electromagnetic wave having a wavelength of about 1 cm to 100 m; and a means for mixing the protein and the substrate with the solvent irradiated with the electromagnetic wave. A protein-mediated reaction apparatus characterized by reacting with
前記電磁波がマイクロ波であることを特徴とする請求項8記載のタンパク質介在反応装置。   The protein-mediated reaction apparatus according to claim 8, wherein the electromagnetic wave is a microwave. タンパク質の存在下で溶媒中に含有する基質を化学反応させる反応槽を備えたタンパク質介在反応装置において、
前記溶媒を加熱、減圧、減圧加熱の何れかにより沸騰処理する前処理手段と、該沸騰処理した溶媒に前記タンパク質と基質を混合する手段とを備え、該混合して生成した反応溶液を前記反応槽にて反応させることを特徴とするタンパク質介在反応装置。
In a protein-mediated reaction apparatus equipped with a reaction vessel for chemically reacting a substrate contained in a solvent in the presence of protein,
A pretreatment means for boiling the solvent by heating, reduced pressure, or reduced pressure heating; and a means for mixing the protein and the substrate in the boiled solvent, and reacting the reaction solution produced by the mixing with the reaction A protein-mediated reaction apparatus characterized by reacting in a tank.
前記前処理手段の後段に前記溶媒の温度調節をする温度調節手段を設け、目的とする反応に適した温度に温度調節した溶媒に前記タンパク質と基質を混合することを特徴とする請求項8若しくは10記載のタンパク質介在反応装置。   9. The temperature control means for adjusting the temperature of the solvent is provided after the pretreatment means, and the protein and the substrate are mixed in a solvent whose temperature is adjusted to a temperature suitable for a target reaction. The protein-mediated reaction apparatus according to 10. 前記タンパク質が酵素であることを特徴とする請求項8乃至11の何れかに記載のタンパク質介在反応装置。   The protein-mediated reaction apparatus according to any one of claims 8 to 11, wherein the protein is an enzyme. 前記溶媒が水であることを特徴とする請求項8若しくは11の何れかに記載のタンパク質介在反応装置。
The protein-mediated reaction apparatus according to claim 8 or 11, wherein the solvent is water.
JP2004370279A 2004-04-23 2004-12-21 Method for promoting protein-mediated reaction and reactor Withdrawn JP2005328832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370279A JP2005328832A (en) 2004-04-23 2004-12-21 Method for promoting protein-mediated reaction and reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128710 2004-04-23
JP2004370279A JP2005328832A (en) 2004-04-23 2004-12-21 Method for promoting protein-mediated reaction and reactor

Publications (1)

Publication Number Publication Date
JP2005328832A true JP2005328832A (en) 2005-12-02

Family

ID=35483877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370279A Withdrawn JP2005328832A (en) 2004-04-23 2004-12-21 Method for promoting protein-mediated reaction and reactor

Country Status (1)

Country Link
JP (1) JP2005328832A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064429A1 (en) * 2006-12-01 2008-06-05 Cellencor, Inc Treatment of cellulosic material for ethanol production
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064429A1 (en) * 2006-12-01 2008-06-05 Cellencor, Inc Treatment of cellulosic material for ethanol production
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control

Similar Documents

Publication Publication Date Title
Wang et al. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems
Cui et al. Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam
Nadar et al. Sonochemical effect on activity and conformation of commercial lipases
Liu et al. Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA
Islam et al. The inactivation of enzymes by ultrasound—a review of potential mechanisms
Ma et al. Characteristics of pectinase treated with ultrasound both during and after the immobilization process
Gonçalves et al. Ultrasound enhanced laccase applications
Ma et al. Synergistic effect and mechanisms of combining ultrasound and pectinase on pectin hydrolysis
Oliveira et al. Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch
Güleç Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics
Liu et al. Self-repairing metal–organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability
Paljevac et al. Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures
Réjasse et al. Stability improvement of immobilized Candida antarctica lipase B in an organic medium under microwave radiation
Bashari et al. A novel technique to improve the biodegradation efficiency of dextranase enzyme using the synergistic effects of ultrasound combined with microwave shock
Dabbour et al. Ultrasound assisted enzymolysis of sunflower meal protein: Kinetics and thermodynamics modeling
Priya et al. Ultrasound-assisted intensification of activity of free and immobilized enzymes: a review
Bashari et al. Effect of ultrasound and high hydrostatic pressure (US/HHP) on the degradation of dextran catalyzed by dextranase
Gaquere-Parker et al. Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase
Bashari et al. Ultrasound-assisted dextranase entrapment onto Ca-alginate gel beads
Liao et al. Coupling and regulation of porous carriers using plasma and amination to improve the catalytic performance of glucose oxidase and catalase
KIm et al. Microwave-assisted decolorization and decomposition of methylene blue with persulfate
Mahdizadeh et al. Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: Corrosion controlling of boilers
Meng et al. The effect of ultrasound on the properties and conformation of glucoamylase
Chen et al. Assessment of activities and conformation of lipases treated with sub-and supercritical carbon dioxide
Costa-Silva et al. Enhancement lipase activity via immobilization onto chitosan beads used as seed particles during fluidized bed drying: Application in butyl butyrate production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304