JP2005313971A - Synthetic-resin-made pressure-resistant container for carbonated drink - Google Patents

Synthetic-resin-made pressure-resistant container for carbonated drink Download PDF

Info

Publication number
JP2005313971A
JP2005313971A JP2004136142A JP2004136142A JP2005313971A JP 2005313971 A JP2005313971 A JP 2005313971A JP 2004136142 A JP2004136142 A JP 2004136142A JP 2004136142 A JP2004136142 A JP 2004136142A JP 2005313971 A JP2005313971 A JP 2005313971A
Authority
JP
Japan
Prior art keywords
synthetic resin
pressure
resistant container
container
carbonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004136142A
Other languages
Japanese (ja)
Inventor
Noriaki Kubo
徳晃 久保
Hiroyuki Nakane
宏幸 仲根
Hiroaki Shinpo
寛明 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaican Co Ltd
Original Assignee
Hokkaican Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaican Co Ltd filed Critical Hokkaican Co Ltd
Priority to JP2004136142A priority Critical patent/JP2005313971A/en
Publication of JP2005313971A publication Critical patent/JP2005313971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic-resin-made pressure-resistant container for carbonated drink, which prevents deformation of its body and has an excellent gas-barrier property. <P>SOLUTION: The container includes a mouth 3, a neck 4 increasing in diameter downwards from the mouth 3, the cylindrical body 5 continuing from the neck 4, and a bottom 6 continuing from the body 5 and forming its ground. The container has at least on its internal surface a gas barrier film formed by a plasma CVD method. The body 5 has ribs 10 extending in the direction of its circumference. The ribs 10 are each formed bulging such that it extends outward at an angle greater than 0° and inward at an angle less than 20° to the surface of the body 5. The bottom of each bulge has a flat surface 32. The gas barrier film is an amorphous carbon film having a carbon as its main constituent element or a film containing a silicon oxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭酸飲料の容器として用いられる合成樹脂製耐圧容器に関するものである。   The present invention relates to a pressure-resistant container made of synthetic resin used as a container for carbonated drinks.

従来、ポリエチレンテレフタレート等の合成樹脂からなるプリフォームを二軸延伸ブロー成形してなる合成樹脂製容器が知られている。前記合成樹脂製容器は、機械的強度、透明性等に優れ、また、ガラス容器に比して割れにくく軽量であるので各種飲料容器等に賞用され、炭酸飲料用容器としても用いられている。   2. Description of the Related Art Conventionally, synthetic resin containers formed by biaxial stretch blow molding of a preform made of a synthetic resin such as polyethylene terephthalate are known. The synthetic resin container is excellent in mechanical strength, transparency, etc., and is harder to break than a glass container and is light in weight, so that it is used for various beverage containers and used as a carbonated drink container. .

しかし、前記合成樹脂製容器は、金属容器やガラス容器に比べてガスバリア性が低く、酸素、炭酸ガス等の気体を透過しやすい。このため、炭酸飲料用容器として使用した場合に、炭酸ガスが容器内から容器外に透過して内容物に含まれるガスボリュームが低減したり、容器外から容器内に透過する酸素により内容物の風味が変化する等の問題がある。   However, the synthetic resin container has a gas barrier property lower than that of a metal container or a glass container, and easily transmits gas such as oxygen and carbon dioxide. For this reason, when used as a container for carbonated beverages, carbon dioxide gas permeates from the inside of the container to the outside of the container to reduce the gas volume contained in the contents, or oxygen that permeates from outside the container to the inside of the container. There are problems such as changes in flavor.

そこで、ガスバリア性を改良するために、内面に炭素を主要構成元素とするアモルファスカーボン被膜または酸化珪素含有被膜等を形成した合成樹脂製容器が提案されている(例えば、特許文献1参照)。前記被膜は、例えば、中空の処理室に前記合成樹脂製容器を配置し、該合成樹脂製容器口部から該合成樹脂製容器内部に原料ガス導入管を挿入して、該処理室及び合成樹脂製容器内部を真空に排気した後、原料ガスを供給すると共に高周波またはマイクロ波電圧を印加することによってプラズマを発生させる方法(プラズマCVD法)により形成することができる。   Therefore, in order to improve the gas barrier property, a synthetic resin container in which an amorphous carbon film or a silicon oxide-containing film having carbon as a main constituent element is formed on the inner surface has been proposed (for example, see Patent Document 1). The coating is formed, for example, by placing the synthetic resin container in a hollow processing chamber, and inserting a raw material gas introduction pipe into the synthetic resin container from the synthetic resin container mouth portion. It can be formed by a method (plasma CVD method) in which plasma is generated by supplying a raw material gas and applying a high frequency or microwave voltage after evacuating the inside of the container.

ところが、前記処理室に前記合成樹脂製容器を配置し、該処理室及び合成樹脂製容器内部を真空に排気すると、該合成樹脂製容器の内部が外部より低圧になり、該合成樹脂製容器の胴部が内方に陥入する変形を生じることがあるという問題がある。   However, when the synthetic resin container is disposed in the processing chamber and the inside of the processing chamber and the synthetic resin container is evacuated to a vacuum, the inside of the synthetic resin container becomes lower in pressure than the outside, and the synthetic resin container There is a problem that the body part may be deformed inwardly.

また、炭酸飲料を充填した前記合成樹脂製容器は、室温で保管したときに、内圧が上昇して該合成樹脂製容器の胴部が外方に膨らむという問題がある。前記合成樹脂製容器の胴部が外方に膨らむと、カートンケースからの取出が困難になり、無理に引き出すとラベル等が破損して商品価値を損なうことになる。また、胴部が外方に膨らんだ前記合成樹脂製容器は、胴部の直径が不揃いになり、陳列棚で整列させることが難しい。   In addition, the synthetic resin container filled with a carbonated beverage has a problem that when stored at room temperature, the internal pressure rises and the body of the synthetic resin container swells outward. If the body of the synthetic resin container swells outward, it will be difficult to remove it from the carton case, and if it is forcibly pulled out, the label will be damaged and the commercial value will be impaired. In addition, the synthetic resin container having the body portion swelled outwardly has uneven body diameters and is difficult to align on the display shelf.

前記合成樹脂製容器の胴部の変形は、前記ブロー成形の結果として、該胴部が該合成樹脂製容器の他の部分に比較して肉薄になっているためと考えられる。従って、前記合成樹脂製容器全体を肉厚にすれば前記胴部の変形を避けることができると考えられるが、前記合成樹脂製容器全体を肉厚にするには、所要の樹脂量を多くしなければならず、コストの増大が避けられない。   The deformation of the barrel portion of the synthetic resin container is considered to be because the barrel portion is thinner than the other portion of the synthetic resin container as a result of the blow molding. Therefore, it is considered that if the entire synthetic resin container is made thick, deformation of the barrel can be avoided. However, in order to make the entire synthetic resin container thick, the required amount of resin is increased. It is necessary to increase the cost.

そこで、前記合成樹脂製容器の胴部の変形を防止するために、該胴部に周方向に延在するリブを形成することが考えられる。しかしながら、前記胴部に前記リブを形成した合成樹脂製容器に、前記プラズマCVD法により前記被膜を形成したときに、前記リブの形状によっては十分なガスバリア性が得られないことがあるという不都合がある。
特開2003−146334号公報
Therefore, in order to prevent deformation of the body portion of the synthetic resin container, it is conceivable to form ribs extending in the circumferential direction on the body portion. However, when the coating film is formed by the plasma CVD method on the synthetic resin container in which the rib is formed on the body portion, there is a disadvantage that a sufficient gas barrier property may not be obtained depending on the shape of the rib. is there.
JP 2003-146334 A

本発明は、かかる不都合を解消して、胴部の変形を防止することができ、しかも優れたガスバリア性を備える炭酸飲料用合成樹脂製耐圧容器を提供することを目的とする。   An object of the present invention is to provide a pressure-resistant container made of a synthetic resin for carbonated beverages that can eliminate such inconvenience, prevent deformation of the body portion, and has excellent gas barrier properties.

かかる目的を達成するために、本発明は、口部と、該口部に接続し該口部から下方に向けて拡径する首部と、該首部に接続する円筒状の胴部と、該胴部に接続して接地部を構成する底部とからなり、少なくとも内面側にプラズマCVD法により形成されたガスバリア性被膜を備える炭酸飲料用合成樹脂製耐圧容器であって、該胴部に周方向に延在するリブを備え、該リブは該胴部の表面に対し0°より大きく、20°より小さい角度で該胴部内方に嵌入して形成され、底部に平面部を備えていることを特徴とする。   In order to achieve the above object, the present invention provides a mouth, a neck connected to the mouth and expanding in diameter downward from the mouth, a cylindrical body connected to the neck, and the body A pressure-resistant container made of synthetic resin for carbonated beverages, comprising a gas barrier coating formed on at least the inner surface side by a plasma CVD method. The rib includes an extending rib, and the rib is formed by being fitted inside the barrel at an angle larger than 0 ° and smaller than 20 ° with respect to the surface of the barrel, and has a flat portion at the bottom. And

本発明の炭酸飲料用合成樹脂製耐圧容器は、前記リブを備えていることにより、プラズマCVD法により前記ガスバリア性被膜を形成する際に、該合成樹脂製容器の内部が外部より低圧になっても、前記胴部が内方に陥入する変形を防止することができる。また、本発明の炭酸飲料用合成樹脂製耐圧容器は、前記リブを備えていることにより、室温で保管中に内圧が上昇しても、前記胴部が外方に膨らむ変形を防止することができる。   The pressure-resistant container made of synthetic resin for carbonated beverages of the present invention is provided with the rib, so that when the gas barrier film is formed by plasma CVD, the inside of the synthetic resin container becomes lower than the outside. Moreover, the deformation | transformation into which the said trunk | drum invades can be prevented. Further, the pressure-resistant container made of synthetic resin for carbonated beverages according to the present invention is provided with the ribs, so that even if the internal pressure rises during storage at room temperature, the body part can be prevented from deforming outwardly. it can.

しかも、本発明の炭酸飲料用合成樹脂製耐圧容器によれば、前記リブが前記胴部の表面に対し0°より大きく、20°より小さい角度で該胴部内方に嵌入して形成され、底部に平面部を備えていることにより、前記ガスバリア性被膜のガスバリア性の低下を抑制することができる。   In addition, according to the pressure-resistant container made of synthetic resin for carbonated beverages of the present invention, the rib is formed by being fitted into the inside of the body at an angle larger than 0 ° and smaller than 20 ° with respect to the surface of the body. By providing a flat portion on the surface, it is possible to suppress a decrease in gas barrier properties of the gas barrier coating.

前記リブは、底部に平面部を備えていないときには、前記変形を防止する効果を得ることができない。また、前記胴部内方に嵌入する角度が、前記胴部の表面に対して0°では、前記リブ自体を形成することができず、前記変形を防止する効果を得ることができない。一方、前記胴部内方に嵌入する角度が、前記胴部の表面に対して20°を超えると、炭酸飲料を充填して保管している間に前記ガスバリア性被膜のガス透過率が大になり、十分なガスバリア性を保持することができない。   The rib cannot obtain the effect of preventing the deformation when the bottom portion is not provided with a flat portion. In addition, when the angle of fitting into the body part is 0 ° with respect to the surface of the body part, the rib itself cannot be formed, and the effect of preventing the deformation cannot be obtained. On the other hand, if the angle into the trunk part exceeds 20 ° with respect to the surface of the trunk part, the gas permeability of the gas barrier coating increases while the carbonated beverage is filled and stored. The sufficient gas barrier property cannot be maintained.

前記リブは、前記胴部の表面に対し好ましくは1〜20°の範囲の角度で、より好ましくは2〜19°の範囲の角度で該胴部内方に嵌入して形成されている。前記リブは、前記胴部内方に嵌入する角度が、前記胴部の表面に対して1°未満では微少な変形が発生することがあり、2〜19°の範囲とすることにより前記変形を確実に防止することができる。   The rib is formed so as to be fitted in the body part at an angle of preferably 1 to 20 °, more preferably 2 to 19 ° with respect to the surface of the body part. The ribs may be slightly deformed when the angle of fitting into the body part is less than 1 ° with respect to the surface of the body part. Can be prevented.

前記ガスバリア性被膜は、前記プラズマCVD法により形成されるものであれば、炭素を主要構成元素とするアモルファスカーボン被膜であってもよく、酸化珪素含有被膜であってもよい。   As long as the gas barrier film is formed by the plasma CVD method, an amorphous carbon film containing carbon as a main constituent element or a silicon oxide-containing film may be used.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の炭酸飲料用合成樹脂製耐圧容器の一部を破断してその構成を示す説明的断面図、図2は本実施形態の炭酸飲料用合成樹脂製耐圧容器にガスバリア性被膜を形成する装置を示す説明的断面図であり、図3は図1の要部拡大断面図である。また、図4は、本実施形態の炭酸飲料用合成樹脂製耐圧容器の酸素透過性の変化を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view showing a configuration of a pressure-resistant container made of synthetic resin for carbonated drinks according to the present embodiment, and FIG. 2 shows a gas barrier coating on the pressure-resistant container made of synthetic resin for carbonated drinks of the present embodiment. FIG. 3 is an enlarged cross-sectional view of the main part of FIG. 1. Moreover, FIG. 4 is a graph which shows the oxygen permeability change of the synthetic resin pressure-resistant container for carbonated beverages of this embodiment.

図1に示すように、本実施形態の炭酸飲料用合成樹脂製耐圧容器1は、外周部に雄ねじ部2を備える口部3と、口部3から下方に向けて次第に拡径するほぼ円錐台状の首部4と、首部4に接続する円筒状の胴部5と、胴部5に接続して接地部を構成する底部6とからなる。炭酸飲料用合成樹脂製耐圧容器1は、例えば、ポリエチレンテレフタレート樹脂からなるプリフォームが二軸延伸ブロー成形されて形成されているペットボトルであり、底部6に外方に突出した半球形状部7を備え、炭酸飲料による内圧が炭酸飲料用合成樹脂製耐圧容器1の内面側に均等にかかるようにされている。この場合、炭酸飲料用合成樹脂製耐圧容器1は、半球形状部7によっては自立性が得られないので、半球形状部7から下方に膨出する脚部8を設け、脚部8により自立させるようになっている。   As shown in FIG. 1, a synthetic resin pressure resistant container 1 for carbonated beverages according to this embodiment includes a mouth portion 3 having a male screw portion 2 on the outer peripheral portion, and a substantially truncated cone that gradually increases in diameter downward from the mouth portion 3. A cylindrical neck portion 4, a cylindrical trunk portion 5 connected to the neck portion 4, and a bottom portion 6 connected to the trunk portion 5 and constituting a grounding portion. The pressure resistant container 1 made of synthetic resin for carbonated beverages is a plastic bottle formed by, for example, a biaxially stretched blow molding of a preform made of polyethylene terephthalate resin. Provided, and the internal pressure of the carbonated beverage is applied uniformly to the inner surface side of the synthetic resin pressure vessel 1 for the carbonated beverage. In this case, since the pressure resistant container 1 made of synthetic resin for carbonated beverages cannot be self-supporting by the hemispherical portion 7, a leg portion 8 that bulges downward from the hemispherical portion 7 is provided and is made to stand by the leg portion 8. It is like that.

炭酸飲料用合成樹脂製耐圧容器1の胴部5には、シュリンクラベル等を保持するための段差部9a,9bが設けられており、段差部9a,9b間に周方向に延在するリブ10が3本設けられている。   The body portion 5 of the pressure-resistant container 1 made of synthetic resin for carbonated beverages is provided with step portions 9a and 9b for holding shrink labels and the like, and ribs 10 extending in the circumferential direction between the step portions 9a and 9b. Are provided.

また、炭酸飲料用合成樹脂製耐圧容器1は、内面側に図示しないガスバリア性被膜を備え、充填された炭酸飲料に含まれる炭酸ガスが容器外に揮散したり、空気中の酸素が容器内に透過して該炭酸飲料の風味を変化させたりしないようにされている。   Further, the synthetic resin pressure resistant container 1 for carbonated drinks has a gas barrier coating (not shown) on the inner surface side, and carbon dioxide contained in the filled carbonated drinks is volatilized out of the container, or oxygen in the air is inside the container. It does not permeate and change the flavor of the carbonated beverage.

前記ガスバリア性被膜は、例えば、図2に示すプラズマCVD装置11を用いて形成することができる。図2において、プラズマCVD装置11は、パイレックス(登録商標)ガラスで形成された側壁12と、昇降自在の底板13とにより画成された処理室14を備え、側壁12に臨む位置にマイクロ波発生装置15を備えている。処理室14の上方には、側壁16と上壁17とにより画成された排気室18が備えられ、処理室14との間には隔壁19が設けられている。   The gas barrier film can be formed using, for example, a plasma CVD apparatus 11 shown in FIG. In FIG. 2, the plasma CVD apparatus 11 includes a processing chamber 14 defined by a side wall 12 made of Pyrex (registered trademark) glass and a bottom plate 13 that can be raised and lowered, and generates microwaves at a position facing the side wall 12. A device 15 is provided. An exhaust chamber 18 defined by a side wall 16 and an upper wall 17 is provided above the processing chamber 14, and a partition wall 19 is provided between the processing chamber 14.

底板13は、その上に炭酸飲料用合成樹脂製耐圧容器1を載置して上昇移動することにより、炭酸飲料用合成樹脂製耐圧容器1を処理室14内に収納する。このようにして収納された炭酸飲料用合成樹脂製耐圧容器1は、口部保持具21を介して容器内部が隔壁19に設けられた排気孔22と連通するように配置される。口部保持具21は上部突出部23が排気孔22に気密に挿入され、口部保持部24が炭酸飲料用合成樹脂製耐圧容器1の口部3に所定の間隔を存して挿入される。   The bottom plate 13 places the synthetic resin pressure resistant container 1 for carbonated beverages on the bottom plate 13 and moves upward, thereby accommodating the synthetic resin pressure resistant container 1 for carbonated beverages in the processing chamber 14. The pressure-resistant container 1 made of synthetic resin for carbonated drinks is arranged so that the inside of the container communicates with the exhaust hole 22 provided in the partition wall 19 through the mouth holder 21. In the mouth holder 21, the upper protrusion 23 is inserted in an airtight manner into the exhaust hole 22, and the mouth holder 24 is inserted into the mouth 3 of the pressure-resistant container 1 made of synthetic resin for carbonated beverages at a predetermined interval. .

処理室14と排気室18とは隔壁19に設けられた通気口25のバルブ26を介して連通しており、排気室18の側壁16に形成された開口27は図示しない真空装置に接続されている。排気室18の上壁17にはシール28を介して、ガス状の出発原料(以下、原料ガスと略記する)を供給するガス導入管29が支持されており、ガス導入管29は上壁17と口部保持具21とを貫通して、炭酸飲料用合成樹脂製耐圧容器1内に挿入される。尚、ガス導入管29と口部保持具21の内周面との間には間隙がある。   The processing chamber 14 and the exhaust chamber 18 communicate with each other via a valve 26 of a vent 25 provided in the partition wall 19, and an opening 27 formed in the side wall 16 of the exhaust chamber 18 is connected to a vacuum device (not shown). Yes. A gas introduction pipe 29 for supplying a gaseous starting material (hereinafter abbreviated as source gas) is supported on the upper wall 17 of the exhaust chamber 18 via a seal 28, and the gas introduction pipe 29 is supported by the upper wall 17. And the mouthpiece holder 21 are inserted into the pressure-resistant container 1 made of synthetic resin for carbonated beverages. There is a gap between the gas introduction pipe 29 and the inner peripheral surface of the mouth holder 21.

図2示のプラズマCVD装置11では、まず、炭酸飲料用合成樹脂製耐圧容器1を載置した底板13を上昇移動せしめ、処理室14内に炭酸飲料用合成樹脂製耐圧容器1を収納する。次に、図示しない真空装置を作動して、排気室18内を排気し、これにより通気口25を介して処理室14の内部を減圧する。同時に、排気孔22に挿入されたガス導入管29と口部保持具21の内周面との間隙を介して、炭酸飲料用合成樹脂製耐圧容器1の内部を1〜50Paの真空度に減圧する。   In the plasma CVD apparatus 11 shown in FIG. 2, first, the bottom plate 13 on which the synthetic resin pressure vessel 1 for carbonated beverages is placed is moved up and down, and the synthetic resin pressure vessel 1 for carbonated beverages is accommodated in the processing chamber 14. Next, a vacuum device (not shown) is operated to evacuate the exhaust chamber 18, thereby reducing the pressure inside the processing chamber 14 through the vent 25. At the same time, the inside of the pressure-resistant container 1 made of synthetic resin for carbonated drinks is reduced to a vacuum degree of 1 to 50 Pa through the gap between the gas introduction pipe 29 inserted into the exhaust hole 22 and the inner peripheral surface of the mouth holder 21. To do.

次に、ガス導入管29から炭酸飲料用合成樹脂製耐圧容器1内に、前記原料ガスを供給する。プラズマCVD装置11では、前記原料ガスを連続的に供給すると共に、前記真空装置により連続的に排気し、処理室14と炭酸飲料用合成樹脂製耐圧容器1との内部を前記真空度に保持する。   Next, the raw material gas is supplied from the gas introduction pipe 29 into the synthetic resin pressure resistant container 1 for carbonated beverages. In the plasma CVD apparatus 11, the raw material gas is continuously supplied and continuously exhausted by the vacuum apparatus, so that the inside of the processing chamber 14 and the pressure-resistant container 1 made of synthetic resin for carbonated beverages is maintained at the vacuum level. .

このとき、処理室14の内部と、炭酸飲料用合成樹脂製耐圧容器1の内部とでは、差圧が生じており、炭酸飲料用合成樹脂製耐圧容器1の内部の方が圧が低くなっている。しかし、炭酸飲料用合成樹脂製耐圧容器1は胴部5に前記リブ10を備えているので、前記差圧により胴部5が炭酸飲料用合成樹脂製耐圧容器1の内部に陥入する変形を防止することができる。   At this time, there is a differential pressure between the inside of the processing chamber 14 and the inside of the synthetic resin pressure vessel 1 for carbonated beverages, and the pressure is lower inside the synthetic resin pressure vessel 1 for carbonated beverages. Yes. However, since the synthetic resin pressure resistant container 1 for carbonated beverages includes the rib 10 in the body portion 5, the body portion 5 is deformed into the inside of the synthetic resin pressure resistant container 1 for carbonated beverages due to the differential pressure. Can be prevented.

前記原料ガスとしては、アセチレン、エチレン、プロピレン等の脂肪族不飽和炭化水素化合物、メタン、エタン、プロパン等の脂肪族飽和炭化水素化合物、シクロヘキサン等の脂環式炭化水素化合物、ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物等の炭素含有化合物または有機珪素化合物を用いることができる。前記原料ガスは、単独で用いても、必要に応じて2種以上混合して用いてもよく、被膜改質剤として少量の水素等の被膜形成性化合物を併用してもよい。また、前記原料ガスは、アルゴン、ヘリウム等の希ガスで希釈して用いるようにしてもよい。   Examples of the source gas include aliphatic unsaturated hydrocarbon compounds such as acetylene, ethylene, and propylene, aliphatic saturated hydrocarbon compounds such as methane, ethane, and propane, alicyclic hydrocarbon compounds such as cyclohexane, benzene, toluene, and xylene. A carbon-containing compound such as an aromatic hydrocarbon compound or an organic silicon compound can be used. The source gas may be used alone, or may be used in combination of two or more as necessary, and a small amount of a film-forming compound such as hydrogen may be used in combination as a film modifier. The source gas may be diluted with a rare gas such as argon or helium.

そして、前記原料ガスが供給されている間、マイクロ波発生装置15を作動して、例えば周波数2.45GHz、出力150〜600Wのマイクロ波を、0.2〜2.0秒間、好ましくは0.4〜1.5秒間照射することにより、前記原料ガスを電磁励起して炭酸飲料用合成樹脂製耐圧容器1内にプラズマを発生せしめ、炭酸飲料用合成樹脂製耐圧容器1の内面にガスバリア性被膜(図示せず)を形成する。   And while the said source gas is supplied, the microwave generator 15 is operated, For example, the microwave of frequency 2.45GHz and the output of 150-600W is 0.2 to 2.0 second, Preferably it is 0.8. By irradiating for 4 to 1.5 seconds, the raw material gas is electromagnetically excited to generate a plasma in the synthetic resin pressure vessel 1 for carbonated beverages, and a gas barrier coating is formed on the inner surface of the synthetic resin pressure vessel 1 for carbonated beverages. (Not shown).

前記ガスバリア性被膜は、前記原料ガスとして炭素含有化合物を用いるときには、炭素を主要構成元素とするアモルファスカーボン被膜が形成される。一方、前記原料ガスとして有機珪素化合物を用いるときには、酸化珪素含有被膜が形成される。   When the carbon-containing compound is used as the source gas, the gas barrier coating is formed with an amorphous carbon coating containing carbon as a main constituent element. On the other hand, when an organosilicon compound is used as the source gas, a silicon oxide-containing film is formed.

前述のようにして前記ガスバリア性被膜が形成された炭酸飲料用合成樹脂製耐圧容器1は、ビール、発泡酒等の炭酸飲料が充填された後、別途製造されたプラスチックキャップ(図示せず)が口部3に螺着されて保管される。炭酸飲料用合成樹脂製耐圧容器1は、胴部5に前記リブ10を備えているので、室温で保管中に前記炭酸飲料により内圧が上昇しても、胴部5が外方に膨らむ変形を防止することができる。   The pressure-resistant container 1 made of synthetic resin for carbonated beverages with the gas barrier coating formed as described above is filled with a carbonated beverage such as beer or sparkling liquor and then has a separately manufactured plastic cap (not shown). Screwed into the mouth 3 and stored. Since the pressure-resistant container 1 made of synthetic resin for carbonated beverages is provided with the rib 10 in the body portion 5, even when the internal pressure rises due to the carbonated beverage during storage at room temperature, the body portion 5 is deformed to bulge outward. Can be prevented.

このとき、リブ10は、図3に示すように、胴部5の表面から胴部5の内方に膨出する斜面部31,31と、斜面部31,31の底部に形成された平面部32とから構成されている。そして、斜面部31,31は、胴部5の表面に対する角度θが0°より大きく、20°より小さい角度、例えば8°とされている。   At this time, as shown in FIG. 3, the rib 10 includes slope portions 31, 31 that bulge from the surface of the trunk portion 5 to the inside of the trunk portion 5, and a plane portion formed at the bottom of the slope portions 31, 31. 32. The inclined surfaces 31 and 31 have an angle θ with respect to the surface of the body portion 5 that is larger than 0 ° and smaller than 20 °, for example, 8 °.

炭酸飲料用合成樹脂製耐圧容器1は、胴部5に前記構成のリブ10を備えているので、前記保管中にも前記ガスバリア性被膜の性能の低下を抑制することができ、ガス透過率を低いレベルに維持することができる。   Since the pressure-resistant container 1 made of synthetic resin for carbonated beverages includes the rib 10 having the above-described configuration in the body portion 5, it is possible to suppress a decrease in the performance of the gas barrier coating film even during the storage, and to improve the gas permeability. Can be maintained at a low level.

次に、本発明の参考例、実施例、比較例を示す。
〔参考例〕
本参考例では、ポリエチレンテレフタレート樹脂59gからなるプリフォームを二軸延伸ブロー成形することにより、図1に示す形状の炭酸飲料用合成樹脂製耐圧容器1(内容積1550ml)を製造した。次に、図2に示すプラズマCVD装置11を用いて、該炭酸飲料用合成樹脂製耐圧容器1の内面側に、炭素を主要構成元素とするアモルファスカーボン被膜を形成した。炭酸飲料用合成樹脂製耐圧容器1の胴部5に形成されたリブ10において、胴部5の表面に対する斜面部31の角度θは8°であり、胴部5の表面に対する平面部32の深さdは0.2mmとなっている。
Next, reference examples, examples, and comparative examples of the present invention are shown.
[Reference example]
In this reference example, a preform made of polyethylene terephthalate resin 59g was biaxially stretch blow molded to produce a synthetic resin pressure resistant container 1 (internal volume 1550 ml) for carbonated beverages having the shape shown in FIG. Next, using the plasma CVD apparatus 11 shown in FIG. 2, an amorphous carbon coating containing carbon as a main constituent element was formed on the inner surface side of the synthetic resin pressure vessel 1 for carbonated beverages. In the rib 10 formed on the body portion 5 of the synthetic resin pressure resistant container 1 for carbonated beverages, the angle θ of the inclined surface portion 31 with respect to the surface of the body portion 5 is 8 °, and the depth of the plane portion 32 with respect to the surface of the body portion 5. The length d is 0.2 mm.

次に、ガスバリア性の指標としての酸素透過率を、未処理の炭酸飲料用合成樹脂製耐圧容器1と、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1とについて測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、未処理の炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は21.9であった。結果を表1、図4に示す。   Next, when the oxygen permeability as an index of gas barrier properties was measured for the untreated synthetic resin pressure vessel 1 for carbonated beverages and the synthetic resin pressure vessel 1 for carbonated beverages formed with the amorphous carbon film, When the oxygen transmission rate of the pressure-resistant container 1 made of synthetic resin for carbonated beverages with the amorphous carbon coating was 1, the oxygen transmission rate of the pressure-resistant vessel 1 made of synthetic resin for carbonated beverages was 21.9. . The results are shown in Table 1 and FIG.

次に、炭酸飲料用合成樹脂製耐圧容器1に対して殺菌試験を行った。前記殺菌試験は、まず、1リットルの水に、0℃、1気圧の炭酸ガス3リットルを溶解した水溶液1500gを前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1に充填し、別途製造されたプラスチックキャップを口部3に螺着して、供試サンプルの炭酸飲料用合成樹脂製耐圧容器1を作成した。次に、前記供試サンプルの炭酸飲料用合成樹脂製耐圧容器1を50℃のウォーターバスに浸漬し、内容液の液温が25°になったことを確認した後、取り出した。   Next, a sterilization test was performed on the pressure-resistant container 1 made of synthetic resin for carbonated beverages. In the sterilization test, first, 1500 g of an aqueous solution in which 3 liters of carbon dioxide gas at 0 ° C. and 1 atm is dissolved in 1 liter of water is filled in a pressure-resistant container 1 made of synthetic resin for carbonated beverages with the amorphous carbon film formed thereon. The manufactured plastic cap was screwed into the mouth portion 3 to prepare a test resin sample pressure-resistant container 1 made of synthetic resin for carbonated beverages. Next, the pressure-resistant container 1 made of synthetic resin for carbonated beverages of the test sample was immersed in a 50 ° C. water bath, and after confirming that the liquid temperature of the content liquid became 25 °, it was taken out.

前記殺菌試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、該殺菌試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は0.9であった。前記殺菌試験を熱処理Aとして、結果を表1、図4に示す。   When the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks subjected to the sterilization test was measured, the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks formed with the amorphous carbon coating was set to 1. The oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated beverages subjected to the sterilization test was 0.9. The sterilization test is heat treatment A, and the results are shown in Table 1 and FIG.

次に、炭酸飲料用合成樹脂製耐圧容器1に対してヒートサイクル試験を行った。前記ヒートサイクル試験は、まず、前記殺菌試験と全く同一にして供試サンプルの炭酸飲料用合成樹脂製耐圧容器1を作成した。次に、前記供試サンプルの炭酸飲料用合成樹脂製耐圧容器1を50℃のオーブン中に9時間保持した後、室温で15時間放置する処理を2回繰り返した。   Next, a heat cycle test was performed on the pressure-resistant container 1 made of synthetic resin for carbonated beverages. First, in the heat cycle test, a pressure-resistant container 1 made of synthetic resin for carbonated drinks as a test sample was created in exactly the same manner as the sterilization test. Next, after holding the synthetic resin pressure resistant container 1 for carbonated beverages of the test sample in an oven at 50 ° C. for 9 hours, the process of leaving at room temperature for 15 hours was repeated twice.

前記ヒートサイクル試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、該ヒートサイクル試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は3.5であった。前記ヒートサイクル試験を熱処理Bとして、結果を表1、図4に示す。   When the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks subjected to the heat cycle test was measured, the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks formed with the amorphous carbon film was set to 1. The oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated beverages subjected to the heat cycle test was 3.5. The heat cycle test is heat treatment B, and the results are shown in Table 1 and FIG.

尚、前記熱処理A,Bは、炭酸飲料を充填した炭酸飲料用合成樹脂製耐圧容器1を保管中に、内圧が上昇する状況をより過酷な状況で再現するものである。   In addition, the said heat processing A and B reproduces the condition where an internal pressure rises in a severer condition during storage of the synthetic resin pressure-resistant container 1 for carbonated drinks filled with carbonated drinks.

本実施例では、ポリエチレンテレフタレート樹脂49gからなるプリフォームを二軸延伸ブロー成形した以外は、前記参考例と全く同一にして、炭酸飲料用合成樹脂製耐圧容器1を製造し、該炭酸飲料用合成樹脂製耐圧容器1の内面側に炭素を主要構成元素とするアモルファスカーボン被膜を形成した。   In this example, a pressure-resistant container 1 made of synthetic resin for carbonated beverages was produced in the same manner as in the above reference example except that a preform made of 49 g of polyethylene terephthalate resin was biaxially stretch blow-molded. An amorphous carbon film having carbon as a main constituent element was formed on the inner surface side of the resin pressure vessel 1.

次に、ガスバリア性の指標としての酸素透過率を、未処理の炭酸飲料用合成樹脂製耐圧容器1と、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1とについて測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、未処理の炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は22.0であった。結果を表1、図4に示す。   Next, when the oxygen permeability as an index of gas barrier properties was measured for an untreated synthetic resin pressure vessel 1 for carbonated beverages and a synthetic resin pressure vessel 1 for carbonated beverages formed with the amorphous carbon film, When the oxygen permeability of the synthetic resin pressure resistant container 1 for carbonated beverages with the amorphous carbon coating formed is 1, the oxygen permeability of the untreated synthetic resin pressure resistant container 1 for carbonated drinks was 22.0. . The results are shown in Table 1 and FIG.

次に、炭酸飲料用合成樹脂製耐圧容器1に対して、前記参考例と全く同一にして殺菌試験を行った。前記殺菌試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、該殺菌試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は1.2であった。前記殺菌試験を熱処理Aとして、結果を表1、図4に示す。   Next, a sterilization test was performed on the pressure-resistant container 1 made of synthetic resin for carbonated drinks in exactly the same manner as in the reference example. When the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks subjected to the sterilization test was measured, the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks formed with the amorphous carbon coating was set to 1. The oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated beverages subjected to the sterilization test was 1.2. The sterilization test is heat treatment A, and the results are shown in Table 1 and FIG.

次に、炭酸飲料用合成樹脂製耐圧容器1に対して、前記参考例と全く同一にしてヒートサイクル試験を行った。前記ヒートサイクル試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、該ヒートサイクル試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は4.5であった。前記ヒートサイクル試験を熱処理Bとして、結果を表1、図4に示す。
〔比較例〕
本比較例では、ポリエチレンテレフタレート樹脂49gからなるプリフォームを二軸延伸ブロー成形し、リブ10において、胴部5の表面に対する斜面部31の角度θを30°とし、胴部5の表面に対する平面部32の深さdを1.0mmとした以外は、前記参考例と全く同一にして、炭酸飲料用合成樹脂製耐圧容器1を製造し、該炭酸飲料用合成樹脂製耐圧容器1の内面側に炭素を主要構成元素とするアモルファスカーボン被膜を形成した。
Next, a heat cycle test was performed on the pressure-resistant container 1 made of synthetic resin for carbonated beverages in exactly the same manner as in the above reference example. When the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks subjected to the heat cycle test was measured, the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks formed with the amorphous carbon film was set to 1. In addition, the oxygen permeability of the synthetic resin pressure resistant container 1 for carbonated beverages subjected to the heat cycle test was 4.5. The heat cycle test is heat treatment B, and the results are shown in Table 1 and FIG.
[Comparative Example]
In this comparative example, a preform made of 49 g of polyethylene terephthalate resin is biaxially stretch blow molded, and in the rib 10, the angle θ of the inclined surface portion 31 with respect to the surface of the body portion 5 is 30 °, and the plane portion with respect to the surface of the body portion 5 Except that the depth d of 32 is 1.0 mm, the pressure-resistant container 1 made of synthetic resin for carbonated drinks is manufactured in the same manner as in the above-described reference example. An amorphous carbon film containing carbon as a main constituent element was formed.

次に、ガスバリア性の指標としての酸素透過率を、未処理の炭酸飲料用合成樹脂製耐圧容器1と、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1とについて測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、未処理の炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は34.5であった。結果を表1、図4に示す。   Next, when the oxygen permeability as an index of gas barrier properties was measured for an untreated synthetic resin pressure vessel 1 for carbonated beverages and a synthetic resin pressure vessel 1 for carbonated beverages formed with the amorphous carbon film, When the oxygen permeability of the synthetic resin pressure vessel 1 for carbonated beverages with the amorphous carbon coating formed was 1, the oxygen permeability of the untreated synthetic resin pressure vessel 1 for carbonated beverages was 34.5. . The results are shown in Table 1 and FIG.

次に、炭酸飲料用合成樹脂製耐圧容器1に対して、前記参考例と全く同一にして殺菌試験を行った。前記殺菌試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、該殺菌試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は2.2であった。前記殺菌試験を熱処理Aとして、結果を表1、図4に示す。   Next, a sterilization test was performed on the pressure-resistant container 1 made of synthetic resin for carbonated drinks in exactly the same manner as in the reference example. When the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks subjected to the sterilization test was measured, the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks formed with the amorphous carbon coating was set to 1. The oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated beverages subjected to the sterilization test was 2.2. The sterilization test is heat treatment A, and the results are shown in Table 1 and FIG.

次に、炭酸飲料用合成樹脂製耐圧容器1に対して、前記参考例と全く同一にしてヒートサイクル試験を行った。前記ヒートサイクル試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を測定したところ、前記アモルファスカーボン被膜を形成した炭酸飲料用合成樹脂製耐圧容器1の酸素透過率を1としたときに、該ヒートサイクル試験を行った炭酸飲料用合成樹脂製耐圧容器1の酸素透過率は10.1であった。前記ヒートサイクル試験を熱処理Bとして、結果を表1、図4に示す。   Next, a heat cycle test was performed on the pressure-resistant container 1 made of synthetic resin for carbonated beverages in exactly the same manner as in the reference example. When the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks subjected to the heat cycle test was measured, the oxygen permeability of the pressure-resistant container 1 made of synthetic resin for carbonated drinks formed with the amorphous carbon film was set to 1. In addition, the oxygen permeability of the synthetic resin pressure resistant container 1 for carbonated beverages subjected to the heat cycle test was 10.1. The heat cycle test is heat treatment B, and the results are shown in Table 1 and FIG.

Figure 2005313971

表1、図4から、リブ10において胴部5の表面に対する斜面部31の角度θを8°としたときには、樹脂量が49gと少ない場合(実施例)でも、樹脂量が59gの場合(参考例)とほぼ同等のガスバリア性を得ることができ、胴部5の表面に対する斜面部31の角度θを30°とした場合(比較例)に対して格段に優れたガスバリア性を得ることができることが明らかである。
Figure 2005313971

From Table 1 and FIG. 4, when the angle θ of the inclined surface portion 31 with respect to the surface of the body portion 5 in the rib 10 is 8 °, even when the resin amount is as small as 49 g (Example), the resin amount is 59 g (reference) The gas barrier property substantially equivalent to that of the example) can be obtained, and the gas barrier property much superior to the case where the angle θ of the inclined surface portion 31 with respect to the surface of the body portion 5 is 30 ° (comparative example) can be obtained. Is clear.

本発明の炭酸飲料用合成樹脂製耐圧容器の一部を破断してその構成を示す説明的断面図。Explanatory sectional drawing which fractures | ruptures some synthetic resin pressure-resistant containers for carbonated beverages of this invention, and shows the structure. 本発明の炭酸飲料用合成樹脂製耐圧容器にガスバリア性被膜を形成する装置を示す説明的断面図。Explanatory sectional drawing which shows the apparatus which forms a gas-barrier film in the synthetic resin pressure-resistant container for carbonated beverages of this invention. 図1の要部拡大断面図。The principal part expanded sectional view of FIG. 本発明の炭酸飲料用合成樹脂製耐圧容器の酸素透過性の変化を示すグラフ。The graph which shows the oxygen permeability change of the synthetic resin pressure-resistant container for carbonated beverages of this invention.

符号の説明Explanation of symbols

1…炭酸飲料用合成樹脂製耐圧容器、 3…口部、 4…首部、 5…胴部、 6…底部、 10…リブ。   DESCRIPTION OF SYMBOLS 1 ... Synthetic-resin pressure-resistant container for carbonated drinks, 3 ... Mouth part, 4 ... Neck part, 5 ... Trunk part, 6 ... Bottom part, 10 ... Rib.

Claims (3)

口部と、該口部に接続し該口部から下方に向けて拡径する首部と、該首部に接続する円筒状の胴部と、該胴部に接続して接地部を構成する底部とからなり、少なくとも内面側にプラズマCVD法により形成されたガスバリア性被膜を備える炭酸飲料用合成樹脂製耐圧容器であって、
該胴部に周方向に延在するリブを備え、該リブは該胴部の表面に対し0°より大きく、20°より小さい角度で該胴部内方に膨出して形成され、底部に平面部を備えていることを特徴とする炭酸飲料用合成樹脂製耐圧容器。
A mouth part, a neck part connected to the mouth part and expanding downward from the mouth part, a cylindrical body part connected to the neck part, and a bottom part connected to the body part to constitute a grounding part; A pressure-resistant container made of synthetic resin for carbonated drinks, comprising a gas barrier film formed by plasma CVD on at least the inner surface side,
The body includes a rib extending in the circumferential direction, and the rib is formed to bulge inwardly of the body at an angle larger than 0 ° and smaller than 20 ° with respect to the surface of the body, and a flat portion at the bottom A pressure-resistant container made of synthetic resin for carbonated drinks.
前記ガスバリア性被膜は、炭素を主要構成元素とするアモルファスカーボン被膜であることを特徴とする請求項1記載の炭酸飲料用合成樹脂製耐圧容器。   2. The synthetic resin pressure resistant container for carbonated beverages according to claim 1, wherein the gas barrier coating is an amorphous carbon coating containing carbon as a main constituent element. 前記ガスバリア性被膜は、酸化珪素含有被膜であることを特徴とする請求項1記載の炭酸飲料用合成樹脂製耐圧容器。   2. The synthetic resin pressure resistant container for carbonated beverages according to claim 1, wherein the gas barrier coating is a silicon oxide-containing coating.
JP2004136142A 2004-04-30 2004-04-30 Synthetic-resin-made pressure-resistant container for carbonated drink Pending JP2005313971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136142A JP2005313971A (en) 2004-04-30 2004-04-30 Synthetic-resin-made pressure-resistant container for carbonated drink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136142A JP2005313971A (en) 2004-04-30 2004-04-30 Synthetic-resin-made pressure-resistant container for carbonated drink

Publications (1)

Publication Number Publication Date
JP2005313971A true JP2005313971A (en) 2005-11-10

Family

ID=35441804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136142A Pending JP2005313971A (en) 2004-04-30 2004-04-30 Synthetic-resin-made pressure-resistant container for carbonated drink

Country Status (1)

Country Link
JP (1) JP2005313971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051129A1 (en) * 2007-10-17 2009-04-23 Yoshino Kogyosho Co., Ltd. Bottle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051129A1 (en) * 2007-10-17 2009-04-23 Yoshino Kogyosho Co., Ltd. Bottle
JP2009096521A (en) * 2007-10-17 2009-05-07 Yoshino Kogyosho Co Ltd Bottle
CN101815650A (en) * 2007-10-17 2010-08-25 株式会社吉野工业所 bottle
KR101465503B1 (en) * 2007-10-17 2014-11-26 요시노 코교쇼 가부시키가이샤 Bottle
US9169035B2 (en) 2007-10-17 2015-10-27 Yoshino Kogyosho Co., Ltd. Bottle

Similar Documents

Publication Publication Date Title
JP3970169B2 (en) DLC film coated plastic container manufacturing method
WO2006126677A1 (en) Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
JP4566719B2 (en) Carbon film coated plastic container manufacturing method, plasma CVD film forming apparatus and plastic container
JP2006224992A (en) Plastic container coated with gas barrier membrane, its manufacturing device, and its manufacturing method
JPH11256331A (en) Forming method of diamondlike carbon film and device for producing it
JP2018510099A (en) Structure and method for sealing a closure assembly on the neck finish of a plastic pressure vessel
WO2003085165A1 (en) Plasma cvd film forming apparatus and method for manufacturing cvd film coating plastic container
JP4372833B1 (en) Method for producing gas barrier thin film coated plastic container
JP4664658B2 (en) Plasma CVD film forming apparatus and method for manufacturing plastic container having gas barrier property
JP2005313971A (en) Synthetic-resin-made pressure-resistant container for carbonated drink
JP2002053119A (en) Plastic container having gas barrier coating layer, and its manufacturing method
JP2006315697A (en) Plastic bottle for carbonated beverage
JP2006089073A (en) Internally coated plastic container and method for manufacturing the same
JP4593357B2 (en) Method for producing gas-barrier plastic container with reduced mouth coloring and the container
JP2005105294A (en) Cvd film-forming apparatus, and method for manufacturing plastic container coated with cvd film
JP4002164B2 (en) DLC film-coated plastic container and manufacturing method thereof
JP5566334B2 (en) Gas barrier plastic molded body and method for producing the same
JP5610345B2 (en) Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus
JP2004218079A (en) Apparatus and method for producing plastic container coated with gas-barrier thin film
JP6657766B2 (en) Plastic container and manufacturing method thereof
JP3123979U (en) Deposition equipment
JP2022124554A (en) Heat-and-pressure-resistant bottle
CA2662212C (en) Synthetic resin bottle
JP4871674B2 (en) Method for depositing amorphous carbon film on synthetic resin bottle
JP2023162764A (en) Polyester resin multiple bottle and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317