JP2005317053A - Manufacturing method of optical disk, and optical disk device - Google Patents

Manufacturing method of optical disk, and optical disk device Download PDF

Info

Publication number
JP2005317053A
JP2005317053A JP2004130292A JP2004130292A JP2005317053A JP 2005317053 A JP2005317053 A JP 2005317053A JP 2004130292 A JP2004130292 A JP 2004130292A JP 2004130292 A JP2004130292 A JP 2004130292A JP 2005317053 A JP2005317053 A JP 2005317053A
Authority
JP
Japan
Prior art keywords
curable resin
thickness
information recording
recording surface
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004130292A
Other languages
Japanese (ja)
Inventor
Shinji Ota
信司 太田
Koichi Sakai
浩一 坂井
Takeo Kojima
竹夫 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004130292A priority Critical patent/JP2005317053A/en
Publication of JP2005317053A publication Critical patent/JP2005317053A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical disk for forming quickly and easily a light transmission layer whose thickness is uniform, and to provide an optical disk device thereof. <P>SOLUTION: In the method for manufacturing the optical disk for forming a light transmission layer on an information recording surface 4A on an optical disk substrate 2 in a uniform thickness, the formation of the light transmission layer comprises a process for rotating a rotary table, dropping an ultraviolet curing resin onto the information recording surface, and covering the entire information recording surface with the ultraviolet curing resin after fixing the optical disk substrate onto the rotary table 32 with the information recording surface facing up; a process for rotating the rotary table and measuring the thickness of the ultraviolet curing resin; a process for successively performing work for applying ultraviolet rays from the inner periphery side to the outer periphery side and primarily curing the ultraviolet curing resin for temporary curing, when the measurement result of the thickness of the ultraviolet curing resin reaches a predetermined, prescribed thickness; and a process for applying ultraviolet rays having intensity that is stronger than that in primary curing onto the entire surface of the ultraviolet curing resin for complete curing, after the rotary table stops rotating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザ光が入射する読み取り面側を薄型化して高記録密度化を可能とする光ディスクに係わり、入射面の光透過層の厚みむらを低減した光ディスクの作製方法及び光ディスク装置に関する。   The present invention relates to an optical disc that enables a high recording density by thinning a reading surface side on which laser light is incident, and relates to a method of manufacturing an optical disc and an optical disc apparatus that reduce unevenness in the thickness of a light transmission layer on the incident surface.

近年、光ディスクは高記録密度、大容量、小型化を目指し開発が進められている。光ディスクは、光ディスク基板の表面に微細な凹凸形状からなるピット状、または溝状の情報記録面を有し、この情報記録面内の情報を読み取り面の表面から入射されるレーザ光が情報記録面で反射してくる反射光の光強度の変化として、情報信号を読み出すシステムである。この種の光ディスクの一般的な製造方法は、例えば特許文献1、2、3等において開示されている。そして光ディスクの高記録密度化は、レーザ光の波長を短くすることや、光学ピックアップの記録・再生時用のレーザ光を光ディスク情報記録面に照射するための対物レンズの開口数を大きくして情報記録面における記録・再生光のスポット径を小さくすることで可能ならしめている。   In recent years, optical discs have been developed aiming at high recording density, large capacity, and miniaturization. An optical disc has a pit-shaped or groove-shaped information recording surface having a fine concavo-convex shape on the surface of an optical disk substrate, and laser light incident on the surface of the information recording surface is read from the surface of the information recording surface. This is a system for reading out an information signal as a change in the light intensity of the reflected light reflected at. A general manufacturing method of this type of optical disk is disclosed in, for example, Patent Documents 1, 2, 3, and the like. In order to increase the recording density of optical disks, the wavelength of the laser light is shortened, and the numerical aperture of the objective lens for irradiating the optical disk information recording surface with the laser light for recording / reproducing of the optical pickup is increased. This is made possible by reducing the spot diameter of the recording / reproducing light on the recording surface.

このように、対物レンズの開口数を大きくすると、記録再生用のレーザ光が照射されてこれが通過する光ディスクの入射面から情報記録面までの光透過層の厚みを薄くする必要がある。これは、光学ピックアップの光軸に対してディスクの情報記録面が垂直からずれる角度(チルト角)の許容量が小さくなるためであり、このチルト角が上記光透過層の厚さによる収差や複屈折の影響を受け易いためである。
従って、基板(光透過層)の厚さを薄くして、光学ピックアップの光軸に対して光ディスクの情報記録面が垂直からずれても読み出される情報信号の劣化が少なくなるように、許容されるチルト角をできるだけ大きくなるようにしている。例えば、CD(Compact Disc)の入射面側の厚さは約1.2mmであるのに対し、記録容量がCDの6〜8倍であるDVD(Digital Versatile Disc)は、CDに比べて開口数の大きな対物レンズを用いているので、許容されるチルト角が小さくなる。そこで読み出し面側の基板厚さを1.2mmから0.6mmへと薄くすることで、CDと同程度のチルト角が許容できるようにしている。
As described above, when the numerical aperture of the objective lens is increased, it is necessary to reduce the thickness of the light transmission layer from the incident surface of the optical disk through which the recording / reproducing laser beam passes and passes through the information recording surface. This is because the allowable amount of the angle (tilt angle) by which the information recording surface of the disc deviates from the perpendicular to the optical axis of the optical pickup becomes small. This is because it is easily affected by refraction.
Accordingly, the thickness of the substrate (light transmission layer) is reduced, so that the deterioration of the read information signal is allowed even if the information recording surface of the optical disc deviates from the vertical with respect to the optical axis of the optical pickup. The tilt angle is made as large as possible. For example, the thickness of the incident surface side of a CD (Compact Disc) is about 1.2 mm, whereas a DVD (Digital Versatile Disc) having a recording capacity of 6 to 8 times the CD has a numerical aperture as compared with the CD. Since a large objective lens is used, an allowable tilt angle becomes small. Therefore, by reducing the thickness of the substrate on the reading surface side from 1.2 mm to 0.6 mm, a tilt angle comparable to that of a CD can be allowed.

また、最近では次世代型光ディスクとして、CDやDVDと同じ大きさのディスク1面当たりに20GB以上の大記録容量を記憶できる光ディスクの要求があり、最近発売になったブルーレイディスク(今後「BD」とも称す)は波長が4 05nmの青色レーザ光と、開口数が0.85の対物レンズとを用い、読み出し面の基板厚さを0.1mmに設定して23GBの大記録容量としたシステムである。
上述したCDやDVDの光ディスクは、製造工程を簡略化し、かつ高品質な光ディスクを得るために、全て記録再生用のレーザ光の入射面と情報記録面とを、同一基板上に対峙させた形で形成させている。そしてこれらの基板は、一般的には射出成形法を用いて成形されている。しかしながら、入射面側の基板厚さが0.1mmになると、これを射出成形法で製作するには基板が薄すぎて成形が困難であるため、別の作製方法が幾つか提案されている。
Recently, there has been a demand for an optical disc capable of storing a large recording capacity of 20 GB or more per side of a disc having the same size as a CD or DVD as a next-generation optical disc, and a recently released Blu-ray disc (hereinafter “BD”) Is also a system that uses a blue laser beam with a wavelength of 405 nm and an objective lens with a numerical aperture of 0.85, sets the substrate thickness of the readout surface to 0.1 mm, and has a large recording capacity of 23 GB. is there.
In order to simplify the manufacturing process and to obtain a high-quality optical disc, the above-described CD and DVD optical discs are all formed such that the incident surface of the recording / reproducing laser beam and the information recording surface face each other on the same substrate. It is formed with. These substrates are generally formed using an injection molding method. However, when the substrate thickness on the incident surface side is 0.1 mm, the substrate is too thin to be manufactured by the injection molding method, so that it is difficult to form the substrate. Therefore, several other manufacturing methods have been proposed.

その一方法を述べると、従来技術と同じ射出成形法により情報信号の入った光ディスク基板を作製し、この情報信号面上に反射層、上引き層、記録層、下引き層を順次スパッタにより積層した相変化膜を構成し、その上に光ディスク基板と同じ大きさの光透過性シートを、光透過性である紫外線硬化樹脂(以下単に「樹脂」と称す場合もある)を用いてスピンコート法で貼り合せて光透過層を形成した後、光透過性シート側から紫外線を照射して紫外線硬化樹脂を硬化させることで、光ディスク基板と光透過性シートを接着する方法が採用されている(例えば特許文献1、2)。また光透過性シートを用いず、スピンコート法により紫外線硬化樹脂のみで光透過層を形成する方法も知られている。そして、いずれの場合も記録再生用のレーザ光の入射は厚さが0.1mmの光透過層側から行う。この時の光ディスク基板の外径は120mmであり、この大きさの光ディスク基板上に従来の射出成形法で情報信号を形成するには、0.6mm以上の厚さの基板が必要となるため、前記したBDのような光ディスクの一工法は、情報信号を形成した基板の厚さより記録再生用のレーザ光を入射する入射面層(光透過層)の方が薄くなる。   To describe one method, an optical disk substrate containing an information signal is manufactured by the same injection molding method as the prior art, and a reflective layer, an overcoat layer, a recording layer, and an undercoat layer are sequentially laminated on the information signal surface by sputtering. A spin coating method using a light-transmitting ultraviolet curable resin (hereinafter sometimes simply referred to as “resin”) on which a light-transmitting sheet having the same size as the optical disk substrate is formed. After forming the light transmissive layer by bonding, the optical disk substrate and the light transmissive sheet are bonded by irradiating ultraviolet light from the light transmissive sheet side to cure the ultraviolet curable resin (for example, Patent Documents 1 and 2). There is also known a method of forming a light transmissive layer with only an ultraviolet curable resin by spin coating without using a light transmissive sheet. In either case, the recording / reproducing laser beam is incident from the side of the light transmission layer having a thickness of 0.1 mm. The outer diameter of the optical disk substrate at this time is 120 mm, and in order to form an information signal on the optical disk substrate of this size by a conventional injection molding method, a substrate having a thickness of 0.6 mm or more is required. In one method of manufacturing an optical disk such as the above-described BD, an incident surface layer (light transmission layer) on which a recording / reproducing laser beam is incident is thinner than the thickness of a substrate on which an information signal is formed.

特開平9−161333号公報JP-A-9-161333 特開2000−36135号公報JP 2000-36135 A 特開2003−91888号公報JP 2003-91888 A

ところで、BDのように高記録密度になるとその精度も厳しくなり、特に入射面層である光透過層の厚さむらが大きいとディスク全面に渡って安定した記録再生ができなくなるため、その値はディスク面内の半径23mmから半径58.5mmの範囲で4μm以下にする必要がある。また上述したスピンコート法で形成された光透過層は、図7に示すようにディスクの内周が薄く外周に行くに従い厚くなる傾向があり、背景技術で述べた工法では厚さむらが4μmを越てしまう、という問題点があった。
これを解決する方法として特許文献1には紫外線硬化樹脂をスピンコートする際、紫外線スポット光を光ディスク基板の中心側から外周側へ移動させながら照射する方法が開示されている。具体的にはスピンコートがほぼ完了した光ディスク基板を回転させつつ、その内周部に紫外線スポット光を照射することにより内周部の樹脂を硬化させる。これにより硬化が完了した部位の樹脂の移動が規制される。続いて硬化した部位よりも外周部側の部位に紫外線スポット光を照射することにより樹脂を順次硬化させる。このようにスピンコートされた樹脂が外周部に向けて大きく移動する以前に内周部から外周部に向けて紫外線スポット光を順次照射している。
By the way, when the recording density is high like BD, the accuracy becomes severe, and particularly when the thickness of the light transmission layer as the incident surface layer is large, stable recording / reproduction cannot be performed over the entire surface of the disk. It is necessary to make it 4 μm or less within a radius of 23 mm to a radius of 58.5 mm in the disk surface. Further, as shown in FIG. 7, the light transmission layer formed by the above-described spin coating method tends to become thicker as the inner periphery of the disk becomes thinner and goes to the outer periphery, and the thickness unevenness of the method described in the background art is 4 μm. There was a problem of going over.
As a method for solving this, Patent Document 1 discloses a method of irradiating an ultraviolet spot light while moving the ultraviolet curable resin from the center side to the outer periphery side of the optical disk substrate when spin coating is performed. Specifically, while rotating the optical disc substrate on which spin coating is almost completed, the resin on the inner peripheral portion is cured by irradiating the inner peripheral portion with ultraviolet spot light. This restricts the movement of the resin at the site where curing is complete. Subsequently, the resin is sequentially cured by irradiating the spot on the outer peripheral portion side with respect to the cured part with ultraviolet spot light. Before the spin-coated resin moves greatly toward the outer peripheral portion, the ultraviolet spot light is sequentially irradiated from the inner peripheral portion toward the outer peripheral portion.

しかしながら、上記スピンコートされる紫外線硬化樹脂は空気雰囲気中では硬化し難いという性質を持つため、樹脂を十分に硬化させるべく同一箇所に紫外線スポット光を長時間にわたり照射させなければならず、その間に照射部位よりも外側の部位の樹脂は更に外側に向けて移動してしまうため、樹脂層の厚さは外周に行くに従って薄くなり、樹脂層の厚みが均一にならなくなってしまう、という問題点がある。
また、スピンコート時の樹脂の流動スピードは樹脂の温度変化に起因する粘度変化により容易に変化するため、雰囲気温度が変化すると樹脂の流動スピードが変化し、そのたびに光ディスク基板の回転条件を最適化する必要が生じるため、厳密に温度管理がされていない環境で使用する場合は非常に多くの手間がかかってしまう。また、そのような手間を省くためには空調設備を完備して雰囲気温度を管理するなど余計なコストがかかってしまう。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、短時間で、且つ容易に厚さが均一な光透過層を形成することが可能な光ディスクの作製方法及び光ディスク装置を提供することにある。
However, since the UV-cured resin that is spin-coated has a property that it is difficult to cure in an air atmosphere, it is necessary to irradiate the same spot with an ultraviolet spot light for a long time in order to sufficiently cure the resin. Since the resin outside the irradiated area moves further outward, the thickness of the resin layer becomes thinner as it goes to the outer periphery, and the thickness of the resin layer does not become uniform. is there.
Also, since the resin flow speed during spin coating easily changes due to viscosity changes caused by resin temperature changes, the resin flow speed changes as the ambient temperature changes, and the optical disk substrate rotation conditions are optimized each time. Therefore, when used in an environment where temperature control is not strictly performed, a great deal of labor is required. Moreover, in order to save such a trouble, extra costs, such as complete air-conditioning equipment and managing atmospheric temperature, will be required.
The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide an optical disc manufacturing method and an optical disc apparatus capable of easily forming a light transmission layer having a uniform thickness in a short time.

請求項1に係る発明は、光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスクの作製方法において、前記光透過層の形成は、前記情報記録面を上方に向けて前記光ディスク基板を回転テーブルに固定した後、前記回転テーブルを回転させながら、前記情報記録面に紫外線硬化樹脂を滴下して、前記情報記録面全体が前記紫外線硬化樹脂で覆う工程と、次に、前記回転テーブルを回転させながら、前記紫外線硬化樹脂の厚さを測定する工程と、前記紫外線硬化樹脂の厚さの測定結果が予め定められた所定の厚さになった場合に、紫外線を照射する作業を内周側から外周側に向かって順次行って、前記紫外線硬化樹脂を一次硬化して仮硬化させる工程と、次に、前記回転テーブルの回転を停止した後、前記紫外線硬化樹脂の全面に前記一次硬化時よりも強い強度の紫外線を照射して二次硬化して完全硬化させる工程と、からなることを特徴とする光ディスクの作製方法である。   The invention according to claim 1 is an optical disc manufacturing method in which a light transmitting layer is formed on the information recording surface of an optical disc substrate with a uniform thickness. The light transmitting layer is formed with the information recording surface facing upward. After fixing the optical disk substrate to the rotary table, while rotating the rotary table, dropping the ultraviolet curable resin onto the information recording surface, and covering the entire information recording surface with the ultraviolet curable resin; and A step of measuring the thickness of the ultraviolet curable resin while rotating the rotary table, and an operation of irradiating the ultraviolet ray when the measurement result of the thickness of the ultraviolet curable resin reaches a predetermined thickness. Are sequentially performed from the inner circumference side toward the outer circumference side, and the ultraviolet curing resin is primarily cured and temporarily cured, and then the rotation of the rotary table is stopped, and then the ultraviolet curing resin A step of completely curing the cured secondary by irradiating ultraviolet rays of high intensity than during the primary curing in the surface, a manufacturing method of the optical disc, characterized by comprising.

請求項2に係る発明は、光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスクの作製方法において、前記光透過層の形成は、前記情報記録面を上方に向けて前記光ディスク基板を回転テーブルに固定した後、前記回転テーブルを回転させながら、前記情報記録面に紫外線硬化樹脂を滴下して、前記情報記録面全体が前記紫外線硬化樹脂で覆う工程と、前記回転テーブルを停止した後、所定の厚さを有する光透過性シートを前記紫外線硬化樹脂上に載置する工程と、次に、前記回転テーブルを回転させながら、前記紫外線硬化樹脂の厚さを測定する工程と、前記紫外線硬化樹脂の厚さの測定結果が予め定められた所定の厚さになった場合に、紫外線を照射する作業を内周側から外周側に向かって順次行って、前記紫外線硬化樹脂を一次硬化して仮硬化させる工程と、次に、前記回転テーブルの回転を停止した後、前記紫外線硬化樹脂の全面に前記一次硬化時よりも強い強度の紫外線を照射して二次硬化して完全硬化させる工程と、からなることを特徴とする光ディスクの作製方法である。   The invention according to claim 2 is an optical disc manufacturing method in which a light transmission layer is formed on the information recording surface of an optical disk substrate with a uniform thickness. The light transmission layer is formed with the information recording surface facing upward. After fixing the optical disk substrate to the rotary table, while rotating the rotary table, dropping the ultraviolet curable resin onto the information recording surface, and covering the entire information recording surface with the ultraviolet curable resin; and After stopping, placing the light transmissive sheet having a predetermined thickness on the ultraviolet curable resin, and then measuring the thickness of the ultraviolet curable resin while rotating the rotary table; When the measurement result of the thickness of the ultraviolet curable resin reaches a predetermined thickness, the operation of irradiating ultraviolet rays is sequentially performed from the inner peripheral side to the outer peripheral side, and the ultraviolet hardening is performed. Next, the resin is primarily cured and temporarily cured, and then the rotation of the rotary table is stopped, and then the entire surface of the ultraviolet curable resin is irradiated with ultraviolet rays having a stronger intensity than that during the primary curing to perform secondary curing. And a step of completely curing the optical disc.

請求項3に係る発明は、光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスク装置において、前記光ディスク基板を載置する回転テーブルと、前記回転テーブルを回転する回転手段と、前記回転テーブルに載置された前記光ディスク基板の情報記録面に紫外線硬化樹脂を塗布する樹脂供給手段と、前記回転テーブルを回転させながら、前記光ディスク基板の情報記録面に塗布された前記紫外線硬化樹脂の厚さを測定する膜厚測定手段と、前記紫外線硬化樹脂が予め定められた所定の厚さになった場合に、前記紫外線硬化樹脂を硬化させる紫外線照射手段と、からなることを特徴とする光ディスク装置である。   According to a third aspect of the present invention, there is provided an optical disc apparatus in which a light transmission layer is formed with a uniform thickness on an information recording surface of an optical disc substrate, a rotating table for placing the optical disc substrate, and a rotating means for rotating the rotating table; A resin supplying means for applying an ultraviolet curable resin to the information recording surface of the optical disk substrate placed on the rotary table; and the ultraviolet curing applied to the information recording surface of the optical disk substrate while rotating the rotary table. A film thickness measuring means for measuring the thickness of the resin, and an ultraviolet irradiation means for curing the ultraviolet curable resin when the ultraviolet curable resin reaches a predetermined thickness. It is an optical disk device.

請求項4に係る発明は、光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスク装置において、前記光ディスク基板を載置する回転テーブルと、前記回転テーブルを回転する回転手段と、前記回転テーブルに載置された前記光ディスク基板の情報記録面に紫外線硬化樹脂を塗布する樹脂供給手段と、前記紫外線硬化樹脂上に光透過性シートを載置する載置手段と、前記回転テーブルを回転させながら、前記光ディスク基板の情報記録面に塗布された前記紫外線硬化樹脂の厚さを測定する膜厚測定手段と、前記紫外線硬化樹脂が予め定められた所定の厚さになった場合に、前記紫外線硬化樹脂を硬化させる紫外線照射手段と、からなることを特徴とする光ディスク装置である。   According to a fourth aspect of the present invention, there is provided an optical disc apparatus in which a light transmission layer is formed with a uniform thickness on an information recording surface of an optical disc substrate, a rotary table on which the optical disc substrate is placed, and a rotating means for rotating the rotary table; A resin supply means for applying an ultraviolet curable resin to an information recording surface of the optical disk substrate placed on the rotary table, a placement means for placing a light-transmissive sheet on the ultraviolet curable resin, and the rotary table. Film thickness measuring means for measuring the thickness of the ultraviolet curable resin applied to the information recording surface of the optical disk substrate while rotating the optical disk substrate, and when the ultraviolet curable resin reaches a predetermined thickness And an ultraviolet irradiation means for curing the ultraviolet curable resin.

本発明の光ディスクの作製方法及びディスク装置によれば、次のように優れた作用効果を発揮することができる。
情報信号の入った基板の情報記録面に紫外線硬化樹脂をスピンコート法により光ディスク基板の全周に塗布して光透過層を形成する工法において、スピンコート中に紫外線スポット光を光ディスク基板の中心側から外周側まで順次照射する際、紫外線硬化樹脂を完全硬化させるのではなく、樹脂の動きを規制できる程度にまでしか硬化させず(仮硬化)、後工程で完全に硬化させるようにしたので、紫外線スポット光を照射している位置よりも外周側の部位の樹脂がスピン中に大きく外周側へ移動することが無くなり、光透過層の厚さを均一化させることができ、例えばこの厚さむらを目的とする4μm以下にすることができる。また、紫外線スポット光を当てる時間も短縮することができる。
According to the optical disk manufacturing method and the disk device of the present invention, the following excellent operational effects can be exhibited.
In the method of forming a light transmission layer by applying UV curable resin to the entire circumference of the optical disk substrate by spin coating on the information recording surface of the substrate containing the information signal, the ultraviolet spot light is applied to the center side of the optical disk substrate during spin coating. When sequentially irradiating from the outer periphery to the outer peripheral side, the UV curable resin is not completely cured, but only cured to such an extent that the movement of the resin can be regulated (temporary curing), and is completely cured in the subsequent process. The resin on the outer peripheral side of the position irradiated with the ultraviolet spot light is not greatly moved to the outer peripheral side during the spin, and the thickness of the light transmission layer can be made uniform. Can be set to 4 μm or less. In addition, the time for applying the ultraviolet spot light can be shortened.

さらに、紫外線硬化樹脂を用いて光透過性シートを光ディスク基板に貼り合せて光透過層を形成することにより、樹脂は空気に触れないため早く硬化し、また硬化させるべき樹脂の量も大幅に減少することができるため、紫外線スポット光の照射時間を大幅に短縮することができるのみならず、効率よく均一な厚さの光透過層を形成することができる。
また、スピンコート中に紫外線スポット光を光ディスク基板の中心側から外周側まで順次照射する時、光透過層の厚さを測定しながら、その測定結果に基づき紫外線スポット光の移動スピードを制御するようにしたので、光透過層の厚さの均一性をより向上させることができるのみならず、たとえ生産中に樹脂の粘度変化が起きても安定した厚さの光透過層を形成することができる。
In addition, by forming a light-transmitting layer by bonding a light-transmitting sheet to an optical disk substrate using an ultraviolet curable resin, the resin does not touch air and cures quickly, and the amount of resin to be cured is greatly reduced. Therefore, not only the irradiation time of the ultraviolet spot light can be greatly shortened but also a light transmission layer having a uniform thickness can be formed efficiently.
Also, when the UV spot light is sequentially irradiated from the center side to the outer periphery side of the optical disk substrate during spin coating, the movement speed of the UV spot light is controlled based on the measurement result while measuring the thickness of the light transmission layer. As a result, the uniformity of the thickness of the light transmission layer can be further improved, and a light transmission layer having a stable thickness can be formed even if the viscosity of the resin changes during production. .

以下、本発明の好適な実施の形態を添付図面に基づいて説明する。なお、以下に述べる実施の形態は本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。図1は本発明方法により作製される光ディスクを示す断面図、図2は図1中のA部の拡大図、図3はスピンコート法で紫外線硬化樹脂のみで光透過層を形成する方法を示す図、図4はスピンコート法で光ディスク基板に光透過性シートを紫外線硬化樹脂を用いて貼り合わせて光透過層を形成する方法を示す図、図5はスピンコート法で光ディスク基板に光透過性シートを紫外線硬化樹脂を用いて貼り合わせた後に光透過性シートを剥がして光透過層を形成する方法を示す図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description of the effect, it is not restricted to these aspects. FIG. 1 is a cross-sectional view showing an optical disk produced by the method of the present invention, FIG. 2 is an enlarged view of part A in FIG. 1, and FIG. 3 shows a method of forming a light transmission layer with only an ultraviolet curable resin by spin coating. FIG. 4 is a diagram showing a method for forming a light transmissive layer by bonding a light transmissive sheet to an optical disk substrate using an ultraviolet curable resin by a spin coating method, and FIG. 5 is a diagram showing a method for transmitting light to the optical disk substrate by a spin coating method. It is a figure which shows the method of peeling a light transmissive sheet | seat after bonding a sheet | seat using ultraviolet curable resin, and forming a light transmissive layer.

最初に本発明の対象となる高記録密度の光ディスクについて説明する。
図1及び図2に示すように、光ディスクDはポリカーボネート樹脂よりなる光ディスク用基板(以下、単に「基板」とも称す)2を有している。この基板2は樹脂の射出成形により形成され、その表面には螺旋状または同心円状に形成されたピット列、或いは溝列よりなる凹凸部4が形成されており、この凹凸部4の形成されている面が情報記録面4Aとなっている。この基板2の情報記録面4A上に反射層6、上引き層8、記録層10、下引き層12が順次スパッタにより積層されており、その上に光透過層14が形成されている。上記基板2の情報記録面4A側の内周部には溝16が形成されており、この溝16は母型となるスタンパーを射出成形用金型に取り付ける為のホルダーがリング状の凸部になっているため、その凸部が転写して成形されて出来たものである。
First, a high recording density optical disc that is an object of the present invention will be described.
As shown in FIGS. 1 and 2, the optical disc D has an optical disc substrate (hereinafter also simply referred to as “substrate”) 2 made of polycarbonate resin. The substrate 2 is formed by resin injection molding, and the surface thereof is provided with uneven portions 4 formed of spiral or concentric pit rows or groove rows, and the uneven portions 4 are formed. The information recording surface 4A. A reflective layer 6, an overcoat layer 8, a recording layer 10, and an undercoat layer 12 are sequentially laminated on the information recording surface 4A of the substrate 2 by a sputtering, and a light transmission layer 14 is formed thereon. A groove 16 is formed in the inner peripheral portion of the substrate 2 on the information recording surface 4A side, and this groove 16 has a ring-shaped convex portion as a holder for attaching a stamper as a mother mold to an injection mold. Therefore, the convex portion is formed by transferring and molding.

上述のように基板2は成形時にスタンパーから転写された螺旋状または同心円状のピット列や、溝列からなる凹凸部4が情報信号として形成されており、この情報記録面4A上に、反射層6としてアルミニウムなどの記録再生レーザ光に対して高い反射率を有する反射膜を形成した場合には、再生専用の光ディスクとなる。更にまた反射層6としては、例えばキサンテン系、トリフェニルメタン系色素など記録再生用のレーザ光の波長を吸収して発熱する材料を用いた場合には、追記型の光ディスクと呼ばれる一度だけ記録できる光ディスクを得ることができる。   As described above, the substrate 2 is formed with the spiral or concentric pit rows transferred from the stamper at the time of molding and the concavo-convex portions 4 consisting of the groove rows as information signals. On the information recording surface 4A, the reflective layer When a reflective film having a high reflectance with respect to a recording / reproducing laser beam such as aluminum is formed as 6, an optical disk dedicated to reproduction is obtained. Furthermore, when the reflective layer 6 is made of a material that absorbs the wavelength of laser light for recording / reproduction, such as xanthene-based or triphenylmethane-based dyes, recording can be performed only once, which is called a write-once type optical disk. An optical disk can be obtained.

また上記反射層6に上記上引き層8を介して積層される記録層10として、例えばGe−Sb−Te系合金のように結晶状態と非晶質状態とで記録再生用のレーザ光に対して反射率が異なるような材料よりなる相変化型記録膜を用いた場合には、一度だけ記録できる光ディスクや、複数回記録できる光ディスクを得ることができる。更には、上記した構造であって、アルミニウム等よりなる反射層6を有しない構造を用いても、本発明の効果は変わらないことが実験的に確かめられている。更に、情報記録面4A上に磁気光学効果を有する記録磁性層を設けることにより、何度でも書き換え可能な光磁気型ディスクを得ることができる。
更にまた、前記したような記録層10を1層のみ有する単層構成のみならず、中間層(図示せず)を得て膜構成を対称型にした2層の記録層を有する2層構成にした形態の光ディスクや、カード状をした光カードや、光ディスク等の外径を長方形状に加工した孔のあいたカード等において、本発明は全て適応可能である。
Further, as the recording layer 10 laminated on the reflective layer 6 through the overcoat layer 8, for recording / reproducing laser light in a crystalline state and an amorphous state such as a Ge—Sb—Te alloy, for example. When a phase change type recording film made of a material having different reflectivity is used, an optical disc that can be recorded only once or an optical disc that can be recorded a plurality of times can be obtained. Furthermore, it has been experimentally confirmed that the effect of the present invention does not change even when a structure having the above-described structure and having no reflective layer 6 made of aluminum or the like is used. Further, by providing a recording magnetic layer having a magneto-optical effect on the information recording surface 4A, a magneto-optical disk that can be rewritten any number of times can be obtained.
Furthermore, not only the single-layer structure having only one recording layer 10 as described above, but also a two-layer structure having two recording layers in which an intermediate layer (not shown) is obtained to make the film structure symmetrical. The present invention can be applied to any of the above-described optical discs, card-like optical cards, optical discs and other cards with holes having a rectangular outer diameter, and the like.

上記光透過層14は樹脂のスピンコート法により形成され、この光透過層14の形成方法には、図3のように基板2の情報記録面4A上に紫外線硬化樹脂18を滴下してこれを全面に広げて紫外線硬化樹脂18のみで形成する方法と、図4のように基板2上に光透過性シート10を紫外線硬化樹脂18で貼り合せる方法とがある。例えばBDを例に取ると光透過層14の厚さは100μmであるので、図4に示すように光透過性シート20を貼り合せる場合には、光透過性シート20の厚さを90μmに設定すれば、樹脂層18の厚さを10μmとする。この光透過性シート20は打ち抜きにより成形されるが、シート20の外径が基板2の外径より大きい場合には、このシート20が剥がれ易くなり、シート20の内径が基板2の内径より小さいと記録再生した時のフォーカスやトラッキングが悪くなる等の欠点を生じるため、これらの不都合を防止するために、シート20の外径は基板2の外径より小さく、シート20の内径は基板2の内径よりも大きく設定することが望ましい。上記光透過性シート20の材質は、本実施例ではポリカーボネート樹脂を使用しているが、アモルファスポリオレフィンシートやポリエステルシートも適応可能である。   The light transmission layer 14 is formed by a resin spin coating method. The light transmission layer 14 is formed by dropping an ultraviolet curable resin 18 onto the information recording surface 4A of the substrate 2 as shown in FIG. There are a method in which the entire surface is spread out only by the ultraviolet curable resin 18 and a method in which the light transmissive sheet 10 is bonded to the substrate 2 by the ultraviolet curable resin 18 as shown in FIG. For example, when BD is taken as an example, the thickness of the light transmission layer 14 is 100 μm. Therefore, when the light transmission sheet 20 is bonded as shown in FIG. 4, the thickness of the light transmission sheet 20 is set to 90 μm. In this case, the thickness of the resin layer 18 is set to 10 μm. The light transmissive sheet 20 is formed by punching. However, when the outer diameter of the sheet 20 is larger than the outer diameter of the substrate 2, the sheet 20 is easily peeled off, and the inner diameter of the sheet 20 is smaller than the inner diameter of the substrate 2. In order to prevent these disadvantages, the outer diameter of the sheet 20 is smaller than the outer diameter of the substrate 2, and the inner diameter of the sheet 20 is smaller than that of the substrate 2. It is desirable to set it larger than the inner diameter. In the present embodiment, a polycarbonate resin is used as the material of the light transmissive sheet 20, but an amorphous polyolefin sheet or a polyester sheet is also applicable.

また光透過層14を紫外線硬化樹脂のみで形成する場合は、図3において説明したように単にスピンコートで樹脂の厚さが100μmになるまで樹脂を振り切って形成する方法と、図5に示すように、基板2との間に紫外線硬化樹脂18を介在させて適当な厚さの光透過性シート22を貼り合せ、100μmの厚さの樹脂層を形成した後に上記光透過性シート22を剥がして形成する方法があり、本発明はいずれの場合にも適応可能である。   Further, when the light transmission layer 14 is formed only by the ultraviolet curable resin, as described with reference to FIG. 3, a method of forming the resin by simply shaking the resin until the thickness of the resin reaches 100 μm as shown in FIG. Further, an ultraviolet curable resin 18 is interposed between the substrate 2 and a light transmissive sheet 22 having an appropriate thickness, and a resin layer having a thickness of 100 μm is formed, and then the light transmissive sheet 22 is peeled off. There is a method of forming, and the present invention is applicable to either case.

上記した光透過層14を形成するための光ディスク装置について図6を参照して説明する。図6は本発明の光ディスク装置を示すブロック構成図である。この光ディスク装置30は、光ディスク用基板2を載置する回転テーブルとしてのターンテーブル32を有している。このターンテーブル32は図示しない軸受けを介して回転手段としてのモータ34に接続されており、回転するようになっている。上記ターンテーブル32の中心にはピン36が設置されており、このピン36の外径と上記基板2の内径とは略同径になっており、またターンテーブル32の中心と基板2の中心とは同位置になるように構成されている。また上記基板2に光透過性シート20を貼り合せる際に光透過性シート20をガイドするためのカラー38が上記ピン36の上部外周に設けられているが、このカラー38の内径とピン36の外径も略同径になっており、上記ターンテーブル32の中心とカラー38の中心も同位置になるように構成されている。ただし、光透過性シート20を用いずに紫外線硬化樹脂のみで光透過層14を形成する場合には上記カラー38は使用しない。   An optical disc apparatus for forming the above-described light transmission layer 14 will be described with reference to FIG. FIG. 6 is a block diagram showing the optical disk apparatus of the present invention. The optical disk device 30 has a turntable 32 as a rotary table on which the optical disk substrate 2 is placed. The turntable 32 is connected to a motor 34 as a rotating means through a bearing (not shown) so as to rotate. A pin 36 is provided at the center of the turntable 32, and the outer diameter of the pin 36 and the inner diameter of the substrate 2 are substantially the same, and the center of the turntable 32 and the center of the substrate 2 are Are configured to be in the same position. Further, a collar 38 for guiding the light transmissive sheet 20 when the light transmissive sheet 20 is bonded to the substrate 2 is provided on the outer periphery of the upper portion of the pin 36. The outer diameter is substantially the same, and the center of the turntable 32 and the center of the collar 38 are configured to be at the same position. However, the color 38 is not used when the light transmissive layer 14 is formed only by the ultraviolet curable resin without using the light transmissive sheet 20.

上記ターンテーブル32の上方には、必要時に上記光透過性シート20を搬送してきて上記基板2上に載置する載置手段40が設けられる。また、上記ターンテーブル32の上方には、スライダー42が設置されており、上記基板2の半径方向に沿って動くように構成されている。このスライダー42には、紫外線硬化樹脂を供給するための樹脂供給手段としての樹脂供給ノズル44と、紫外線照射手段としての紫外線スポット光ノズル46と、樹脂層、すなわち光透過層14の厚さを測定する膜厚測定手段としての膜厚測定器48とをそれぞれ搭載しており、上記紫外線スポット光ノズル46と膜厚測定器48の位置関係は紫外線スポット光ノズル46が基板2の内周側になるように隣接して設置されている。   Above the turntable 32, there is provided mounting means 40 for transporting the light-transmissive sheet 20 and placing it on the substrate 2 when necessary. A slider 42 is installed above the turntable 32 and is configured to move along the radial direction of the substrate 2. The slider 42 measures the thickness of a resin supply nozzle 44 as a resin supply means for supplying an ultraviolet curable resin, an ultraviolet spot light nozzle 46 as an ultraviolet irradiation means, and a resin layer, that is, the light transmission layer 14. A film thickness measuring device 48 as a film thickness measuring means is mounted, and the positional relationship between the ultraviolet spot light nozzle 46 and the film thickness measuring device 48 is such that the ultraviolet spot light nozzle 46 is on the inner peripheral side of the substrate 2. So that they are installed next to each other.

また樹脂供給ノズル44と紫外線スポット光ノズル46とは、それぞれ離れて設置してある樹脂供給機本体50及び紫外線照射機本体52にそれぞれ接続されている。また、上記モータ34、スライダー42、樹脂供給機本体50、紫外線照射機本体52、膜厚測定器48はそれぞれ制御装置54に接続されており、各々の動作はこの制御装置54により制御される。この制御装置54は膜厚測定器48による測定結果をフィードバックし、紫外線スポット光の半径方向の送り速度を制御出来るようになっている。またこの膜厚測定器48は必要が無ければ削除することが可能であり、膜厚測定器48を使わない場合には、スライダー42に対して一定速度の送りや予め設定したプログラム制御の送り動作が出来るようになっている。   The resin supply nozzle 44 and the ultraviolet spot light nozzle 46 are respectively connected to a resin supply machine main body 50 and an ultraviolet irradiation machine main body 52 that are installed separately from each other. The motor 34, the slider 42, the resin feeder main body 50, the ultraviolet irradiator main body 52, and the film thickness measuring device 48 are each connected to a control device 54, and each operation is controlled by the control device 54. The control device 54 feeds back the measurement result obtained by the film thickness measuring device 48 and can control the feed rate of the ultraviolet spot light in the radial direction. The film thickness measuring device 48 can be deleted if not necessary. When the film thickness measuring device 48 is not used, the slider 42 is fed at a constant speed or a preset program-controlled feeding operation. Can be done.

次に本発明方法の一例の動作概要を説明する。
まず表面に凹凸部4(図2参照)が形成されて情報信号の入った基板2の情報記録面4Aに反射層6、上引き層8、記録層10、下引き層12を順次スパッタにより積層した基板2を、その成膜面を上にしてターンテーブル32上に設定する。この際、ターンテーブル32の中心に設置したピン36をガイドとして基板2をターンテーブル32に吸着装置(図示せず)で減圧固定し、更にピン36をガイドとして光透過性シート20をガイドするためのカラー38を基板2上に載置する。その後、モータ34を駆動させターンテーブル32を低速で回転させながら、スライダー42を駆動させ、紫外線硬化樹脂を滴下する位置まで樹脂供給ノズル44を動かして樹脂を滴下する。この時、基板2が低速で回転しているため、滴下した樹脂は環状となる。尚、樹脂滴下中にスライダー42を駆動して樹脂供給ノズル44を移動することにより、樹脂の滴下範囲を基板の半径方向へ広げることが可能である。次に樹脂滴下後、ターンテーブル32の回転を止めると共に、樹脂供給ノズル44を定位置に戻す。
Next, an operation outline of an example of the method of the present invention will be described.
First, an uneven portion 4 (see FIG. 2) is formed on the surface, and a reflective layer 6, an overcoat layer 8, a recording layer 10, and an undercoat layer 12 are sequentially laminated on the information recording surface 4A of the substrate 2 containing an information signal by sputtering. The substrate 2 is set on the turntable 32 with the film formation surface facing up. At this time, in order to guide the light-transmitting sheet 20 using the pin 36 installed at the center of the turntable 32 as a guide, the substrate 2 is fixed to the turntable 32 under reduced pressure by a suction device (not shown), and the pin 36 is used as a guide. The collar 38 is placed on the substrate 2. Thereafter, while driving the motor 34 and rotating the turntable 32 at a low speed, the slider 42 is driven, and the resin supply nozzle 44 is moved to a position where the ultraviolet curable resin is dropped to drop the resin. At this time, since the substrate 2 is rotating at a low speed, the dropped resin has an annular shape. In addition, by driving the slider 42 and moving the resin supply nozzle 44 during resin dripping, the resin dripping range can be expanded in the radial direction of the substrate. Next, after the resin is dripped, the rotation of the turntable 32 is stopped and the resin supply nozzle 44 is returned to a fixed position.

次に、予め内径がカラー38の外径と略同径になされ、外径が基板2の外径より小さくなるように打ち抜き成形された光透過性シート20を載置手段40を用いて上記樹脂上に載置するが、この際、光透過性シート20の内外周には打ち抜き時に発生したバリが有るので、このバリが基板2とは反対面に来る方向で載置することが望ましい。この光透過性シート20の載置後に樹脂が適当量延伸したならばターンテーブル32を高速回転させ、樹脂を基板2の外周端まで全面に行き渡らせると共に、余分な樹脂を振り切りにより取り除く。この樹脂を延伸させる際、基板2の溝16(図1参照)に樹脂が入り込むと高速回転時に溝16内の樹脂が溝16から外に飛び出し、樹脂層の厚みの均一性を乱す可能性が有るので、樹脂が溝16に入り込まないようにすることが望ましい。この樹脂をスピンで外側へ飛ばしている間にスライダー42を駆動させ、膜厚測定器48を樹脂供給部付近に移動させ、膜厚、すなわちここでは光透過性シート20の厚さと樹脂層の厚さの合計値の測定を開始する。ここで紫外線スポット光ノズル46は膜厚測定器48より基板2の内周側に設置されており、基板2の回転中、膜厚が目標とする厚さに達すると制御装置54からスライダー42と紫外線照射機本体52に指令が送られ、紫外線スポット光ノズル46から紫外線照射を開始し、スライダー42により基板2の外周へ向けて紫外線スポット光ノズル46と膜厚測定器48が移動を開始する。   Next, the light transmitting sheet 20 that has been punched and formed so that the inner diameter is approximately the same as the outer diameter of the collar 38 and the outer diameter is smaller than the outer diameter of the substrate 2 is placed on the resin using the mounting means 40. At this time, since there are burrs generated at the time of punching on the inner and outer peripheries of the light transmissive sheet 20, it is desirable to place the burrs in the direction opposite to the substrate 2. If an appropriate amount of resin is stretched after the light transmissive sheet 20 is placed, the turntable 32 is rotated at a high speed to spread the resin to the entire surface of the outer periphery of the substrate 2 and to remove excess resin by shaking off. When the resin is stretched, if the resin enters the groove 16 (see FIG. 1) of the substrate 2, the resin in the groove 16 may jump out of the groove 16 during high-speed rotation and disturb the uniformity of the resin layer thickness. Therefore, it is desirable to prevent the resin from entering the groove 16. The slider 42 is driven while the resin is being blown outward by the spin, and the film thickness measuring device 48 is moved to the vicinity of the resin supply unit, so that the film thickness, that is, the thickness of the light-transmitting sheet 20 and the thickness of the resin layer here. Start measuring the total value. Here, the ultraviolet spot light nozzle 46 is installed on the inner peripheral side of the substrate 2 with respect to the film thickness measuring device 48, and when the film thickness reaches the target thickness during the rotation of the substrate 2, the slider 42 and the slider 42 are connected. A command is sent to the ultraviolet irradiator main body 52 and ultraviolet irradiation is started from the ultraviolet spot light nozzle 46, and the ultraviolet spot light nozzle 46 and the film thickness measuring device 48 start moving toward the outer periphery of the substrate 2 by the slider 42.

この紫外線が照射されると、照射された部分の樹脂は仮硬化し、遠心力がかかっても外へ流れなくなるため、回転を続けてもその部分の厚さは目標の厚さに維持される。また、紫外線スポット光の照射エネルギーが強すぎる場合には、硬化の跡が残る場合があるので、適切な範囲の照射エネルギー量にする必要がある。そこで膜厚測定器48は常に膜厚を測定しており、紫外線スポット光による照射を行いながら外周へ向かって進む際、膜厚が目標値より厚くなった場合にはスライダー42の送りを遅くしたり、或いは止めたりして膜厚の厚い部分の樹脂の延伸を十分に行わせ、目標の厚さに達したら再度送りを速くしたり、或いは開始したりし、基板2の最外周に達するまでこの制御を続行する。   When this ultraviolet ray is irradiated, the resin of the irradiated portion is temporarily cured and does not flow outside even if a centrifugal force is applied. Therefore, even if the rotation is continued, the thickness of the portion is maintained at the target thickness. . In addition, when the irradiation energy of the ultraviolet spot light is too strong, there may be a case where a curing mark remains, so it is necessary to set the irradiation energy amount within an appropriate range. Therefore, the film thickness measuring device 48 always measures the film thickness, and when the film thickness is larger than the target value when moving toward the outer periphery while irradiating with ultraviolet spot light, the feeding of the slider 42 is delayed. Until it reaches the target thickness until it reaches the outermost circumference of the substrate 2. Continue this control.

また、目標の膜厚よりも薄くなってしまった場合には、基板2の回転数が速過ぎたり、或いは紫外線スポット光の照度が低すぎる等の動作タイミングの問題なので、制御装置54から警報を発し、作業者に適切なモータ回転数や紫外線スポット光の照度の変更を促す。このようにして最外周まで紫外線スポット光による照射が完了した時点で基板2の回転を止める。このようにして樹脂を一次硬化して仮硬化したならば、次に、別工程によって全面に強い紫外線を照射させ、樹脂を二次硬化させて完全に硬化させる。   In addition, when the film thickness is thinner than the target film thickness, the control device 54 issues an alarm because of the problem of operation timing such as the rotational speed of the substrate 2 being too fast or the illuminance of the ultraviolet spot light being too low. And prompts the operator to change the motor speed and the illuminance of the ultraviolet spot light. In this way, the rotation of the substrate 2 is stopped when the irradiation with the ultraviolet spot light is completed to the outermost periphery. If the resin is first cured and temporarily cured in this manner, then the entire surface is irradiated with strong ultraviolet rays in a separate process, and the resin is secondarily cured to be completely cured.

以上のように樹脂層(光透過層)の厚さを検知し、その厚さをコントロールしながら樹脂を硬化させていくので、温度変化による樹脂の粘度変化がおきても、装置で自動的に対応し、光透過層14の厚さを一定で均一な厚さに維持することが出来る。また、基板2の回転中は樹脂が流れない程度までしか仮硬化させず、完全硬化は別工程により全面一斉に硬化させるようにしたので、樹脂の硬化による跡がつくことがなく、短時間で入射面層である光透過層14を形成することが出来る。   As described above, the thickness of the resin layer (light transmission layer) is detected, and the resin is cured while controlling the thickness, so even if the viscosity of the resin changes due to temperature changes, the device automatically Correspondingly, the thickness of the light transmission layer 14 can be kept constant and uniform. Also, during the rotation of the substrate 2, the resin is temporarily cured only to such an extent that the resin does not flow, and the complete curing is performed all at once by separate processes, so that there is no trace due to the curing of the resin, and in a short time. The light transmission layer 14 which is an incident surface layer can be formed.

尚、上述した内容は紫外線スポット光で樹脂を仮硬化させ、且つ高速回転中の厚さを測定し、そのデータを基にスライダー42の送り速度を制御する動作を説明したが、製造環境の温度が安定しており樹脂の粘度変化が少ない場合は、紫外線スポット光のスライダー42の送り速度を予め求めておき、一定条件で連続の貼り合わせを行っても光透過層の厚さむらは良好な値を得ることが出来る。   In the above description, the operation of temporarily curing the resin with ultraviolet spot light and measuring the thickness during high-speed rotation and controlling the feed speed of the slider 42 based on the data has been described. Is stable and the change in the viscosity of the resin is small, the feeding speed of the slider 42 of the ultraviolet spot light is obtained in advance, and the thickness unevenness of the light transmission layer is good even if continuous bonding is performed under a certain condition. The value can be obtained.

また、光透過性シート20を用いず、紫外線硬化樹脂のみで光透過層14を形成する場合は、上記工程からカラー38と光透過性シート20を載置する動作を省くのみで、それ以外の動作は同じである。また、光透過性シート20を貼り合せる際の樹脂層の厚さ設定や、樹脂の種類によっては硬化が早く、紫外線スポット光のみで完全硬化する場合も有り、そのような場合には後工程での紫外線全面照射は必要なくなる。
また図5に示すように、光透過性シート22を後に除去する製法を用いる場合には、膜厚測定器48の設定値は、光透過性シート22の厚さを予め加味した設定値とし、例えば最終的に100μmの厚さの光透過層14を得る場合であって、光透過性シート22の厚さが50μmであるならば、膜厚測定器48の設定値は150μmとする。そして、樹脂の完全硬化処理後にこの光透過性シート22を除去する。この場合、光透過性シート22の剥離を容易化するために、光透過性シート22の裏面に予め剥離容易化処理を施しておく。
In addition, when the light transmissive layer 14 is formed only by the ultraviolet curable resin without using the light transmissive sheet 20, only the operation of placing the collar 38 and the light transmissive sheet 20 is omitted from the above steps. The operation is the same. In addition, depending on the thickness setting of the resin layer when the light-transmitting sheet 20 is bonded and depending on the type of resin, curing may be fast, and it may be completely cured only by ultraviolet spot light. No need for UV irradiation.
As shown in FIG. 5, when using a manufacturing method for removing the light transmissive sheet 22 later, the setting value of the film thickness measuring device 48 is set to a setting value that takes into account the thickness of the light transmissive sheet 22 in advance. For example, when the light transmission layer 14 having a thickness of 100 μm is finally obtained, and the thickness of the light transmission sheet 22 is 50 μm, the setting value of the film thickness measuring device 48 is set to 150 μm. Then, after the resin is completely cured, the light transmissive sheet 22 is removed. In this case, in order to facilitate the peeling of the light transmissive sheet 22, a peeling facilitation process is performed on the back surface of the light transmissive sheet 22 in advance.

<実施例>
以下、具体的数値を上げながら本発明方法を更に詳しく述べる。
射出成形機に取り付けた金型の片面に情報信号の母型となるスタンパーの内周部は、直径が22mm付近を凸にしたホルダーで、外周部は吸着によりそれぞれ取り付け、樹脂温度380℃で溶融した光ディスク用のポリカーボネート樹脂を金型のキャビティーに入れて冷却した後(金型温度115℃)、基板2を金型から取り出し、外径が120mm、内径が15mm、厚さが1.1mm、内周部の情報記録面側に溝(外径が22mm、内径が21mm、深さが0.2mm)16の形成された片面に情報信号の入った光ディスク用基板2を製作した。この基板2の情報記録面4A上に反射層6としてAg合金膜を200nm、上引き層8としてZnSiO 膜を10nm、記録層10としてGeSbTe合金膜を13nm、下引き層12としてZnSiO 膜を13nm、それぞれスパッタにより順次積層した。
<Example>
Hereinafter, the method of the present invention will be described in more detail while increasing specific numerical values.
The inner periphery of the stamper, which serves as the base for the information signal, on one side of the mold attached to the injection molding machine is a holder with a diameter of about 22 mm. The outer periphery is attached by adsorption and melted at a resin temperature of 380 ° C. After the polycarbonate resin for the optical disk was cooled in the mold cavity (mold temperature 115 ° C.), the substrate 2 was taken out of the mold, the outer diameter was 120 mm, the inner diameter was 15 mm, the thickness was 1.1 mm, An optical disk substrate 2 containing an information signal on one side where grooves (outer diameter: 22 mm, inner diameter: 21 mm, depth: 0.2 mm) 16 were formed on the information recording surface side of the inner periphery was manufactured. On the information recording surface 4A of the substrate 2, an Ag alloy film is 200 nm as the reflective layer 6, a ZnSiO 2 film is 10 nm as the overcoat layer 8, a GeSbTe alloy film is 13 nm as the recording layer 10, and a ZnSiO 2 film is used as the undercoat layer 12. The layers were sequentially stacked by sputtering at 13 nm.

次にターンテーブル32の中心に設けた外径15mmのピン36をガイドとして、この基板2の成膜面を上にしてターンテーブル32上に載置し、図示しない減圧吸着により基板2を固定し、更に内径が15mm、外径が20mmのカラー38を、ピン36をガイドとして基板2上に載置した。その後、基板2を70rpmで回転させ、また樹脂供給ノズル44を基板2上に移動させて、樹脂供給ノズル44より紫外線硬化樹脂(大日本インキ社製EX8206:25℃時の粘度65mPa・s)を滴下させて基板2上の円周方向に行き渡らせた。その後、基板2の回転を停止して樹脂供給ノズル44を元に戻した後、光透過性シート20として外径が119mm、内径が20mmに予め加工された厚さが95μmの光透過性であるポリカーボネートシートを上記カラー38をガイドとして紫外線硬化樹脂上に落下させ、表面張力により紫外線硬化樹脂が適当量延伸した後、ターンテーブル32を4000rpmの高速回転で30秒間回転させ、樹脂を基板2の外周に行き渡らせると共に、余分な樹脂を振り切りにより取り除いた。   Next, using a pin 36 having an outer diameter of 15 mm provided at the center of the turntable 32 as a guide, the substrate 2 is placed on the turntable 32 with the film formation surface facing upward, and the substrate 2 is fixed by vacuum suction (not shown). Further, a collar 38 having an inner diameter of 15 mm and an outer diameter of 20 mm was placed on the substrate 2 using the pin 36 as a guide. Thereafter, the substrate 2 is rotated at 70 rpm, and the resin supply nozzle 44 is moved onto the substrate 2, and UV curable resin (Dai Nippon Ink Co., Ltd. EX8206: viscosity at 25 ° C. 65 mPa · s) is supplied from the resin supply nozzle 44. It was dropped and spread in the circumferential direction on the substrate 2. After that, after the rotation of the substrate 2 is stopped and the resin supply nozzle 44 is returned to the original position, the light-transmitting sheet 20 has a light transmittance of an outer diameter of 119 mm and an inner diameter of 20 mm previously processed to a thickness of 95 μm. The polycarbonate sheet is dropped onto the ultraviolet curable resin using the collar 38 as a guide, and after an appropriate amount of the ultraviolet curable resin is stretched by surface tension, the turntable 32 is rotated at a high speed of 4000 rpm for 30 seconds. The excess resin was removed by shaking off.

またターンテーブル32の高速回転と同時にスライダー42を駆動させ、膜厚測定器(キーエンス社製レーザー変位計LT−8020型)48を樹脂供給部付近に移動させ、膜厚の測定を開始した。この膜厚測定器48のデータが100μm+αμmになったならば紫外線スポット光(浜松ホトニクス社製UVスポットランプL8333型)をONにして照射を開始した。尚、上記”α”に関しては、膜厚を測定した後にその場所を硬化させると、測定値よりも薄くなるので、その値を考慮した値でターンテーブルの回転やスライダーの送り速度、紫外線スポット光の光量等の条件を設定しなければならず、ここではα値を1μmとして膜厚測定器48が101μmとなるような条件でスライダー42の送り速度をコントロールした。   Simultaneously with the high-speed rotation of the turntable 32, the slider 42 was driven, the film thickness measuring device (Laser Displacement Meter LT-8020 manufactured by Keyence Corporation) 48 was moved to the vicinity of the resin supply unit, and the film thickness measurement was started. When the data of the film thickness measuring device 48 became 100 μm + α μm, irradiation with ultraviolet spot light (UV spot lamp L8333 manufactured by Hamamatsu Photonics) was turned on. As for the above “α”, if the place is cured after measuring the film thickness, it becomes thinner than the measured value. Therefore, the rotation table rotation speed, slider feed speed, and ultraviolet spot light are taken into consideration. In this case, the feed rate of the slider 42 is controlled under the condition that the α value is 1 μm and the film thickness measuring device 48 is 101 μm.

そして、上記紫外線スポット光の照射と、同時にスライダー42を駆動させ紫外線スポット光の移動も開始した。この紫外線スポット光のエネルギー量は65mJ/cm (波長350nm時)一定で行い、膜厚測定器48のデータの結果をスライダー42の送り速度にフィートバックをかけながら基板2の内周から基板2の外周に向けて紫外線スポット光を移動させて樹脂を仮硬化させた。この間の送り速度は3mm/s〜5mm/sであった。その後、紫外線硬化樹脂により一体となった基板2と光透過性シート20としてのポリカーボネートシートを紫外線照射装置(紫外線ランプ)下に設けたターンテーブル上に移動させ、ターンテーブルを240rpmで回転させながら強い紫外線をポリカーボネートシート側から照射して紫外線硬化樹脂を完全に硬化させて紫外線硬化樹脂の層が5μm(光透過層:100μm)の光ディスクを得た。この時の樹脂の最内周の直径は22.5mmであった。尚、紫外線硬化樹脂を完全硬化させる時の基板2と紫外線ランプ間の距離は150mmとなるように構成した。また、この時の樹脂の完全硬化に使ったエネルギーは260mJ/cm で行った。上記の条件で100枚の貼り合わせ板を作製し、光透過層の厚さをレーザ変位計(キーエンス社製)で測定した結果、厚さの平均値は99.9μm、標準偏差は0.08μm、面内の厚さむらの平均値は1.5μm、標準偏差は0.1μmとなり、良好な結果を得ることができた。 Then, simultaneously with the irradiation of the ultraviolet spot light, the slider 42 was driven to start the movement of the ultraviolet spot light. The amount of energy of the ultraviolet spot light is constant at 65 mJ / cm 2 (at a wavelength of 350 nm), and the results of the data of the film thickness measuring device 48 are applied from the inner periphery of the substrate 2 to the substrate 2 while applying a footback to the feed rate of the slider 42. The resin was temporarily cured by moving ultraviolet spot light toward the outer periphery of the resin. The feeding speed during this period was 3 mm / s to 5 mm / s. Thereafter, the substrate 2 integrated with the ultraviolet curable resin and the polycarbonate sheet as the light transmissive sheet 20 are moved onto a turntable provided under an ultraviolet irradiation device (ultraviolet lamp), and strong while rotating the turntable at 240 rpm. The ultraviolet curable resin was completely cured by irradiating ultraviolet rays from the polycarbonate sheet side to obtain an optical disk having an ultraviolet curable resin layer of 5 μm (light transmission layer: 100 μm). The diameter of the innermost circumference of the resin at this time was 22.5 mm. The distance between the substrate 2 and the ultraviolet lamp when completely curing the ultraviolet curable resin was set to 150 mm. The energy used for complete curing of the resin at this time was 260 mJ / cm 2 . 100 laminated sheets were produced under the above conditions, and the thickness of the light transmission layer was measured with a laser displacement meter (manufactured by Keyence Corporation). As a result, the average thickness was 99.9 μm, and the standard deviation was 0.08 μm. The average value of the in-plane thickness unevenness was 1.5 μm, and the standard deviation was 0.1 μm, and good results could be obtained.

本発明方法により作製される光ディスクを示す断面図である。It is sectional drawing which shows the optical disk produced by the method of this invention. 図1中のA部を示す拡大図である。It is an enlarged view which shows the A section in FIG. スピンコート法で紫外線硬化樹脂のみで光透過層を形成する方法を示す図である。It is a figure which shows the method of forming a light transmissive layer only with ultraviolet curable resin by a spin coat method. スピンコート法で光ディスク基板に光透過性シートを紫外線硬化樹脂を用いて貼り合わせて光透過層を形成する方法を示す図である。It is a figure which shows the method of bonding a light transmissive sheet | seat to an optical disk board | substrate using an ultraviolet curable resin by a spin coat method, and forming a light transmissive layer. スピンコート法で光ディスク基板に光透過性シートを紫外線硬化樹脂を用いて貼り合わせた後に光透過性シートを剥がして光透過層を形成する方法を示す図である。It is a figure which shows the method of forming a light transmissive layer by peeling a light transmissive sheet | seat after bonding a light transmissive sheet | seat to an optical disk board | substrate using an ultraviolet curable resin by the spin coat method. 本発明の光ディスク装置を示すブロック構成図である。It is a block block diagram which shows the optical disk apparatus of this invention. ディスクの半径と光透過層の厚さとの関係を示すグラフである。It is a graph which shows the relationship between the radius of a disc, and the thickness of a light transmissive layer.

符号の説明Explanation of symbols

2…光ディスク用基板(基板)、4…凹凸部、4A…情報記録面、6…反射層、8…上引き層、10…記録層、12…下引き層、14…光透過層、20…光透過性シート、30…光ディスク装置、32…ターンテーブル(回転テーブル)、34…モータ(回転手段)、40…載置手段、44…樹脂供給ノズル(樹脂供給手段)、46…紫外線スポット光ノズル(紫外線照射手段)、48…膜厚測定器(膜厚測定手段)、D…光ディスク。

DESCRIPTION OF SYMBOLS 2 ... Substrate for optical disks (substrate), 4 ... Uneven portion, 4A ... Information recording surface, 6 ... Reflective layer, 8 ... Overcoat layer, 10 ... Recording layer, 12 ... Undercoat layer, 14 ... Light transmission layer, 20 ... Light transmissive sheet, 30 ... optical disc device, 32 ... turntable (rotary table), 34 ... motor (rotating means), 40 ... mounting means, 44 ... resin supply nozzle (resin supply means), 46 ... ultraviolet spot light nozzle (Ultraviolet irradiation means), 48 ... film thickness measuring device (film thickness measuring means), D ... optical disk.

Claims (4)

光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスクの作製方法において、
前記光透過層の形成は、
前記情報記録面を上方に向けて前記光ディスク基板を回転テーブルに固定した後、前記回転テーブルを回転させながら、前記情報記録面に紫外線硬化樹脂を滴下して、前記情報記録面全体が前記紫外線硬化樹脂で覆う工程と、
次に、前記回転テーブルを回転させながら、前記紫外線硬化樹脂の厚さを測定する工程と、
前記紫外線硬化樹脂の厚さの測定結果が予め定められた所定の厚さになった場合に、紫外線を照射する作業を内周側から外周側に向かって順次行って、前記紫外線硬化樹脂を一次硬化して仮硬化させる工程と、
次に、前記回転テーブルの回転を停止した後、前記紫外線硬化樹脂の全面に前記一次硬化時よりも強い強度の紫外線を照射して二次硬化して完全硬化させる工程と、
からなることを特徴とする光ディスクの作製方法。
In a method for producing an optical disc in which a light transmission layer is formed on the information recording surface of the optical disc substrate with a uniform thickness,
The formation of the light transmission layer is as follows:
After fixing the optical disk substrate to the rotary table with the information recording surface facing upward, an ultraviolet curable resin is dropped on the information recording surface while rotating the rotary table, and the entire information recording surface is cured by the ultraviolet curing. Covering with resin,
Next, measuring the thickness of the ultraviolet curable resin while rotating the rotary table;
When the measurement result of the thickness of the ultraviolet curable resin reaches a predetermined thickness, the operation of irradiating the ultraviolet light is sequentially performed from the inner peripheral side to the outer peripheral side, and the ultraviolet curable resin A step of curing and pre-curing;
Next, after stopping the rotation of the rotary table, a step of irradiating the entire surface of the ultraviolet curable resin with ultraviolet rays having a stronger intensity than that during the primary curing to perform secondary curing and complete curing;
An optical disc production method comprising:
光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスクの作製方法において、
前記光透過層の形成は、
前記情報記録面を上方に向けて前記光ディスク基板を回転テーブルに固定した後、前記回転テーブルを回転させながら、前記情報記録面に紫外線硬化樹脂を滴下して、前記情報記録面全体が前記紫外線硬化樹脂で覆う工程と、
前記回転テーブルを停止した後、所定の厚さを有する光透過性シートを前記紫外線硬化樹脂上に載置する工程と、
次に、前記回転テーブルを回転させながら、前記紫外線硬化樹脂の厚さを測定する工程と、
前記紫外線硬化樹脂の厚さの測定結果が予め定められた所定の厚さになった場合に、紫外線を照射する作業を内周側から外周側に向かって順次行って、前記紫外線硬化樹脂を一次硬化して仮硬化させる工程と、
次に、前記回転テーブルの回転を停止した後、前記紫外線硬化樹脂の全面に前記一次硬化時よりも強い強度の紫外線を照射して二次硬化して完全硬化させる工程と、
からなることを特徴とする光ディスクの作製方法。
In a method for producing an optical disc in which a light transmission layer is formed on the information recording surface of the optical disc substrate with a uniform thickness,
The formation of the light transmission layer is as follows:
After fixing the optical disk substrate to the rotary table with the information recording surface facing upward, an ultraviolet curable resin is dropped on the information recording surface while rotating the rotary table, and the entire information recording surface is cured by the ultraviolet curing. Covering with resin,
Placing the light transmissive sheet having a predetermined thickness on the ultraviolet curable resin after stopping the rotary table;
Next, measuring the thickness of the ultraviolet curable resin while rotating the rotary table;
When the measurement result of the thickness of the ultraviolet curable resin reaches a predetermined thickness, the operation of irradiating the ultraviolet light is sequentially performed from the inner peripheral side to the outer peripheral side, and the ultraviolet curable resin A step of curing and pre-curing;
Next, after stopping the rotation of the rotary table, a step of irradiating the entire surface of the ultraviolet curable resin with ultraviolet rays having a stronger intensity than that during the primary curing to perform secondary curing and complete curing;
An optical disc production method comprising:
光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスク装置において、
前記光ディスク基板を載置する回転テーブルと、
前記回転テーブルを回転する回転手段と、
前記回転テーブルに載置された前記光ディスク基板の情報記録面に紫外線硬化樹脂を塗布する樹脂供給手段と、
前記回転テーブルを回転させながら、前記光ディスク基板の情報記録面に塗布された前記紫外線硬化樹脂の厚さを測定する膜厚測定手段と、
前記紫外線硬化樹脂が予め定められた所定の厚さになった場合に、前記紫外線硬化樹脂を硬化させる紫外線照射手段と、
からなることを特徴とする光ディスク装置。
In an optical disc apparatus that forms a light transmission layer with a uniform thickness on the information recording surface of an optical disc substrate,
A turntable for mounting the optical disk substrate;
Rotating means for rotating the rotating table;
A resin supply means for applying an ultraviolet curable resin to the information recording surface of the optical disk substrate placed on the rotary table;
Film thickness measuring means for measuring the thickness of the ultraviolet curable resin applied to the information recording surface of the optical disk substrate while rotating the rotary table;
UV irradiation means for curing the UV curable resin when the UV curable resin has a predetermined thickness,
An optical disc apparatus comprising:
光ディスク基板の情報記録面に光透過層を均一な厚さに形成する光ディスク装置において、
前記光ディスク基板を載置する回転テーブルと、
前記回転テーブルを回転する回転手段と、
前記回転テーブルに載置された前記光ディスク基板の情報記録面に紫外線硬化樹脂を塗布する樹脂供給手段と、
前記紫外線硬化樹脂上に光透過性シートを載置する載置手段と、
前記回転テーブルを回転させながら、前記光ディスク基板の情報記録面に塗布された前記紫外線硬化樹脂の厚さを測定する膜厚測定手段と、
前記紫外線硬化樹脂が予め定められた所定の厚さになった場合に、前記紫外線硬化樹脂を硬化させる紫外線照射手段と、
からなることを特徴とする光ディスク装置。

In an optical disc apparatus that forms a light transmission layer with a uniform thickness on the information recording surface of an optical disc substrate,
A turntable for mounting the optical disk substrate;
Rotating means for rotating the rotating table;
A resin supply means for applying an ultraviolet curable resin to the information recording surface of the optical disk substrate placed on the rotary table;
Mounting means for mounting a light transmissive sheet on the ultraviolet curable resin;
Film thickness measuring means for measuring the thickness of the ultraviolet curable resin applied to the information recording surface of the optical disk substrate while rotating the rotary table;
UV irradiation means for curing the UV curable resin when the UV curable resin has a predetermined thickness,
An optical disc apparatus comprising:

JP2004130292A 2004-04-26 2004-04-26 Manufacturing method of optical disk, and optical disk device Pending JP2005317053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130292A JP2005317053A (en) 2004-04-26 2004-04-26 Manufacturing method of optical disk, and optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130292A JP2005317053A (en) 2004-04-26 2004-04-26 Manufacturing method of optical disk, and optical disk device

Publications (1)

Publication Number Publication Date
JP2005317053A true JP2005317053A (en) 2005-11-10

Family

ID=35444325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130292A Pending JP2005317053A (en) 2004-04-26 2004-04-26 Manufacturing method of optical disk, and optical disk device

Country Status (1)

Country Link
JP (1) JP2005317053A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179716A (en) * 2005-12-01 2007-07-12 Ricoh Co Ltd Method for forming coating film, and member having coating film formed by its method
WO2007091524A1 (en) * 2006-02-07 2007-08-16 Origin Electric Company, Limited Apparatus, method and program for forming resin film
WO2008007564A1 (en) * 2006-07-10 2008-01-17 Panasonic Corporation Inkjet application device, multi-layered information recording medium, and method of producing the medium
JP2008065876A (en) * 2006-09-05 2008-03-21 Sony Corp Film thickness discriminating device and method
JP2009015923A (en) * 2007-07-02 2009-01-22 Origin Electric Co Ltd Resin film formation method and resin film formation device
JP2011216810A (en) * 2010-04-02 2011-10-27 Toshiba Mach Co Ltd Transfer device and transfer method
US8409671B2 (en) 2006-09-04 2013-04-02 Origin Electric Company, Limited Method and apparatus for forming resin film
TWI447345B (en) * 2010-01-26 2014-08-01 Lextar Electronics Corp Optical measuring device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179716A (en) * 2005-12-01 2007-07-12 Ricoh Co Ltd Method for forming coating film, and member having coating film formed by its method
WO2007091524A1 (en) * 2006-02-07 2007-08-16 Origin Electric Company, Limited Apparatus, method and program for forming resin film
JP2007209839A (en) * 2006-02-07 2007-08-23 Origin Electric Co Ltd Resin film forming apparatus, resin forming method and program
JP4588645B2 (en) * 2006-02-07 2010-12-01 オリジン電気株式会社 Resin film forming apparatus, method and program
JPWO2008007564A1 (en) * 2006-07-10 2009-12-10 パナソニック株式会社 Ink jet coating apparatus, multilayer information recording medium, and manufacturing method thereof
WO2008007564A1 (en) * 2006-07-10 2008-01-17 Panasonic Corporation Inkjet application device, multi-layered information recording medium, and method of producing the medium
US8409671B2 (en) 2006-09-04 2013-04-02 Origin Electric Company, Limited Method and apparatus for forming resin film
JP2008065876A (en) * 2006-09-05 2008-03-21 Sony Corp Film thickness discriminating device and method
JP4674577B2 (en) * 2006-09-05 2011-04-20 ソニー株式会社 Film thickness determination apparatus and film thickness determination method
JP2009015923A (en) * 2007-07-02 2009-01-22 Origin Electric Co Ltd Resin film formation method and resin film formation device
JP4554646B2 (en) * 2007-07-02 2010-09-29 オリジン電気株式会社 Resin film forming method and resin film forming apparatus
TWI447345B (en) * 2010-01-26 2014-08-01 Lextar Electronics Corp Optical measuring device
JP2011216810A (en) * 2010-04-02 2011-10-27 Toshiba Mach Co Ltd Transfer device and transfer method

Similar Documents

Publication Publication Date Title
JP2001209980A (en) Method and device for production of optical information recording medium
CN100358032C (en) Method of manufacturing an optical data storage medium, optical data storage medium and apparatus for performing said method
CN1656548A (en) Method of manufacturing an optical storage medium and optical storage medium
JP2005067055A (en) Mold, substrate for optical disk, and optical disk
JP2005317053A (en) Manufacturing method of optical disk, and optical disk device
WO2002101736A1 (en) Optical information recording medium production method
JP2006059454A (en) Manufacture apparatus and method of optical recording medium
EP1662498B1 (en) Method and apparatus for manufacturing optical disk
JP5485287B2 (en) Information recording medium manufacturing method and information recording medium
JP4284888B2 (en) Optical information recording medium
JPH1125510A (en) Optical recording medium
JP2003296977A (en) Method for manufacturing optical recording medium
JP3654866B2 (en) Thin film bonding method, optical disk bonding method and apparatus using the same
JP4783193B2 (en) Coating film forming method
JP4656013B2 (en) Manufacturing method of optical disk medium
WO2004003902A1 (en) Optical recording medium, production method and production device for optical recording medium
JP2005317054A (en) Method for manufacturing optical disk
JP2006122857A (en) Method for coating resin and manufacturing optical disk
JP4118573B2 (en) Manufacturing method of optical disk substrate
JP2000276785A (en) Apparatus for production of optical recording medium
JP2006012264A (en) Optical recording medium manufacture system and optical recording medium manufacturing method
JP2007136344A (en) Spin-coat method and apparatus
JP2004164727A (en) Method for manufacturing optical recording medium
JPH11273163A (en) Method and device for manufacturing laminated disk
WO2011126080A1 (en) Method for manufacturing optical storage media and apparatus for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Effective date: 20080929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310