JP2005328738A - Enzyme mixture and seasoning - Google Patents

Enzyme mixture and seasoning Download PDF

Info

Publication number
JP2005328738A
JP2005328738A JP2004148623A JP2004148623A JP2005328738A JP 2005328738 A JP2005328738 A JP 2005328738A JP 2004148623 A JP2004148623 A JP 2004148623A JP 2004148623 A JP2004148623 A JP 2004148623A JP 2005328738 A JP2005328738 A JP 2005328738A
Authority
JP
Japan
Prior art keywords
glutaminase
enzyme mixture
heat resistance
enzyme
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004148623A
Other languages
Japanese (ja)
Inventor
Koutaro Ito
考太郎 伊藤
Kenichiro Matsushima
健一朗 松島
Taiji Koyama
泰二 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP2004148623A priority Critical patent/JP2005328738A/en
Publication of JP2005328738A publication Critical patent/JP2005328738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Seasonings (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enzyme mixture containing glutaminase having excellent heat resistance and salt resistance, and to provide a seasoning using the enzyme mixture. <P>SOLUTION: (1) The enzyme mixture containing the glutaminase having excellent heat resistance and salt resistance is prepared from an extract obtained by extracting the solid culture product of a microorganism with a polar solvent. (2) A method for producing the enzyme mixture is characterized by culturing a microorganism in a solid state and then collecting the enzyme mixture containing the glutaminase having excellent heat resistance and salt resistance from the culture product. (3) A seasoning is characterized by hydrolyzing with the enzyme mixture of (1). The enzyme mixture does not need a troublesome treatment comprising the addition of glutaminase to protease, gives a hydrolyzed product, when used for the high temperature hydrolysis of wheat gluten, animal or vegetable proteins, or the like, and is thereby extremely significant on industry. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱性及び耐塩性に優れたグルタミナーゼを含有する酵素混合物及び調味料に関する。   The present invention relates to an enzyme mixture and a seasoning containing glutaminase excellent in heat resistance and salt resistance.

麹カビ(黄麹菌)であるアスペルギルス・オリゼ及びアスペルギルス・ソーヤは、蛋白質分解酵素を多種多量に生産するため、古くから醤油、味噌等の蛋白質分解調味料の製造に使用されている。
蛋白質を分解する上で麹菌を固体培養し、得られる麹から水あるいはアルコールで抽出した酵素剤も古くから利用されている(特許文献1参照)。
蛋白質を分解する際に、分解効率を上げ、処理時間を短縮し、雑菌汚染を低減させるために高温下で分解されることがある。
しかし、麹菌の酵素は、蛋白質の低分子化能力等の面では優れているが、耐熱性に劣るため、比較的低温度域で蛋白質分解工程を行うことを余儀なくされている。
特にグルタミナーゼの耐熱性は、低く、高温処理による失活は著しい。また、固体麹におけるグルタミナーゼの局在性は、ほとんどが菌体の表面に結合することが知られており、酵素剤として利用される麹抽出液中ではグルタミナーゼが不足することが知られている。そのため、現行の麹菌由来の酵素剤で蛋白質を高温分解する際には、グルタミン酸含量の低下を防ぐために耐熱性のグルタミナーゼを添加しなければならないという問題点があった(特許文献1参照)。
特開昭48-58157号公報
Aspergillus oryzae and Aspergillus soya, which are koji molds (yellow koji molds), have been used for the production of proteolytic seasonings such as soy sauce and miso since they produce a large amount of proteolytic enzymes.
An enzyme agent obtained by solid-culturing koji molds to decompose proteins and extracting the obtained koji with water or alcohol has been used for a long time (see Patent Document 1).
When decomposing a protein, it may be decomposed at a high temperature in order to increase the decomposing efficiency, shorten the processing time, and reduce contamination with bacteria.
However, the enzyme of Aspergillus is superior in terms of the ability to reduce the molecular weight of the protein, but is inferior in heat resistance, so it is forced to perform a proteolytic process at a relatively low temperature range.
In particular, glutaminase has low heat resistance, and its inactivation by high temperature treatment is remarkable. Moreover, it is known that the localization of glutaminase in solid soot is mostly bound to the surface of the microbial cell, and it is known that glutaminase is deficient in the soot extract used as an enzyme agent. Therefore, when the protein is decomposed at a high temperature with the current enzyme agent derived from Aspergillus oryzae, there is a problem that a heat-resistant glutaminase must be added in order to prevent a decrease in glutamic acid content (see Patent Document 1).
JP-A-48-58157

本発明が解決しようとする課題は、耐熱性及び耐塩性に優れたグルタミナーゼを含有する酵素混合物及びこの酵素混合物を用いた調味料を提供することにある。   The problem to be solved by the present invention is to provide an enzyme mixture containing glutaminase excellent in heat resistance and salt resistance and a seasoning using this enzyme mixture.

そこで、本発明者等は、鋭意検討を重ねた結果、宿主として麹カビを用い、該遺伝子を発現させ、麹菌本来の他種多量の蛋白質分解酵素分泌能を有し、かつ、高いグルタミナーゼ生産能を合わせもつ麹菌を作製した。
組み換え技術により作製された本麹菌は、通常の液体培養ではクリプトコッカス属菌及びサッカロミセス属菌を宿主として発現させた場合と同様に菌体表面にグルタミナーゼが局在した。一方、固体培養では、グルタミナーゼが遊離型となり菌体外へと分泌するという新しい事実を知見した。
また、その酵素学的な特性、すなわち、耐熱性に関しては遊離型となった酵素においても保持していることが明らかとなった。この事実は、固体麹から水あるいはアルコールで抽出する蛋白質分解酵素液中に、これまで不足とされていたグルタミナーゼ、特に耐熱性及び耐塩性に優れたグルタミナーゼが豊富に含まれることを知見し、本発明を完成した。
Therefore, as a result of intensive studies, the present inventors have used mold as a host, expressed the gene, have the ability to secrete a large amount of other types of proteolytic enzymes, and have a high glutaminase-producing ability. Aspergillus oryzae having a combination of
As for this koji mold produced by recombinant technology, glutaminase was localized on the cell surface in the same liquid culture as in the case of expressing Cryptococcus and Saccharomyces as hosts. On the other hand, in the solid culture, we found a new fact that glutaminase becomes a free form and is secreted outside the cells.
In addition, it was revealed that the enzyme characteristics, that is, heat resistance, is retained in the free enzyme. This fact indicates that the proteolytic enzyme solution extracted from solid koji with water or alcohol contains abundant glutaminase, particularly glutaminase with excellent heat resistance and salt resistance, which has been previously insufficient. Completed the invention.

すなわち、本発明は、
(1)微生物を固体培養した培養物から極性溶媒で抽出した抽出物より調製され、耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物。
(2)微生物を固体培養し、培養物から耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物を採取することを特徴とする耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。
(3)微生物が耐熱性及び耐塩性に優れたグルタミナーゼ遺伝子を組み込んだ組み換え微生物である項目(1)又は(2)記載の酵素混合物又は耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。
(4)微生物が麹菌である項目(1)又は(2)記載の酵素混合物又は耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。
(5)耐熱性及び耐塩性に優れたグルタミナーゼがクリプトコッカス属由来のものである項目(1)又は(2)記載の酵素混合物又は耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。
(6)粉末化された項目(1)、(3)、(4)又は(5)記載の酵素混合物。
(7)項目(1)、(3)、(4)又は(5)記載の酵素混合物を用いて分解してなる調味料。
(8)項目(7)に記載の調味料がグルテン分解物である調味料。である。
That is, the present invention
(1) An enzyme mixture prepared from an extract obtained by extracting a microorganism from a solid culture with a polar solvent and containing glutaminase excellent in salt resistance and heat resistance.
(2) Production of an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance, characterized by collecting an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance from solid culture of microorganisms Law.
(3) The enzyme mixture according to item (1) or (2), wherein the microorganism is a recombinant microorganism incorporating a glutaminase gene excellent in heat resistance and salt resistance, or an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance Manufacturing method.
(4) A method for producing an enzyme mixture according to item (1) or (2), wherein the microorganism is a koji mold, or an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance.
(5) A method for producing an enzyme mixture according to item (1) or (2), wherein the glutaminase excellent in heat resistance and salt resistance is derived from the genus Cryptococcus, or an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance .
(6) The enzyme mixture according to item (1), (3), (4) or (5), which is pulverized.
(7) A seasoning obtained by decomposing using the enzyme mixture according to item (1), (3), (4) or (5).
(8) A seasoning in which the seasoning according to item (7) is a gluten degradation product. It is.

本発明によれば、耐熱性及び耐塩性に優れたグルタミナーゼを含有する酵素混合物及びこの酵素混合物を用いた調味料を提供することができる。
そして、本発明により、蛋白質分解酵素に、グルタミナーゼを添加するという煩雑さがなく、小麦グルテンあるいは動植物蛋白質等の高温分解の際にグルタミン酸含量の高い分解物が得られ、産業上極めて有意義である。
ADVANTAGE OF THE INVENTION According to this invention, the enzyme mixture containing glutaminase excellent in heat resistance and salt tolerance, and the seasoning using this enzyme mixture can be provided.
According to the present invention, there is no complication of adding glutaminase to a proteolytic enzyme, and a decomposed product having a high glutamic acid content is obtained at the time of high-temperature decomposition of wheat gluten, animal or plant protein, etc., which is extremely significant industrially.

以下、本発明について詳細に説明する。
本発明者等は、高温下で蛋白質分解を行う際に急速な失活を伴う麹菌由来のグルタミナーゼを補うため、クリプトコッカス属酵母由来の耐熱性及び耐塩性に優れたグルタミナーゼ遺伝子を黄麹菌アスペルギルス・ソーヤに導入し、高蛋白質分解酵素活性及び高グルタミナーゼ活性を合わせもつ麹菌を作製した。
得られた組み換え麹菌を用いて醤油麹又はフスマ麹を調製し、酵素を一晩4℃で水抽出した。得られた酵素液を固液分離し、夫々のグルタミナーゼ活性を測定した結果、酵素液中に高いグルタミナーゼ活性を検出し、菌体から遊離してグルタミナーゼが発現していることを確認した。また、酵素液中のグルタミナーゼの耐熱性を調べた結果、耐熱性を保持していることが明らかとなった。
次に、この酵素液を用いてグルテン高温分解を行った。その結果、耐熱性グルタミナーゼを添加しなくともグルタミン酸含量の高いグルテン分解物を得ることに成功したものである。
Hereinafter, the present invention will be described in detail.
In order to compensate for glutaminase derived from Aspergillus oryzae with rapid inactivation when proteolysis is carried out at high temperature, the present inventors have added a glutaminase gene derived from Cryptococcus yeast having excellent heat resistance and salt resistance to Aspergillus aspergillus soya. The gonococcus having high proteolytic enzyme activity and high glutaminase activity was prepared.
Soy sauce koji or bran koji was prepared using the resulting recombinant koji mold, and the enzyme was extracted with water at 4 ° C. overnight. As a result of solid-liquid separation of the obtained enzyme solution and measuring each glutaminase activity, high glutaminase activity was detected in the enzyme solution, and it was confirmed that glutaminase was released from the cells and expressed. Moreover, as a result of examining the heat resistance of glutaminase in the enzyme solution, it was revealed that the heat resistance was maintained.
Next, gluten high temperature decomposition was performed using this enzyme solution. As a result, the inventors succeeded in obtaining a gluten degradation product having a high glutamic acid content without adding a thermostable glutaminase.

本発明は、異種蛋白質であるグルタミナーゼを微生物に生産せしめるため、宿主に用いる微生物は、グルタミナーゼを生産することができるものであれば特に限定されない。しかし、本発明の特徴は、蛋白質分解酵素及びグルタミナーゼを豊富に含む酵素混合物に関するものであるため、宿主に用いる微生物としては、蛋白質分解酵素生産能の優れた微生物が好ましい。それらの微生物としては、例えば、アスペルギルス・オリゼ、アスペルギルス・ソーヤ、アスペルギルス・ニガー等の糸状菌が挙げられる。   In the present invention, a glutaminase, which is a heterologous protein, is produced by a microorganism, so that the microorganism used for the host is not particularly limited as long as it can produce glutaminase. However, since the feature of the present invention relates to an enzyme mixture rich in proteolytic enzymes and glutaminases, microorganisms excellent in the ability to produce proteolytic enzymes are preferred as the microorganisms used in the host. Examples of these microorganisms include filamentous fungi such as Aspergillus oryzae, Aspergillus soya, Aspergillus niger and the like.

本発明でいうグルタミナーゼとは、耐熱性に優れたグルタミナーゼ活性を有する酵素であり、特にグルタミナーゼ活性のみを有する酵素である必要はなく、転移反応、アスパラギナーゼ反応を合わせもつ酵素であってもよい。それらのグルタミナーゼとしては、例えば、クリプトコッカス・ノダエンシスあるいはクリプトコッカス・アルビダス等のクリプトコッカス属酵母由来のグルタミナーゼ等が挙げられる。   The glutaminase referred to in the present invention is an enzyme having glutaminase activity excellent in heat resistance, and does not need to be an enzyme having only glutaminase activity, and may be an enzyme having both a transfer reaction and an asparaginase reaction. Examples of these glutaminases include glutaminases derived from cryptococcus yeasts such as cryptococcus nodaensis or cryptococcus albidas.

グルタミナーゼの生産は、グルタミナーゼ遺伝子を適当なベクター上に連結させ、グルタミナーゼ遺伝子を組み込んだベクターを微生物内に導入することにより得ることができる。ベクターとしては、形質転換する宿主中でグルタミナーゼを生産させうるものであれば如何なるものでも用いることができる。   The production of glutaminase can be obtained by linking a glutaminase gene on an appropriate vector and introducing a vector incorporating the glutaminase gene into a microorganism. Any vector can be used as long as it can produce glutaminase in the host to be transformed.

上記ベクターには、形質転換された細胞を選択することを可能にするためのマーカー遺伝子が含まれていてもよい。マーカー遺伝子としては、糸状菌であれば、例えば、PyrGあるいはniaDのような宿主の栄養要求性を相補する遺伝子、オリゴマイシン等の薬剤に対する抵抗遺伝子等が挙げられる。
また、組み換えベクターは、宿主細胞中でグルタミナーゼ遺伝子を発現することのできるプロモーター又はその他の制御配列(例えば、エンハンサー配列、ターミネーター配列、ポリアデニル化配列等)を含むことが望ましい。
プロモーターとしては、醤油麹又はフスマ麹等固体麹で効率よく発現するものが望ましく、具体的には、例えば、amyBプロモーターあるいはアルカリプロテアーゼ遺伝子のプロモーター等が挙げられる。
The vector may contain a marker gene for enabling selection of transformed cells. Examples of the marker gene include filamentous fungi, such as a gene that complements the host's auxotrophy, such as PyrG or niaD, and a resistance gene for drugs such as oligomycin.
In addition, it is desirable that the recombinant vector contains a promoter or other control sequence (for example, an enhancer sequence, terminator sequence, polyadenylation sequence, etc.) capable of expressing the glutaminase gene in the host cell.
The promoter is preferably one that is efficiently expressed in solid rice cake such as soy sauce cake or bran rice cake. Specific examples include amyB promoter and an alkaline protease gene promoter.

組み換え微生物の作製に伴う形質転換は、宿主により公知の方法で行うことができる。酵母の場合は、例えば、酢酸リチウムを用いる方法〔Methods Mol. Cell. Biol., 5, 255-269(1995)〕等を用いることができる。糸状菌の場合は、例えば、プロトプラスト化した後、ポリエチレングリコール及び塩化カルシウムを用いる方法〔Mol. Gen. Genet., 218, 99-104(1989)〕を用いることができる。細菌を用いる場合は、例えば、エレクトロポレーションによる方法〔Methods Enzymol., 194, 182-187(1990)〕等を用いることができる。   Transformation accompanying production of the recombinant microorganism can be performed by a known method depending on the host. In the case of yeast, for example, a method using lithium acetate [Methods Mol. Cell. Biol., 5, 255-269 (1995)] can be used. In the case of filamentous fungi, for example, after protoplastization, a method using polyethylene glycol and calcium chloride [Mol. Gen. Genet., 218, 99-104 (1989)] can be used. When bacteria are used, for example, a method by electroporation [Methods Enzymol., 194, 182-187 (1990)] can be used.

本発明でいう酵素混合物は、固体麹に水あるいはアルコール等の極性溶媒を加えて得られる蛋白質分解酵素を含有する酵素混合物である。抽出する極性溶媒は、食塩水あるいは菌体の培養液等を用いてもよい。抽出は、例えば、4℃〜常温で行い、抽出時間は、温度によっても異なり、例えば、4℃であれば一晩抽出することが望ましい。麹が固まりを形成する場合は、攪拌等を行い、よく麹をほぐし、水等の極性溶媒を麹に加えた後も何度か攪拌して麹に極性溶媒が染み込むように行うのが好適である。また、機械的な処置をしてもよく、例えば、ポリトロンのようなホモジェナイザーを使用してもよい。
抽出物は、例えば、遠心分離あるいはろ過等による固液分離を行うことにより得られる。抽出物は、更に、無菌ろ過をすることにより無菌的な酵素混合物を調製してもよい。抽出物から微生物を除去する手段としては、例えば、その他放射線照射等の処置も挙げられる。また、得られた抽出物をスプレードライ等の方法により粉末化し、酵素混合物として使用してもよい。
The enzyme mixture referred to in the present invention is an enzyme mixture containing a proteolytic enzyme obtained by adding a polar solvent such as water or alcohol to a solid koji. As the polar solvent to be extracted, a saline solution or a culture solution of bacterial cells may be used. Extraction is performed, for example, at 4 ° C. to room temperature, and the extraction time varies depending on the temperature. For example, if it is 4 ° C., it is desirable to extract overnight. When the cocoon forms a lump, it is preferable to stir, etc., thoroughly loosen the cocoon, and after adding a polar solvent such as water to the cocoon, stir several times so that the polar solvent soaks into the cocoon. is there. Further, a mechanical treatment may be performed, for example, a homogenizer such as polytron may be used.
The extract can be obtained, for example, by performing solid-liquid separation by centrifugation or filtration. The extract may be further subjected to sterile filtration to prepare a sterile enzyme mixture. Examples of means for removing microorganisms from the extract include other treatments such as radiation irradiation. The obtained extract may be pulverized by a method such as spray drying and used as an enzyme mixture.

本発明で得られる酵素混合物を用いて蛋白質原料を分解する際の温度は、例えば、35〜60℃が好ましい。分解時間は、温度によって異なり、18時間〜7日間分解することが望ましい。調味料製品の官能的安定性及び色の安定性を改善するために加水分解した分解液に、塩あるいは酵母等を加えて諸味を形成し、次いで、諸味を好ましくは、好気的もしくは嫌気的条件下で1〜6週間、より好ましくは2〜4週間発酵させてもよい。   The temperature at which the protein raw material is decomposed using the enzyme mixture obtained in the present invention is preferably, for example, 35 to 60 ° C. The decomposition time varies depending on the temperature, and it is desirable to decompose for 18 hours to 7 days. To improve the sensory stability and color stability of the seasoning product, salt or yeast is added to the hydrolyzed decomposition solution to form moromi, and then moromi is preferably aerobic or anaerobic. Fermentation may be carried out under conditions for 1 to 6 weeks, more preferably 2 to 4 weeks.

蛋白質原料としては、例えば、植物性蛋白質、動物性蛋白質等が用いられる。植物性蛋白質としては、例えば、大豆、コーングルテン、小麦グルテン等が挙げられる。動物性蛋白質としては、例えば、畜肉類、ゼラチン、カゼイン等が挙げられる。   Examples of protein raw materials include plant proteins and animal proteins. Examples of vegetable protein include soybean, corn gluten, wheat gluten and the like. Examples of animal proteins include livestock meat, gelatin, and casein.

グルタミナーゼ活性の測定法
グルタミナーゼの力価の測定法には、[測定法1]L-グルタミンを加水分解して生成されるL-グルタミン酸を定量する方法、[測定法2]酵素反応で生成するアンモニアを定量する方法が挙げられる。夫々市販のキットを使用してもよく、測定法1であれば、例えば、ヤマサL-グルタミン酸測定キット(ヤマサ醤油社製)、測定法2であれば、例えば、F-キット アンモニア(ロシュ・ダイアグノシス社製)が挙げられる。
2%(W/V)L-グルタミン溶液1mlに、0.2 Mリン酸緩衝液(pH 7.0) 2ml及び酵素液1mlを加え、30℃、60分間反応させた後、0.75 N過塩素酸液1mlを添加して反応を停止させ、これに1.5N水酸化ナトリウム液500 μlを加え、反応液を中和した。
上記の反応液を遠心分離(10000 rpm、10分間)し、上清100μlに、50mMのEDTA Naを含む0.1 M塩酸ヒドロキシルアミン緩衝液1.0 ml (pH 8.0)、20 mM NAD溶液(オリエンタル酵母社製)1.0 ml及び500単位/mlのL-グルタミン酸脱水酵素液(SIGMA社製)50 μlを添加し、37℃で30分間反応させ、分光光度計により340 nmにおける吸光度を測定した。そして、予め作成したL-グルタミン酸の検量線より、その生成量を調べておき、上記の条件下で1分間あたり1μモルのグルタミン酸を生成する酵素量を1単位(U)とした。
Glutaminase activity measurement method Glutaminase titer measurement method includes [Measurement method 1] quantification of L-glutamate produced by hydrolysis of L-glutamine, and [Measurement method 2] ammonia produced by enzyme reaction. The method of quantifying can be mentioned. Commercially available kits may be used. For example, if measurement method 1, Yamasa L-glutamic acid measurement kit (manufactured by Yamasa Shoyu Co., Ltd.), and if measurement method 2, for example, F-kit ammonia (Roche Diagnostics) For example).
To 1 ml of 2% (W / V) L-glutamine solution, add 2 ml of 0.2 M phosphate buffer (pH 7.0) and 1 ml of enzyme solution, react at 30 ° C for 60 minutes, and then add 1 ml of 0.75 N perchloric acid solution. The reaction was stopped by addition, and 500 μl of 1.5N sodium hydroxide solution was added thereto to neutralize the reaction solution.
The above reaction mixture was centrifuged (10000 rpm, 10 minutes), and 100 μl of the supernatant was added to 1.0 ml of 0.1 M hydroxylamine buffer (pH 8.0) containing 50 mM EDTA Na, 20 mM NAD + solution (Oriental Yeast Co., Ltd.) 1.0 ml and 500 units / ml L-glutamate dehydrase solution (SIGMA) 50 μl were added, reacted at 37 ° C. for 30 minutes, and the absorbance at 340 nm was measured with a spectrophotometer. The amount of L-glutamic acid produced in advance was examined from a calibration curve prepared in advance, and the amount of enzyme that produced 1 μmol of glutamic acid per minute under the above conditions was defined as 1 unit (U).

グルタミナーゼの高活性株のスクリーニング
最少培地であるツァペック・ドックス培地に、生育可能な形質転換体から胞子を白金耳でかき取り、0.01%ツィーン80溶液30μlに懸濁した。この懸濁液を予めマルツ寒天プレート(極東製薬社製)上に置いた抗生物質検定用ペーパーディスク(アドバンテック)に20μl滴下し、30℃、2日間培養した。培養後、ペーパーディスクを培地から剥ぎ取り、グルタミナーゼ活性を検出した。グルタミナーゼ活性の検出は、上記記載の方法を1.5mlスケールにスケールダウンし、一段階目の反応であるグルタミナーゼ反応を一部改変した方法で行った。
すなわち、1.5mlチューブ内に、2%(W/V)L-グルタミン溶液250μlに0.2 Mリン酸緩衝液(pH 7.0) 500μl及び滅菌水250μlを予め混合した溶液を調製し、その中に先のペーパーディスクを直接入れ、37℃、30分間グルタミナーゼ反応させた。反応後、0.75 N過塩素酸液250μlを添加して反応を停止させ、これに1.5N水酸化ナトリウム液125 μlを加え、反応液を中和した。次いで、グルタミン酸定量を上記と同様に行い、吸光度340nmにおける数値の高いものをグルタミナーゼ高活性株として選抜した。
以下に実施例を示し、本発明をより具体的に説明する。
Screening for Highly Active Glutaminase Spores were scraped with a platinum loop from a viable transformant in a minimal medium, Czapek Dox medium, and suspended in 30 μl of a 0.01% Tween 80 solution. 20 μl of this suspension was dropped onto an antibiotic test paper disk (Advantech) previously placed on a Marz agar plate (manufactured by Kyokuto Pharmaceutical Co., Ltd.), and cultured at 30 ° C. for 2 days. After the culture, the paper disk was peeled off from the medium, and glutaminase activity was detected. The glutaminase activity was detected by a method in which the above-described method was scaled down to a 1.5 ml scale and the glutaminase reaction, which is the first step reaction, was partially modified.
That is, in a 1.5 ml tube, prepare a solution in which 250 μl of 2% (W / V) L-glutamine solution is mixed beforehand with 500 μl of 0.2 M phosphate buffer (pH 7.0) and 250 μl of sterilized water. A paper disk was directly placed, and glutaminase reaction was performed at 37 ° C. for 30 minutes. After the reaction, 250 μl of 0.75 N perchloric acid solution was added to stop the reaction, and 125 μl of 1.5 N sodium hydroxide solution was added thereto to neutralize the reaction solution. Subsequently, glutamic acid was quantified in the same manner as described above, and the one having a high numerical value at an absorbance of 340 nm was selected as a glutaminase highly active strain.
Hereinafter, the present invention will be described in more detail with reference to examples.

1.クリプトコッカス属酵母由来のグルタミナーゼ遺伝子(CnGahA)を導入した麹菌の作製
クリプトコッカス・ノダエンシス由来のグルタミナーゼ遺伝子を含むpTKgln(FERM BP-7292、特開2002-262887号公報記載)を鋳型に配列番号1及び配列番号2のプライマーを用いてグルタミナーゼ遺伝子のコード領域をPCR増幅させた。
増幅断片をEco RI及びSma Iで処理し、同処理をしたアスペルギルス・オリゼ由来のアミラーゼ遺伝子プロモーターとターミネーターを有するpAPベクターに導入し、麹菌発現プラスミドpAPCnGahAを作製した。
1. Preparation of Aspergillus oryzae introduced with a glutaminase gene (CnGahA) derived from a genus Cryptococcus spp. The coding region of the glutaminase gene was PCR amplified using 2 primers.
The amplified fragment was treated with Eco RI and Sma I, and introduced into a pAP vector having an amylase gene promoter and terminator derived from Aspergillus oryzae, which was subjected to the same treatment, to prepare a koji mold expression plasmid pAPCnGahA.

次いで、pAPCnGahAを鋳型にし、配列番号3及び配列番号4のプライマーを用いて、アミラーゼプロモーター、グルタミナーゼ遺伝子、アミラーゼターミネーターを含む断片をPCR増幅させた。得られた増幅断片を、アスペルギルス・ソーヤ由来の硝酸還元酵素遺伝子(niaD遺伝子)と共に硝酸資化能を欠落させたアスペルギルス・ソーヤ RIB1023株(独立行政法人 酒類総合研究所より入手)に導入した。硝酸資化能を欠落させたアスペルギルス・ソーヤRIB1023は、分生子を終濃度0.5Mの塩素酸カリウムを含む最小培地(ツァペック・ドックス培地)に撒き、生育可能かつ、硝酸のみ資化能を失った自然変異株を用いた。 形質転換株は、ツァペック・ドックス培地で生育可能な菌を選抜し、更に、グルタミナーゼ活性を測定して、高活性株を取得した。得られた形質転換株は、再度、ツァペック・ドックス培地に胞子を撒き、単胞子分離を行い、安定してグルタミナーゼ活性の高い株を選抜した。   Subsequently, a fragment containing the amylase promoter, glutaminase gene, and amylase terminator was PCR amplified using pAPCnGahA as a template and the primers of SEQ ID NO: 3 and SEQ ID NO: 4. The resulting amplified fragment was introduced into Aspergillus soja RIB1023 strain (obtained from the National Institute of Liquors, Incorporated), which lacked the ability to assimilate nitrate together with the nitrate reductase gene (niaD gene) derived from Aspergillus soya. Aspergillus soya RIB1023, which lacked the ability to assimilate nitrate, spread conidia on a minimal medium (Zapec-Docx medium) containing 0.5 M potassium chlorate at a final concentration, and was able to grow and lost its ability to assimilate only nitrate. Natural mutants were used. As the transformant, a strain capable of growing on the Czapek-Docx medium was selected, and the glutaminase activity was further measured to obtain a highly active strain. The obtained transformant was again seeded on a Czapek-Docx medium, separated into single spores, and a strain having high stable glutaminase activity was selected.

2.固体麹におけるグルタミナーゼの局在性
醤油麹の調製を以下のとおり行った。
150ml容の三角フラスコに、ミール2.46g、フスマ2.7g及び水3.6mlを入れて充分混合し、綿栓をして121℃、30分間、加圧蒸気殺菌した。室温まで冷却させた後に、項目1.で得られた形質転換株の胞子105個を摂取し、湿度80%一定で30℃、3日間製麹した。
次いで、40mlの20mMリン酸緩衝液(pH7.0)を加え、ポリトロンを用いてホモジェナイズし、4℃で一晩、酵素を抽出した。抽出後、15000rpm、15分間遠心分離し、上清と沈殿物とに分離した。
更に、沈殿物に30mlの同緩衝液を加えて再度ホモジェナイズし、15000rpm、15分間遠心分離し、上清と沈殿物とに分離した。沈殿物に再度30mlの同緩衝液を加えて同様の操作を繰り返した。この3回の操作により得られた上清をまとめたものを遊離画分とした。更に、沈殿物に50mlの同緩衝液を加えてホモジェナイズして洗浄し、15000rpmで15分間遠心分離し、沈殿物を回収した。この操作を8回繰り返し、最終的に得られた沈殿物に同緩衝液を加えて結合画分とした。
夫々の画分のグルタミナーゼ活性を測定した結果、対照株と比較し、形質転換株(No.259)は、グルタミナーゼ活性が高く、固体麹である醤油麹においても充分に発現していることを確認した。更に、その局在性を調べた結果、形質転換株のグルタミナーゼは、遊離画分に高い活性を示し、固体培養では遊離型として存在することが明らかとなった。
2. Localization of glutaminase in solid koji Soy sauce koji was prepared as follows.
Into a 150 ml Erlenmeyer flask, 2.46 g of meal, 2.7 g of bran and 3.6 ml of water were added and mixed well. The mixture was capped and pasteurized with steam at 121 ° C. for 30 minutes. After cooling to room temperature, item 1. 10 5 spores of the transformant obtained in the above were ingested, and the mixture was made at 30 ° C. for 3 days at a constant humidity of 80%.
Subsequently, 40 ml of 20 mM phosphate buffer (pH 7.0) was added, homogenized using polytron, and the enzyme was extracted overnight at 4 ° C. After extraction, the mixture was centrifuged at 15000 rpm for 15 minutes to separate into a supernatant and a precipitate.
Further, 30 ml of the same buffer solution was added to the precipitate, homogenized again, and centrifuged at 15000 rpm for 15 minutes to separate the supernatant and the precipitate. 30 ml of the same buffer was added again to the precipitate, and the same operation was repeated. A collection of supernatants obtained by these three operations was used as a free fraction. Furthermore, 50 ml of the same buffer solution was added to the precipitate, washed by homogenization, and centrifuged at 15000 rpm for 15 minutes to collect the precipitate. This operation was repeated 8 times, and the same buffer was added to the finally obtained precipitate to obtain a bound fraction.
As a result of measuring the glutaminase activity of each fraction, it was confirmed that the transformed strain (No.259) had a higher glutaminase activity and was well expressed in soy sauce cake, which is a solid meal, compared to the control strain. did. Furthermore, as a result of examining the localization, it was found that glutaminase of the transformant showed high activity in the free fraction and existed in free form in solid culture.

(表1)形質転換体のグルタミナーゼ活性と局在性

Figure 2005328738
(Table 1) glutaminase activity and localization of transformants
Figure 2005328738

3.遊離型CnGahAの耐熱性
上記項目2.で得られた麹抽出液を用いてグルタミナーゼの耐熱性を調べた。
対照として非耐熱性である麹菌由来のグルタミナーゼ遺伝子(AsGahA)を導入した麹菌から項目2.と同様の操作で得られた麹抽出液を用いた。4、40、50、60及び70℃で夫々30分間熱処理し、無処理の活性を100%とした際の相対値で求めた。それらの結果を図1に示した。
その結果、AsGahAを含む麹抽出液のグルタミナーゼ活性は、60℃、30分間の熱処理で20%以下まで活性が低下したのに対し、CnGahAを含む麹抽出液のグルタミナーゼ活性は、80%以上残存し、遊離型となっても耐熱性を保持していることが明らかとなった。
3. Heat resistance of free CnGahA The heat resistance of glutaminase was examined using the koji extract obtained in (1).
Item 2. From Aspergillus oryzae to which a glutaminase gene (AsGahA) derived from Aspergillus oryzae that is non-thermostable is introduced as a control. The koji extract obtained by the same operation as that described above was used. The heat treatment was carried out at 4, 40, 50, 60 and 70 ° C. for 30 minutes, respectively, and the relative value was obtained when the untreated activity was taken as 100%. The results are shown in FIG.
As a result, the glutaminase activity of the koji extract containing AsGahA decreased to 20% or less after heat treatment at 60 ° C. for 30 minutes, whereas the glutaminase activity of the koji extract containing CnGahA remained at 80% or more. It became clear that the heat resistance was maintained even in the free form.

4.耐熱性グルタミナーゼを含む蛋白質分解酵素液の調製
醤油麹を上記項目2.記載のとおり調製した。
フスマ麹を以下のように調製した。
150ml容の三角フラスコに、フスマ5gを入れ、綿栓をして121℃、60分間、加圧蒸気殺菌した。室温まで冷却させた後に、項目1.で得られた形質転換株の胞子105個を接種し、湿度80%一定で30℃、3日間製麹した。
夫々の麹に、40mlの冷却水を加えゴム栓で密封後、上下に激しく振って充分に麹をほぐし、そのまま4℃で一晩酵素を抽出した。醤油麹を更にポリトロンを用いてホモジェナイズした後、10000rpm、15分間遠心分離し、上清を酵素抽出液とした。フスマ麹をフィルターペーパー2C(アドバンテック社製)を用いて固液分離し、ろ液を酵素液とした。
4). Preparation of proteolytic enzyme solution containing thermostable glutaminase Prepared as described.
A bran meal was prepared as follows.
A 150 ml Erlenmeyer flask was charged with 5 g of bran, sealed with a cotton plug, and pasteurized with steam at 121 ° C. for 60 minutes. After cooling to room temperature, item 1. 10 5 spores of the transformant obtained in (1) were inoculated, and the mixture was made for 3 days at 30 ° C. with a constant humidity of 80%.
40 ml of cooling water was added to each bottle, sealed with a rubber stopper, shaken vigorously up and down to sufficiently loosen the bottle, and the enzyme was extracted overnight at 4 ° C. The soy sauce cake was further homogenized using polytron, and then centrifuged at 10,000 rpm for 15 minutes, and the supernatant was used as an enzyme extract. The bran cake was subjected to solid-liquid separation using filter paper 2C (manufactured by Advantech), and the filtrate was used as an enzyme solution.

5.耐熱性グルタミナーゼを含む蛋白質分解酵素液を用いたグルテン高温分解
高いグルタミナーゼ活性を示す形質転換株のうち、3株(No.86、No.125及びNo.259)についてグルテン高温分解を行った。150ml容三角フラスコに、上記項目4.で調製した麹抽出液20ml、小麦グルテン11g、飽和食塩水12ml添加し、45℃で3日間、グルテン分解した。
グルテンが塊を形成するため、ゆるやかに旋回しながら分解した。分解後、フィルターペーパー2C(アドバンテック社製)を用いて固液分離し、ろ液をグルテン分解物とした。 対照には、耐熱性グルタミナーゼであるクリプトコッカス・アルビダス由来のグルタミナーゼを添加した。
グルテン分解物の全窒素分、グルタミン酸量を表2に示した。尚、全窒素成分は、ケルダール法により求め、グルタミン酸量は、食品発酵用分析装置AS-210(サクラ精機社製)を用いて測定した。
対照株では耐熱性のグルタミナーゼを添加しないとほとんどグルタミン酸が溶出されなかったのに対し、形質転換体の抽出液は、耐熱性のグルタミナーゼを添加しなくてもグルタミン酸含量の高いグルテン分解物が得られた。
5). Gluten pyrolysis using a proteolytic enzyme solution containing a thermostable glutaminase Among the transformants showing high glutaminase activity, three strains (No. 86, No. 125 and No. 259) were subjected to gluten pyrolysis. In a 150 ml Erlenmeyer flask, the above item 4. 20 ml of the koji extract prepared in 1 above, 11 g of wheat gluten and 12 ml of saturated saline were added, and gluten decomposition was performed at 45 ° C. for 3 days.
Since gluten formed a lump, it broke down slowly and swept. After decomposition, solid-liquid separation was performed using filter paper 2C (manufactured by Advantech), and the filtrate was converted into a gluten decomposition product. As a control, glutaminase derived from Cryptococcus albidas, which is a thermostable glutaminase, was added.
Table 2 shows the total nitrogen content and glutamic acid content of the gluten degradation product. The total nitrogen component was determined by the Kjeldahl method, and the amount of glutamic acid was measured using a food fermentation analyzer AS-210 (manufactured by Sakura Seiki Co., Ltd.).
In the control strain, glutamic acid was hardly eluted unless the thermostable glutaminase was added, whereas the transformant extract obtained a gluten-degraded product with a high glutamic acid content even without the addition of the thermostable glutaminase. It was.

(表2)醤油麹抽出液によるグルテン高温分解

Figure 2005328738
(Table 2) Gluten high-temperature decomposition by soy sauce extract
Figure 2005328738

耐熱性グルタミナーゼ遺伝子であるCnGahAを発現する麹菌及び非耐熱性グルタミナーゼ遺伝子であるAsGahAを発現する麹菌を夫々固体培養して、酵素抽出液を調製し、得られた抽出液中のグルタミナーゼ活性の耐熱性を比較した図である。Koji molds expressing CnGahA, a thermostable glutaminase gene, and Koji molds expressing AsGahA, a non-stable glutaminase gene, were each solid-cultured to prepare enzyme extracts, and the heat resistance of glutaminase activity in the resulting extracts FIG.

Claims (8)

微生物を固体培養した培養物から極性溶媒で抽出した抽出物より調製され、耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物。 An enzyme mixture containing glutaminase, which is prepared from an extract obtained by extracting a microorganism from a solid culture with a polar solvent and has excellent salt resistance and heat resistance. 微生物を固体培養し、培養物から耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物を採取することを特徴とする耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。 A method for producing an enzyme mixture containing glutaminase excellent in salt tolerance and heat resistance, comprising subjecting a microorganism to solid culture and collecting an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance from the culture. 微生物が耐熱性及び耐塩性に優れたグルタミナーゼ遺伝子を組み込んだ組み換え微生物である請求項1又は2記載の酵素混合物又は耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。 3. The method for producing an enzyme mixture according to claim 1 or 2, wherein the microorganism is a recombinant microorganism into which a glutaminase gene excellent in heat resistance and salt resistance is incorporated, or an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance. 微生物が麹菌である請求項1又は2記載の酵素混合物又は耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。 The method for producing an enzyme mixture according to claim 1 or 2, wherein the microorganism is a koji mold, or an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance. 耐熱性及び耐塩性に優れたグルタミナーゼがクリプトコッカス属由来のものである請求項1又は2記載の酵素混合物又は耐塩性及び耐熱性に優れたグルタミナーゼを含有する酵素混合物の製造法。 The method for producing an enzyme mixture according to claim 1 or 2, wherein the glutaminase excellent in heat resistance and salt resistance is derived from the genus Cryptococcus, or an enzyme mixture containing glutaminase excellent in salt resistance and heat resistance. 粉末化された請求項1、3、4又は5記載の酵素混合物。 6. The enzyme mixture according to claim 1, 3, 4 or 5, which is powdered. 請求項1、3、4又は5記載の酵素混合物を用いて分解してなる調味料。 The seasoning formed by decomposing | disassembling using the enzyme mixture of Claim 1, 3, 4 or 5. 請求項7に記載の調味料がグルテン分解物である調味料。

A seasoning according to claim 7, wherein the seasoning is a gluten degradation product.

JP2004148623A 2004-05-19 2004-05-19 Enzyme mixture and seasoning Pending JP2005328738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148623A JP2005328738A (en) 2004-05-19 2004-05-19 Enzyme mixture and seasoning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148623A JP2005328738A (en) 2004-05-19 2004-05-19 Enzyme mixture and seasoning

Publications (1)

Publication Number Publication Date
JP2005328738A true JP2005328738A (en) 2005-12-02

Family

ID=35483790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148623A Pending JP2005328738A (en) 2004-05-19 2004-05-19 Enzyme mixture and seasoning

Country Status (1)

Country Link
JP (1) JP2005328738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525033A (en) * 2006-02-02 2009-07-09 ディーエスエム アイピー アセッツ ビー.ブイ. Food products comprising proline-specific proteases, their preparation, and their use for degrading toxic or allergenic gluten peptides
CN102077978A (en) * 2010-12-08 2011-06-01 江南大学 Soy sauce production method capable of ensuring high protein conversion rate and utilization rate
WO2011125790A1 (en) 2010-04-01 2011-10-13 キッコーマン株式会社 Glutamic acid-containing seasoning and method for producing same
CN101697825B (en) * 2009-10-28 2012-11-21 河南省***(集团)有限公司 Technology for preparing broth powder by cooking and enzymatic hydrolysis
CN106490298A (en) * 2016-11-28 2017-03-15 华南理工大学 A kind of polymolecularity vegetable protein and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525033A (en) * 2006-02-02 2009-07-09 ディーエスエム アイピー アセッツ ビー.ブイ. Food products comprising proline-specific proteases, their preparation, and their use for degrading toxic or allergenic gluten peptides
CN101697825B (en) * 2009-10-28 2012-11-21 河南省***(集团)有限公司 Technology for preparing broth powder by cooking and enzymatic hydrolysis
WO2011125790A1 (en) 2010-04-01 2011-10-13 キッコーマン株式会社 Glutamic acid-containing seasoning and method for producing same
US9017747B2 (en) 2010-04-01 2015-04-28 Kikkoman Corporation Glutamic acid containing seasoning and method for producing the same
CN102077978A (en) * 2010-12-08 2011-06-01 江南大学 Soy sauce production method capable of ensuring high protein conversion rate and utilization rate
CN102077978B (en) * 2010-12-08 2012-12-05 江南大学 Soy sauce production method capable of ensuring high protein conversion rate and utilization rate
CN106490298A (en) * 2016-11-28 2017-03-15 华南理工大学 A kind of polymolecularity vegetable protein and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104087638B (en) A kind of method that utilization fermentation of bacillus subtilis rice residue prepares anti-oxidation peptide
WO2007042577A2 (en) Composition comprising enzymatically digested yeast cells and method of preparing same.
TW201915165A (en) Bacillus subtilis strain for preparing fermented feather meal and use thereof for producing feather powder and proteolytic enzyme and keratinolytic enzyme strains
US4018650A (en) Method of production and recovery of protein from food wastes
TW201038735A (en) Aspergillus having large-scale genomic duplication and its use
JP2009161448A (en) Extract from malt root, method of producing the same, and fermentation promoter for microorganism comprising the same
JP6800950B2 (en) Bacillus subtilis strain with high production of thrombolytic enzyme
JP3712530B2 (en) A novel Cryptococcus nodaensis, a method for producing a salt-tolerant and heat-resistant glutaminase using the same, and a method for producing a protein hydrolyzate having a high glutamic acid content
JP2005328738A (en) Enzyme mixture and seasoning
US6495342B2 (en) Nitrogenous composition resulting from the hydrolysis of maize gluten and a process for the preparation thereof
JP4278831B2 (en) Enzyme solution and its production method, enzyme agent, proteolytic enzyme agent, proteolytic enzyme producing bacterium
JP6019528B2 (en) Method for producing fermented seasoning
Hmood et al. Optimum conditions for fibrinolytic enzyme (Nattokinase) production by Bacillus sp. B24 using solid state fermentation
CN104830718B (en) S-8 bacterium and its process for inactivating Soybean Anti-nutritional Factors
JP2006067992A (en) Bacillus subtilis strain and fermented soybean produced by using the same
JP2005080502A (en) Food highly containing pyrroloquinoline quinone, and method for producing the same
JPH10210967A (en) Highly active variant and production of protein hydrolyzate using the same
FR2785294A1 (en) PROCESS FOR PRODUCING LACTIC FLOURS AND PRODUCTS OBTAINED
JP2015167474A (en) Lactobacillus lactic acid bacterium culture food grade medium, cultivation method of lactobacillus lactic acid bacterium and producing method of lactobacillus lactic acid bacterium culture
JP2007020527A (en) METHOD FOR PRODUCING FOOD PLENTIFULLY CONTAINING gamma-AMINOBUTYRIC ACID (GABA) AND gamma-AMINOBUTYRIC ACID-PRODUCING BACTERIUM: LACTOBACILLUS CURVATUS KM14 STRAIN
CN108441428A (en) One plant degradation alcohol soluble protein rhizopus chinensis and its application
KR20110101782A (en) Composition comprising rice bran protein hydrolysate for use in culturing of microoraganisms
JP7274913B2 (en) Liquid medium for culturing microorganisms and method for culturing microorganisms using liquid medium
Liu et al. Screening and optimization of high-yield diastase-producing strains from Shedian Baijiu fermented mash.
JP2008228654A (en) Fermented food doubling as culture medium, and method for producing the same