JP2005314152A - Layered manganese dioxide nanobelt and method of manufacturing the same - Google Patents

Layered manganese dioxide nanobelt and method of manufacturing the same Download PDF

Info

Publication number
JP2005314152A
JP2005314152A JP2004133154A JP2004133154A JP2005314152A JP 2005314152 A JP2005314152 A JP 2005314152A JP 2004133154 A JP2004133154 A JP 2004133154A JP 2004133154 A JP2004133154 A JP 2004133154A JP 2005314152 A JP2005314152 A JP 2005314152A
Authority
JP
Japan
Prior art keywords
manganese dioxide
layered
nanobelt
layered manganese
dioxide nanobelt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133154A
Other languages
Japanese (ja)
Other versions
JP4674347B2 (en
Inventor
Yoshio Bando
義雄 板東
Takayoshi Sasaki
高義 佐々木
Ma Renzhi
ルンチィ・マ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004133154A priority Critical patent/JP4674347B2/en
Publication of JP2005314152A publication Critical patent/JP2005314152A/en
Application granted granted Critical
Publication of JP4674347B2 publication Critical patent/JP4674347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layered manganese dioxide nanobelt having uniform dimension, high catalytic reaction rate and capable of easily inserting and releasing cation, and a method of manufacturing the same. <P>SOLUTION: The layered manganese dioxide nanobelt is obtained by heating dimanganese trioxide powder in a sodium hydroxide aqueous solution at 150-200°C for ≥72 hr and has 5-15 nm width, 3-15 nm thickness and length ranging from several μm to several tens μm. The layered manganese dioxide nanobelt is a layered, so called, birnessite manganese dioxide, has high catalytic reaction rate, is capable of easily inserting and releasing cation and is inexpensively manufactured at a low temperature by a hydrothermal method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、触媒、イオンシーブ、蓄電池の電極材料などとして使用できる、層状二酸化マンガンナノベルト及びその製造方法に関する。   The present invention relates to a layered manganese dioxide nanobelt that can be used as a catalyst, an ion sieve, an electrode material for a storage battery, and the like, and a method for producing the same.

二酸化マンガンは、従来から触媒、イオンシーブ、蓄電池の電極材料などの酸化還元材料として用いられている。蓄電池の電極材料として、例えばLiの正極活物質となる二酸化マンガンは、Li+ (リチウム陽イオン)の電気化学的挿入(インターカレーション)と抽出(デインターカレーション)とによりリチウム二次電池の充放電特性を改善する材料である。この二酸化マンガンの触媒活性などの向上のために、二酸化マンガンのナノ構造体の研究が行われている。
二酸化マンガンの一次元単結晶ナノワイヤは、硫酸マンガンを過硫酸アンモニウムや過マンガン酸カリウムで酸化処理することにより製造されている(非特許文献1〜3参照)。また、良好な配向性を有する二酸化マンガンナノワイヤも硫酸マンガン−ビピリジル系配位結合重合体を水酸化ナトリウム水溶液中で処理することにより製造されている(非特許文献4参照)。これらのナノワイヤはいずれもトンネル状の構造を有している。
Manganese dioxide has been conventionally used as a redox material such as an electrode material for catalysts, ion sieves, and storage batteries. As an electrode material of a storage battery, for example, manganese dioxide, which is a positive electrode active material of Li, is obtained by electrochemical insertion (intercalation) and extraction (deintercalation) of Li + (lithium cation). It is a material that improves charge / discharge characteristics. In order to improve the catalytic activity of manganese dioxide, research on manganese dioxide nanostructures has been conducted.
One-dimensional single crystal nanowires of manganese dioxide are produced by oxidizing manganese sulfate with ammonium persulfate or potassium permanganate (see Non-Patent Documents 1 to 3). Further, manganese dioxide nanowires having good orientation are also produced by treating a manganese sulfate-bipyridyl-based coordination bond polymer in an aqueous sodium hydroxide solution (see Non-Patent Document 4). Each of these nanowires has a tunnel-like structure.

一方、二次元の層状構造を有するバーネサイト型の二酸化マンガンは、非特許文献5による報告の後、多数の研究が行われている。この二次元の層状構造を有するバーネサイト型の二酸化マンガンは、約7Åの層間距離を有しているので、層間に入ったカチオン(陽イオン)が容易に移動できる特徴を有している。   On the other hand, after research by Non-Patent Document 5, many studies have been conducted on the burntite-type manganese dioxide having a two-dimensional layered structure. The birnessite-type manganese dioxide having a two-dimensional layered structure has an interlayer distance of about 7 mm, and thus has a feature that cations (cations) entering the layer can easily move.

最近、単層で2次元構造を有するバーネサイト型二酸化マンガンのナノシートが製作され、その厚さは0.77nm(ナノメートル)で二次元方向の寸法が数百nmであることが報告されている(非特許文献6参照)。
また、このナノシートをLiと共に積層構造にすると、新規なLi−バーネサイト型二酸化マンガン構造となり、リチウム二次電池の正極活物質として使用され、そして、バーネサイト型二酸化マンガンナノシートへのLi+ イオンの挿入及び抽出によりリチウム二次電池の充放電特性が円滑であることが報告されている(非特許文献7参照)。
Recently, a nano-sheet of birnessite-type manganese dioxide having a two-dimensional structure with a single layer has been produced, and its thickness is reported to be 0.77 nm (nanometer) and the dimension in the two-dimensional direction is several hundred nm ( Non-patent document 6).
Further, when this nanosheet is laminated with Li to form a new Li-bernesite-type manganese dioxide structure, it is used as a positive electrode active material of a lithium secondary battery, and the insertion of Li + ions into the burntite-type manganese dioxide nanosheet and It has been reported that the charge and discharge characteristics of the lithium secondary battery are smooth by extraction (see Non-Patent Document 7).

X. Wang, 他、"Selected-Control Hydrothermal Synthesis of α- and β- MnO2 Single Crystal Nanowires", 2002, J. Am. Chem. Soc., vo1.124, pp.2880-2881X. Wang, et al., "Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires", 2002, J. Am. Chem. Soc., Vo1.124, pp.2880-2881 X. Wang, 他、"Rational Synthesis ofα- MnO2 single-crystal nanorods", 2002, Chem. Commun., pp.764-765X. Wang, et al., "Rational Synthesis of α-MnO2 single-crystal nanorods", 2002, Chem. Commun., Pp.764-765 X. Wang, 他 "Synthesis and Formation Mechanism of Manganese Dioxide Nanowires/Nanorods", 2003, Chem. Eur. J., vo1.9, pp.300-306X. Wang, et al. "Synthesis and Formation Mechanism of Manganese Dioxide Nanowires / Nanorods", 2003, Chem. Eur. J., vo1.9, pp.300-306 Y. J. Xiong他、"Growth of Well-Aligned γ- MnO2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route", 2003, Chem. Eur. J. vo1.9, pp.1645-1651Y. J. Xiong et al., "Growth of Well-Aligned γ-MnO2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route", 2003, Chem. Eur. J. vo1.9, pp.1645-1651 J. Parant 他4名、"Sur-quelques nouvelles phases de formule Na x MnO2(x ≦1)", 1971, J. Solid State Chem., vo1.3 , pp.1-11J. Parant and 4 others, "Sur-quelques nouvelles phases de formule Na x MnO2 (x ≤ 1)", 1971, J. Solid State Chem., Vo1.3, pp.1-11 Y. Omomo 他3名、"Redoxable Nanosheet Crystallite of MnO2 Derived via Delamination of Layered Manganese Oxide", 2003, J. Am. Chem. Soc., vo1.125, pp.3568-3575Y. Omomo and three others, "Redoxable Nanosheet Crystallite of MnO2 Derived via Delamination of Layered Manganese Oxide", 2003, J. Am. Chem. Soc., Vo1.125, pp.3568-3575 L. Wang 他7名、"Synthesis of a Li-Mn-oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2 Nanosheets, and Its Electrochemical properties", 2003, Chem. Mater., vo1.15, pp.4508-4514L. Wang and 7 others, "Synthesis of a Li-Mn-oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2 Nanosheets, and Its Electrochemical properties", 2003, Chem. Mater., Vo1.15, pp.4508-4514

上記単層バーネサイト型二酸化マンガンナノシートを、再現性良く製造することは、困難であるという課題がある。
また、触媒、イオンシーブ、蓄電池の電極材料等の酸化還元材料として、Liイオンなどの電気化学的挿入及び抽出を効率良く行うためには、一次元や二次元の層状のバーネサイト型二酸化マンガンのナノ構造体の実現が要求されている。しかしながら、一次元の層状構造を有するバーネサイト型二酸化マンガンの一次元ナノベルトが得られないという課題がある。
There is a problem that it is difficult to produce the single-layered birnessite-type manganese dioxide nanosheet with good reproducibility.
In order to efficiently perform electrochemical insertion and extraction of Li ion as a redox material such as catalyst, ion sieve, and storage battery electrode material, the nanostructure of one-dimensional or two-dimensional layered birnessite-type manganese dioxide Realization of the body is required. However, there is a problem in that a one-dimensional nanobelt of banesite-type manganese dioxide having a one-dimensional layered structure cannot be obtained.

本発明は上記課題に鑑み、寸法が均一で、触媒反応速度が高く、かつ、カチオンの挿入及び抽出が容易にできる、層状二酸化マンガンナノベルト及びその製造方法を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a layered manganese dioxide nanobelt having a uniform size, a high catalytic reaction rate, and easy insertion and extraction of cations and a method for producing the same.

上記目的を達成するために、本発明の層状二酸化マンガンナノベルトは、幅5nm〜15nm、厚さ3nm〜15nm、長さ数μm〜数十μmであることを特徴とする。   In order to achieve the above object, the layered manganese dioxide nanobelt of the present invention is characterized by having a width of 5 nm to 15 nm, a thickness of 3 nm to 15 nm, and a length of several μm to several tens of μm.

また、本発明の層状二酸化マンガンナノベルトは、水酸化ナトリウム水溶液中で、三酸化二マンガン粉末を150℃〜200℃の温度範囲で、72時間以上加熱することにより得られる層状二酸化マンガンナノベルトであり、幅5nm〜15nm、厚さ3nm〜15nm、長さ数μm〜数十μmであることを特徴とする。   The layered manganese dioxide nanobelt of the present invention is a layered manganese dioxide nanobelt obtained by heating a manganese dioxide trioxide powder in a sodium hydroxide aqueous solution at a temperature range of 150 ° C. to 200 ° C. for 72 hours or more. And having a width of 5 nm to 15 nm, a thickness of 3 nm to 15 nm, and a length of several μm to several tens of μm.

上記構成によれば、層状二酸化マンガンナノベルトの幅と厚さがnmオーダーであり、その長さがμmオーダであるので比表面積が高い。また、その厚さ方向の層間距離が約7Åであるため、カチオンの挿入及び抽出が容易にできる。したがって、触媒反応速度が高く、かつ、カチオンの挿入及び抽出が容易にできる、バーネサイト型の層状二酸化マンガンナノベルトを提供することができる。   According to the above configuration, the width and thickness of the layered manganese dioxide nanobelt are on the order of nm, and the length is on the order of μm, so the specific surface area is high. Further, since the interlayer distance in the thickness direction is about 7 mm, insertion and extraction of cations can be easily performed. Therefore, it is possible to provide a birnessite-type layered manganese dioxide nanobelt that has a high catalytic reaction rate and can easily insert and extract cations.

また、本発明の層状二酸化マンガンナノベルトの製造方法は、水酸化ナトリウム水溶液中で、三酸化二マンガン粉末を150℃〜200℃の温度範囲で、72時間以上加熱することにより層状二酸化マンガンナノベルトを得ることを特徴とする。
また、水酸化ナトリウム水溶液の濃度は、好ましくは、5mol/ltr〜10mol/ltrの範囲であり、三酸化二マンガン粉末の量は、好ましくは、水酸化ナトリウム水溶液40cm3 当たり、2g〜3gの範囲である。
Moreover, the manufacturing method of the layered manganese dioxide nanobelt of this invention is a layered manganese dioxide nanobelt by heating a dimanganese trioxide powder for 72 hours or more in the temperature range of 150 to 200 degreeC in sodium hydroxide aqueous solution. It is characterized by obtaining.
The concentration of the aqueous sodium hydroxide is preferably in the range of 5 mol / ltr to 10 mol / ltr, and the amount of the dimanganese trioxide powder is preferably in the range of 2 to 3 g per 40 cm 3 of the aqueous sodium hydroxide. It is.

この方法によれば、三酸化二マンガン粉末を原料として、水酸化ナトリウム水溶液を用いる水熱法により、150℃〜200℃の温度範囲で72時間以上加熱することにより、層状二酸化マンガンナノベルトを製造することができる。
また、この方法により製造される層状二酸化マンガンナノベルトは、幅と厚さがnmオーダーであり、その長さがμmオーダであるので比表面積が高い。また、その厚さ方向の層間距離が約7Åであるため、カチオンの挿入及び抽出が容易にできる。したがって、触媒反応速度が高く、かつ、カチオンの挿入及び抽出が容易にできる、バーネサイト型の層状二酸化マンガンナノベルトを低温で、容易に、かつ、低コストで製造することが可能になる。
According to this method, a layered manganese dioxide nanobelt is produced by heating for 72 hours or more in a temperature range of 150 ° C. to 200 ° C. by a hydrothermal method using a sodium hydroxide aqueous solution, using dimanganese trioxide powder as a raw material. can do.
In addition, the layered manganese dioxide nanobelt manufactured by this method has a width and thickness on the order of nm, and the length is on the order of μm, so that the specific surface area is high. Further, since the interlayer distance in the thickness direction is about 7 mm, insertion and extraction of cations can be easily performed. Therefore, it is possible to easily produce a birnessite-type layered manganese dioxide nanobelt having a high catalytic reaction rate and easy insertion and extraction of cations at a low temperature and at a low cost.

本発明の層状二酸化マンガンナノベルトは、幅と厚さがnmオーダーであり、その長さ
がμmオーダであるので比表面積が高く、また、厚さ方向の間隔がカチオンが通電できる7Å程度であるので、従来の層状二酸化マンガンよりも触媒反応速度が高い。また、カチオンの挿入及び抽出が容易にできる。
また、本発明の方法によれば、層状二酸化マンガンナノベルトを、低温で、かつ、低コストで製造することができる。
The layered manganese dioxide nanobelt of the present invention has a width and thickness on the order of nm, and its length is on the order of μm, so that the specific surface area is high, and the interval in the thickness direction is about 7 mm at which cations can be energized. Therefore, the catalytic reaction rate is higher than that of the conventional layered manganese dioxide. In addition, insertion and extraction of cations can be facilitated.
Moreover, according to the method of the present invention, the layered manganese dioxide nanobelt can be produced at a low temperature and at a low cost.

以下、本発明の層状二酸化マンガンナノベルト及びその製造方法を図面を参照して詳細に説明する。
初めに、本発明の層状二酸化マンガン(MnO2 )ナノベルトについて説明する。
本発明の層状二酸化マンガンナノベルトは、幅5nm( ナノメートル、10-9m)〜15nm、厚さ3nm〜15nm、長さは数μm( マイクロメートル、10-6m)〜数十μmである。そして、厚さ方向の層間距離は、7Åの層状であり、所謂バーネサイト型二酸化マンガンである。
Hereinafter, the layered manganese dioxide nanobelt of the present invention and the manufacturing method thereof will be described in detail with reference to the drawings.
First, the layered manganese dioxide (MnO 2 ) nanobelt of the present invention will be described.
The layered manganese dioxide nanobelt of the present invention has a width of 5 nm (nanometer, 10 −9 m) to 15 nm, a thickness of 3 nm to 15 nm, and a length of several μm (micrometer, 10 −6 m) to several tens of μm. . The interlayer distance in the thickness direction is 7 mm, which is so-called burntite type manganese dioxide.

次に、本発明の層状二酸化マンガンナノベルトの製造方法について説明する。水熱法により、最初に、三酸化二マンガン(Mn2 3 )粉末を水酸化ナトリウム(NaOH)水溶液に分散させ、分散液を調製する。
水酸化ナトリウム水溶液の濃度は、5mol/ltr(リットル、1000cm3 )〜10mol/ltrの範囲で行えばよい。三酸化二マンガンから二酸化マンガンへの変換には10mol/ltrの濃度で十分であるので、これ以上の濃度にする必要はない。また、5mol/ltr以下の濃度では原料の三酸化二マンガンが二酸化マンガンに変換されないので望ましくない。
三酸化二マンガン粉末の量は水酸化ナトリウム水溶液40cm3 当たり、2g〜3gの範囲で行えばよい。三酸化二マンガン粉末の量が3g以上では最終生成物の層状二酸化マンガンナノベルト中に未反応の三酸化二マンガンが残存し、望ましくない。また、三酸化二マンガン粉末の量が2gより少ないと、反応には差し支えないが仕込み歩留まりが減少するので望ましくない。
Next, the manufacturing method of the layered manganese dioxide nanobelt of this invention is demonstrated. First, by a hydrothermal method, dimanganese trioxide (Mn 2 O 3 ) powder is dispersed in an aqueous sodium hydroxide (NaOH) solution to prepare a dispersion.
The concentration of the aqueous sodium hydroxide solution may be in the range of 5 mol / ltr (liter, 1000 cm 3 ) to 10 mol / ltr. Since the concentration of 10 mol / ltr is sufficient for the conversion from dimanganese trioxide to manganese dioxide, it is not necessary to make the concentration higher than this. Further, when the concentration is 5 mol / ltr or less, the raw material dimanganese trioxide is not converted to manganese dioxide, which is not desirable.
The amount of the dimanganese trioxide powder may be in the range of 2 g to 3 g per 40 cm 3 of the aqueous sodium hydroxide solution. If the amount of the dimanganese trioxide powder is 3 g or more, unreacted dimanganese trioxide remains in the layered manganese dioxide nanobelt as the final product, which is not desirable. On the other hand, if the amount of the dimanganese trioxide powder is less than 2 g, the reaction may be carried out, but it is not desirable because the charging yield decreases.

この分散液をポリテトラフルオロエチレンで内張りしたオートクレーブに入れる。次に、このオートクレーブを乾燥機の中に設置し、150℃〜200℃で、72時間以上加熱する。これにより、加熱処理後、黒色の粉末が沈殿する。
加熱温度は150℃〜200℃の温度範囲が適当であり、200℃以上では、蒸気発生による圧力が高くなり、安全上望ましくなく、また、150℃以下では反応の進行が不十分である。
また、加熱時間は72時間以上必要であり、72時間より少ないと、最終生成物の層状二酸化マンガンナノベルトの中に、マンガンのオキサイド−ハイドロオキサイド構造が混入するので望ましくない。
This dispersion is placed in an autoclave lined with polytetrafluoroethylene. Next, this autoclave is set in a dryer and heated at 150 ° C. to 200 ° C. for 72 hours or more. Thereby, black powder precipitates after heat processing.
The heating temperature is suitably in the range of 150 ° C. to 200 ° C. If the heating temperature is 200 ° C. or higher, the pressure due to the generation of steam is high, which is not desirable for safety, and if it is 150 ° C. or lower, the progress of the reaction is insufficient.
Further, the heating time is required to be 72 hours or longer. If the heating time is shorter than 72 hours, manganese oxide-hydroxide structure is mixed in the final layered manganese dioxide nanobelt, which is not desirable.

次に、この沈殿物をろ過し、希塩酸(HCl)と脱イオン水で十分に洗浄する。その後、室温で3日間風乾することにより、黒色粉末の層状二酸化マンガンナノベルトが得られる。   The precipitate is then filtered and washed thoroughly with dilute hydrochloric acid (HCl) and deionized water. Then, the layered manganese dioxide nanobelt of black powder is obtained by air drying at room temperature for 3 days.

次に、実施例に基づいてさらに詳細に説明する。
水酸化ナトリウム(関東化学(株)製、純度97.0%)を用いて、濃度10mol/ltrの水溶液40cm3 を作製した。この溶液の中に、三酸化二マンガン粉末(高純度化学研究所(株)製)2gを分散させ、分散液を調製した。
この分散液を、容量50cm3 のポリテトラフルオロエチレンで内張りしたオートクレーブの中に仕込んだ。このオートクレーブを乾燥機の中に入れ、乾燥機の温度を170℃に保った。この加熱時間を12時間から1週間までそれぞれ変えた。加熱後、オートクレーブの中に、黒色の粉末が沈殿した。沈殿物をろ過し、濃度0.1mol/ltrの希塩酸と脱イオン水で十分に洗浄した。この沈殿物を室温で3日間風乾した。収量は、約1.5gであった。
Next, it demonstrates still in detail based on an Example.
A 40 cm 3 aqueous solution having a concentration of 10 mol / ltr was prepared using sodium hydroxide (manufactured by Kanto Chemical Co., Inc., purity 97.0%). In this solution, 2 g of dimanganese trioxide powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dispersed to prepare a dispersion.
This dispersion was charged into an autoclave lined with polytetrafluoroethylene having a capacity of 50 cm 3 . This autoclave was put in a dryer, and the temperature of the dryer was kept at 170 ° C. The heating time was changed from 12 hours to 1 week. After heating, a black powder precipitated in the autoclave. The precipitate was filtered and thoroughly washed with dilute hydrochloric acid and deionized water having a concentration of 0.1 mol / ltr. The precipitate was air dried at room temperature for 3 days. Yield was about 1.5 g.

図1は、実施例で得られた黒色粉末および原料として用いた三酸化二マンガン粉末の粉末X線回折結果を示す図である。図の横軸は角度2θ(度)を示し、縦軸は回折X線強度(任意目盛り)を示している。
図において、(a)が12時間、(b)が48時間、(c)が72時間以上の加熱であり、最も下に示すデータが三酸化二マンガン粉末からの回折X強度である。
図から明らかなように、原料の三酸化二マンガン粉末には、左端ピークの約7.1Åのピークは現れていないが、加熱時間を(a)12時間、(b)48時間、(c)72時間と長くするにつれて、7.1Åのピークが増大していくのが分かる。
また、(b)の48時間処理では4.55Å(2θ=19.5°)にマンガンオキサイド−ハイドロオキサイドのピークが存在し、まだ完全にはバーネサイト型二酸化マンガンにはなっていない。
さらに、(c)の72時間処理で、このピークが完全に消失し、バーネサイト型二酸化マンガンが得られていることが確認できた。
FIG. 1 is a diagram showing the powder X-ray diffraction results of the black powder obtained in the example and the dimanganese trioxide powder used as a raw material. In the figure, the horizontal axis indicates the angle 2θ (degrees), and the vertical axis indicates the diffracted X-ray intensity (arbitrary scale).
In the figure, (a) is heating for 12 hours, (b) is 48 hours, (c) is heating for 72 hours or more, and the data shown at the bottom is the diffraction X intensity from the dimanganese trioxide powder.
As is clear from the figure, the starting manganese dioxide powder does not show a peak at about 7.1% of the leftmost peak, but the heating time is (a) 12 hours, (b) 48 hours, (c) It can be seen that the peak at 7.1 cm increases as the time increases to 72 hours.
Further, in the treatment for 48 hours of (b), a peak of manganese oxide-hydroxide is present at 4.55 mm (2θ = 19.5 °), and it has not yet been completely converted into a benesite type manganese dioxide.
Further, it was confirmed that this peak disappeared completely by the treatment for 72 hours in (c), and that a benesite type manganese dioxide was obtained.

図2は、実施例の170℃で72時間の加熱処理で得られた生成物の透過型電子顕微鏡(TEM)像を示す図である。
図から明らかなように、多数の黒い繊維が形成されているのが分かる。この黒い繊維のそれぞれが、一次元の層状二酸化マンガンナノベルトである。さらに、高倍率の透過電子顕微鏡及び走査型電子顕微鏡(SEM)での測定により、層状二酸化マンガンナノベルトの寸法は、幅5nm〜15nm、厚さ3nm〜15nm、長さは数μm〜数十μmであり、そして、厚さ方向の層間距離は7Åであることが分かった。また、得られた生成物中には、直線状だけでなく、曲がったナノベルトも存在していた。さらに、全体の10%程度、幅数百nmのシート状構造も含有されていた。
FIG. 2 is a transmission electron microscope (TEM) image of the product obtained by heat treatment at 170 ° C. for 72 hours in the example.
As can be seen from the figure, many black fibers are formed. Each of these black fibers is a one-dimensional layered manganese dioxide nanobelt. Furthermore, the dimensions of the layered manganese dioxide nanobelt are 5 nm to 15 nm, the thickness is 3 nm to 15 nm, and the length is several μm to several tens of μm, as measured with a high-magnification transmission electron microscope and scanning electron microscope (SEM). It was found that the interlayer distance in the thickness direction was 7 mm. Further, in the obtained product, not only a linear shape but also a bent nanobelt was present. Furthermore, a sheet-like structure having a width of about several hundreds of nanometers was also contained.

図3は、実施例の170℃で72時間の加熱処理で得られた生成物のエネルギー分散型X線分析(EDS)結果を示す図である。図の横軸はX線エネルギー(eV)を示し、縦軸はX線強度(任意目盛り)を示している。
図から明らかなように、生成物は、マンガン及び酸素からなり、マンガンと酸素との原子比は1:2である。これから、化学量論的組成の二酸化マンガンが得られることが分かった。なお、銅のピークは試料作製のために用いた銅グリッドに由来するものである。
FIG. 3 is a diagram showing the results of energy dispersive X-ray analysis (EDS) of the product obtained by heat treatment at 170 ° C. for 72 hours in the example. In the figure, the horizontal axis represents X-ray energy (eV), and the vertical axis represents X-ray intensity (arbitrary scale).
As is apparent from the figure, the product consists of manganese and oxygen, and the atomic ratio of manganese to oxygen is 1: 2. From this, it was found that manganese dioxide having a stoichiometric composition can be obtained. The copper peak is derived from the copper grid used for sample preparation.

次に、実施例で得たバーネサイト型二酸化マンガンである層状二酸化マンガンナノベルトのリチウムに対する電気化学特性について説明する。
電気化学特性は、実施例で得た層状二酸化マンガンナノベルトをリチウム二次電池の正極活物質として用いることで調べた。
リチウム二次電池は次のようにして作製した。乾燥した層状二酸化マンガンナノベルトを0.2gと、カーボンブラック20wt%(重量%)及びポリテトラフルオロエチレン10wt%の混合物と、電解質として体積比1:1の炭酸エチレンと炭酸ジエチルの混合物に1mol/ltrの過塩素酸リチウムと、を用いてコイン型に成形して陰極とした。また、陽極には金属リチウムを用いた。
Next, the electrochemical characteristic with respect to lithium of the layered manganese dioxide nanobelt which is the birnessite type manganese dioxide obtained in the Example is demonstrated.
The electrochemical characteristics were examined by using the layered manganese dioxide nanobelts obtained in the examples as the positive electrode active material of the lithium secondary battery.
The lithium secondary battery was produced as follows. 0.2 mol of the dried layered manganese dioxide nanobelt, a mixture of 20 wt% (wt%) of carbon black and 10 wt% of polytetrafluoroethylene, and 1 mol / l of a mixture of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 as an electrolyte. The cathode was molded into a coin shape using ltr lithium perchlorate. Moreover, metallic lithium was used for the anode.

図4は、実施例の層状二酸化マンガンナノベルトを用いたリチウム二次電池の放電容量のサイクル依存性を示す図である。図の横軸は充放電のサイクル数を示し、縦軸は層状二酸化マンガンナノベルト1g当たりの放電容量(mAh/g)を示している。充放電特性の測定は、電圧1.0〜4.8Vを印加し、一定の電流密度0.23mA/cm2 で充放
電を行った。
図から明らかなように、1サイクルの目の放電プロセスでは、375mAh/gの高い放電容量が得られ、2サイクル目で290mAh/gになり、3サイクル目以降の平均の容量低下は1サイクル当り1%で、30サイクル後でも230mAh/gの容量を有していることが分かる。このように、実施例の層状二酸化マンガンナノベルトが正極活物質として有効に作用している。これにより、実施例のバーネサイト型である層状二酸化マンガンナノベルトの中でのカチオン、すなわちリチウム陽イオンの挿入、放出の可逆性が良好であることが分かる。
FIG. 4 is a diagram showing the cycle dependency of the discharge capacity of the lithium secondary battery using the layered manganese dioxide nanobelt of the example. The horizontal axis of the figure indicates the number of charge / discharge cycles, and the vertical axis indicates the discharge capacity (mAh / g) per 1 g of the layered manganese dioxide nanobelt. The charge / discharge characteristics were measured by applying a voltage of 1.0 to 4.8 V and charging / discharging at a constant current density of 0.23 mA / cm 2 .
As is apparent from the figure, in the discharge process of the first cycle, a high discharge capacity of 375 mAh / g was obtained, and in the second cycle, it became 290 mAh / g, and the average capacity decrease after the third cycle was per cycle. It can be seen that it has a capacity of 230 mAh / g even after 30 cycles at 1%. Thus, the layered manganese dioxide nanobelt of an Example is acting effectively as a positive electrode active material. This shows that the reversibility of insertion and release of cations, that is, lithium cations, in the layered manganese dioxide nanobelt that is the birnessite type of the example is good.

上記結果から、本発明の層状二酸化マンガンナノベルトは、バーネサイト型二酸化マンガンのナノ構造体であり、カチオンに対する電気化学特性が良好であることが分かる。   From the above results, it can be seen that the layered manganese dioxide nanobelt of the present invention is a birnessite-type manganese dioxide nanostructure and has good electrochemical properties with respect to cations.

本発明は、上記実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。   The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Absent.

実施例で得られた黒色粉末および原料として用いた三酸化二マンガン粉末の粉末X線回折結果を示す図である。It is a figure which shows the powder X-ray-diffraction result of the black powder obtained in the Example, and the dimanganese trioxide powder used as a raw material. 実施例の170℃で72時間の加熱処理で得られた生成物の透過型電子顕微鏡(TEM)像を示す図である。It is a figure which shows the transmission electron microscope (TEM) image of the product obtained by the heat processing for 72 hours at 170 degreeC of an Example. 実施例の170℃で72時間の加熱処理で得られた生成物のX線分析(EDS)結果を示す図である。It is a figure which shows the X-ray-analysis (EDS) result of the product obtained by heat processing for 72 hours at 170 degreeC of an Example. 実施例の層状二酸化マンガンナノベルトを用いたリチウム二次電池の放電容量のサイクル依存性を示す図である。It is a figure which shows the cycle dependence of the discharge capacity of the lithium secondary battery using the layered manganese dioxide nanobelt of an Example.

Claims (5)

幅5nm〜15nm、厚さ3nm〜15nm、長さ数μm〜数十μmであることを特徴とする、層状二酸化マンガンナノベルト。   A layered manganese dioxide nanobelt characterized by having a width of 5 nm to 15 nm, a thickness of 3 nm to 15 nm, and a length of several μm to several tens of μm. 水酸化ナトリウム水溶液中で、三酸化二マンガン粉末を150℃〜200℃の温度範囲で、72時間以上加熱することにより得られる層状二酸化マンガンナノベルトであり、幅5nm〜15nm、厚さ3nm〜15nm、長さ数μm〜数十μmであることを特徴とする、層状二酸化マンガンナノベルト。   A layered manganese dioxide nanobelt obtained by heating dimanganese trioxide powder in a sodium hydroxide aqueous solution at a temperature range of 150 ° C. to 200 ° C. for 72 hours or more, having a width of 5 nm to 15 nm and a thickness of 3 nm to 15 nm. A layered manganese dioxide nanobelt having a length of several μm to several tens of μm. 水酸化ナトリウム水溶液中で、三酸化二マンガン粉末を150℃〜200℃の温度範囲で、72時間以上加熱することにより層状二酸化マンガンナノベルトを得ることを特徴とする、層状二酸化マンガンナノベルトの製造方法。   Production of a layered manganese dioxide nanobelt, characterized in that a layered manganese dioxide nanobelt is obtained by heating a manganese dioxide trioxide powder in a sodium hydroxide aqueous solution at a temperature range of 150 ° C to 200 ° C for 72 hours or more. Method. 前記水酸化ナトリウム水溶液の濃度は、5mol/ltr〜10mol/ltrの範囲であることを特徴とする、請求項3に記載の層状二酸化マンガンナノベルトの製造方法。   The method for producing a layered manganese dioxide nanobelt according to claim 3, wherein the concentration of the sodium hydroxide aqueous solution is in the range of 5 mol / ltr to 10 mol / ltr. 前記三酸化二マンガン粉末の量は、水酸化ナトリウム水溶液40cm3 当たり、2g〜3gの範囲であることを特徴とする、請求項3又は4に記載の層状二酸化マンガンナノベルトの製造方法。 5. The method for producing a layered manganese dioxide nanobelt according to claim 3, wherein the amount of the dimanganese trioxide powder ranges from 2 g to 3 g per 40 cm 3 of the aqueous sodium hydroxide solution.
JP2004133154A 2004-04-28 2004-04-28 Layered manganese dioxide nanobelt and method for producing the same Expired - Fee Related JP4674347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133154A JP4674347B2 (en) 2004-04-28 2004-04-28 Layered manganese dioxide nanobelt and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133154A JP4674347B2 (en) 2004-04-28 2004-04-28 Layered manganese dioxide nanobelt and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005314152A true JP2005314152A (en) 2005-11-10
JP4674347B2 JP4674347B2 (en) 2011-04-20

Family

ID=35441958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133154A Expired - Fee Related JP4674347B2 (en) 2004-04-28 2004-04-28 Layered manganese dioxide nanobelt and method for producing the same

Country Status (1)

Country Link
JP (1) JP4674347B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049238A (en) * 2010-11-19 2011-05-11 中南大学 Ion sieve for selectively extracting lithium and application thereof
CN102049237A (en) * 2010-11-19 2011-05-11 中南大学 Iron phosphate ion sieve for selectively extracting Li and application thereof
JP2011207725A (en) * 2010-03-30 2011-10-20 Yamaguchi Univ Method for producing manganese oxide
WO2012023357A1 (en) * 2010-08-19 2012-02-23 三井金属鉱業株式会社 Manganese oxide particle and method for producing same
CN105645474A (en) * 2016-03-24 2016-06-08 陕西师范大学 Preparation method of gamma type magnesium dioxide nanowire bundle
CN109037613A (en) * 2018-07-04 2018-12-18 上海电气集团股份有限公司 Ruthenic oxide coating spinelle richness lithium LiMn2O4 and preparation method thereof
CN113368808A (en) * 2021-06-17 2021-09-10 天津市职业大学 Lithium ion sieve using waste lithium manganate battery material as raw material and preparation method thereof
CN113548695A (en) * 2021-07-13 2021-10-26 浙江大学 High-crystallinity birnessite type manganese dioxide nano flower ball and preparation method and application thereof
CN115448368A (en) * 2022-10-17 2022-12-09 燕山大学 Preparation method and application of layered manganese dioxide capable of storing sodium by virtue of charge transfer
WO2024087477A1 (en) * 2022-10-25 2024-05-02 广东邦普循环科技有限公司 Modified lithium-ion sieve, mno2 adsorbent, preparation method therefor and use thereof, and salt lake lithium extraction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161340A (en) * 1984-01-26 1985-08-23 Sumitomo Metal Ind Ltd Manufacture of manganese dioxide
JPS6230620A (en) * 1985-08-02 1987-02-09 Chuo Denki Kogyo Kk Production of manganese dioxide
JPH11263622A (en) * 1998-02-26 1999-09-28 Fine Seru:Kk Manganese dioxide of layered crystal structure for positive electrode material of lithium accumulator and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161340A (en) * 1984-01-26 1985-08-23 Sumitomo Metal Ind Ltd Manufacture of manganese dioxide
JPS6230620A (en) * 1985-08-02 1987-02-09 Chuo Denki Kogyo Kk Production of manganese dioxide
JPH11263622A (en) * 1998-02-26 1999-09-28 Fine Seru:Kk Manganese dioxide of layered crystal structure for positive electrode material of lithium accumulator and its production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009019129, X. Wang et al., "Rational Synthetic Strategy. From Layered Structure to MnO2 Nanotubes", Chemistry Letters, 20040105, Vol.33, No.1, pp.48−49 *
JPN6009067378, J. Morales et al., "Low−temperature hydrothermal formation and ion exchange of hydrated sodium manganates", Solid State Ionics, 199012, Vol.44, No.1−2, pp.125−130, Elsevier Science Publishers B.V. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207725A (en) * 2010-03-30 2011-10-20 Yamaguchi Univ Method for producing manganese oxide
WO2012023357A1 (en) * 2010-08-19 2012-02-23 三井金属鉱業株式会社 Manganese oxide particle and method for producing same
JP5827950B2 (en) * 2010-08-19 2015-12-02 三井金属鉱業株式会社 Manganese oxide particles and method for producing the same
US9334580B2 (en) 2010-08-19 2016-05-10 Mitsui Mining & Smelting Co., Ltd. Manganese oxide particles and process for producing same
CN102049238A (en) * 2010-11-19 2011-05-11 中南大学 Ion sieve for selectively extracting lithium and application thereof
CN102049237A (en) * 2010-11-19 2011-05-11 中南大学 Iron phosphate ion sieve for selectively extracting Li and application thereof
CN105645474A (en) * 2016-03-24 2016-06-08 陕西师范大学 Preparation method of gamma type magnesium dioxide nanowire bundle
CN109037613A (en) * 2018-07-04 2018-12-18 上海电气集团股份有限公司 Ruthenic oxide coating spinelle richness lithium LiMn2O4 and preparation method thereof
CN109037613B (en) * 2018-07-04 2021-04-16 上海电气集团股份有限公司 Ruthenium dioxide coated spinel lithium-rich lithium manganate and preparation method thereof
CN113368808A (en) * 2021-06-17 2021-09-10 天津市职业大学 Lithium ion sieve using waste lithium manganate battery material as raw material and preparation method thereof
CN113548695A (en) * 2021-07-13 2021-10-26 浙江大学 High-crystallinity birnessite type manganese dioxide nano flower ball and preparation method and application thereof
CN115448368A (en) * 2022-10-17 2022-12-09 燕山大学 Preparation method and application of layered manganese dioxide capable of storing sodium by virtue of charge transfer
CN115448368B (en) * 2022-10-17 2023-09-05 燕山大学 Preparation method and application of layered manganese dioxide capable of storing sodium by means of charge transfer
WO2024087477A1 (en) * 2022-10-25 2024-05-02 广东邦普循环科技有限公司 Modified lithium-ion sieve, mno2 adsorbent, preparation method therefor and use thereof, and salt lake lithium extraction method

Also Published As

Publication number Publication date
JP4674347B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US9868105B2 (en) Spinel-type lithium titanium oxide/graphene composite and method of preparing the same
KR102168980B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR MANUFACTURING SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY CELL
Ryu et al. Synergistic effects of various morphologies and Al doping of spinel LiMn 2 O 4 nanostructures on the electrochemical performance of lithium-rechargeable batteries
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
JP4211865B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
Wang et al. Microwave homogeneous synthesis of porous nanowire Co3O4 arrays with high capacity and rate capability for lithium ion batteries
Yu et al. 3D anatase TiO 2 hollow microspheres assembled with high-energy {001} facets for lithium-ion batteries
WO2004030125A1 (en) Positive electrode active substance for lithium secondary battery and process for producing the same
Zahoor et al. A comparative study of nanostructured α and δ MnO 2 for lithium oxygen battery application
JP2004119218A (en) Positive active material for lithium secondary battery and its manufacturing method
Xiao et al. Hydrothermal synthesis of orthorhombic LiMnO 2 nano-particles and LiMnO 2 nanorods and comparison of their electrochemical performances
KR101856994B1 (en) Preparing method of lithium titanium oxide for anode materials of Lithium ion battery
CN111463418B (en) Carbon-coated nickel selenide ultrathin nanosheet composite material and preparation method thereof
JP5686459B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery including the positive electrode
Wu et al. Hydrothermal synthesis of Li 4 Ti 5 O 12 nanosheets as anode materials for lithium ion batteries
Ghiyasiyan-Arani et al. Synergic and coupling effect between SnO 2 nanoparticles and hierarchical AlV 3 O 9 microspheres toward emerging electrode materials for lithium-ion battery devices
JP4674347B2 (en) Layered manganese dioxide nanobelt and method for producing the same
Zhang et al. Microwave-assisted synthesis of a novel CuC2O4∙ xH2O/Graphene composite as anode material for lithium ion batteries
JP2012166966A (en) B type titanium oxide and method of manufacturing the same, and lithium ion battery using the same
Khan et al. Facile synthesis of low cost anatase titania nanotubes and its electrochemical performance
Yudha et al. Synthesis of Zinc Oxide (ZnO) from Zinc Based-Fertilizer as Potential and Low-Cost Anode Material for Lithium Ion Batteries
JP7219756B2 (en) Uniform introduction of titanium into solid materials
KR101480109B1 (en) Synthesis Method of Nano-Chemical Manganese Dioxide by Recycle Process for Cathode material used in Secondary Battery
Zhang et al. Synthesis of a MoS 2@ MWNT nanostructure with enhanced field emission and electrochemical properties
Fu et al. Controllable synthesis of TiO2 hierarchical and their applications in lithium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees