JP2005315636A - Quantitative evaluation method of closed crack and quantitative evaluation device of closed crack - Google Patents

Quantitative evaluation method of closed crack and quantitative evaluation device of closed crack Download PDF

Info

Publication number
JP2005315636A
JP2005315636A JP2004131540A JP2004131540A JP2005315636A JP 2005315636 A JP2005315636 A JP 2005315636A JP 2004131540 A JP2004131540 A JP 2004131540A JP 2004131540 A JP2004131540 A JP 2004131540A JP 2005315636 A JP2005315636 A JP 2005315636A
Authority
JP
Japan
Prior art keywords
crack
wave
ultrasonic wave
closed
quantitative evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004131540A
Other languages
Japanese (ja)
Other versions
JP4538629B2 (en
Inventor
Ichiji Yamanaka
一司 山中
Takeshi Mihara
毅 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004131540A priority Critical patent/JP4538629B2/en
Publication of JP2005315636A publication Critical patent/JP2005315636A/en
Application granted granted Critical
Publication of JP4538629B2 publication Critical patent/JP4538629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel quantitative evaluation method capable of simply determinating and evaluating the length (depth) of a closed crack with high precision, and a quantitative evaluation device therefor. <P>SOLUTION: A crack C is irradiated with first ultrasonic waves W1 from a transmitter 13 not only to form linear scattered wave Z1 at the leading end A of an opened crack C1 but also to receive the same by a receiver 14. Subsequently, the crack C is irradiated with second ultrasonic waves W2, which have an amplitude larger than the first ultrasonic waves W1 and have the same frequency as the first ultrasonic waves W1, from the transmitter 13 not only to form partial harmonics Z2 at the leading end B of the closed crack C2 but also to receive the same by a receiver 14. Next, the propagation time difference Δt between the first ultrasonic waves W1, the linear scattered waves Z1 and the second ultrasonic waves W2 and the partial harmonics Z2 is measured and the depth D of the closed crack C2 is led out on the basis of propagation time difference Δt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、閉じたき裂の定量評価法、及び閉じたき裂の定量評価装置に関する。   The present invention relates to a closed crack quantitative evaluation method and a closed crack quantitative evaluation apparatus.

原子炉、航空機、タービンなど重要機器の安全性確保には、破壊の原因となるき裂や不完全な接合面を超音波の反射や散乱波によって検出し、その大きさを正確に評価しつつ危険性があれば交換する安全管理が行われている。しかし、様々な原因でき裂面を閉じさせるき裂閉口応力(J.H.Kim and S.B. Lee, Int. J. fatigue 23 (2001) S247等)が大きい疲労き裂や、応力腐食割れに起因したき裂面に酸化膜が形成された閉じたき裂などにおいては、超音波の反射・散乱が小さく、き裂長さや深さの計測誤差が大きいことが問題となっている。   In order to ensure the safety of important equipment such as nuclear reactors, aircraft, and turbines, cracks and incomplete joint surfaces that cause destruction are detected by ultrasonic reflections and scattered waves, and their sizes are accurately evaluated. Safety management is performed to replace if there is a risk. However, a crack surface caused by a large crack crack stress (JHKim and SB Lee, Int. J. fatigue 23 (2001) S247, etc.) that causes the crack surface to close due to various causes, or a stress corrosion crack. In closed cracks and the like in which an oxide film is formed, there is a problem that reflection and scattering of ultrasonic waves are small and measurement errors of crack length and depth are large.

このような背景のもとで、1978年、Buckらは金属円筒を接触させた界面を透過した超音波の波形がひずみ、周波数が入射超音波の整数倍になる高調波を観測した(O. Buck, W.L. Morris and J.M. Richardson, Appl. Phys. Lett. 33 (1978) 271)。ついでSolodovらは高調波発生の原因を、接触における応力ひずみ関係の非対称性によるContract acoustic nonlinearity (CAN; 接触音響非線形性)とし、き裂や不完全接合面の非破壊評価へ適用した(I.Yu. Solodov, N. Krohn and G. Busse, Ultrasonics 40 (2002) 621-625.)。しかしながら、前記高調波は、き裂や不完全接合部のみでなく、通常の圧電素子や接触媒体でも発生するため、き裂や不完全接合部で発生した高調波と誤認しやすいという問題があった。   Against this background, in 1978, Buck et al. Observed harmonics in which the waveform of the ultrasonic wave transmitted through the interface in contact with the metal cylinder was distorted and the frequency was an integral multiple of the incident ultrasonic wave (O. Buck, WL Morris and JM Richardson, Appl. Phys. Lett. 33 (1978) 271). Next, Solodov et al. Adopted the contract acoustic nonlinearity (CAN) due to the stress-strain relationship asymmetry in contact and applied it to nondestructive evaluation of cracks and imperfect joints (I. Yu. Solodov, N. Krohn and G. Busse, Ultrasonics 40 (2002) 621-625.). However, since the harmonics are generated not only in cracks and incomplete joints but also in ordinary piezoelectric elements and contact media, there is a problem that they are easily misidentified as harmonics generated in cracks and incomplete joints. It was.

本発明は、閉じたき裂の深さ(長さ)を高精度かつ簡易に定量し、評価することができる新規な方法及び装置を提供することを目的とする。   It is an object of the present invention to provide a novel method and apparatus capable of quantitatively evaluating and evaluating the depth (length) of a closed crack with high accuracy.

上記目的を達成すべく、本発明は、
開いたき裂及び閉じたき裂を連続して含むき裂に対して、所定の送信器より第1の超音波を照射し、前記開いたき裂の先端において線形散乱波を生成させるとともに、所定の受信器において受信する工程と、
前記き裂に対して、前記送信器より、前記第1の超音波よりも振幅が大きく、前記第1の超音波と同じ周波数を有する第2の超音波を照射し、前記閉じたき裂の先端において分調波を生成させるとともに、前記受信器において受信する工程と、
前記線形散乱波と前記分調波との伝搬時間差を計測する工程と、
前記伝搬時間差に基づいて、前記閉じたき裂の深さを導出する工程と、
を具えることを特徴とする、閉じたき裂の定量評価法に関する。
In order to achieve the above object, the present invention provides:
A first ultrasonic wave is radiated from a predetermined transmitter to a crack continuously including an open crack and a closed crack, and a linear scattered wave is generated at the tip of the open crack, and a predetermined reception is performed. Receiving at the vessel;
A second ultrasonic wave having a larger amplitude than the first ultrasonic wave and having the same frequency as the first ultrasonic wave is irradiated from the transmitter to the crack, and the tip of the closed crack is irradiated. Generating a subharmonic wave at the receiver and receiving at the receiver;
Measuring a propagation time difference between the linear scattered wave and the subharmonic wave;
Deriving the depth of the closed crack based on the propagation time difference;
It is related with the quantitative evaluation method of the closed crack characterized by comprising.

また、本発明は、
第1の超音波、及びこの第1の超音波よりも振幅が大きく、前記第1の超音波と同じ周波数を有する第2の超音波を生成するための波形生成装置と、
前記第1の超音波及び前記第2の超音波を開いたき裂及び閉じたき裂が連続して存在するき裂に対して照射するための送信器と、
前記第1の超音波の照射により、前記開いたき裂の先端部で生成した線形散乱波、及び前記第2の超音波の照射により、前記閉じたき裂の先端部で生成した分調波を受信するための受信器と、
前記線形散乱波と前記分調波との伝搬時間差を計測するための波形解析装置とを具え、
前記線形散乱波と前記分調波との伝搬時間差を計測するための波形解析装置とを具え、
前記伝搬時間差に基づいて、前記閉じたき裂の深さを導出するようにしたことを特徴とする、閉じたき裂の定量評価装置に関する。
The present invention also provides:
A waveform generator for generating a first ultrasonic wave and a second ultrasonic wave having an amplitude larger than that of the first ultrasonic wave and having the same frequency as the first ultrasonic wave;
A transmitter for irradiating the first ultrasonic wave and the second ultrasonic wave to a crack in which an open crack and a closed crack exist continuously;
Receives a linear scattered wave generated at the tip of the open crack by the irradiation of the first ultrasonic wave and a subharmonic wave generated at the tip of the closed crack by the irradiation of the second ultrasonic wave. A receiver for
A waveform analyzer for measuring a propagation time difference between the linear scattered wave and the subharmonic wave,
A waveform analyzer for measuring a propagation time difference between the linear scattered wave and the subharmonic wave,
The present invention relates to a closed crack quantitative evaluation apparatus in which the depth of the closed crack is derived based on the propagation time difference.

本発明においては、周波数が同一で、振幅が異なる2種類の超音波を用い、振幅の小さい一方の超音波(第1の超音波)を開いたき裂及び閉じたき裂を連続して含むき裂に照射するとともに、振幅の大きい他方の超音波(第2の超音波)を同じく前記き裂に照射するようにしている。この場合、前記開いたき裂の先端部においては、前記第1の超音波に起因した線形散乱波が生成され、前記閉じたき裂の先端部においては、前記第2の超音波に起因した分調波が生成されるようになる。   In the present invention, two types of ultrasonic waves having the same frequency and different amplitudes are used, and a crack that continuously includes one open ultrasonic wave (first ultrasonic wave) with a small amplitude and a closed crack. And the other ultrasonic wave (second ultrasonic wave) having a large amplitude is also applied to the crack. In this case, a linear scattered wave due to the first ultrasonic wave is generated at the tip of the open crack, and a subdivision due to the second ultrasonic wave is generated at the tip of the closed crack. Waves are generated.

したがって、前記第1の超音波及び前記線形散乱波による経路と、前記第2の超音波及び前記分調波による経路とは、前記閉じたき裂の深さ(長さ)に応じて異なるようになり、これらの経路差を前記第1の超音波及び前記第2の超音波の速度で除することによって得た伝搬時間差も前記閉じたき裂の深さ(長さ)に応じて異なるようになる。すなわち、前記伝搬時間差は、前記閉じたき裂の深さ(長さ)情報を含むので、前記伝搬時間差に対して所定の解析処理を施すことにより、前記伝搬時間差に基づいて前記閉じたき裂の深さ(長さ)を導出できるようになる。   Therefore, the path by the first ultrasonic wave and the linear scattered wave and the path by the second ultrasonic wave and the subharmonic wave are different according to the depth (length) of the closed crack. Therefore, the propagation time difference obtained by dividing these path differences by the velocity of the first ultrasonic wave and the second ultrasonic wave also varies depending on the depth (length) of the closed crack. . That is, since the propagation time difference includes depth (length) information of the closed crack, by performing a predetermined analysis process on the propagation time difference, the depth of the closed crack is determined based on the propagation time difference. The length (length) can be derived.

換言すれば、前記伝搬時間差を計測することにより、この伝搬時間差は上述した経路差に起因した前記閉じたき裂の深さ(長さ)情報を含むので、前記伝搬時間差に基づいて前記閉じたき裂の深さ(長さ)を定量評価できるようになる。   In other words, by measuring the propagation time difference, this propagation time difference includes depth (length) information of the closed crack caused by the above-described path difference, so that the closed crack is based on the propagation time difference. The depth (length) can be quantitatively evaluated.

例えば、所定の材料において、開いたき裂及び閉じたき裂が連続して存在し、前記閉じたき裂の深さ(長さ)が異なる複数のき裂を形成しておき、各き裂に対して前記第1の超音波及び前記第2の超音波を照射し、前記閉じたき裂の深さ(長さ)に応じて得られた複数の伝搬時間差を予めデータとして保存しておけば、上述したような工程において、前記材料における任意のき裂に対して前記第1の超音波及び前記第2の超音波を照射して得た伝搬時間差を、前記保存したデータと比較することによって、前記き裂中の閉じたき裂の深さ(長さ)を定量することができる。   For example, in a predetermined material, an open crack and a closed crack exist continuously, and a plurality of cracks having different depths (lengths) of the closed crack are formed. If the first ultrasonic wave and the second ultrasonic wave are irradiated and a plurality of propagation time differences obtained in accordance with the depth (length) of the closed crack are stored in advance as data, the above-mentioned In such a process, by comparing the propagation time difference obtained by irradiating the first ultrasonic wave and the second ultrasonic wave to an arbitrary crack in the material with the stored data, The depth (length) of a closed crack in a crack can be quantified.

また、以下に詳述するように、前記送信器、前記受信器及び前記き裂間の相対的位置関係を予め特定しておけば、前記相対的位置関係と前記伝搬時間差とから前記閉じたき裂の前記深さを導出することもできる。   As will be described in detail below, if the relative positional relationship between the transmitter, the receiver and the crack is specified in advance, the closed crack is determined from the relative positional relationship and the propagation time difference. The depth can also be derived.

前記線形散乱波及び前記分調波は識別が容易であるとともに、高い時間分解能を有するので、上述した本発明の方法及び装置によって、閉じたき裂の深さ(長さ)を高精度かつ簡易に定量し、評価できるようになる。   Since the linear scattered wave and the subharmonic wave are easy to identify and have high time resolution, the above-described method and apparatus of the present invention can be used to accurately and easily set the depth (length) of the closed crack. It becomes possible to quantify and evaluate.

なお、前記「分調波」とは、入射した超音波の正の整数分の1の周波数を有する波を言い、特に、医療分野において、血液中に造影剤を入れて肝臓ガンや心筋梗塞組織などの画像を得るために用いられている。   The “subharmonic wave” refers to a wave having a positive integer fraction of incident ultrasonic waves, and in particular, in the medical field, a contrast medium is put in blood and liver cancer or myocardial infarction tissue. Is used to obtain images.

以上説明したように、本発明によれば、閉じたき裂の長さ(深さ)を高精度かつ簡易に定量し、評価できる新規な方法及び装置を提供することができる。   As described above, according to the present invention, it is possible to provide a novel method and apparatus capable of quantitatively evaluating and evaluating the length (depth) of a closed crack with high accuracy.

以下、本発明の詳細、並びにその他の特徴及び利点について、最良の形態に基づいて詳細に説明する。   The details of the present invention and other features and advantages will be described in detail below based on the best mode.

図1は、本発明の閉じたき裂の定量評価装置の一例を示す構成図である。図1に示すように、閉じたき裂の定量評価装置10は、波形生成装置11と、増幅器12と、送信器13と、受信器14と、波形解析装置15とを具えている。波形生成装置11からは任意の波形を有する信号が生成され、この信号は増幅器12で増幅された後、送信器13において超音波に変換され、試料S中のき裂Cに照射されるように構成されている。受信器14では、き裂Cで生成した波を受信し、電気信号に変換するように構成されている。前記電気信号は、波形解析装置15に送られ、前記電気信号に起因した前記波の解析が行われる。   FIG. 1 is a block diagram showing an example of a closed crack quantitative evaluation apparatus according to the present invention. As shown in FIG. 1, the closed crack quantitative evaluation device 10 includes a waveform generation device 11, an amplifier 12, a transmitter 13, a receiver 14, and a waveform analysis device 15. A signal having an arbitrary waveform is generated from the waveform generator 11, and this signal is amplified by the amplifier 12, then converted into ultrasonic waves by the transmitter 13, and irradiated to the crack C in the sample S. It is configured. The receiver 14 is configured to receive a wave generated by the crack C and convert it into an electrical signal. The electrical signal is sent to the waveform analyzer 15 where the wave resulting from the electrical signal is analyzed.

図1に示す装置10においては、送信器13及び受信器14をき裂Cに対して同じ側に設けているので、以下に詳述する閉じたき裂の定量評価法においては、いわゆる入射超音波に対する後方散乱を用いて行うことになる。   In the apparatus 10 shown in FIG. 1, the transmitter 13 and the receiver 14 are provided on the same side with respect to the crack C. Therefore, in the closed crack quantitative evaluation method described in detail below, so-called incident ultrasonic waves are used. Will be performed using backscattering.

図1に示す装置10を用いた、閉じたき裂の深さ(長さ)の定量評価は以下のようにして行う。なお、図2は、以下に示す定量評価法で得た分調波及び高調波の波形の一例を示すグラフである。   Quantitative evaluation of the depth (length) of a closed crack using the apparatus 10 shown in FIG. 1 is performed as follows. FIG. 2 is a graph showing an example of subharmonic and harmonic waveforms obtained by the quantitative evaluation method described below.

最初に、波形生成装置11から所定の波形を有する信号を増幅器12で増幅した後、送信器13に送信し、第1の超音波W1を生成する。次いで、第1の超音波W1をき裂Cに向けて照射する。このとき、き裂Cにおける開いたき裂C1の先端部Aでは第1の超音波W1に起因した線形散乱波Z1が生成される。一方、増幅器12における増幅度を変化させることによって、送信器13において、第1の超音波W1よりも振幅が大きく、第1の超音波W1と同じ周波数の第2の超音波W2を生成する。次いで、第2の超音波W2を同じくき裂Cに向けて照射する。このとき、き裂Cにおける閉じたき裂C2の先端部Bでは第2の超音波W2に起因した分調波Z2が生成される。   First, after a signal having a predetermined waveform is amplified by the amplifier 12 from the waveform generation device 11, the signal is transmitted to the transmitter 13 to generate the first ultrasonic wave W1. Next, the first ultrasonic wave W1 is irradiated toward the crack C. At this time, a linear scattered wave Z1 due to the first ultrasonic wave W1 is generated at the tip A of the open crack C1 in the crack C. On the other hand, by changing the amplification degree in the amplifier 12, the transmitter 13 generates a second ultrasonic wave W2 having an amplitude larger than that of the first ultrasonic wave W1 and having the same frequency as that of the first ultrasonic wave W1. Next, the second ultrasonic wave W2 is irradiated toward the crack C in the same manner. At this time, a subharmonic wave Z2 caused by the second ultrasonic wave W2 is generated at the tip B of the closed crack C2 in the crack C.

なお、増幅器12における第2の超音波W2の増幅度が小さいと、線形散乱波Z1と識別できるに足る分調波Z2を得ることができないので、増幅器12における第2の超音波W2の増幅度は、分調波Z2が生成するような程度に設定する。   Note that if the amplification degree of the second ultrasonic wave W2 in the amplifier 12 is small, the subharmonic wave Z2 that can be distinguished from the linear scattered wave Z1 cannot be obtained. Therefore, the amplification degree of the second ultrasonic wave W2 in the amplifier 12 Is set to such an extent that the subharmonic wave Z2 is generated.

線形散乱波Z1及び分調波Z2は受信器14で受信された後、電気信号に変換され、波形解析装置15に送られる。波形解析装置15では、線形散乱波Z1は、図2(a)に示すような例えば周波数fの波形信号となり、分調波Z2は、図2(b)に示すように例えば周波数f/2の波形信号となる。   The linear scattered wave Z <b> 1 and the subharmonic wave Z <b> 2 are received by the receiver 14, converted into an electrical signal, and sent to the waveform analyzer 15. In the waveform analyzer 15, the linear scattered wave Z1 becomes a waveform signal having a frequency f, for example, as shown in FIG. 2A, and the subharmonic wave Z2 has a frequency f / 2, for example, as shown in FIG. It becomes a waveform signal.

しかしながら、線形散乱波Z1は、第1の超音波W1とともに経路TARを形成して受信器14に到達するものであり、分調波Z2は、第2の超音波W2とともに経路TBRを形成して受信器14に到達するものである。したがって、波形解析装置15における線形散乱波Z1の前記波形信号と、分調波Z2の前記波形信号とは、経路TARと経路TBRとに基づく経路差に起因した伝搬時間差Δtだけシフトするようになる。   However, the linear scattered wave Z1 forms a path TAR together with the first ultrasonic wave W1 and reaches the receiver 14, and the subharmonic wave Z2 forms a path TBR together with the second ultrasonic wave W2. It reaches the receiver 14. Therefore, the waveform signal of the linear scattered wave Z1 and the waveform signal of the subharmonic wave Z2 in the waveform analyzer 15 are shifted by the propagation time difference Δt caused by the path difference based on the path TAR and the path TBR. .

経路TARは閉じたき裂C2の深さ(長さ)に応じて変化するので、前記経路差も閉じたき裂C2の深さ(長さ)に応じて変化するようになる。したがって、伝搬時間差Δtも閉じたき裂C2の深さ(長さ)に応じて変化するようになる。結果として、伝搬時間差Δtを計測すれば、伝搬時間差Δtは閉じたき裂C2に情報を含むので、伝搬時間差Δtに基づいて閉じたき裂C2の情報を得ることができる。   Since the path TAR changes according to the depth (length) of the closed crack C2, the path difference also changes according to the depth (length) of the closed crack C2. Therefore, the propagation time difference Δt also changes according to the depth (length) of the closed crack C2. As a result, if the propagation time difference Δt is measured, since the propagation time difference Δt includes information in the closed crack C2, information on the closed crack C2 can be obtained based on the propagation time difference Δt.

具体的には、送信器13、受信器14及びき裂C間の相対的位置関係と、伝搬時間差Δtとから閉じたき裂C2の深さを以下のようにして導出することができる。   Specifically, the depth of the closed crack C2 can be derived from the relative positional relationship between the transmitter 13, the receiver 14, and the crack C and the propagation time difference Δt as follows.

試料Sの、き裂C直上の位置をHとし、送信器13が位置Hから水平方向に距離Lだけ離隔し、受信器14が位置Hから送信器13と反対側の水平方向に同じく距離Lだけ離隔しており、第1の超音波W1及び第2の超音波W2の速度がVであり、線形散乱波Z1の受信器14に対する到達時間をtとすると、HB=(TB−L1/2=[(Vt/2)−L1/2であり、HA=(TA−L1/2=[(V(t−Δt)/2)−L1/2であって、閉じたき裂C2の深さD=HA−HBで表すことができることから、
D=[(Vt/2)−L1/2−[(V(t−Δt)/2)−L1/2
なる関係式で表すことができる。
The position of the sample S immediately above the crack C is H, the transmitter 13 is separated from the position H by a distance L in the horizontal direction, and the receiver 14 is also distance L from the position H in the horizontal direction opposite to the transmitter 13. HB = (TB 2 −L 2) , where the velocity of the first ultrasonic wave W1 and the second ultrasonic wave W2 is V, and the arrival time of the linear scattered wave Z1 with respect to the receiver 14 is t. ) 1/2 = [(Vt / 2) 2 −L 2 ] 1/2 , HA = (TA 2 −L 2 ) 1/2 = [(V (t−Δt) / 2) 2 −L 2 ] a 1/2, since it can be represented by the depth of the closed crack C2 of D = HA-HB,
D = [(Vt / 2) 2 −L 2 ] 1/2 − [(V (t−Δt) / 2) 2 −L 2 ] 1/2
It can be expressed by the following relational expression.

なお、前記き裂C直上の位置Hを、送信器と受信器の中心に一致させるためには、送信器と受信器の距離を2Lに固定しつつ、線形散乱波の前記到達時間tが最短になるように、送信器と受信器を動かせば良い。   In order to make the position H immediately above the crack C coincide with the center of the transmitter and the receiver, the arrival time t of the linear scattered wave is the shortest while fixing the distance between the transmitter and the receiver to 2L. Move the transmitter and receiver so that

なお、閉じたき裂C2の深さDに応じて得られた複数の伝搬時間差を予めデータとして保存しておけば、上述したような工程において、同じ試料Sにおける任意のき裂に対して、上述したように第1の超音波W1及び第2の超音波W2を照射して得た伝搬時間差Δtを、前記保存したデータと比較することによって、任意の閉じたき裂の深さDを定量することができる。   Note that if a plurality of propagation time differences obtained according to the depth D of the closed crack C2 is stored in advance as data, the above-described process is performed for an arbitrary crack in the same sample S in the above-described process. Quantifying the depth D of any closed crack by comparing the propagation time difference Δt obtained by irradiating the first ultrasonic wave W1 and the second ultrasonic wave W2 with the stored data as described above. Can do.

図3は、図1に示す閉じたき裂の定量評価装置の変形例を示す構成図である。なお、図1に示す装置と同様の構成要素に対しては、同じ参照数字を用いている。   FIG. 3 is a block diagram showing a modified example of the closed crack quantitative evaluation apparatus shown in FIG. Note that the same reference numerals are used for the same components as those in the apparatus shown in FIG.

図3に示す閉じたき裂の定量評価装置20においては、送信器13と受信器14とを試料S、すなわちき裂Cを挟むようにして相対向して配置している以外は、図1に示す装置10と同様の構成を呈している。この場合、送信器13及び受信器14をき裂Cを挟むようにして相対向させて配置しているので、図3に示す装置20を用いた閉じたき裂の定量評価法においては、いわゆる入射超音波に対する前方散乱によって生成した線形散乱波Z1及び分調波Z2を用いて行うことになる。   In the closed crack quantitative evaluation apparatus 20 shown in FIG. 3, the transmitter 13 and the receiver 14 are arranged opposite to each other so as to sandwich the sample S, that is, the crack C. The apparatus shown in FIG. 10 has the same configuration. In this case, since the transmitter 13 and the receiver 14 are arranged to face each other with the crack C interposed therebetween, in the quantitative evaluation method of the closed crack using the apparatus 20 shown in FIG. This is performed using a linear scattered wave Z1 and a subharmonic wave Z2 generated by forward scattering.

しかしながら、閉じたき裂C2を定量評価するに際しては、前方散乱によって生じた線形散乱波及び分調波を用いるが、後方散乱によって生じた線形散乱波及び分調波を用いるかの相異のみで、閉じたき裂C2の深さを定量評価するに際しては、上記同様の幾何学的な方法やストックデータを用いる方法によって実施する。   However, in quantitative evaluation of the closed crack C2, the linear scattered wave and the subharmonic wave generated by the forward scattering are used, but only the difference between the linear scattered wave and the subharmonic wave generated by the backscattering is used. When the depth of the closed crack C2 is quantitatively evaluated, the same geometric method as described above or a method using stock data is used.

なお、図1〜3に関する上記いずれの態様においても、第1の超音波W1及び第2の超音波W2は、その波形がガウス関数と正弦波との積で表されることが好ましい。この場合、分調波Z2において、図4に示すようなテール効果の発生を抑制し、分調波Z2の撹乱を防止することができる。ただしここで、ガウス関数は唯一の選択ではなく、緩やかに立ち上がり、中央部は平坦で、緩やかに立ち下がる関数であれば、ガウス関数の替わりに用いてもよい。   1 to 3, the first ultrasonic wave W1 and the second ultrasonic wave W2 are preferably represented by a product of a Gaussian function and a sine wave. In this case, in the subharmonic wave Z2, generation of the tail effect as shown in FIG. 4 can be suppressed, and disturbance of the subharmonic wave Z2 can be prevented. However, the Gaussian function is not the only choice here, and may be used instead of the Gaussian function as long as it rises gently, the center is flat, and falls gently.

図5は、本発明の閉じたき裂の定量評価装置の他の一例を示す構成図である。図5に示すように、閉じたき裂の定量評価装置30は、デジタルフェーズドアレイシステム31と、増幅器32と、高耐圧圧電素子アレイ33及び34と、高速エコー画像並列処理装置35とを具えている。デジタルフェーズドアレイシステム31は図1及び図3に示す波形生成装置11及び波形解析装置15と同様の機能を果たし、高耐圧圧電素子アレイ33及び34は、それぞれ図1及び図3に示す送信器13及び受信器14と同様の機能を果たす。   FIG. 5 is a block diagram showing another example of the closed crack quantitative evaluation apparatus of the present invention. As shown in FIG. 5, the closed crack quantitative evaluation device 30 includes a digital phased array system 31, an amplifier 32, high-voltage piezoelectric element arrays 33 and 34, and a high-speed echo image parallel processing device 35. . The digital phased array system 31 performs the same function as the waveform generation device 11 and the waveform analysis device 15 shown in FIGS. 1 and 3, and the high-breakdown-voltage piezoelectric element arrays 33 and 34 respectively include the transmitter 13 shown in FIGS. And performs the same function as the receiver 14.

デジタルフェーズドアレイシステム31から発生したn個のバースト信号を、増幅器12で増幅した後、高耐圧圧電素子アレイ33から第1の超音波を可変焦点集束ビームFとして試料Sのき裂Cに対して照射する。このとき、開いたき裂C1の先端部Aからは線形散乱波が生じるので、この線形散乱波を高耐圧圧電素子アレイ34で受信するとともに、デジタルフェーズドアレイシステム31を介して高速エコー画像並列処理装置35に導入する。すると、装置35では図6(a)に示すように、開いたき裂C1に関する映像が得られる。   After the n burst signals generated from the digital phased array system 31 are amplified by the amplifier 12, the first ultrasonic wave from the high voltage piezoelectric element array 33 is used as the variable focus beam F to the crack C of the sample S. Irradiate. At this time, since a linear scattered wave is generated from the tip A of the open crack C1, this high-voltage piezoelectric element array 34 receives this linear scattered wave, and at the same time, a high-speed echo image parallel processing device via the digital phased array system 31. 35. Then, as shown in FIG. 6A, the device 35 obtains an image related to the open crack C1.

一方、前記バースト信号の、増幅器12での増幅度を増大させ、前記第1の超音波よりも大きな振幅の第2の超音波を得、この第2の超音波を高耐圧圧電素子アレイ33から可変焦点集束ビームFとして試料Sのき裂Cに対して照射する。このとき、閉じたき裂C2の先端部Bからは分調波が生じるので、この分調波を高耐圧圧電素子アレイ34で受信するとともに、デジタルフェーズドアレイシステム31を介して高速エコー画像並列処理装置35に導入する。すると、装置35では図6(b)に示すように、開いたき裂C2に関する映像が得られる。なお、この場合、閉じたき裂Cが分調波の発生点を複数もっていても、各々の発生点を映像化することができる。   On the other hand, the amplification degree of the burst signal in the amplifier 12 is increased to obtain a second ultrasonic wave having an amplitude larger than that of the first ultrasonic wave, and this second ultrasonic wave is obtained from the high voltage piezoelectric element array 33. Irradiation is applied to the crack C of the sample S as a variable focus beam F. At this time, since a subharmonic wave is generated from the tip B of the closed crack C2, the high harmonic voltage piezoelectric element array 34 receives this subharmonic wave, and a high-speed echo image parallel processing device via the digital phased array system 31. 35. Then, in the apparatus 35, as shown in FIG.6 (b), the image | video regarding the open crack C2 is obtained. In this case, even if the closed crack C has a plurality of subharmonic generation points, each generation point can be visualized.

したがって、図6に示す映像を参酌することによって、閉じたき裂C2の深さのみならず、開いたき裂C1の深さをも定量評価することができる。   Therefore, by considering the image shown in FIG. 6, not only the depth of the closed crack C2 but also the depth of the open crack C1 can be quantitatively evaluated.

以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

例えば、上記具体例においては、伝搬時間差Δtを用い、送信器及び受信器とき裂との相対的な位置関係から幾何学的に閉じたき裂C2の深さを定量評価する、あるいは伝搬時間差Δt及び閉じたき裂C2との相対関係を示す予め保存されたデータを基に、閉じたき裂C2の深さを定量評価するようにしているが、伝搬時間差Δtに基づき、これら以外の方法で閉じたき裂C2の深さを定量評価するようにすることもできる。   For example, in the above specific example, the propagation time difference Δt is used to quantitatively evaluate the depth of the geometrically closed crack C2 from the relative positional relationship between the transmitter and the receiver and the crack, or the propagation time difference Δt and The depth of the closed crack C2 is quantitatively evaluated based on data stored in advance showing the relative relationship with the closed crack C2, but the closed crack is obtained by a method other than these based on the propagation time difference Δt. It is also possible to quantitatively evaluate the depth of C2.

さらには、上述した閉じたき裂C2の深さを定量評価するための幾何学的な手法も、上記具体例と異なる方法を用いることができる。   Furthermore, a geometric method for quantitatively evaluating the depth of the above-described closed crack C2 can also use a method different from the above specific example.

なお、閉じたき裂は、本発明で規定するように開いたき裂先端と連続して存在するだけでなく、物体のコーナー部、溶接・接合界面、空孔や介在物などの欠陥のような、超音波の別種の線形散乱源と連続した状態で存在する場合もある。このような場合には、前記別種の線形散乱源から生成する線形散乱波を、本発明における開いたき裂先端で生成する線形散乱波と同一に扱えば、本発明と同一の手法で閉じたき裂の定量評価が行える。   In addition, the closed crack is not only continuous with the open crack tip as defined in the present invention, but also, such as defects such as corners of the object, weld / bonding interface, voids and inclusions, It may exist in a continuous state with another kind of linear scattering source of ultrasonic waves. In such a case, if the linear scattered wave generated from the different type of linear scattering source is handled in the same manner as the linear scattered wave generated at the open crack tip in the present invention, the crack is closed by the same method as in the present invention. Can be quantitatively evaluated.

本発明は、原子炉、航空機、鉄道などの非破壊評価の現場において、閉じたき裂の深さを簡易かつ高精度に定量評価する方法及び装置として用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a method and apparatus for quantitatively evaluating the depth of a closed crack easily and with high accuracy in a nondestructive evaluation site such as a nuclear reactor, an aircraft, and a railway.

本発明の閉じたき裂の定量評価装置の一例を示す構成図である。It is a block diagram which shows an example of the quantitative evaluation apparatus of the closed crack of this invention. 図1に示す装置を用いた定量評価法によって得た分調波及び高調波の波形の一例を示すグラフである。It is a graph which shows an example of the waveform of a subharmonic wave and a harmonic obtained by the quantitative evaluation method using the apparatus shown in FIG. 図1に示す閉じたき裂の定量評価装置の変形例を示す構成図である。It is a block diagram which shows the modification of the quantitative evaluation apparatus of the closed crack shown in FIG. 分調波におけるテール効果を示す図である。It is a figure which shows the tail effect in a subharmonic wave. 本発明の閉じたき裂の定量評価装置の他の一例を示す構成図である。It is a block diagram which shows another example of the quantitative evaluation apparatus of the closed crack of this invention. 図5に示す装置を用いた定量評価法によって得た画像の一例を示すグラフである。It is a graph which shows an example of the image acquired by the quantitative evaluation method using the apparatus shown in FIG.

符号の説明Explanation of symbols

10、20、30 閉じたき裂の定量分析装置
11 波形生成装置
12、32 増幅器
13 送信器
14 受信器
15 波形解析装置
31 デジタルフェーズドアレイシステム
33、34 高耐圧圧電素子アレイ
35 高速エコー画像並列処理装置35
C き裂
C1 開いたき裂
C2 閉じたき裂
S 試料
W1 第1の超音波
W2 第2の超音波
Z1 線形散乱波
Z2 分調波



10, 20, 30 Quantitative analyzer for closed crack 11 Waveform generator 12, 32 Amplifier 13 Transmitter 14 Receiver 15 Waveform analyzer 31 Digital phased array system 33, 34 High voltage piezoelectric element array 35 High-speed echo image parallel processing device 35
C crack C1 open crack C2 closed crack S sample W1 first ultrasonic wave W2 second ultrasonic wave Z1 linear scattered wave Z2 subharmonic



Claims (18)

開いたき裂及び閉じたき裂を連続して含むき裂に対して、所定の送信器より第1の超音波を照射し、前記開いたき裂の先端において線形散乱波を生成させるとともに、所定の受信器において受信する工程と、
前記き裂に対して、前記送信器より、前記第1の超音波よりも振幅が大きく、前記第1の超音波と同じ周波数を有する第2の超音波を照射し、前記閉じたき裂の先端において分調波を生成させるとともに、前記受信器において受信する工程と、
前記線形散乱波と前記分調波との伝搬時間差を計測する工程と、
前記伝搬時間差に基づいて、前記閉じたき裂の深さを導出する工程と、
を具えることを特徴とする、閉じたき裂の定量評価法。
A first ultrasonic wave is radiated from a predetermined transmitter to a crack continuously including an open crack and a closed crack, and a linear scattered wave is generated at the tip of the open crack, and a predetermined reception is performed. Receiving at the vessel;
A second ultrasonic wave having a larger amplitude than the first ultrasonic wave and having the same frequency as the first ultrasonic wave is irradiated from the transmitter to the crack, and the tip of the closed crack is irradiated. Generating a subharmonic wave at the receiver and receiving at the receiver;
Measuring a propagation time difference between the linear scattered wave and the subharmonic wave;
Deriving the depth of the closed crack based on the propagation time difference;
A method for quantitative evaluation of a closed crack, characterized by comprising:
前記導出において、前記伝搬時間差は、前記第1の超音波及び前記線形散乱波の経路と前記第2の超音波及び前記分調波の経路との差分を前記第1の超音波及び前記第2の超音波の速度で除して得た値と等しいとすることを特徴とする、請求項1に記載の閉じたき裂の定量評価法。   In the derivation, the propagation time difference is the difference between the path of the first ultrasonic wave and the linear scattered wave and the path of the second ultrasonic wave and the subharmonic wave is the first ultrasonic wave and the second ultrasonic wave. The method for quantitative evaluation of a closed crack according to claim 1, wherein the value is equal to a value obtained by dividing by the velocity of ultrasonic waves. 先に計測した前記第1の超音波及び前記線形散乱波と前記第2の超音波及び前記分調波との伝搬時間差と、閉じたき裂の深さとの相対関係を示すデータと、新たに計測した前記伝搬時間差のデータとを比較することによって、前記閉じたき裂の前記深さを推定するようにしたことを特徴とする、請求項1又は2に記載の閉じたき裂の定量評価法。   Newly measured data indicating the relative relationship between the propagation time difference between the first ultrasonic wave and the linearly scattered wave, the second ultrasonic wave and the subharmonic wave, and the depth of the closed crack. 3. The closed crack quantitative evaluation method according to claim 1, wherein the depth of the closed crack is estimated by comparing with the data of the propagation time difference. 前記送信器、前記受信器及び前記き裂間の相対的位置関係と、前記伝搬時間差とから前記閉じたき裂の前記深さを導出するようにしたことを特徴とする、請求項2に記載の閉じたき裂の定量評価法。   The depth of the closed crack is derived from the relative positional relationship among the transmitter, the receiver, and the crack, and the propagation time difference. Quantitative evaluation method for closed cracks. 前記送信器の、前記き裂から水平方向における距離をLとし、前記受信器の、前記き裂からの水平方向における距離をLとし、前記第1の超音波及び前記線形散乱波と前記第2の超音波及び前記分調波との前記伝搬時間差をΔtとし、前記線形散乱波の前記受信器に対する到達時間をtとし、前記第1の超音波及び前記第2の超音波の速度をVとした場合において、前記閉じたき裂の前記深さDは、
D=[(Vt/2)−L1/2−[(V(t−Δt)/2)−L1/2
なる関係式で表されることを特徴とする、請求項4に記載の閉じたき裂の定量評価法。
The transmitter has a horizontal distance L from the crack, and the receiver has a horizontal distance L from the crack. The first ultrasonic wave, the linear scattered wave, and the second The propagation time difference between the ultrasonic wave and the subharmonic wave is Δt, the arrival time of the linear scattered wave to the receiver is t, and the velocity of the first ultrasonic wave and the second ultrasonic wave is V. The depth D of the closed crack is
D = [(Vt / 2) 2 −L 2 ] 1/2 − [(V (t−Δt) / 2) 2 −L 2 ] 1/2
The method for quantitative evaluation of a closed crack according to claim 4, wherein
前記送信器及び前記受信器は前記き裂に対して同じ側に設け、前記第1の超音波及び前記第2の超音波の前記照射と、前記線形散乱波及び前記分調波の受信とを前記き裂に対して同じ側で実施することを特徴とする、請求項1〜5のいずれか一に記載の閉じたき裂の定量評価法。   The transmitter and the receiver are provided on the same side with respect to the crack, and the irradiation of the first ultrasonic wave and the second ultrasonic wave and reception of the linear scattered wave and the subharmonic wave are performed. The method for quantitative evaluation of a closed crack according to any one of claims 1 to 5, wherein the method is performed on the same side with respect to the crack. 前記送信器及び前記受信器は前記き裂を挟むようにして相対向させて設け、前記第1の超音波及び前記第2の超音波の前記照射と、前記線形散乱波及び前記分調波の受信とを前記き裂を挟むようにして相対向させて実施することを特徴とする、請求項1〜5のいずれか一に記載の閉じたき裂の定量評価法。   The transmitter and the receiver are provided so as to face each other so as to sandwich the crack, and the irradiation of the first ultrasonic wave and the second ultrasonic wave, the reception of the linear scattered wave and the subharmonic wave, The method for quantitative evaluation of a closed crack according to any one of claims 1 to 5, wherein the two are opposed to each other so as to sandwich the crack. 前記第1の超音波及び前記第2の超音波は、その波形がガウス関数と正弦波との積で表される波形を呈することを特徴とする、請求項1〜7のいずれか一に記載の閉じたき裂の定量評価法。   The first ultrasonic wave and the second ultrasonic wave have a waveform represented by a product of a Gaussian function and a sine wave, according to any one of claims 1 to 7. Quantitative evaluation method for closed cracks. 開いたき裂及び閉じたき裂を連続して含むき裂に対して、所定の送信器より第1の超音波を照射し、前記開いたき裂の先端において線形散乱波を生成させるとともに、所定の受信器において受信し、前記開いたき裂の映像を得る工程と、
前記き裂に対して、前記送信器より、前記第1の超音波よりも振幅が大きく、前記第1の超音波と同じ周波数を有する第2の超音波を照射し、前記閉じたき裂の先端において分調波を生成させるとともに、前記受信器において受信し、前記開いたき裂及び前記閉じたき裂を含む前記き裂の映像を得る工程と、
前記開いたき裂の前記映像及び前記き裂の前記映像から、前記閉じたき裂の深さを計測する工程と、
を具えることを特徴とする、閉じたき裂の定量評価法。
A first ultrasonic wave is radiated from a predetermined transmitter to a crack continuously including an open crack and a closed crack, and a linear scattered wave is generated at the tip of the open crack, and a predetermined reception is performed. Receiving at the vessel and obtaining an image of the open crack;
A second ultrasonic wave having a larger amplitude than the first ultrasonic wave and having the same frequency as the first ultrasonic wave is irradiated from the transmitter to the crack, and the tip of the closed crack is irradiated. Generating a subharmonic wave at the receiver and receiving at the receiver to obtain an image of the crack including the open crack and the closed crack; and
Measuring the depth of the closed crack from the image of the open crack and the image of the crack;
A method for quantitative evaluation of a closed crack, characterized by comprising:
第1の超音波、及びこの第1の超音波よりも振幅が大きく、前記第1の超音波と同じ周波数を有する第2の超音波を生成するための波形生成装置と、
前記第1の超音波及び前記第2の超音波を開いたき裂及び閉じたき裂を連続して含むき裂に対して照射するための送信器と、
前記第1の超音波の照射により、前記開いたき裂の先端部で生成した線形散乱波、及び前記第2の超音波の照射により、前記閉じたき裂の先端部で生成した分調波を受信するための受信器と、
前記線形散乱波と前記分調波との伝搬時間差を計測するための波形解析装置とを具え、
前記伝搬時間差に基づいて、前記閉じたき裂の深さを導出するようにしたことを特徴とする、閉じたき裂の定量評価装置。
A waveform generator for generating a first ultrasonic wave and a second ultrasonic wave having an amplitude larger than that of the first ultrasonic wave and having the same frequency as the first ultrasonic wave;
A transmitter for irradiating the first ultrasonic wave and the second ultrasonic wave to a crack continuously including an open crack and a closed crack;
Receives a linear scattered wave generated at the tip of the open crack by the irradiation of the first ultrasonic wave and a subharmonic wave generated at the tip of the closed crack by the irradiation of the second ultrasonic wave. A receiver for
A waveform analyzer for measuring a propagation time difference between the linear scattered wave and the subharmonic wave,
A quantitative evaluation apparatus for a closed crack, wherein the depth of the closed crack is derived based on the difference in propagation time.
前記導出において、前記伝搬時間差は、前記第1の超音波及び前記線形散乱波の経路と前記第2の超音波及び前記分調波の経路との差分を前記第1の超音波及び前記第2の超音波の速度で除して得た値と等しいとすることを特徴とする、請求項10に記載の閉じたき裂の定量評価装置。   In the derivation, the propagation time difference is the difference between the path of the first ultrasonic wave and the linear scattered wave and the path of the second ultrasonic wave and the subharmonic wave is the first ultrasonic wave and the second ultrasonic wave. The apparatus for quantitative evaluation of a closed crack according to claim 10, wherein the value is equal to a value obtained by dividing by an ultrasonic velocity of the closed crack. 先に計測した前記第1の超音波及び前記線形散乱波と前記第2の超音波及び前記分調波との伝搬時間差と、閉じたき裂の深さとの相対関係を示すデータと、新たに計測した前記伝搬時間差のデータとを比較することによって、前記閉じたき裂の前記深さを推定するようにしたことを特徴とする、請求項10又は11に記載の閉じたき裂の定量評価装置。   Newly measured data indicating the relative relationship between the propagation time difference between the first ultrasonic wave and the linearly scattered wave, the second ultrasonic wave and the subharmonic wave, and the depth of the closed crack. 12. The closed crack quantitative evaluation apparatus according to claim 10 or 11, wherein the depth of the closed crack is estimated by comparing with the propagation time difference data. 前記送信器、前記受信器及び前記き裂間の相対的位置関係と、前記伝搬時間差とから前記閉じたき裂の前記深さを導出するようにしたことを特徴とする、請求項11に記載の閉じたき裂の定量評価装置。   The depth of the closed crack is derived from the relative positional relationship among the transmitter, the receiver and the crack, and the propagation time difference. A device for quantitative evaluation of closed cracks. 前記送信器の、前記き裂から水平方向における距離をLとし、前記受信器の、前記き裂からの水平方向における距離をLとし、前記第1の超音波及び前記線形散乱波と前記第2の超音波及び前記分調波との前記伝搬時間差をΔtとし、前記線形散乱波の前記受信器に対する到達時間をtとし、前記第1の超音波及び前記第2の超音波の速度をVとした場合において、前記閉じたき裂の前記深さDを、
D=[(Vt/2)−L1/2−[(V(t−Δt)/2)−L1/2
なる関係式から導出するようにしたことを特徴とする、請求項13に記載の閉じたき裂の定量評価装置。
The transmitter has a horizontal distance L from the crack, and the receiver has a horizontal distance L from the crack. The first ultrasonic wave, the linear scattered wave, and the second The propagation time difference between the ultrasonic wave and the subharmonic wave is Δt, the arrival time of the linear scattered wave to the receiver is t, and the velocity of the first ultrasonic wave and the second ultrasonic wave is V. The depth D of the closed crack is
D = [(Vt / 2) 2 −L 2 ] 1/2 − [(V (t−Δt) / 2) 2 −L 2 ] 1/2
The apparatus for quantitatively evaluating a closed crack according to claim 13, wherein the quantitative evaluation apparatus is derived from the following relational expression.
前記送信器及び前記受信器は前記き裂に対して同じ側に設け、前記第1の超音波及び前記第2の超音波の前記照射と、前記線形散乱波及び前記分調波の受信とを前記き裂に対して同じ側で実施するようにしたことを特徴とする、請求項10〜14のいずれか一に記載のき裂の定量評価装置。   The transmitter and the receiver are provided on the same side with respect to the crack, and the irradiation of the first ultrasonic wave and the second ultrasonic wave and reception of the linear scattered wave and the subharmonic wave are performed. The apparatus for quantitative evaluation of a crack according to any one of claims 10 to 14, wherein the apparatus is implemented on the same side with respect to the crack. 前記送信器及び前記受信器は前記き裂を挟むようにして相対向させて設け、前記第1の超音波及び前記第2の超音波の前記照射と、前記線形散乱波及び前記分調波の受信とを前記き裂を挟むようにして相対向させて実施するようにしたことを特徴とする、請求項10〜15のいずれか一に記載の閉じたき裂の定量評価装置。   The transmitter and the receiver are provided so as to face each other so as to sandwich the crack, and the irradiation of the first ultrasonic wave and the second ultrasonic wave, reception of the linear scattered wave and the subharmonic wave, The apparatus for quantitative evaluation of a closed crack according to any one of claims 10 to 15, wherein the apparatus is carried out with the cracks facing each other so as to sandwich the crack. 前記波形生成装置は、波形がガウス関数と正弦波との積で表される波形を呈するようにして、前記第1の超音波及び前記第2の超音波を生成するようにしたことを特徴とする、請求項10〜16のいずれか一に記載の閉じたき裂の定量評価装置。   The waveform generation device generates the first ultrasonic wave and the second ultrasonic wave so that the waveform exhibits a waveform represented by a product of a Gaussian function and a sine wave. The quantitative evaluation apparatus of the closed crack as described in any one of Claims 10-16. 第1の超音波、及びこの第1の超音波よりも振幅が大きく、前記第1の超音波と同じ周波数を有する第2の超音波を生成するための波形生成装置と、
前記第1の超音波及び前記第2の超音波を開いたき裂及び閉じたき裂を連続して含むき裂に対して照射するための送信器と、
前記第1の超音波の照射により、前記開いたき裂の先端部で生成した線形散乱波、及び前記第2の超音波の照射により、前記閉じたき裂の先端部で生成した分調波を受信するための受信器と、
前記線形散乱波に基づいて前記開いたき裂の画像を得るとともに、前記分調波に基づいて前記閉じたき裂の画像を得るための画像処理装置と、
を具えることを特徴とする、閉じたき裂の定量評価装置。
A waveform generator for generating a first ultrasonic wave and a second ultrasonic wave having an amplitude larger than that of the first ultrasonic wave and having the same frequency as the first ultrasonic wave;
A transmitter for irradiating the first ultrasonic wave and the second ultrasonic wave to a crack continuously including an open crack and a closed crack;
Receives a linear scattered wave generated at the tip of the open crack by the irradiation of the first ultrasonic wave and a subharmonic wave generated at the tip of the closed crack by the irradiation of the second ultrasonic wave. A receiver for
An image processing apparatus for obtaining an image of the open crack based on the linear scattered wave and obtaining an image of the closed crack based on the subharmonic wave;
A device for quantitatively evaluating a closed crack, characterized by comprising:
JP2004131540A 2004-04-27 2004-04-27 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack Expired - Lifetime JP4538629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131540A JP4538629B2 (en) 2004-04-27 2004-04-27 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004131540A JP4538629B2 (en) 2004-04-27 2004-04-27 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack

Publications (2)

Publication Number Publication Date
JP2005315636A true JP2005315636A (en) 2005-11-10
JP4538629B2 JP4538629B2 (en) 2010-09-08

Family

ID=35443233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131540A Expired - Lifetime JP4538629B2 (en) 2004-04-27 2004-04-27 Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack

Country Status (1)

Country Link
JP (1) JP4538629B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278854A (en) * 2006-04-07 2007-10-25 Hitachi Ltd Ultrasonic inspection method and device
WO2008038159A3 (en) * 2006-09-29 2008-06-26 Odetect As Ultrasound measurement techniques for bone analysis
WO2010007830A1 (en) 2008-07-18 2010-01-21 国立大学法人東北大学 Method for imaging structure defect, device for imaging structure defect, method for imaging bubble or lesion, and device for imaging bubble or lesion
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
JP2011185921A (en) * 2010-02-09 2011-09-22 Fuji Heavy Ind Ltd System and method for measuring damage length
EP2765417A1 (en) * 2013-02-12 2014-08-13 General Electric Company Ultrasonic detection method and system
EP2770323A2 (en) 2013-02-20 2014-08-27 Kabushiki Kaisha Toshiba Ultrasonic test equipment using frequency analysis and evaluation method thereof
JPWO2018079438A1 (en) * 2016-10-25 2019-09-19 日本電気株式会社 Determination device, determination method, and computer-readable recording medium
JPWO2019021538A1 (en) * 2017-07-27 2020-03-19 株式会社Subaru Method of manufacturing ultrasonic inspection system
WO2022180972A1 (en) * 2021-02-26 2022-09-01 株式会社日立パワーソリューションズ Ultrasonic inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025049B2 (en) * 2013-01-10 2016-11-16 国立大学法人東北大学 Structure defect imaging method, structure defect imaging apparatus, and bubble or lesion imaging apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131560A (en) * 1982-02-01 1983-08-05 Nippon Steel Corp Method and apparatus for ultrasonic flaw detection
JPS59171540A (en) * 1983-03-18 1984-09-28 富士通株式会社 Measurement utilizing spectrum shape
JPS61184454A (en) * 1985-02-12 1986-08-18 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic probe with reference reflector
JPH09257773A (en) * 1996-03-19 1997-10-03 Hitachi Ltd Ultrasonic transmission and reception apparatus for sizing flaw and method for ultrasonic transmission and reception thereof
JPH11137547A (en) * 1997-11-11 1999-05-25 Ge Yokogawa Medical Systems Ltd Ultrasonic photographing method and device
JP2001021542A (en) * 1999-07-07 2001-01-26 Osaka Gas Co Ltd Measuring of weld line transverse crack defect length
JP2002301072A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2004057653A (en) * 2002-07-31 2004-02-26 Takeshi Shiina Ultrasonographic system, distortion distribution display method, and elastic modulus distribution display method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131560A (en) * 1982-02-01 1983-08-05 Nippon Steel Corp Method and apparatus for ultrasonic flaw detection
JPS59171540A (en) * 1983-03-18 1984-09-28 富士通株式会社 Measurement utilizing spectrum shape
JPS61184454A (en) * 1985-02-12 1986-08-18 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic probe with reference reflector
JPH09257773A (en) * 1996-03-19 1997-10-03 Hitachi Ltd Ultrasonic transmission and reception apparatus for sizing flaw and method for ultrasonic transmission and reception thereof
JPH11137547A (en) * 1997-11-11 1999-05-25 Ge Yokogawa Medical Systems Ltd Ultrasonic photographing method and device
JP2001021542A (en) * 1999-07-07 2001-01-26 Osaka Gas Co Ltd Measuring of weld line transverse crack defect length
JP2002301072A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2004057653A (en) * 2002-07-31 2004-02-26 Takeshi Shiina Ultrasonographic system, distortion distribution display method, and elastic modulus distribution display method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278854A (en) * 2006-04-07 2007-10-25 Hitachi Ltd Ultrasonic inspection method and device
JP4600335B2 (en) * 2006-04-07 2010-12-15 株式会社日立製作所 Ultrasonic inspection method and apparatus
WO2008038159A3 (en) * 2006-09-29 2008-06-26 Odetect As Ultrasound measurement techniques for bone analysis
JP2011516897A (en) * 2008-04-15 2011-05-26 ザ・ボーイング・カンパニー Anomaly imaging using backscattered waves
WO2010007830A1 (en) 2008-07-18 2010-01-21 国立大学法人東北大学 Method for imaging structure defect, device for imaging structure defect, method for imaging bubble or lesion, and device for imaging bubble or lesion
KR20110040837A (en) 2008-07-18 2011-04-20 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Method for imaging structure defect, device for imaging structure defect, method for imaging bubble or lesion, and device for imaging bubble or lesion
US8559696B2 (en) 2008-07-18 2013-10-15 Tohoku University Imaging method of structure defect, imaging device of structure defect, imaging method of bubble or lesion and imaging device of bubble or lesion
JP2011185921A (en) * 2010-02-09 2011-09-22 Fuji Heavy Ind Ltd System and method for measuring damage length
EP2765417A1 (en) * 2013-02-12 2014-08-13 General Electric Company Ultrasonic detection method and system
US9116098B2 (en) 2013-02-12 2015-08-25 General Electric Company Ultrasonic detection method and system
EP2770323A2 (en) 2013-02-20 2014-08-27 Kabushiki Kaisha Toshiba Ultrasonic test equipment using frequency analysis and evaluation method thereof
US9400264B2 (en) 2013-02-20 2016-07-26 Kabushiki Kaisha Toshiba Ultrasonic test equipment and evaluation method thereof
JPWO2018079438A1 (en) * 2016-10-25 2019-09-19 日本電気株式会社 Determination device, determination method, and computer-readable recording medium
JP7124701B2 (en) 2016-10-25 2022-08-24 日本電気株式会社 Determination device, determination system, determination method and program
JPWO2019021538A1 (en) * 2017-07-27 2020-03-19 株式会社Subaru Method of manufacturing ultrasonic inspection system
US11460445B2 (en) 2017-07-27 2022-10-04 Subaru Corporation Method of producing ultrasonic inspection system
WO2022180972A1 (en) * 2021-02-26 2022-09-01 株式会社日立パワーソリューションズ Ultrasonic inspection device
JP7489345B2 (en) 2021-02-26 2024-05-23 株式会社日立パワーソリューションズ Ultrasonic Inspection Equipment

Also Published As

Publication number Publication date
JP4538629B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
Thring et al. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects
JP5795651B2 (en) Ultrasonic immersion inspection of members with arbitrary surface contours
Shakibi et al. Resolution enhancement of ultrasonic defect signals for crack sizing
CN105181798A (en) Construction steel structure weld ultrasonic phased array detection technology
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
JP4538629B2 (en) Quantitative evaluation method for closed crack and quantitative evaluation apparatus for closed crack
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
US11408861B2 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and inspection method
Hayashi et al. Vibration energy analysis of a plate for defect imaging with a scanning laser source technique
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
CN111174894B (en) Laser ultrasonic transverse wave sound velocity measurement method
Hayashi Defect imaging for plate-like structures using diffuse field
Draudvilienė et al. Validation of dispersion curve reconstruction techniques for the A0 and S0 modes of Lamb waves
Weston Advanced ultrasonic digital imaging and signal processing for applications in the field of non-destructive testing
Kumar Total focusing method-based ultrasonic phased array imaging in thick structures
Li et al. Development of a 16-channel broadband piezoelectric micro ultrasonic transducer array probe for pipeline butt-welded defect detection
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
Dung et al. Simultaneous measurement of thickness and ultrasonic wave velocity using a combination of laser-generated multiple wave modes in the thermoelastic regime
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
Bhowmick Ultrasonic inspection for wall thickness measurement at thermal power stations
Sicard et al. Corrosion monitoring of airframe structures using ultrasonic arrays and guided waves
KR20200011835A (en) Pulse-echo nonlinear nondestructive inspection device using array type ultrasonic transducers
KR102106940B1 (en) Ultrasonic nondestructive inspection device using overtone vibrator
Gan et al. Nonlinear Time-Reversal Acoustics

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070416

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100402

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150