JP2005320955A - Exhaust gas treatment apparatus of internal combustion engine - Google Patents

Exhaust gas treatment apparatus of internal combustion engine Download PDF

Info

Publication number
JP2005320955A
JP2005320955A JP2004230472A JP2004230472A JP2005320955A JP 2005320955 A JP2005320955 A JP 2005320955A JP 2004230472 A JP2004230472 A JP 2004230472A JP 2004230472 A JP2004230472 A JP 2004230472A JP 2005320955 A JP2005320955 A JP 2005320955A
Authority
JP
Japan
Prior art keywords
exhaust
electrode
internal combustion
combustion engine
engine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004230472A
Other languages
Japanese (ja)
Other versions
JP4396440B2 (en
Inventor
Miyao Arakawa
宮男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004230472A priority Critical patent/JP4396440B2/en
Priority to DE102004048488.0A priority patent/DE102004048488B4/en
Priority to CNB2004100835303A priority patent/CN100432382C/en
Publication of JP2005320955A publication Critical patent/JP2005320955A/en
Application granted granted Critical
Publication of JP4396440B2 publication Critical patent/JP4396440B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively flocculate exhaust particulates ranging from a low flow to a high flow by simply forming a flocculating device for exhaust particulates utilizing corona discharge. <P>SOLUTION: A flocculator 1 is disposed in the exhaust pipe 11 of an internal combustion engine, and the corona discharge is generated by applying a direct current high tension between a discharge electrode 2 and first and second grounding electrodes 3 and 4 to charge the exhaust gas particulates for flocculation. The discharge electrode 2 positioned at a passage center part comprises a plurality of projections 21a at its tip part 21. When a flow is low, the exhaust particulates are flocculated mainly at the first grounding electrode 3 formed of exhaust pipe inner peripheral wall at the outer peripheral position thereof. The second grounding electrode 4 is disposed on the downstream side of the discharge electrode 2 across an exhaust gas passage, and comprises a conductive net having a large number of vent holes 41 not obstructing the passing of flocculated particulates. When the flow is high, particulates immovable to the first ground electrode 3 are flocculated to the second grounding electrode 4 to provide a high flocculation effect by a small-sized apparatus. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の排気ガスに含まれる排気微粒子をコロナ放電を利用して凝集する凝集器を備える排気処理装置に関する。   The present invention relates to an exhaust treatment apparatus including an aggregator that aggregates exhaust particulates contained in exhaust gas of an internal combustion engine by using corona discharge.

内燃機関の排気に含まれる微粒子の処理が大きな課題となっている。従来技術として、特許文献1があり、ディーゼルエンジンから排出されるパティキュレート(PM)を、排気管内に設けた衝突ガイド部材に衝突させて凝集させた後、帯電体で負に帯電させて、正の帯電体に吸着させることにより、電気的に捕集する捕集装置が記載されている。正の帯電体を通過したパティキュレートは、下流のフィルタで捕集され、正の帯電体に通電してヒータとして機能させることで焼却除去される。   Treatment of fine particles contained in the exhaust gas of an internal combustion engine has become a major issue. As a conventional technique, there is Patent Document 1, and particulates (PM) discharged from a diesel engine are collided with a collision guide member provided in an exhaust pipe and aggregated, and then negatively charged with a charged body to be positive. There is described a collecting device for electrically collecting by adsorbing to a charged body. Particulates that have passed through the positively charged body are collected by a downstream filter, and are burned and removed by energizing the positively charged body to function as a heater.

しかしながら、上記捕集装置は、流路構成が複雑となるため圧損が高くなる欠点があり、製作も容易ではない。また、衝突による凝集では十分な凝集効果が得られず、微粒子が凝集しないまま装置を通り抜けて放出されるおそれがある。   However, the collection device has a drawback that the pressure loss is high because the flow path configuration is complicated, and the production is not easy. Further, agglomeration due to collision does not provide a sufficient agglomeration effect, and there is a risk that the fine particles may be released through the apparatus without agglomeration.

また、下記特許文献2には、煙や排気微粒子を含むガスが流入する筒状体内に、流入したガスにより筒状体の軸線回りの旋回流が形成されるようにするとともに、コロナ放電を発生させる手段として、筒状体内に筒状体の軸線方向に伸びる複数の直線状の放電電極が配置され、筒状体の筒壁を接地電極とした装置が開示されている。煙や排気微粒子はコロナ放電により帯電するとともに筒壁面に衝突する。この特許文献2記載の装置では、電極の設置は、筒状体の両端部に配置された板状の電極サポートを使っている。電極保持サポートは平板部材で、両電極保持サポートを橋渡しするように電極が両電極保持サポートと接続される。
特開2001−41024号公報 特開2003−144979号公報
Further, in Patent Document 2 below, a swirling flow around the axis of the cylindrical body is formed by the inflowing gas in the cylindrical body into which gas containing smoke and exhaust particulates flows, and corona discharge is generated. As a means for achieving this, there is disclosed an apparatus in which a plurality of linear discharge electrodes extending in the axial direction of a cylindrical body are arranged in the cylindrical body, and the cylindrical wall of the cylindrical body is used as a ground electrode. Smoke and exhaust particulates are charged by corona discharge and collide with the cylindrical wall surface. In the apparatus described in Patent Document 2, the electrodes are installed using plate-like electrode supports arranged at both ends of the cylindrical body. The electrode holding support is a flat plate member, and the electrodes are connected to both electrode holding supports so as to bridge both electrode holding supports.
Japanese Patent Laid-Open No. 2001-41024 JP 2003-144799 A

ところが、静電気の力で移動させる上記特許文献1の構成では、集塵電極方向への移動速度が遅く(通常、数cm/秒)、効率よい凝集、集塵が難しい。また、上記特許文献2の構成では、ガスの旋回流の中を煙や排気微粒子が流れるため、接地電極となる筒壁面に達するまでに帯電が解消され、凝集作用は必ずしも十分とはいえない。   However, in the configuration of Patent Document 1 that is moved by electrostatic force, the moving speed in the direction of the dust collecting electrode is slow (usually several cm / second), and efficient aggregation and dust collection are difficult. Further, in the configuration of Patent Document 2, smoke and exhaust particulates flow in the swirling flow of gas, so that charging is eliminated before reaching the cylindrical wall surface serving as the ground electrode, and the aggregating action is not necessarily sufficient.

そこで、本発明の目的は、コロナ放電を利用して、小型かつ高性能な内燃機関の排気処理装置を実現することにある。   Accordingly, an object of the present invention is to realize a small and high-performance exhaust treatment apparatus for an internal combustion engine using corona discharge.

請求項1記載の発明は、内燃機関の排気管により形成され該排気管の軸線方向に排ガスが流通する排気通路に、排ガス中の排気微粒子を凝集させる凝集器として、両者の間に高電圧が印加されコロナ放電による電荷を授受する電荷放出および電荷回収の2種類よりなる電極を、第1の種類の電極の電荷授受部が上記排気通路の径方向の略中心部に位置するように配設して、前記コロナ放電による電荷により排気微粒子を帯電し、電荷を回収する電極において凝集させる凝集器を備えたことを特徴とする。   The invention described in claim 1 is an agglomerator that aggregates exhaust particulates in exhaust gas in an exhaust passage formed by an exhaust pipe of an internal combustion engine and through which exhaust gas flows in the axial direction of the exhaust pipe. An electrode composed of two types of charge release and charge recovery for receiving and transferring charges by applying corona discharge is disposed so that the charge transfer section of the first type electrode is located at a substantially central portion in the radial direction of the exhaust passage. In addition, an aggregator is provided that charges the exhaust particulates with the electric charge generated by the corona discharge and aggregates the exhaust fine particles at an electrode for collecting the electric charge.

コロナ放電による電荷で例えば酸素がイオン化し、このイオンにより排気微粒子は帯電し、第1の種類の電極の電荷授受部と第2の種類の電極と間に発生するクーロン力によって電荷を回収する電極に押付けられ、凝集する。第1の種類の電極が排気通路の径方向の略中心部に位置するので、放電の均一性を向上することができる。また、排気管の軸線方向に排ガスが流通する排気通路に凝集器を設けて、排気微粒子が旋回流にのらないようにすることで、多くの排気微粒子が帯電状態のまま第2の種類の電極に達するようにすることができる。   For example, oxygen is ionized by charges generated by corona discharge, and exhaust particles are charged by the ions, and the charge is collected by the Coulomb force generated between the charge transfer section of the first type electrode and the second type electrode. It is pressed against and agglomerates. Since the first type of electrode is located at substantially the center in the radial direction of the exhaust passage, the uniformity of discharge can be improved. Further, by providing an agglomerator in the exhaust passage through which the exhaust gas flows in the axial direction of the exhaust pipe so that the exhaust particulate does not swirl, the second type of exhaust particulate remains in a charged state. The electrode can be reached.

このように、上記構成によれば、装置を大型化することなく、簡易な構成で効率よく排気微粒子を凝集することができるので、車載が容易で実用的な内燃機関の排気処理装置を実現することができる。   Thus, according to the above configuration, exhaust particulates can be efficiently agglomerated with a simple configuration without increasing the size of the device, thereby realizing an exhaust treatment device for an internal combustion engine that is easy to mount and practical. be able to.

請求項2記載の発明は、請求項1の発明の構成において、第2の種類の電極は、上記排気管の内周壁により構成する。   According to a second aspect of the invention, in the configuration of the first aspect of the invention, the second type of electrode is constituted by an inner peripheral wall of the exhaust pipe.

電極としての排気管内周壁が排気通路の中心部に位置する第1の種類の電極の電荷授受部を囲むので、放電の均一性をさらに向上することができる。   Since the inner peripheral wall of the exhaust pipe as an electrode surrounds the charge transfer portion of the first type electrode located at the center of the exhaust passage, the uniformity of discharge can be further improved.

請求項3記載の発明は、請求項1の発明の構成において、上記第2の種類の電極は、コロナ放電による電荷を回収する接地電極であり、かつ、上記第2の種類の電極として、上記第1の種類の電極よりも排気流の下流に排気通路を横切って配置され多数の通気孔を有する導電性の構造体により構成した電極を設ける。   According to a third aspect of the present invention, in the configuration of the first aspect of the invention, the second type of electrode is a ground electrode that collects electric charges due to corona discharge, and the second type of electrode is An electrode constituted by a conductive structure that is disposed across the exhaust passage downstream of the first type of electrode and has a large number of air holes is provided.

排気流れに沿って流下する排気微粒子を、導電性の構造体でくまなく凝集せしめることができる。   The exhaust particles flowing down along the exhaust flow can be aggregated all over by the conductive structure.

請求項4記載の発明は、請求項3の発明の構成において、上記第1の種類の電極の電荷授受部と上記導電性構造体との排気流方向の間隔は、50cm以下とする。   According to a fourth aspect of the present invention, in the configuration of the third aspect of the invention, the distance in the exhaust flow direction between the charge transfer portion of the first type electrode and the conductive structure is 50 cm or less.

排気微粒子が帯電してからの移動距離が長いと、電荷を離し非帯電状態となる排気微粒子の割合が増大するので、上記第1の種類の電極の電荷授受部と上記導電性構造体との排気流方向の間隔をかかる距離に設定することで、凝集性の低下を防止することができる。   If the moving distance after the exhaust particles are charged is long, the ratio of the exhaust particles that release the charge and become uncharged increases. Therefore, the charge transfer unit of the first type electrode and the conductive structure By setting the interval in the exhaust flow direction to such a distance, a decrease in cohesiveness can be prevented.

請求項5記載の発明は、請求項1の発明の構成において、上記第2の種類の電極はコロナ放電による電荷を回収する接地電極であり、上記第2の種類の電極として、上記排気管の内周壁により構成された接地電極と、上記第1の種類の電極よりも下流に排気通路を横切って配置され多数の通気孔を有する導電性の構造体により構成された別の接地電極とを設ける。   According to a fifth aspect of the present invention, in the configuration of the first aspect of the invention, the second type of electrode is a ground electrode that collects electric charges due to corona discharge, and the second type of electrode serves as the exhaust pipe. Provided are a ground electrode constituted by an inner peripheral wall and another ground electrode constituted by a conductive structure disposed across the exhaust passage downstream of the first type electrode and having a large number of air holes. .

低流量時には、主に排気管内周壁からなる接地電極にて凝集させ、高流量時には、排気管の内周壁により構成された接地電極に移動できない微粒子を、下流の導電性の構造体により構成された別の接地電極で凝集させることで、低流量から高流量まで排気微粒子を十分な大きさに凝集させることができる。凝集した粒子は、これら接地電極にて電子を放出した後、別の接地電極の通気孔を通過して下流へ向かう。よって、例えば下流にフィルタを設置することで、容易に捕集することができ、圧損を増加させることもない。   When the flow rate is low, it is agglomerated by the ground electrode mainly composed of the inner peripheral wall of the exhaust pipe, and when high flow rate, the fine particles that cannot move to the ground electrode constituted by the inner peripheral wall of the exhaust pipe are composed of the downstream conductive structure By aggregating with another ground electrode, exhaust particulates can be aggregated to a sufficient size from a low flow rate to a high flow rate. Aggregated particles emit electrons at these ground electrodes, and then pass downstream through the vents of another ground electrode. Therefore, for example, by installing a filter downstream, it can be easily collected, and the pressure loss does not increase.

請求項6記載の発明は、請求項5の発明の構成において、上記第1の種類の電極の電荷授受部と上記導電性構造体との排気流方向の間隔は、上記排気通路の径と同等以上とする。   According to a sixth aspect of the present invention, in the configuration of the fifth aspect of the present invention, the distance in the exhaust flow direction between the charge transfer portion of the first type electrode and the conductive structure is equal to the diameter of the exhaust passage. That's it.

第1の種類の電極の電荷授受部と排気管との距離を、第1の種類の電極の電荷授受部と導電性構造体との距離と同程度以下にして排気通路の径方向のクーロン力を確保することで、コロナ放電により生じたイオンが排気流れ方向だけではなく、排気通路の径方向にも移動しやすくなる。これにより、排気通路の径方向の排気微粒子の帯電均一性が向上する。また、低流量時には、上記第1の種類の電極に近い排気管の内周壁により構成された接地電極にて凝集させ、高流量時には、より遠方に位置する、導電性構造体により構成された別の接地電極にて確実に凝集させることができるので、2つの接地電極を効率よく利用して、効果的に凝集を行なうことができる。   The distance between the charge transfer section of the first type electrode and the exhaust pipe is set equal to or less than the distance between the charge transfer section of the first type electrode and the conductive structure, and the Coulomb force in the radial direction of the exhaust passage By ensuring the above, ions generated by corona discharge can easily move not only in the exhaust flow direction but also in the radial direction of the exhaust passage. Thereby, the charging uniformity of the exhaust particulates in the radial direction of the exhaust passage is improved. Further, when the flow rate is low, agglomeration is performed by the ground electrode formed by the inner peripheral wall of the exhaust pipe close to the first type electrode, and when the flow rate is high, the structure is formed by a conductive structure located farther away. Therefore, the two ground electrodes can be efficiently used for effective aggregation.

請求項7記載の発明は、請求項3ないし6の発明の構成において、上記導電性の構造体は、排気流方向に並列配置した複数の導電性網からなる構成とする。   According to a seventh aspect of the present invention, in the configuration of the third to sixth aspects of the invention, the conductive structure includes a plurality of conductive nets arranged in parallel in the exhaust flow direction.

導電性網を複数用いることで、簡易な構成で、圧損を増加させることなく、凝集効果を高めることができる。   By using a plurality of conductive nets, the aggregation effect can be enhanced with a simple configuration and without increasing the pressure loss.

請求項8記載の発明は、請求項3ないし7の発明の構成において、上記導電性の構造体は、排気流の下流側へ向けて凸となるように湾曲させた略球面状の導電性網からなる構成とする。   According to an eighth aspect of the present invention, in the configuration of the third to seventh aspects of the present invention, the conductive structure is a substantially spherical conductive net curved so as to protrude toward the downstream side of the exhaust flow. It is set as the structure which consists of.

導電性網を略球面状とすることで、電極間に生じる電界を均一にし、装置全体で均等に微粒子を凝集を行なうことができる。   By making the conductive net into a substantially spherical shape, the electric field generated between the electrodes can be made uniform, and fine particles can be uniformly aggregated in the entire apparatus.

請求項9記載の発明は、請求項3ないし8の発明の構成において、上記導電性の構造体は、上記通気孔の分布が、排気通路の外周部に比して中央部で密となるように構成する。   According to a ninth aspect of the present invention, in the configuration of the third to eighth aspects of the present invention, the conductive structure is configured such that the distribution of the air holes is denser in the central portion than in the outer peripheral portion of the exhaust passage. Configure.

排気通路では、周壁に近い外周部より中央部の通気量が多いため、上記導電性構造体の中央部の通気孔分布を外周部より密とすることで、排気微粒子の凝集効果を高めることができる。   In the exhaust passage, since the ventilation amount in the central portion is larger than that in the outer peripheral portion close to the peripheral wall, the air hole distribution in the central portion of the conductive structure is made denser than the outer peripheral portion, thereby enhancing the aggregation effect of exhaust particulates. it can.

請求項10記載の発明は、請求項3ないし9の発明の構成において、上記導電性の構造体は、導電性網または導電性の多孔質体からなる構成とする。   According to a tenth aspect of the present invention, in the constitution of the third to ninth aspects, the conductive structure is made of a conductive net or a conductive porous body.

導電性網を用いることで、簡易な構成で上記効果が得られる。また、導電性の多孔質体を用いると、電極表面積が大きくなり、凝集効率が高まる。また、多孔質体内を通過する間に衝突による凝集効果も期待できる。   By using a conductive net, the above effect can be obtained with a simple configuration. Moreover, when an electroconductive porous body is used, an electrode surface area will become large and aggregation efficiency will increase. In addition, an agglomeration effect due to collision while passing through the porous body can be expected.

請求項11記載の発明は、請求項1の発明の構成において、上記第2の種類の電極は、凝集した排気微粒子の通過を妨げない球状のかご体を、上記電荷授受部を中心として配置してなる構成とする。   According to an eleventh aspect of the present invention, in the configuration of the first aspect of the invention, the second type of electrode includes a spherical car body that does not obstruct the passage of aggregated exhaust particulates, with the charge transfer section as a center. The configuration is as follows.

第1の種類の電極の電荷授受部と第2の種類の電極の各部との距離が均一であり、放電の均一性を向上することができる。   The distance between the charge transfer portion of the first type electrode and each portion of the second type electrode is uniform, and the discharge uniformity can be improved.

請求項12記載の発明は、請求項1ないし11の発明の構成において、上記第1の種類の電極を、前記電荷授受部に通じる導電部が上記排気通路を形成する排気管の管壁を貫通して排気流と交叉する方向に伸びる電極構造とする。   According to a twelfth aspect of the present invention, in the configuration of the first to eleventh aspects of the present invention, the first type of electrode passes through the wall of the exhaust pipe in which the conductive portion communicating with the charge transfer portion forms the exhaust passage. Thus, an electrode structure extending in a direction crossing the exhaust flow is obtained.

第1の種類の電極の排気管への組付けを容易になし得る。   The first type electrode can be easily assembled to the exhaust pipe.

請求項13記載の発明は、請求項12の発明の構成において、上記第1の種類の電極の保持手段として、上記導電部の外周に鍔状に設けられた保持プレートを設け、かつ、上記排気管には、上記保持プレートにより閉鎖される開口部であって、上記第1の種類の電極の上記排気管への組付け時に上記第1の種類の電極の上記保持プレートよりも先端側部分が挿通する開口部を形成する。   According to a thirteenth aspect of the present invention, in the configuration of the twelfth aspect of the present invention, as the holding means for the first type of electrode, a holding plate provided in a bowl shape on the outer periphery of the conductive portion is provided, and the exhaust The tube has an opening that is closed by the holding plate, and has a tip-side portion of the first type electrode that is closer to the holding plate when the first type electrode is assembled to the exhaust pipe. An opening to be inserted is formed.

第1の種類の電極の取付けは、第1の種類の電極を保持プレートに取付けた状態で、第1の種類の電極の先端の電荷授受部を排気管の開口部に向けて開口部から第1の種類の電極を排気流を横切る方向に挿入し、最後に保持プレートと排気管とを結合すればよい。したがって、引用文献2の装置のように、放電電極とこれを保持する電極保持サポートとを排気流の上流側若しくは下流側から挿通することにより取付けることになり排気管内での作業を要求する構成に比して、取付けが容易で、排気管に対する位置合わせも高精度に行い得る。これにより、放電特性の均一性を向上することができる。   The first type of electrode is attached in a state where the first type of electrode is attached to the holding plate, and the charge transfer portion at the tip of the first type of electrode is directed from the opening to the opening of the exhaust pipe. One kind of electrode may be inserted in a direction crossing the exhaust flow, and finally the holding plate and the exhaust pipe may be coupled. Therefore, like the apparatus of the cited document 2, the discharge electrode and the electrode holding support for holding the discharge electrode are attached by being inserted from the upstream side or the downstream side of the exhaust flow, and the work in the exhaust pipe is required. In comparison, the mounting is easy, and the positioning with respect to the exhaust pipe can be performed with high accuracy. Thereby, the uniformity of discharge characteristics can be improved.

請求項14記載の発明は、請求項13の発明の構成において、上記保持プレートと上記排気管とは上記開口部よりも大径の保持プレートが上記開口部の外周でボルトにより結合し、該ボルトが挿通する上記保持プレートのボルト穴は、上記導電部を中心とする周方向に長い長穴とする。   According to a fourteenth aspect of the present invention, in the configuration of the thirteenth aspect of the present invention, the holding plate and the exhaust pipe are connected to each other by a holding plate having a larger diameter than the opening by a bolt on the outer periphery of the opening. The bolt hole of the holding plate through which is inserted is a long hole in the circumferential direction centering on the conductive portion.

上記請求項12の発明の態様は第1の種類の電極を保持プレートのねじ穴に螺入させて保持プレートと一体化するのが基本的なものであるが、要求される放電特性の均一性がより高いものである場合、第1の種類の電極の保持プレートに対する回転角度位置のばらつきをより抑える必要がある。本発明では、ボルト穴を長穴としたので、保持プレートを排気管に対して位置合わせした後、ボルトを締めればよい。これにより、放電特性の固体差を低減することができる。   The aspect of the invention of claim 12 is basically that the first type electrode is screwed into the screw hole of the holding plate and integrated with the holding plate. Is higher, it is necessary to further suppress variations in the rotational angle position of the first type electrode with respect to the holding plate. In the present invention, since the bolt hole is an elongated hole, the bolt may be tightened after the holding plate is aligned with the exhaust pipe. Thereby, the solid difference of a discharge characteristic can be reduced.

請求項15記載の発明は、請求項12ないし14の発明の構成において、上記導電部は途中で排気流の方向に屈曲してなる構成とする。   According to a fifteenth aspect of the present invention, in the configuration of the twelfth to fourteenth aspects of the present invention, the conductive portion is bent in the direction of the exhaust flow in the middle.

導電部を屈曲形状とすると、上記第1の種類の電極の保持プレートに対する回転角度位置のずれにより、電荷授受部が排気流の幅方向に大きくぶれる原因となる。保持プレートに対する排気管に対する位置合わせ機能により、電荷授受部が排気流の幅方向に大きくぶれるのを好適に防止することができる。   If the conductive portion is bent, the charge transfer portion may be greatly shaken in the width direction of the exhaust flow due to the shift of the rotational angle position of the first type electrode with respect to the holding plate. With the function of aligning the exhaust pipe with respect to the holding plate, it is possible to suitably prevent the charge transfer portion from greatly swaying in the width direction of the exhaust flow.

請求項16記載の発明は、請求項12ないし15の発明の構成において、上記第1の種類の電極の上記電荷授受部は、略全方位に複数の突起部を放射状に形成する。   According to a sixteenth aspect of the present invention, in the configuration of the twelfth to fifteenth aspects, the charge transfer section of the first type of electrode forms a plurality of protrusions radially in almost all directions.

略全方位に複数の突起部を放射状に形成した電荷授受部とすることにより、第1の種類の電極の取り付け方向にかかわらず、放電の均一性を向上することができる。   By using the charge transfer section in which a plurality of protrusions are formed radially in almost all directions, the discharge uniformity can be improved regardless of the mounting direction of the first type of electrode.

請求項17記載の発明は、請求項16の発明の構成において、上記突起部は、その先端が所定の径の仮想球面上に位置するように形成する。   According to a seventeenth aspect of the present invention, in the configuration of the sixteenth aspect of the present invention, the protrusion is formed such that the tip thereof is positioned on a virtual spherical surface having a predetermined diameter.

仮想球の中心に対して電荷授受部が略対称となるから、第1の種類の電極の取り付け方向にかかわらず、さらに放電の均一性を向上することができる。   Since the charge transfer section is substantially symmetric with respect to the center of the phantom sphere, the discharge uniformity can be further improved regardless of the mounting direction of the first type of electrode.

請求項18記載の発明は、請求項12の発明の構成において、上記第1の種類の電極の上記電荷授受部が上記排気管の径方向の中心を中心点とした上記排気管の内径の1/2径の仮想円の領域内に位置するように構成する。   According to an eighteenth aspect of the present invention, in the configuration of the twelfth aspect of the present invention, the charge transfer portion of the first type electrode has an inner diameter of 1 of the exhaust pipe centered on the radial center of the exhaust pipe. It is configured so as to be located within the area of a virtual circle having a diameter of / 2.

第1の種類の電極が、上記排気管の径方向の中心を中心点とした上記排気管の内径の1/2径の仮想円の領域内に位置するので、さらに、放電の均一性が向上する。   Since the first type of electrode is located in a virtual circle region having a diameter that is ½ of the inner diameter of the exhaust pipe with the radial center of the exhaust pipe as the center point, the uniformity of discharge is further improved. To do.

請求項19記載の発明は、請求項1ないし18の発明の構成において、上記第1の種類の電極と上記第2の種類の電極との間にてコロナ放電を発生させる際の、両電極間に印加させる電圧落差は、5KVから50KVの範囲に設定する。   According to a nineteenth aspect of the present invention, there is provided the structure according to the first to eighteenth aspects, wherein a corona discharge is generated between the first type electrode and the second type electrode. The voltage drop applied to is set in the range of 5 KV to 50 KV.

これにより、電極間に電圧を印加する際の適正な耐電圧リーク特性を満たしつつ、好適な排気微粒子の凝集効果を得ることができる。   Thereby, it is possible to obtain a suitable exhaust particle aggregation effect while satisfying an appropriate withstand voltage leak characteristic when a voltage is applied between the electrodes.

請求項20記載の発明は、請求項19の発明の構成において、上記第1の種類の電極と上記第2の種類の電極との間にてコロナ放電を発生させる際の、両電極間に印加させる電圧落差は、10KVから30KVの範囲に設定する。   According to a twentieth aspect of the present invention, in the configuration of the nineteenth aspect of the present invention, when a corona discharge is generated between the first type electrode and the second type electrode, the voltage is applied between both electrodes. The voltage drop to be made is set in the range of 10 KV to 30 KV.

これにより、電極間に電圧を印加する際の適正な耐電圧リーク特性を満たしつつ、さらに好適な排気微粒子の凝集効果を得ることができる。   Accordingly, it is possible to obtain a more preferable exhaust particulate aggregation effect while satisfying an appropriate withstand voltage leakage characteristic when a voltage is applied between the electrodes.

以下、本発明の第1の実施の形態を図面に基づいて説明する。図1(a)はディーゼルエンジンの排気処理装置の全体構成を示すもので、エンジンの排気管11の途中に設置した凝集器1を備えている。排気管11の一部はL字形に下方に屈曲・拡径しており、縮径部111の軸線A1と拡径部112の軸線A2とが交叉するようになっており、拡径部112ではその軸線A2に沿って排気流が形成され、軸線A2回りの旋回流は形成されないようになっている。凝集器1は、排気管11の拡径部112内において、第1の種類の電極であるコロナ放電電極(以下放電電極という)2と、放電電極2の外周位置の排気管11内周壁からなる第2の種類の電極である第1接地電極3と、放電電極2の下流に設けた導電性網からなる第2の種類の電極である第2接地電極4を有している。放電電極2は、図示しない直流高電圧電源に接続される。第1、第2接地電極3、4は導電性材からなり、電気的に接地されている。本発明では、放電電極2を負極とし、図2に示すように、負の直流高電圧を印加することにより、これら電極間にコロナ放電を発生させる構成となっている。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 (a) shows the overall configuration of an exhaust treatment apparatus for a diesel engine, which includes an aggregator 1 installed in the middle of an exhaust pipe 11 of the engine. A part of the exhaust pipe 11 is bent and enlarged downward in an L shape, and the axis A1 of the reduced diameter portion 111 and the axis A2 of the enlarged diameter portion 112 intersect each other. An exhaust flow is formed along the axis A2, and a swirling flow around the axis A2 is not formed. The aggregator 1 includes a corona discharge electrode (hereinafter referred to as a discharge electrode) 2 that is a first type of electrode and an inner peripheral wall of the exhaust pipe 11 at an outer peripheral position of the discharge electrode 2 in the enlarged diameter portion 112 of the exhaust pipe 11. A first ground electrode 3 that is a second type of electrode and a second ground electrode 4 that is a second type of electrode made of a conductive net provided downstream of the discharge electrode 2 are provided. The discharge electrode 2 is connected to a DC high voltage power source (not shown). The first and second ground electrodes 3 and 4 are made of a conductive material and are electrically grounded. In the present invention, the discharge electrode 2 is a negative electrode, and as shown in FIG. 2, a negative DC high voltage is applied to generate a corona discharge between these electrodes.

具体的には、放電電極2は棒状で、排気管11の拡径部112と軸線を一致させて図の上下方向に延び、両端を除く部位を筒状碍子22内に絶縁保持した状態で、排気管11拡径部の頂面12に固定されている。放電電極2の下半部は、拡径部112の頂面112a中央から排気管11内に突出し、筒状碍子22から露出する先端部21が、下流に位置する第2接地電極4と所定間隔をおいて対向している。また、放電電極2を排気管11の拡径部112と軸線を一致させることで、放電電極2の先端部21が、排気管11の拡径部112により形成される排気通路の径方向の中心部に位置しており、図1(b)に示すように、排気通路の径方向の中心部から多数の突起21aが星型状に径方向に突出する形状となっている。先端部21は、突起21aが径10mmの仮想円に内接する大きさとすることができる。このように、鋭角の先端部を多数有する形状とすることで、放電率を高めるとともに、排気管11内に均等にコロナ放電を発生させて、凝集効果を高めることができる。なお、先端部21は、図1(b)に示す星型に限らず、複数の突起21aが放射状に位置する形状であればよい。突起21aの数や形状も、必要に応じて適宜設定変更することができる。   Specifically, the discharge electrode 2 is rod-shaped, extends in the vertical direction of the drawing with the diameter-expanded portion 112 of the exhaust pipe 11 aligned with the axis, and insulatively holds the portion excluding both ends in the cylindrical insulator 22. The exhaust pipe 11 is fixed to the top surface 12 of the enlarged diameter portion. The lower half of the discharge electrode 2 protrudes from the center of the top surface 112a of the enlarged diameter portion 112 into the exhaust pipe 11, and the tip 21 exposed from the cylindrical insulator 22 is spaced from the second ground electrode 4 positioned downstream by a predetermined distance. Facing each other. Further, by aligning the discharge electrode 2 with the enlarged diameter portion 112 of the exhaust pipe 11 and the axis line, the distal end portion 21 of the discharge electrode 2 is the center in the radial direction of the exhaust passage formed by the enlarged diameter portion 112 of the exhaust pipe 11. As shown in FIG. 1B, a large number of protrusions 21a protrude in the radial direction in a star shape from the radial center of the exhaust passage. The tip portion 21 can be sized such that the projection 21a is inscribed in a virtual circle having a diameter of 10 mm. Thus, by making it the shape which has many sharp-angled front-end | tip parts, while increasing a discharge rate, it can generate | occur | produce a corona discharge equally in the exhaust pipe 11, and can improve the aggregation effect. The tip portion 21 is not limited to the star shape shown in FIG. 1B, but may be any shape as long as the plurality of protrusions 21a are positioned radially. The number and shape of the protrusions 21a can be appropriately changed as necessary.

また、コロナ放電電極2の先端部21が排気通路の径方向の中心部に位置するので、放電の均一性を向上することができる。また、排気管11の拡径部112の軸線A2方向に排ガスが流通する排気通路に凝集器1を設けて、排気微粒子が旋回流にのらないようにすることで、多くの排気微粒子が帯電状態のまま接地電極3,4に達するようにすることができる。   In addition, since the tip 21 of the corona discharge electrode 2 is located at the radial center of the exhaust passage, it is possible to improve discharge uniformity. In addition, the agglomerator 1 is provided in the exhaust passage through which the exhaust gas flows in the direction of the axis A2 of the enlarged diameter portion 112 of the exhaust pipe 11 so that the exhaust particulates are not swirled. The ground electrodes 3 and 4 can be reached in the state.

第2接地電極4となる導電性網は円板状で、排気流れと直交するように通路を横切って配置され、外周縁が排気管11内周壁に固定されている。導電性網の網目によって形成される多数の通気孔41は、凝集した微粒子の通過を妨げない大きさとされる。排気微粒子は、通常、0.1μmから数μm程度の粒径であり、凝集した微粒子は、通常、1μmから10μm程度の粒径の粗大粒子となるため、通気孔41は、例えば、一辺が0.5mmから1mm程度、ないしそれ以上となっていればよい。一般に、通気孔41が大きいほど圧損を低減する効果は高くなるが、通気孔41が小さく表面積が広い方が、コロナ放電による凝集効果は大きくなる。従って、圧損を悪化させない範囲で、所望の凝集効果が得られるように、通気孔41の大きさを適宜調整するとよい。   The conductive net serving as the second ground electrode 4 has a disk shape, is disposed across the passage so as to be orthogonal to the exhaust flow, and the outer peripheral edge is fixed to the inner peripheral wall of the exhaust pipe 11. The large number of air holes 41 formed by the mesh of the conductive net are sized so as not to prevent the passage of the aggregated fine particles. The exhaust fine particles usually have a particle size of about 0.1 μm to several μm, and the agglomerated fine particles are usually coarse particles having a particle size of about 1 μm to 10 μm. It may be about 5 mm to 1 mm or more. In general, the larger the vent hole 41, the higher the effect of reducing the pressure loss. However, the smaller the vent hole 41 and the larger the surface area, the greater the agglomeration effect by corona discharge. Therefore, the size of the air holes 41 may be appropriately adjusted so that a desired agglomeration effect is obtained within a range in which the pressure loss is not deteriorated.

第2接地電極4の設置位置は、好ましくは、放電電極2の先端部21と第2接地電極4となる導電性網との距離(軸方向距離)が、先端部21と第1接地電極3となる排気管11内周壁との距離(径方向距離)よりも長くなるようにする。このようにすると、排気ガス流量が少ない時には、主に第1接地電極3にて微粒子を凝集させ、排気ガス流量が多い時には、ガス流によって、第1接地電極3へ移動できない微粒子を、ガス流れ方向に位置する第2接地電極4で十分凝集させ、捕集の容易な粗大粒子とすることができる。   The installation position of the second ground electrode 4 is preferably such that the distance (axial distance) between the distal end portion 21 of the discharge electrode 2 and the conductive net to be the second ground electrode 4 is the distal end portion 21 and the first ground electrode 3. It becomes longer than the distance (radial direction distance) with the exhaust pipe 11 inner peripheral wall. In this way, when the exhaust gas flow rate is low, the fine particles are mainly aggregated at the first ground electrode 3, and when the exhaust gas flow rate is high, the fine particles that cannot move to the first ground electrode 3 due to the gas flow The second ground electrode 4 positioned in the direction can be sufficiently agglomerated to form coarse particles that are easy to collect.

上記構成の排気処理装置の作動を、低流量時(図3)、高流量時(図4)に分けて説明する。図3において、放電電極2に、図示しない直流高電圧電源から負の直流高電圧(例えば、−20KV)を印加すると、先端部21の突起21a近傍においてコロナ放電が発生し、電子が放射される(図中1)。これにより、電子親和性の高い酸素がマイナスイオン化し(図中2)、付近の微粒子(PM)に付着してこれを負に帯電させる(図中3)。微粒子(PM)は、クーロン力とガス流によって移動し(図中4)、凝集して粗大化する(図中5)。   The operation of the exhaust treatment apparatus having the above configuration will be described separately for a low flow rate (FIG. 3) and a high flow rate (FIG. 4). In FIG. 3, when a negative DC high voltage (for example, −20 KV) is applied to the discharge electrode 2 from a DC high voltage power source (not shown), a corona discharge is generated in the vicinity of the protrusion 21a of the tip 21 and electrons are emitted. (1 in the figure). As a result, oxygen with high electron affinity is negatively ionized (2 in the figure) and adheres to the nearby fine particles (PM) and is negatively charged (3 in the figure). The fine particles (PM) move by the Coulomb force and the gas flow (4 in the figure), and aggregate and coarsen (5 in the figure).

ここで、クーロン力Fおよびガス流から受ける力Fmは、それぞれ次のように表される。
F=q・E
(q:電荷量、E:電界強度)
Fm=6πηaV
(η:粘性係数、a:粒子径、V:排気流速)
Here, the Coulomb force F and the force Fm received from the gas flow are respectively expressed as follows.
F = q · E
(Q: charge amount, E: electric field strength)
Fm = 6πηaV
(Η: viscosity coefficient, a: particle diameter, V: exhaust flow velocity)

低流量時には (例えば、2〜3m/秒)、ガス流から受ける力Fmが弱いため、微粒子
(PM)は、クーロン力Fによって主に第1接地電極3に引き付けられ、凝集する。第1接地電極3において凝集・粗大化した粒子は、電子を放出した後(図中6)、自重でまたはガス流により第1接地電極3から剥離し、生成した凝集粒子(凝集PM)は、第2接地電極4の通気孔41を通過して下流へ移動する(図中7)。
When the flow rate is low (for example, 2 to 3 m / sec), the force Fm received from the gas flow is weak, so the fine particles (PM) are mainly attracted to the first ground electrode 3 by the Coulomb force F and aggregate. The particles aggregated and coarsened in the first ground electrode 3 release electrons (6 in the figure), and then peel off from the first ground electrode 3 by their own weight or by gas flow, and the generated aggregated particles (aggregated PM) are: It moves downstream through the vent hole 41 of the second ground electrode 4 (7 in the figure).

一方、図4に示す高流量時には (例えば、10〜10数m/秒)、同様にして、放電電
極2に、図示しない直流高電圧電源から負の直流高電圧(例えば、−20KV)を印加し、先端部21の突起21a近傍においてコロナ放電を発生させる。これにより、電子が放射されて(図中1)、電子親和性の高い酸素がマイナスイオン化し(図中2)、付近の微粒子(PM)に付着してこれを負に帯電させる(図中3)。微粒子(PM)は、クーロン力とガス流によって移動するが(図中4)、ガス流から受ける力Fmが大きいため、第1接地電極3への移動ができず、主に第2接地電極4において凝集・粗大化する(図中5)。
On the other hand, when the flow rate is high as shown in FIG. 4 (for example, 10 to 10 m / s), a negative DC high voltage (for example, −20 KV) is applied to the discharge electrode 2 from a DC high voltage power source (not shown) in the same manner. Then, corona discharge is generated in the vicinity of the protrusion 21 a of the tip 21. As a result, electrons are emitted (1 in the figure), oxygen having a high electron affinity is negatively ionized (2 in the figure), adheres to the nearby fine particles (PM), and is negatively charged (3 in the figure). ). The fine particles (PM) move due to the Coulomb force and the gas flow (4 in the figure), but since the force Fm received from the gas flow is large, the fine particles (PM) cannot move to the first ground electrode 3 and mainly the second ground electrode 4. In FIG.

粗大化した粒子は、低流量時と同様に、電子を放出した後(図中6)、凝集粒子(凝集PM)を生成し、自重でまたはガス流により剥離し、第2接地電極4の通気孔41を通過して下流へ移動する(図中7)。   The coarse particles, after releasing electrons (6 in the figure), generate aggregated particles (aggregated PM) as in the case of a low flow rate, and are separated by their own weight or by a gas flow. It moves downstream through the pores 41 (7 in the figure).

図5(a)、図5(b)、図5(c)は、放電電極2の先端部21と第2接地電極4との間隔を変えたときの放電により発生するイオンの流れを示すものである。なお、以下の説明において、放電電極2の先端部21の突起21aと第2接地電極4との距離(軸方向距離)を距離Lと、先端部21と第1接地電極3との距離(径方向距離)をRと表すものとする。L=0.5Rとなる図5(a)の場合には、排気流れ方向の電界が強くなり、前記イオンの流れは、先端部21から、これと対向する第2接地電極4の中央部に向かうものが殆どで、排気管11内周壁近傍でイオン密度が小さくなる。このため、排気管11内周壁近傍すなわち排気通路の外周部を流れるPMを帯電することが困難になる。   5 (a), 5 (b) and 5 (c) show the flow of ions generated by discharge when the distance between the tip 21 of the discharge electrode 2 and the second ground electrode 4 is changed. It is. In the following description, the distance (axial distance) between the protrusion 21a of the distal end portion 21 of the discharge electrode 2 and the second ground electrode 4 is the distance L, and the distance (diameter) between the distal end portion 21 and the first ground electrode 3. The directional distance is represented as R. In the case of FIG. 5A where L = 0.5R, the electric field in the exhaust flow direction becomes stronger, and the flow of ions flows from the tip 21 to the center of the second ground electrode 4 facing it. In most cases, the ion density decreases near the inner peripheral wall of the exhaust pipe 11. For this reason, it becomes difficult to charge PM flowing in the vicinity of the inner peripheral wall of the exhaust pipe 11, that is, the outer peripheral portion of the exhaust passage.

そして、図5(b)、図5(c)のように、第2接地電極4を放電電極2から遠ざけると、放電電極2の突起21aから排気通路の径方向に向かう十分なイオン流れが形成される。これにより、排気通路の径方向のイオン分布が均一化し、排気通路の外周部でのイオン密度が改善されて、排気通路の径方向の中心部から外周部にかけてまんべんなくPMを帯電させることができる。ここで、排気通路の径方向のイオン分布の均一性を確保しながら最もLが小さくなるのは、図5(b)のように、放電電極2の突起21aから排気通路の径方向に第1接地電極3に向かう電界と、放電電極2の突起21aから排気通路の軸方向(排気流れ方向)に第2接地電極4に向かう電界とが略等しくなるL=Rのときである。   As shown in FIGS. 5B and 5C, when the second ground electrode 4 is moved away from the discharge electrode 2, a sufficient ion flow is formed from the projection 21a of the discharge electrode 2 in the radial direction of the exhaust passage. Is done. As a result, the ion distribution in the radial direction of the exhaust passage is made uniform, the ion density at the outer peripheral portion of the exhaust passage is improved, and PM can be charged evenly from the central portion to the outer peripheral portion in the radial direction of the exhaust passage. Here, L becomes the smallest while ensuring the uniformity of the ion distribution in the radial direction of the exhaust passage, as shown in FIG. 5B, from the protrusion 21a of the discharge electrode 2 in the radial direction of the exhaust passage. This is when L = R where the electric field directed to the ground electrode 3 and the electric field directed to the second ground electrode 4 in the axial direction of the exhaust passage (exhaust flow direction) from the protrusion 21a of the discharge electrode 2 are substantially equal.

一方、第2接地電極4を放電電極2から遠ざけ過ぎると、次の問題がある。すなわち、PMが帯電電荷を離す割合が増え、排気通路を流下する排気ガス中のPMの帯電量が減少する。この、距離Lに対するPMの帯電量の特性(帯電PMの減衰特性)を考慮して設定する。図6はかかる帯電PMの減衰特性を示すもので、2000ccのディーゼルエンジンを、負荷110Nm、機関回転数3000rpmで運転し、放電電極2と接地電極3,4との間の印加電圧20kVとしたときのもので、帯電PM量が10%減衰する距離Lは50cmであった。したがって、距離Lは50cm以下とするのがよい。   On the other hand, if the second ground electrode 4 is too far away from the discharge electrode 2, there is the following problem. That is, the rate at which PM releases the charged charge increases, and the charge amount of PM in the exhaust gas flowing down the exhaust passage decreases. This is set in consideration of the characteristic of the charge amount of PM with respect to the distance L (attenuation characteristic of the charged PM). FIG. 6 shows the attenuation characteristics of the charged PM. When a 2000 cc diesel engine is operated at a load of 110 Nm and an engine speed of 3000 rpm, the applied voltage between the discharge electrode 2 and the ground electrodes 3 and 4 is 20 kV. The distance L at which the charged PM amount attenuates by 10% was 50 cm. Therefore, the distance L is preferably 50 cm or less.

このように、本実施の形態によれば、放電電極2の外周に、排気管11内周壁からなる第1接地電極3を配置する一方、放電電極2の下流に、導電性網からなる第2接地電極4を配置したので、これら電極間に生じるコロナ放電により、低流量時から高流量時まで、効率よく排気微粒子を凝集させることができる。凝集器1を通過した凝集粒子は、大気中に拡散して浮遊粒子となりにくい大きさ(通常、1μm以上)となっており、自重落下しやすい。   Thus, according to the present embodiment, the first ground electrode 3 made of the inner peripheral wall of the exhaust pipe 11 is arranged on the outer periphery of the discharge electrode 2, while the second made of the conductive net is made downstream of the discharge electrode 2. Since the ground electrode 4 is disposed, exhaust particles can be efficiently aggregated from a low flow rate to a high flow rate by corona discharge generated between these electrodes. Aggregated particles that have passed through the aggregator 1 have a size (usually 1 μm or more) that is difficult to diffuse into the atmosphere and become suspended particles, and are likely to fall by their own weight.

また、凝集器1で凝集させることにより、排気微粒子の捕集が容易となる。好適には、図7のように、凝集器1下流の排気管11に、公知のハニカム構造体またはディーゼルパティキュレートフィルタ(DPF)5を設置して、凝集粒子(凝集PM)を捕集することができ、排気中の微粒子が大気へ放出されるのを防止する。図8は、凝集器1の設置によるハニカム構造体での捕集率の向上効果を示すもので、凝集器1を作動させることにより(凝集器on)、作動させない場合(凝集器off)に比べて、スモークの排出が低減しており、特に低回転数域において低減効果が高くなっていることがわかる。   Further, by aggregating with the aggregator 1, collection of exhaust particulates becomes easy. Preferably, as shown in FIG. 7, a known honeycomb structure or diesel particulate filter (DPF) 5 is installed in the exhaust pipe 11 downstream of the aggregator 1 to collect agglomerated particles (aggregated PM). And prevents the particulates in the exhaust from being released to the atmosphere. FIG. 8 shows the effect of improving the collection rate in the honeycomb structure by installing the aggregator 1. By operating the agglomerator 1 (aggregator on), compared with the case of not operating (aggregator off). Thus, it can be seen that smoke discharge is reduced, and the reduction effect is particularly high in the low rotation speed range.

なお、上記第1の実施の形態では、凝集器1を排気管11の屈曲部に設けて、直線状の放電電極2と排気管11とが同軸配置となるようにしており、放電電極2の先端部21が排気通路の径方向の略中心に位置する。これにより、電界を均一にする効果が得られる。ただし、この構成に限定されるものではなく、凝集器1を排気管11の直線部に設けることもできる。その場合には、放電電極2をL字状に屈曲させて、排気管11の側面から管外へ取り出すようにするとよい。   In the first embodiment, the aggregator 1 is provided at the bent portion of the exhaust pipe 11 so that the linear discharge electrode 2 and the exhaust pipe 11 are arranged coaxially. The distal end portion 21 is located substantially at the radial center of the exhaust passage. Thereby, the effect of making the electric field uniform can be obtained. However, the present invention is not limited to this configuration, and the aggregator 1 can be provided in the straight portion of the exhaust pipe 11. In that case, the discharge electrode 2 may be bent in an L shape and taken out from the side surface of the exhaust pipe 11.

図9により、本発明の他の実施の形態について説明する。上記第1の実施の形態では、図9(a)に示すように、第2接地電極4を多数の通気孔41を有する導電性網で構成したが、図9(b)に第2の実施の形態として示すように、複数の導電性網42、43を排気流れ方向に並列配置して第2接地電極4とすることもできる。このようにすると、十分凝集しないまま上流の導電性網42を通過した排気微粒子を、下流の導電性網43で凝集させることができるので、凝集効果が向上する。あるいは、図9(c)に第3の実施の形態として示すように、導電性網の代わりに、メタルフォーム等の導電性の多孔質体44を配置して第2接地電極4とすることもできる。この場合も、多孔質体44内に形成される多数の通気孔は、凝集粒子の通過を妨げない十分な大きさを有するものとする。これにより、電極表面積をさらに広くするとともに、多孔質体44内の通気孔を通過する間の衝突効果により、凝集効果をさらに高めることができる。   With reference to FIG. 9, another embodiment of the present invention will be described. In the first embodiment, as shown in FIG. 9A, the second ground electrode 4 is formed of a conductive net having a large number of air holes 41. However, the second embodiment shown in FIG. As shown in the form, a plurality of conductive nets 42 and 43 can be arranged in parallel in the exhaust flow direction to form the second ground electrode 4. In this way, the exhaust particulates that have passed through the upstream conductive net 42 without being sufficiently agglomerated can be aggregated by the downstream conductive net 43, thereby improving the agglomeration effect. Alternatively, as shown in FIG. 9C as the third embodiment, a conductive porous body 44 such as a metal foam may be disposed instead of the conductive net to form the second ground electrode 4. it can. Also in this case, it is assumed that the numerous air holes formed in the porous body 44 have a sufficient size that does not hinder the passage of the aggregated particles. Thereby, the electrode surface area can be further increased, and the agglomeration effect can be further enhanced by the collision effect while passing through the vent hole in the porous body 44.

また、図9(d)に第4の実施の形態として示すように、下流側へ向けて凸となるように湾曲させた略球面状の導電性網45にて、第2接地電極4を構成することもできる。このようにすると、電界を均一にして全体を利用して凝集し効率が向上する。   Further, as shown in FIG. 9D as the fourth embodiment, the second ground electrode 4 is constituted by a substantially spherical conductive net 45 curved so as to protrude toward the downstream side. You can also In this way, the electric field is made uniform and the whole is aggregated to improve efficiency.

さらに、図9(e)に第5の実施の形態として示すように、第2接地電極4を構成する導電性網46の通気孔41の断面積が、排気通路の中央部で小さく、外周部で大きくなるように形成してもよい。一般に、排気通路では、中央部の通気量が周壁近傍部より多く、排気微粒子の通過率も多いので、通気孔41分布が、排気通路の中央部で外周部より密となるように形成することで、凝集効果を向上させることが可能になる。   Further, as shown in FIG. 9E as the fifth embodiment, the cross-sectional area of the vent 41 of the conductive net 46 constituting the second ground electrode 4 is small at the central portion of the exhaust passage, and the outer peripheral portion. You may form so that it may become large. In general, in the exhaust passage, the amount of ventilation in the central portion is larger than that in the vicinity of the peripheral wall and the passage rate of exhaust particulates is large, so that the distribution of the vent holes 41 is formed to be denser than the outer peripheral portion in the central portion of the exhaust passage. Thus, the aggregation effect can be improved.

以上のように、本発明によれば、簡易な構成でコロナ放電による排気微粒子の凝集能力を高めることができる。よって、車載性と凝集性を両立させ、実用性の高い排気処理装置を実現することができる。   As described above, according to the present invention, the ability of agglomerating exhaust particulates by corona discharge can be enhanced with a simple configuration. Therefore, it is possible to realize a highly practical exhaust treatment device that achieves both in-vehicle performance and cohesion.

図10にさらに第6の実施形態の排気処理装置を示す。これは上記のごとく凝集器を構成するL字状に屈曲された放電電極を排気管の直線部に設けたものである。排気管5はその内側が円形の通路断面の排気通路となっており、放電電極であるコロナ放電電極6が管壁を貫通して取付けられている。コロナ放電電極6は、図示しない直流高電圧電源と接続された導電部61と、その先端の放電部62とからなり、放電部62に導電部61を介して高電圧が導かれるようになっている。導電部61は排気管5の管壁を貫通して排気管5内の排気流を横切る方向に伸び、排気管5の軸線C位置でL字状に屈曲して先端側部分は上記軸線Cに沿って排気流の下流方向に向けてある。放電部62は、図11に示すように、複数の突起62aを有する星型の平板状部材で突起62aが軸線Cに対し放射方向に向けてある。また、放電部62よりもさらに下流には上記実施形態のごとく導電網が配置されて接地電極7としてある。   FIG. 10 further shows an exhaust treatment apparatus of the sixth embodiment. As described above, the discharge electrode bent in an L shape constituting the aggregator is provided in the straight portion of the exhaust pipe. The inside of the exhaust pipe 5 is an exhaust passage having a circular passage section, and a corona discharge electrode 6 as a discharge electrode is attached through the tube wall. The corona discharge electrode 6 includes a conductive portion 61 connected to a DC high voltage power source (not shown) and a discharge portion 62 at the tip thereof, and a high voltage is guided to the discharge portion 62 via the conductive portion 61. Yes. The conductive portion 61 penetrates the wall of the exhaust pipe 5 and extends in a direction crossing the exhaust flow in the exhaust pipe 5, bends in an L shape at the position of the axis C of the exhaust pipe 5, and the distal end side portion extends to the axis C. Along the downstream direction of the exhaust flow. As shown in FIG. 11, the discharge part 62 is a star-shaped flat plate member having a plurality of protrusions 62a, and the protrusions 62a are directed in the radial direction with respect to the axis C. Further, a conductive net is arranged downstream of the discharge part 62 as in the above embodiment, and is used as the ground electrode 7.

コロナ放電電極6の排気管5への取付け構造について説明する。コロナ放電電極6の導電部61の外周には鍔状に保持プレート81が設けられている。保持プレート81は円形板で、中心部に板厚方向に貫通するめねじ部8101が形成され、コロナ放電電極6の導電部61のおねじ部611が螺入するようになっている。コロナ放電電極6は、保持プレート81のめねじ部8101に螺入した状態でナット82により保持プレート81に締付け固定される。   A structure for attaching the corona discharge electrode 6 to the exhaust pipe 5 will be described. A holding plate 81 is provided in a bowl shape on the outer periphery of the conductive portion 61 of the corona discharge electrode 6. The holding plate 81 is a circular plate, and a female screw portion 8101 that penetrates in the thickness direction is formed at the center portion, and the female screw portion 611 of the conductive portion 61 of the corona discharge electrode 6 is screwed therein. The corona discharge electrode 6 is fastened and fixed to the holding plate 81 by a nut 82 while being screwed into the female thread portion 8101 of the holding plate 81.

一方、上記排気管5には、上記保持プレート81により閉鎖される開口部501が形成してある。開口部501は排気管5の径方向に管壁を貫通する穴であり、コロナ放電電極6の排気管5への取付けでは、ここから排気管5内にコロナ放電電極6の保持プレート81よりも先端側の部分を挿入することになる。したがって、保持プレート81よりも先端側のコロナ放電電極6の形状、特に導電部61の屈曲部から放電部62までの距離を考慮して、その大きさを設定する。   On the other hand, the exhaust pipe 5 is formed with an opening 501 that is closed by the holding plate 81. The opening 501 is a hole penetrating the tube wall in the radial direction of the exhaust pipe 5, and when the corona discharge electrode 6 is attached to the exhaust pipe 5, the opening 501 extends from here into the exhaust pipe 5 than the holding plate 81 of the corona discharge electrode 6. The tip side part will be inserted. Therefore, the size is set in consideration of the shape of the corona discharge electrode 6 on the tip side of the holding plate 81, particularly the distance from the bent portion of the conductive portion 61 to the discharge portion 62.

保持プレート81の排気管5の表面との対向面には排気管5の開口部501と略同径の環状段部81aが上記めねじ部8101と同軸に突出しており、保持プレート81が排気管5の開口部501に対して適性位置に嵌めることができる。また、保持プレート81の段部81aの外周で保持プレート81と排気管5との間には気密保持用のガスケット84が挟持されている。保持プレート81と排気管5との結合は、保持プレート81のボルト穴8102を挿通するボルト83によりなされる。   On the surface of the holding plate 81 facing the surface of the exhaust pipe 5, an annular step 81 a having the same diameter as the opening 501 of the exhaust pipe 5 protrudes coaxially with the female thread portion 8101, and the holding plate 81 is in the exhaust pipe. It is possible to fit in the appropriate position with respect to the five openings 501. Further, an airtight holding gasket 84 is sandwiched between the holding plate 81 and the exhaust pipe 5 on the outer periphery of the step portion 81 a of the holding plate 81. The holding plate 81 and the exhaust pipe 5 are coupled by a bolt 83 that is inserted through the bolt hole 8102 of the holding plate 81.

ボルト穴8102は、図12に示すように、めねじ部8101を中心に、すなわち導電部61のおねじ部611を中心にして周方向に等間隔に複数(図例では3)形成され、それぞれにボルト83が挿通して排気管5と螺結する。各ボルト穴8102は上記周方向に長い長穴で、ボルト83を締めるまでは保持プレート81の排気管5に対する回転角度位置を調整自在となっている。これにより、コロナ放電電極6の放電部62の排気管5の軸線Cに対するぶれ量が調整される。   As shown in FIG. 12, a plurality of bolt holes 8102 are formed at equal intervals in the circumferential direction around the female screw portion 8101, that is, around the male screw portion 611 of the conductive portion 61, respectively. A bolt 83 is inserted through the exhaust pipe 5 and screwed into the exhaust pipe 5. Each bolt hole 8102 is a long hole in the circumferential direction, and the rotational angle position of the holding plate 81 relative to the exhaust pipe 5 can be adjusted until the bolt 83 is tightened. Thereby, the amount of shake with respect to the axis C of the exhaust pipe 5 of the discharge part 62 of the corona discharge electrode 6 is adjusted.

本排気処理装置によれば、コロナ放電電極6を保持プレート81に取付け、ナット82により締付け固定した状態で、コロナ放電電極6の放電部62を排気管5の開口部501に向けて開口部501からコロナ放電電極6を排気流を横切る方向に挿入し、最後に保持プレート81と排気管5とを結合すればよい。このとき、ボルト穴8102を長穴としたことで、ボルト83は、放電部62が真っ直ぐ排気管5の下流方向に向くように保持プレート81を回転調整してから締めることができる。放電部が排気流の幅方向にぶれると、接地電極7と正確に正対せず、放電特性に個体差が生じるおそれがあるところ、このようなコロナ放電電極の排気管に対する回転調整機能を設けたので、ボルト83の締付けに先立って放電部62が真っ直ぐ排気管5の下流方向に向くように保持プレート81を回転調整しておけば、常にコロナ放電電極6の放電部62と接地電極7とを正対させることができる。これにより、放電の均一性を向上させることができる。さらに厳しい要求に対し、作業者の熟練を必要とせずに対応できる。なお、ボルト83の締付けでは、保持プレート81にその中心回りのモーメントが殆ど作用しないから、ボルト83を締付けた時に、保持プレート81が排気管5に対して回転しない。   According to this exhaust treatment apparatus, the corona discharge electrode 6 is attached to the holding plate 81 and is fastened and fixed by the nut 82, and the discharge portion 62 of the corona discharge electrode 6 faces the opening 501 of the exhaust pipe 5. Then, the corona discharge electrode 6 is inserted in a direction crossing the exhaust flow, and finally the holding plate 81 and the exhaust pipe 5 are coupled. At this time, since the bolt hole 8102 is a long hole, the bolt 83 can be tightened after the holding plate 81 is rotated and adjusted so that the discharge portion 62 faces straight downstream of the exhaust pipe 5. If the discharge part sways in the width direction of the exhaust flow, it does not face the ground electrode 7 accurately, and there is a possibility that individual differences may occur in the discharge characteristics. Therefore, if the holding plate 81 is rotated and adjusted so that the discharge part 62 faces straight downstream of the exhaust pipe 5 before the bolt 83 is tightened, the discharge part 62 of the corona discharge electrode 6 and the ground electrode 7 Can be made to face each other. Thereby, the uniformity of discharge can be improved. Even more stringent requirements can be met without requiring the skill of the operator. In tightening the bolt 83, the moment around the center hardly acts on the holding plate 81, and therefore the holding plate 81 does not rotate with respect to the exhaust pipe 5 when the bolt 83 is tightened.

さらに、第7の実施形態の排気処理装置を図13に示す。個本的な構成は図10のものと同じであり、相違点を中心に説明する。   Further, an exhaust treatment apparatus of a seventh embodiment is shown in FIG. The specific configuration is the same as that of FIG. 10, and differences will be mainly described.

凝集器1Bは、排気管5Aにコロナ放電電極6Aが直接取付けられる。すなわち、排気管5Aの管壁を貫通する穴が排気流を横切る方向に形成されて、コロナ放電電極6Aがその組付けときに挿通する開口部501Aとなっている。開口部501Aはねじが切ってあり、コロナ放電電極6Aの導電部61Aのおねじ部611が螺入するようになっている。コロナ放電電極6Aはナット82により排気管5Aに締付け固定される。この構成でもコロナ放電電極6Aを開口部501Aから排気流を横切る方向に排気管5A内に挿入する取付け構造となっているので、放電電極6Aの排気管5Aに対する位置合わせは上記引用文献2のものに比べれば十分高精度になし得るが、上記図10のものに比してコロナ放電電極の排気管に対する回転角度位置のずれは甘受することになる。しかしながら、本排気処理装置では以下のようにかかる回転角度位置のずれの影響を抑制し得る構成となっている。   In the aggregator 1B, the corona discharge electrode 6A is directly attached to the exhaust pipe 5A. That is, a hole penetrating the tube wall of the exhaust pipe 5A is formed in a direction crossing the exhaust flow, and the opening 501A is inserted through the corona discharge electrode 6A when it is assembled. The opening portion 501A is threaded, and the male thread portion 611 of the conductive portion 61A of the corona discharge electrode 6A is screwed therein. The corona discharge electrode 6A is fastened and fixed to the exhaust pipe 5A by a nut 82. Even in this configuration, since the corona discharge electrode 6A is inserted into the exhaust pipe 5A in a direction crossing the exhaust flow from the opening 501A, the alignment of the discharge electrode 6A with respect to the exhaust pipe 5A is that of the above cited reference 2. Compared to FIG. 10, the accuracy can be sufficiently high, but the deviation of the rotational angle position of the corona discharge electrode with respect to the exhaust pipe is acceptable as compared with that of FIG. However, the exhaust treatment apparatus has a configuration that can suppress the influence of the shift of the rotational angle position as follows.

すなわち、コロナ放電電極6Aの導電部61Aは排気流を横切る方向に伸びる単純な直線状で、その先端には、排気管5Aの軸線C位置に放電部62Aが設けてある。   That is, the conductive portion 61A of the corona discharge electrode 6A is a simple straight line extending in the direction crossing the exhaust flow, and at its tip, a discharge portion 62A is provided at the position of the axis C of the exhaust pipe 5A.

放電部62Aは、図14(A)、図14(B)に示すように、導電性の平板で構成された3つの平板状部材621,622,623と、導電部61に連なるピン部624とを有している。導電部61とピン部624とは一体で1つの丸棒状部材により構成される。平板状部材621〜623は、十字方向に突起621a,622a,623aを有する点対称な星型で、平板状部材621〜623を重ねた状態で、平板状部材621〜623の中央部に形成された貫通孔にピン部624が挿通している。   As shown in FIGS. 14A and 14B, the discharge part 62 </ b> A includes three flat members 621, 622, and 623 formed of conductive flat plates, and a pin part 624 that continues to the conductive part 61. have. The conductive portion 61 and the pin portion 624 are integrally configured by one round bar member. The flat members 621 to 623 are point-symmetric star shapes having protrusions 621a, 622a, and 623a in the cross direction, and are formed at the center of the flat members 621 to 623 in a state where the flat members 621 to 623 are overlapped. The pin portion 624 is inserted into the through hole.

平板状部材621〜623は、図中下側の平板状部材621の突起部621aがその根元で斜め下方に屈曲し、図中上側の平板状部材623の突起部623aがその根元で斜め上方に屈曲している。屈曲角度はこれら突起621a〜623aの先端が平板状部材621〜623の中心からの距離が等しくなるように設定され、所定の仮想球面S上に位置している。また、ピン部624の先端位置も上記仮想球面S上に位置している。仮想球面Sをなす仮想球の中心は、おねじ部611の回転中心線、すなわち、導電部61の軸線上の点である。   In the flat plate members 621 to 623, the projection 621a of the lower flat plate member 621 in the drawing is bent obliquely downward at the base, and the projection 623a of the flat plate member 623 in the drawing is obliquely upward at the base. It is bent. The bending angles are set such that the tips of the protrusions 621a to 623a are equal in distance from the center of the flat plate members 621 to 623, and are positioned on a predetermined phantom spherical surface S. Further, the tip position of the pin portion 624 is also located on the virtual spherical surface S. The center of the phantom sphere forming the phantom spherical surface S is a rotation center line of the external thread portion 611, that is, a point on the axis of the conductive portion 61.

本排気処理装置によれば、上記のごとく、ナット82の締付け時のコロナ放電電極の回転位置ずれが生じても、放電部62Aはおねじ部611の回転中心線上の点を中心とする仮想球面S上に突起部621〜623a、ピン部624の先端が位置しているから、上記コロナ放電電極の回転位置ずれに基因した放電特性への影響は軽減することができる。   According to the present exhaust treatment apparatus, as described above, even if the rotational position of the corona discharge electrode is displaced when the nut 82 is tightened, the discharge part 62A has a virtual spherical surface S centered on a point on the rotation center line of the external thread part 611. Since the protrusions 621 to 623a and the tips of the pin portions 624 are located above, the influence on the discharge characteristics due to the rotational position shift of the corona discharge electrode can be reduced.

さらに第8の実施形態になる排気処理装置を図15に示す。これは図13の構成において接地電極を別の構成に代えたものである。凝集器1Cは接地電極7Aが導電性部材で構成した球状のかご体で、凝集した排気微粒子の通過が妨げられないようになっている。接地電極7Aは放電部62Aを中心として配置されている。接地電極7Aが放電電極6Aが挿通する穴を有しているのは勿論である。このように接地電極7Aが放電部62Aを等距離に囲むことで、コロナ放電電極の回転位置ずれに基因して放電特性がばらつかないようにすることができる。   Further, an exhaust treatment apparatus according to an eighth embodiment is shown in FIG. In this configuration, the ground electrode is replaced with another configuration in the configuration of FIG. The aggregator 1C is a spherical car body in which the ground electrode 7A is composed of a conductive member, and is configured not to prevent passage of the aggregated exhaust particulates. The ground electrode 7A is disposed around the discharge part 62A. Of course, the ground electrode 7A has a hole through which the discharge electrode 6A is inserted. Thus, the ground electrode 7A surrounds the discharge part 62A at an equal distance, so that the discharge characteristics can be prevented from varying due to the rotational position shift of the corona discharge electrode.

なお、上記各実施形態において、放電電極が排気通路の略中心部に位置し、排気管内周壁により構成された接地電極との排気管の横断面方向の距離が均一であり、放電の均一性を向上する優れた効果を奏することができるが、必ずしも放電電極が排気通路の略中心部に位置することを要求するものではない。実用的には,例えば、排気管の内部に配設する放電電極が、排気管の中心を中心点とした排気管の内径の1/2径の仮想円の領域内に位置するように設定する。   In each of the above-described embodiments, the discharge electrode is positioned substantially at the center of the exhaust passage, and the distance in the cross-sectional direction of the exhaust pipe from the ground electrode formed by the inner peripheral wall of the exhaust pipe is uniform. Although an excellent effect of improvement can be obtained, it is not always required that the discharge electrode be positioned at substantially the center of the exhaust passage. Practically, for example, the discharge electrode disposed inside the exhaust pipe is set so as to be positioned in a virtual circle region having a diameter of ½ of the inner diameter of the exhaust pipe with the center of the exhaust pipe as a center point. .

また、電極間との間にてコロナ放電を発生させる際の、両電極間に印加させる電圧落差は、5KVから50KVの範囲に設定する。これにより、電極間に電圧を印加する際の適正な耐電圧リーク特性を満たしつつ、好適な排気微粒子の凝集効果を得ることができる。好ましくは,両電極間に印加させる電圧落差は、10KVから30KVの範囲に設定するのがよい。   Further, the voltage drop applied between the electrodes when the corona discharge is generated between the electrodes is set in the range of 5 KV to 50 KV. Thereby, it is possible to obtain a suitable exhaust particle aggregation effect while satisfying an appropriate withstand voltage leak characteristic when a voltage is applied between the electrodes. Preferably, the voltage drop applied between both electrodes is set in the range of 10 KV to 30 KV.

また、上記各実施形態では、排気管内周壁や導電性網により接地電極を構成しているが、必ずしもこれらの電位は接地電位である必要はない、   In each of the above embodiments, the ground electrode is constituted by the exhaust pipe inner peripheral wall and the conductive net, but these potentials do not necessarily need to be the ground potential.

(a)は本発明の第1の実施の形態における内燃機関の排気処理装置の概略構成図、(b)は(a)のA−A線断面図である。(A) is a schematic block diagram of the exhaust-gas treatment apparatus of the internal combustion engine in the 1st Embodiment of this invention, (b) is the sectional view on the AA line of (a). 凝集器への印加電圧波形を示す図である。It is a figure which shows the voltage waveform applied to an aggregator. 本発明の作動を説明するための模式的な図で、低流量時における凝集器の部分拡大断面図である。It is a typical figure for demonstrating the action | operation of this invention, and is a partial expanded sectional view of the aggregator at the time of low flow volume. 本発明の作動を説明するための模式的な図で、高流量時における凝集器の部分拡大断面図である。It is a schematic diagram for demonstrating the action | operation of this invention, and is a partial expanded sectional view of the aggregator at the time of high flow rate. (a)、(b)、(c)はそれぞれ、上記内燃機関の排気処理装置の、前記凝集器を構成する部材の配置が互いに異なる図である。(A), (b), (c) is a figure from which the arrangement | positioning of the member which comprises the said aggregator of the exhaust-gas treatment apparatus of the said internal combustion engine mutually differs. 上記内燃機関の排気処理装置の、前記凝集器を構成する部材の配置を変えたときの作動特性の変化を示すグラフである。It is a graph which shows the change of the operating characteristic when the arrangement | positioning of the member which comprises the said coagulator of the exhaust-gas processing apparatus of the said internal combustion engine is changed. 凝集器の下流にフィルタを設置した内燃機関の排気処理装置の全体概略構成図である。1 is an overall schematic configuration diagram of an exhaust treatment apparatus for an internal combustion engine in which a filter is installed downstream of an aggregator. 凝集器によるスモーク低減効果を示す図である。It is a figure which shows the smoke reduction effect by an aggregator. (a)は本発明の第1の実施の形態における第2接地電極形状を示す概略図、(b)は本発明の第2の実施の形態における第2接地電極形状を示す概略図、(c)は本発明の3の実施の形態における第2接地電極形状を示す概略図、(d)は本発明の第4の実施の形態における第2接地電極形状を示す概略図、(e)は本発明の第5の実施の形態における第2接地電極形状を示す概略図である。(A) is the schematic which shows the 2nd ground electrode shape in the 1st Embodiment of this invention, (b) is the schematic which shows the 2nd ground electrode shape in the 2nd Embodiment of this invention, (c) ) Is a schematic diagram showing the shape of the second ground electrode in the third embodiment of the present invention, (d) is a schematic diagram showing the shape of the second ground electrode in the fourth embodiment of the present invention, and (e) is a diagram showing the present invention. It is the schematic which shows the 2nd ground electrode shape in the 5th Embodiment of invention. 本発明の第6の実施の形態における内燃機関の排気処理装置の概略構成図である。It is a schematic block diagram of the exhaust-gas treatment apparatus of the internal combustion engine in the 6th Embodiment of this invention. 図10におけるX矢視図である。It is a X arrow line view in FIG. 上記排気処理装置の一部を構成する保持プレートの図である。It is a figure of the holding plate which constitutes a part of the exhaust treatment device. 本発明の第7の実施の形態における内燃機関の排気処理装置の概略構成図である。It is a schematic block diagram of the exhaust-gas treatment apparatus of the internal combustion engine in the 7th Embodiment of this invention. (a)は上記排気処理装置の一部を構成するコロナ放電電極の要部拡大図であり、(b)は(a)におけるY矢視図である。(A) is a principal part enlarged view of the corona discharge electrode which comprises some exhaust gas processing apparatuses, (b) is a Y arrow line view in (a). 本発明の第8の実施の形態における内燃機関の排気処理装置の概略構成図である。It is a schematic block diagram of the exhaust-gas treatment apparatus of the internal combustion engine in the 8th Embodiment of this invention.

符号の説明Explanation of symbols

1,1A,1B,1C 凝集器
11 排気管
112 拡径部
2 コロナ放電電極(第1の種類の電極)
21 先端部(電荷授受部)
21a 突起
3 第1接地電極(第2の種類の電極)
4 第2接地電極(第2の種類の電極)
41 通気孔
5,5A 排気管
501,501A 開口部
6,6A コロナ放電電極(第1の種類の電極)
61,61A 導電部
62,62A 放電部(電荷授受部)
621a,622a,623a 突起部
7,7A 接地電極(第2の種類の電極)
81 保持プレート
802 ボルト穴
A2 軸線
82 ナット
83 ボルト
S 仮想球面
1, 1A, 1B, 1C Aggregator 11 Exhaust pipe 112 Expanded diameter 2 Corona discharge electrode (first type electrode)
21 Tip (Charge Transfer Unit)
21a Protrusion 3 First ground electrode (second type electrode)
4 Second ground electrode (second type of electrode)
41 Ventilation hole 5,5A Exhaust pipe 501,501A Opening 6,6A Corona discharge electrode (first type electrode)
61, 61A Conductive part 62, 62A Discharge part (charge transfer part)
621a, 622a, 623a Protrusion 7, 7A Ground electrode (second type electrode)
81 Holding plate 802 Bolt hole A2 Axis 82 Nut 83 Bolt S Virtual spherical surface

Claims (20)

内燃機関の排気管により形成され該排気管の軸線方向に排ガスが流通する排気通路に、排ガス中の排気微粒子を凝集させる凝集器として、両者の間に高電圧が印加されコロナ放電による電荷を授受する電荷放出および電荷回収の2種類よりなる電極を、第1の種類の電極の電荷授受部が上記排気通路の径方向の略中心部に位置するように配設して、前記コロナ放電による電荷により排気微粒子を帯電し、電荷を回収する電極において凝集させる凝集器を備えたことを特徴とする内燃機関の排気処理装置。   As an agglomerator that aggregates exhaust particulates in the exhaust gas in an exhaust passage formed by the exhaust pipe of the internal combustion engine and in which the exhaust gas flows in the axial direction of the exhaust pipe, a high voltage is applied between the two and charges are received by corona discharge An electrode composed of two types of charge release and charge recovery is disposed so that a charge transfer portion of the first type electrode is positioned at a substantially central portion in the radial direction of the exhaust passage, An exhaust gas processing apparatus for an internal combustion engine, comprising: an aggregator that charges exhaust particulates by an electrode and aggregates the exhaust particulates at an electrode that collects the charges. 第2の種類の電極は、上記排気管の内周壁により構成した請求項1記載の内燃機関の排気処理装置。   The exhaust processing apparatus for an internal combustion engine according to claim 1, wherein the second type of electrode is constituted by an inner peripheral wall of the exhaust pipe. 上記第2の種類の電極は、コロナ放電による電荷を回収する接地電極であり、かつ、上記第2の種類の電極として、上記第1の種類の電極よりも排気流の下流に排気通路を横切って配置され多数の通気孔を有する導電性の構造体により構成した電極を設けた請求項1記載の内燃機関の排気処理装置。   The second type electrode is a ground electrode that collects electric charges due to corona discharge, and as the second type electrode, crosses the exhaust passage downstream of the exhaust flow from the first type electrode. 2. An exhaust gas processing apparatus for an internal combustion engine according to claim 1, further comprising an electrode made of a conductive structure having a plurality of air holes arranged. 上記第1の種類の電極の電荷授受部と上記導電性構造体との排気流方向の間隔は、50cm以下とした請求項3記載の内燃機関の排気処理装置。   The exhaust treatment device for an internal combustion engine according to claim 3, wherein an interval in the exhaust flow direction between the charge transfer section of the first type electrode and the conductive structure is 50 cm or less. 上記第2の種類の電極はコロナ放電による電荷を回収する接地電極であり、上記第2の種類の電極として、上記排気管の内周壁により構成された接地電極と、上記第1の種類の電極よりも下流に排気通路を横切って配置され多数の通気孔を有する導電性の構造体により構成された別の接地電極とを設けた請求項1記載の内燃機関の排気処理装置。   The second type electrode is a ground electrode that collects electric charges due to corona discharge. As the second type electrode, a ground electrode constituted by an inner peripheral wall of the exhaust pipe, and the first type electrode 2. An exhaust gas processing apparatus for an internal combustion engine according to claim 1, further comprising another ground electrode which is disposed downstream of the exhaust passage and is formed of a conductive structure having a large number of air holes. 上記第1の種類の電極の電荷授受部と上記導電性構造体との排気流方向の間隔は、上記排気通路の径と同等以上とした請求項5記載の内燃機関の排気処理装置。   6. An exhaust treatment apparatus for an internal combustion engine according to claim 5, wherein an interval in the exhaust flow direction between the charge transfer section of the first type electrode and the conductive structure is equal to or greater than a diameter of the exhaust passage. 上記導電性の構造体は、排気流方向に並列配置した複数の導電性網からなる請求項3ないし6いずれか記載の内燃機関の排気処理装置。   The exhaust treatment apparatus for an internal combustion engine according to any one of claims 3 to 6, wherein the conductive structure includes a plurality of conductive nets arranged in parallel in the exhaust flow direction. 上記導電性の構造体は、排気流の下流側へ向けて凸となるように湾曲させた略球面状の導電性網からなる請求項3ないし7いずれか記載の内燃機関の排気処理装置。   The exhaust treatment apparatus for an internal combustion engine according to any one of claims 3 to 7, wherein the conductive structure is formed of a substantially spherical conductive net curved so as to protrude toward the downstream side of the exhaust flow. 上記導電性の構造体は、上記通気孔の分布が、排気通路の外周部に比して中央部で密となるように構成した請求項3ないし8いずれか記載の内燃機関の排気処理装置。   The exhaust treatment apparatus for an internal combustion engine according to any one of claims 3 to 8, wherein the conductive structure is configured such that the distribution of the air holes is denser in a central portion than in an outer peripheral portion of the exhaust passage. 上記導電性の構造体は、導電性網または導電性の多孔質体からなる請求項3ないし9いずれか記載の内燃機関の排気処理装置。   The exhaust treatment apparatus for an internal combustion engine according to any one of claims 3 to 9, wherein the conductive structure is made of a conductive net or a conductive porous body. 上記第2の種類の電極は、凝集した排気微粒子の通過を妨げない球状のかご体を、上記電荷授受部を中心として配置してなる請求項1記載の内燃機関の排気処理装置。   2. The exhaust gas processing apparatus for an internal combustion engine according to claim 1, wherein the second type of electrode is formed by arranging a spherical car body that does not obstruct the passage of aggregated exhaust particulates with the charge transfer section as a center. 上記第1の種類の電極を、前記電荷授受部に通じる導電部が上記排気通路を形成する排気管の管壁を貫通して排気流と交叉する方向に伸びる電極構造とした請求項1ないし11いずれか記載の内燃機関の排気処理装置。   12. The electrode structure according to claim 1, wherein the first type of electrode has an electrode structure in which a conductive portion communicating with the charge transfer portion extends in a direction crossing an exhaust flow through a wall of an exhaust pipe forming the exhaust passage. An exhaust treatment apparatus for an internal combustion engine according to any one of the above. 上記第1の種類の電極の保持手段として、上記導電部の外周に鍔状に設けられた保持プレートを設け、かつ、上記排気管には、上記保持プレートにより閉鎖される開口部であって、上記第1の種類の電極の上記排気管への組付け時に上記第1の種類の電極の上記保持プレートよりも先端側部分が挿通する開口部を形成した請求項12記載の内燃機関の排気処理装置。   As a holding means for the first type of electrode, a holding plate provided in a bowl shape on the outer periphery of the conductive portion is provided, and the exhaust pipe is an opening closed by the holding plate, The exhaust treatment of the internal combustion engine according to claim 12, wherein an opening through which a tip side portion of the first type electrode is inserted from the holding plate is formed when the first type electrode is assembled to the exhaust pipe. apparatus. 上記保持プレートと上記排気管とは上記開口部よりも大径の保持プレートが上記開口部の外周でボルトにより結合し、該ボルトが挿通する上記保持プレートのボルト穴は、上記導電部を中心とする周方向に長い長穴とした請求項13記載の内燃機関の排気処理装置。   The holding plate and the exhaust pipe are connected to each other by a bolt on the outer periphery of the opening, and the bolt hole of the holding plate through which the bolt passes is centered on the conductive portion. The exhaust treatment device for an internal combustion engine according to claim 13, wherein the long hole is long in the circumferential direction. 上記導電部は途中で排気流の方向に屈曲してなる請求項12ないし14いずれか記載の内燃機関の排気処理装置。   The exhaust treatment device for an internal combustion engine according to any one of claims 12 to 14, wherein the conductive portion is bent in the direction of the exhaust flow in the middle. 上記第1の種類の電極の上記電荷授受部は、略全方位に複数の突起部を放射状に形成した請求項12ないし15いずれか記載の内燃機関の排気処理装置。   The exhaust treatment device for an internal combustion engine according to any one of claims 12 to 15, wherein the charge transfer section of the first type electrode has a plurality of protrusions formed radially in substantially all directions. 上記突起部は、その先端が所定の径の仮想球面上に位置するように形成した請求項16記載の内燃機関の排気処理装置。   The exhaust processing apparatus for an internal combustion engine according to claim 16, wherein the protrusion is formed such that a tip thereof is positioned on a virtual spherical surface having a predetermined diameter. 上記第1の種類の電極の上記電荷授受部が上記排気管の径方向の中心を中心点とした上記排気管の内径の1/2径の仮想円の領域内に位置するように構成した請求項12記載の内燃機関の排気処理装置。   The charge transfer portion of the first type electrode is configured to be located in a region of a virtual circle having a diameter of ½ of the inner diameter of the exhaust pipe with the radial center of the exhaust pipe as a center point. Item 13. An exhaust treatment device for an internal combustion engine according to Item 12. 上記第1の種類の電極と上記第2の種類の電極との間にてコロナ放電を発生させる際の、両電極間に印加させる電圧落差は、5KVから50KVの範囲に設定されることを特徴とする請求項1ないし18いずれか記載の内燃機関の排気処理装置。   When a corona discharge is generated between the first type electrode and the second type electrode, a voltage drop applied between both electrodes is set in a range of 5 KV to 50 KV. An exhaust treatment device for an internal combustion engine according to any one of claims 1 to 18. 上記第1の種類の電極と上記第2の種類の電極との間にてコロナ放電を発生させる際の、両電極間に印加させる電圧落差は、10KVから30KVの範囲に設定される請求項19記載の内燃機関の排気処理装置。   The voltage drop applied between the electrodes when the corona discharge is generated between the first type electrode and the second type electrode is set in a range of 10 KV to 30 KV. An exhaust treatment device for an internal combustion engine as described.
JP2004230472A 2003-10-09 2004-08-06 Exhaust treatment device for internal combustion engine Expired - Fee Related JP4396440B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004230472A JP4396440B2 (en) 2003-10-09 2004-08-06 Exhaust treatment device for internal combustion engine
DE102004048488.0A DE102004048488B4 (en) 2003-10-09 2004-10-05 Exhaust system with an aggregation device for an internal combustion engine
CNB2004100835303A CN100432382C (en) 2003-10-09 2004-10-09 Exhaust system of internal combustion engine with coacervation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003350969 2003-10-09
JP2004114315 2004-04-08
JP2004230472A JP4396440B2 (en) 2003-10-09 2004-08-06 Exhaust treatment device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005320955A true JP2005320955A (en) 2005-11-17
JP4396440B2 JP4396440B2 (en) 2010-01-13

Family

ID=34527578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230472A Expired - Fee Related JP4396440B2 (en) 2003-10-09 2004-08-06 Exhaust treatment device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP4396440B2 (en)
CN (1) CN100432382C (en)
DE (1) DE102004048488B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255284A (en) * 2006-03-23 2007-10-04 Nissan Diesel Motor Co Ltd Exhaust emission control device
EP2299073A1 (en) 2009-08-31 2011-03-23 NGK Insulators, Ltd. Exhaust gas treatment apparatus
EP2305976A2 (en) 2009-09-25 2011-04-06 NGK Insulators, Ltd. Exhaust gas treatment apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706402A (en) * 2012-06-26 2012-10-03 郑州炜盛电子科技有限公司 Novel gas flow sensor
DE102018201628A1 (en) * 2018-02-02 2019-08-08 Ford Global Technologies, Llc Particle pre-separator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148017A (en) * 1981-03-09 1982-09-13 Toyota Central Res & Dev Lab Inc Device for disposing of exhaust smoke of internal combustion engine
JPS59145314A (en) * 1983-02-04 1984-08-20 Mitsubishi Motors Corp Diesel particulate collector
DE3723544A1 (en) * 1987-07-16 1989-01-26 Man Technologie Gmbh ELECTROSTATIC FILTER FOR CLEANING GASES
DE4223277C2 (en) * 1992-07-15 2001-07-19 Linde Ag Method and device for removing particles from exhaust gases from internal combustion engines
KR950000197A (en) * 1993-06-02 1995-01-03 히데오 요시카와 Polluted air purifier
JP2698804B2 (en) * 1995-10-24 1998-01-19 株式会社オーデン Diesel engine exhaust particulate collection device by electrical control
GB2351923A (en) * 1999-07-12 2001-01-17 Perkins Engines Co Ltd Self-cleaning particulate filter utilizing electric discharge currents
JP2001041024A (en) * 1999-08-02 2001-02-13 Isuzu Ceramics Res Inst Co Ltd Charge type diesel particulate filter device
JP2003144979A (en) * 2001-11-08 2003-05-20 Hisatoshi Suminoe Corona discharge cyclone separation apparatus
JP4074997B2 (en) * 2003-09-24 2008-04-16 トヨタ自動車株式会社 Exhaust gas purification device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255284A (en) * 2006-03-23 2007-10-04 Nissan Diesel Motor Co Ltd Exhaust emission control device
EP2299073A1 (en) 2009-08-31 2011-03-23 NGK Insulators, Ltd. Exhaust gas treatment apparatus
EP2305976A2 (en) 2009-09-25 2011-04-06 NGK Insulators, Ltd. Exhaust gas treatment apparatus

Also Published As

Publication number Publication date
CN1605724A (en) 2005-04-13
DE102004048488B4 (en) 2016-02-04
JP4396440B2 (en) 2010-01-13
DE102004048488A1 (en) 2005-05-25
CN100432382C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4931602B2 (en) Electric processing equipment for exhaust gas from diesel engines
JP3233411B2 (en) Method and apparatus for exhaust gas purification and noise reduction using high voltage electric field
JP2698804B2 (en) Diesel engine exhaust particulate collection device by electrical control
KR101535362B1 (en) Device for treating exhaust gas containing soot particles
US20110072786A1 (en) Exhaust gas treatment apparatus
JP4483714B2 (en) Exhaust treatment device for internal combustion engine
WO2005105315A1 (en) Gas treatment equipment
EP2208539A1 (en) Air processing device
JP2008019853A (en) Exhaust gas treatment apparatus of internal combustion engine
JP4396440B2 (en) Exhaust treatment device for internal combustion engine
JP2006505397A (en) Electrostatic precipitator
JP2009112916A (en) Exhaust gas cleaner
CN108561208A (en) A kind of automobile exhaust gas purifying installation
KR100792912B1 (en) Nano particle detection system and method for exhaust gas
JP2013124556A (en) Exhaust gas treatment device for internal combustion engine
CN104888961A (en) Vehicle-mounted bionic electrostatic dusting air purifier
JP4345568B2 (en) Aggregator for exhaust treatment equipment
JP4492286B2 (en) Exhaust purification device
JP2006112246A (en) Exhaust emission control device for internal combustion engine
JP2004066063A (en) Rectangular wave electric dust collector and optimal driving method of the same
KR102554741B1 (en) Scroll type electrostatic precipitator and air conditioning apparatus having the same
JP3033579U (en) Exhaust black smoke removal device for diesel engine
JPH08168696A (en) Small-sized high velocity electric dust collector by high current density operation
JP2006112393A (en) Exhaust emission control device
JP5556503B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees