JP2005310927A - Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation - Google Patents

Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation Download PDF

Info

Publication number
JP2005310927A
JP2005310927A JP2004123639A JP2004123639A JP2005310927A JP 2005310927 A JP2005310927 A JP 2005310927A JP 2004123639 A JP2004123639 A JP 2004123639A JP 2004123639 A JP2004123639 A JP 2004123639A JP 2005310927 A JP2005310927 A JP 2005310927A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
film
forming
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123639A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
豪 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004123639A priority Critical patent/JP2005310927A/en
Publication of JP2005310927A publication Critical patent/JP2005310927A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a high-quality silicon nitride film at a low temperature, where the film is reduced in contained impurities, such as chlorine and hydrogen. <P>SOLUTION: A high-quality silicon nitride thin-film layer 46 with a less amount of involved chlorine is formed by stacking a new silicon nitride thin film layer 44, having a thickness of 0.5 nm to 5 nm on the surface of the high-quality silicon nitride film 43 on a substrate 41 to be processed by making use of a chemical vapor phase growing method containing a silicon chloride substance as a reacting substance; then irradiating the silicon nitride thin-film layer 44 with an ultraviolet light 45, having photon energy of 4.16 eV or higher and lower than 5.0 eV to cut an Si-N bond in the silicon nitride thin film layer 44 and change it into an Si-N bond, by a reaction with active species of a nitrogen atom for removing Cl in the silicon nitride thin-film layer 44; and thereafter, repeating the deposition of the new silicon nitride thin-film layer 44 and the removal of the Cl. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シリコン窒化膜の成膜方法に係り、詳しくは、塩化珪素化合物を成膜の原料とし、成膜中にシリコン窒化膜に紫外線を照射する高品質シリコン窒化膜の成膜方法に関する。   The present invention relates to a method for forming a silicon nitride film, and more particularly to a method for forming a high quality silicon nitride film using a silicon chloride compound as a film forming material and irradiating the silicon nitride film with ultraviolet rays during film formation.

半導体装置を構成する絶縁ゲート電界効果トランジスタ(MISFET)のような半導体素子の微細化は、半導体装置の高性能化にとり最も重要な技術事項であり、現在その寸法基準が65nmから45nmへと精力的に進められている。また、この半導体装置の高性能化のためには、半導体装置の製造の熱プロセスの更なる低温化が必須になってくる。例えば、上記素子の設計基準が65nmになる微細なMISFETのソース・ドレイン拡散層の浅接合化、ゲート電極も含めてニッケルシリサイド(NiSi)層によるこれらの領域の低抵抗化のために、半導体装置の製造工程において、このシリサイド層を形成した後の熱プロセスは450℃以下の低温化が必須になってきている。このため、この低温化に合わせて半導体装置の製造のための各種材料膜の成膜温度の低温化が必要になる。   The miniaturization of a semiconductor element such as an insulated gate field effect transistor (MISFET) constituting a semiconductor device is the most important technical matter for improving the performance of the semiconductor device, and its dimensional standard is currently energetic from 65 nm to 45 nm. It is advanced to. In order to improve the performance of this semiconductor device, it is essential to further lower the temperature of the thermal process for manufacturing the semiconductor device. For example, in order to reduce the resistance of these regions by using a nickel silicide (NiSi) layer including a gate electrode, the source / drain diffusion layer of a fine MISFET having a design standard of 65 nm can be reduced, and the gate electrode can be reduced. In the manufacturing process, a low temperature of 450 ° C. or lower is indispensable for the thermal process after the formation of the silicide layer. For this reason, it is necessary to lower the deposition temperature of various material films for manufacturing semiconductor devices in accordance with this lowering of temperature.

このような中にあって、半導体装置の製造に多用されているシリコン窒化膜の成膜では、その成膜温度の低温化と共にその膜質の向上が急務となっている。シリコン窒化膜は、上記半導体装置の高集積化あるいは高密度化において、いわゆる自己整合型コンタクト構造(以下、SAC構造と呼称する)に必須である。また、その他に、MISFETのゲート絶縁膜の一部あるいは容量素子(キャパシタ)の容量絶縁膜として、更には半導体装置の不揮発性メモリに用いる強誘電体膜から成る素子を水素から保護する保護膜として、また銅等の重金属が半導体素子へ侵入するのを防止する阻止膜として、あるいは、その他のエッチングストッパ膜として半導体装置の製造で不可欠な絶縁材料である。そして、このシリコン窒化膜の形成において、MISFET等の半導体素子の信頼性を向上させるために膜中の水素、ハロゲン等の不純物の低減が重要になってきている。   Under such circumstances, in the formation of a silicon nitride film frequently used in the manufacture of semiconductor devices, it is an urgent task to improve the film quality as the film formation temperature is lowered. A silicon nitride film is essential for a so-called self-aligned contact structure (hereinafter referred to as a SAC structure) in order to achieve high integration or high density of the semiconductor device. In addition, as a part of the gate insulating film of the MISFET or a capacitive insulating film of a capacitive element (capacitor), and further as a protective film for protecting an element made of a ferroelectric film used for a nonvolatile memory of a semiconductor device from hydrogen. In addition, it is an insulative material indispensable in the manufacture of semiconductor devices as a blocking film for preventing heavy metals such as copper from entering the semiconductor element, or as another etching stopper film. In the formation of this silicon nitride film, it is important to reduce impurities such as hydrogen and halogen in the film in order to improve the reliability of semiconductor devices such as MISFETs.

これまで、シリコン窒化膜の成膜方法としては、第1原料ガスにシラン(SiH)系ガスを用い第2原料ガスにアンモニア(NH)系ガスを用い、窒素(N)あるいはヘリウム(He)等の不活性ガスあるいは水素(H)ガスを希釈ガスあるいは添加ガスとして用いた化学気相成長(CVD:Chemical Vapor Deposition)法が周知であり、そして多用されている。しかし、その中の熱CVD法は成膜温度700〜800℃を必要しその低温化は困難である。また、原料ガスをプラズマ励起あるいは光励起するPECVD法あるいは光CVD法では、低温化(例えば350℃程度)は容易であるが、成膜したシリコン窒化膜中に水素原子が多量に結合して取り込まれ、上記微細なMISFET等の半導体素子の長期信頼性を著しく低下させるという問題が生じている。このように、シリコン窒化膜の成膜の低温化と膜中の含有水素量の低減とは両立し難いものであった。 Up to now, as a method for forming a silicon nitride film, a silane (SiH 4 ) -based gas is used as a first source gas, an ammonia (NH 3 ) -based gas is used as a second source gas, and nitrogen (N 2 ) or helium ( A chemical vapor deposition (CVD) method using an inert gas such as He) or hydrogen (H 2 ) gas as a dilution gas or an additive gas is well known and widely used. However, the thermal CVD method among them requires a film forming temperature of 700 to 800 ° C., and it is difficult to reduce the temperature. Further, in the PECVD method or the photo CVD method in which the source gas is plasma-excited or photo-excited, it is easy to lower the temperature (for example, about 350 ° C.), but a large amount of hydrogen atoms are combined and taken into the formed silicon nitride film. There is a problem that the long-term reliability of the semiconductor device such as the fine MISFET is remarkably lowered. Thus, it has been difficult to achieve both low temperature formation of the silicon nitride film and reduction of the hydrogen content in the film.

そこで、最近では、成膜の低温化が容易であり上記PECVD法よりも水素量の低減が可能となる触媒CVD法(例えば、特許文献1参照)が取り上げられその展開が種々に検討されている。また、原子層蒸着(ALD;Atomic Layer Deposition)法を用い第1原料ガスに水素量の少ないジクロルシラン(SiHCl;DCS)、テトラクロロシラン(SiCl)あるいはヘキサクロロジシラン(Si2Cl6;HCD)を用いる成膜方法が検討されている(例えば、特許文献2参照)。
特開昭63−40314号公報 特開2002−343793号公報
Therefore, recently, a catalytic CVD method (see, for example, Patent Document 1) that can easily reduce the film formation temperature and can reduce the amount of hydrogen as compared with the PECVD method has been taken up and its development has been variously studied. . In addition, dichlorosilane (SiH 2 Cl 2 ; DCS), tetrachlorosilane (SiCl 4 ), or hexachlorodisilane (Si 2 Cl 6 ; HCD) with a small amount of hydrogen is used as the first source gas using an atomic layer deposition (ALD) method. ) Has been studied (for example, see Patent Document 2).
JP 63-40314 A JP 2002-343793 A

しかし、上記触媒CVD法では、成膜温度は300℃程度にできるが、成膜したシリコン窒化膜中の含有水素量は5at.%を超え、微細なMISFET、特に微細なpチャネルMISFETのNBTI(Negative Bias Temperature Instability)の向上が難しく、半導体装置の長期信頼性の確保が難しくなるという問題があった。   However, in the catalytic CVD method, the film formation temperature can be about 300 ° C., but the hydrogen content in the formed silicon nitride film is 5 at. There is a problem that it is difficult to improve NBTI (Negative Bias Temperature Instability) of a fine MISFET, particularly a fine p-channel MISFET, and it is difficult to ensure long-term reliability of a semiconductor device.

これに対して、上記ALD法では、同様に低温化が容易でしかも膜中の含有水素量は1%以下と大幅に低減することが可能になる。しかし、この成膜方法では、成膜速度は高々0.2nm〜0.3nm/minであり、上記SAC構造の形成等に用いる50nm程度の膜厚のシリコン窒化膜の成膜においては、半導体基板の枚葉型の成膜において成膜時間が5時間以上にもなりその工業生産性に大きな問題があった。また、この方法では、膜中に2at.%を超える含有塩素(Cl)量があり、MISFETの拡散層の接合リーク等を惹き起こすという問題もあった。   On the other hand, in the ALD method, similarly, the temperature can be lowered easily and the amount of hydrogen contained in the film can be significantly reduced to 1% or less. However, in this film formation method, the film formation rate is at most 0.2 nm to 0.3 nm / min, and in the formation of a silicon nitride film having a thickness of about 50 nm used for the formation of the SAC structure or the like, a semiconductor substrate is used. In the single-wafer type film formation, the film formation time was 5 hours or more, and there was a big problem in the industrial productivity. In this method, 2 at. There is also a problem that the amount of chlorine (Cl) contained exceeds 1%, causing junction leakage of the diffusion layer of the MISFET.

本発明は、上述の事情に鑑みてなされたもので、シリコン窒化膜の低温成膜が可能であり、シリコン窒化膜中における不純物、特に、水素および塩素の制御とその量の低減を可能にし、高品質で高い生産性を有するシリコン窒化膜の成膜方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and enables a silicon nitride film to be formed at a low temperature, enabling control of impurities in the silicon nitride film, particularly hydrogen and chlorine, and reduction of the amount thereof, An object of the present invention is to provide a silicon nitride film forming method having high quality and high productivity.

上記課題を解決するために、高品質シリコン窒化膜の成膜方法にかかる第1の発明は、第1反応物質に塩化珪素化合物を用い、第2反応物質にN−H結合を有する化合物を用いたCVD法によるシリコン窒化膜の成膜方法であって、前記CVDにより所定の膜厚のシリコン窒化膜を堆積させる工程(a)と、前記所定の膜厚のシリコン窒化膜を紫外光で照射すると共に窒素原子を含んだ活性種に曝す工程(b)と、を有する構成になっている。   In order to solve the above problems, a first invention according to a method for forming a high-quality silicon nitride film uses a silicon chloride compound as a first reactant and a compound having an N—H bond as a second reactant. A method of depositing a silicon nitride film having a predetermined thickness by the CVD method, and irradiating the silicon nitride film having the predetermined thickness with ultraviolet light. And a step (b) of exposing to an active species containing a nitrogen atom.

そして、前記工程(a)と工程(b)を順次に繰り返して所望の膜厚のシリコン窒化膜を形成する。ここで、好ましくは、前記工程(b)において、前記第1反応物質と前記第2反応物質を用いたCVDを停止させる。   Then, the silicon nitride film having a desired thickness is formed by sequentially repeating the steps (a) and (b). Here, preferably, in the step (b), CVD using the first reactant and the second reactant is stopped.

上記発明において、前記紫外光で前記第2反応物質を解離し前記窒素原子を含んだ活性種を生成する。あるいは、前記CVD法は、加熱した触媒体に前記反応物質を作用させて成膜する触媒CVD法であって、前記加熱した触媒体で前記第2反応物質を解離し前記窒素原子を含んだ活性種を生成する。   In the above invention, the second reactive substance is dissociated with the ultraviolet light to generate an active species containing the nitrogen atom. Alternatively, the CVD method is a catalytic CVD method in which the reactant is allowed to act on a heated catalyst body to form a film, and the second reactant is dissociated by the heated catalyst body and includes the nitrogen atoms. Generate seeds.

上記発明において、前記所定の膜厚のシリコン窒化膜に存在するシリコン原子と塩素原子が化学結合したSi−Cl結合の前記紫外光の照射による切断と、前記活性種によるSi−N結合の生成とで、前記所定の膜厚のシリコン窒化膜中の塩素を除去する。   In the above invention, the Si—Cl bond in which the silicon atom and the chlorine atom existing in the silicon nitride film having the predetermined film thickness are chemically bonded is cut by the irradiation of the ultraviolet light, and the generation of the Si—N bond by the active species is performed. Then, chlorine in the silicon nitride film having the predetermined thickness is removed.

そして、第2の発明は、第1反応物質に塩化珪素化合物を用い、第2反応物質にN−H結合を有する化合物を用いたCVD法により被処理基板上にシリコン窒化膜を形成するシリコン窒化膜の成膜方法において、前記被処理基板に紫外光を照射する構成となっている。   In the second invention, a silicon nitride film is formed on a substrate to be processed by a CVD method using a silicon chloride compound as a first reactant and a compound having an N—H bond as a second reactant. In the film forming method, the substrate to be processed is irradiated with ultraviolet light.

上記発明において、好ましくは、前記紫外光の光子エネルギーが4.16eV以上であり5.0eV未満である。また、前記第1反応物質は、SiClあるいはSiClであり、前記第2反応物質はNHあるいはNである。そして、前記窒素原子を含んだ活性種は、窒素の活性種あるいは窒素と水素の結合した活性種である。そして、前記所定の膜厚は0.5nm〜5nmであることが好ましい。 In the above invention, preferably, the photon energy of the ultraviolet light is 4.16 eV or more and less than 5.0 eV. In addition, the first reactant is Si 2 Cl 6 or SiCl 4 , and the second reactant is NH 3 or N 2 H 4 . The active species containing the nitrogen atom is an active species of nitrogen or an active species in which nitrogen and hydrogen are combined. The predetermined film thickness is preferably 0.5 nm to 5 nm.

本発明の構成によれば、低温成膜のシリコン窒化膜の形成において、膜中の塩素および水素の不純物量が低減し、簡便であって高い生産性の下に、高品質なシリコン窒化膜が形成できる。   According to the configuration of the present invention, in the formation of a silicon nitride film formed at a low temperature, the amount of impurities of chlorine and hydrogen in the film is reduced, and a high-quality silicon nitride film can be obtained with ease and high productivity. Can be formed.

以下に、図面を参照して本発明の実施の形態の幾つかを詳細に説明する。
(実施の形態1)
はじめに、本発明の実施の形態において高品質シリコン窒化膜の成膜に好適な成膜装置について図1を参照して説明する。図1は、成膜装置である紫外線照射CVD装置の模式的な概略断面図である。図1に示すように、紫外線照射CVD装置10は、その基本構造として、内壁がアルマイト処理されたアルミニウムから成る円筒形状に成形されたチャンバ11、チャンバ11内の底部に取り付けられた基板支持ステージ12、基板支持ステージ12を所定の温度に制御する基板加熱系13、チャンバ11の上部に取り付けられた紫外線照射手段14、そしてガス供給系15と反応後の処理ガスをチャンバ11外に排出する排気系16を備える。あるいは、チャンバ11内で基板支持ステージ12直上の高さ100mm程度のところに触媒体として水平に備えられた2本の直線状の金属線17を備えている。
Hereinafter, some of the embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
First, a film forming apparatus suitable for forming a high quality silicon nitride film in the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view of an ultraviolet irradiation CVD apparatus that is a film forming apparatus. As shown in FIG. 1, an ultraviolet irradiation CVD apparatus 10 has, as its basic structure, a chamber 11 formed into a cylindrical shape made of aluminum whose inner wall is anodized, and a substrate support stage 12 attached to the bottom of the chamber 11. , A substrate heating system 13 for controlling the substrate support stage 12 to a predetermined temperature, an ultraviolet irradiation means 14 attached to the upper part of the chamber 11, and an exhaust system for discharging the processing gas after reacting with the gas supply system 15 to the outside of the chamber 11. 16. Alternatively, two straight metal wires 17 provided horizontally as catalyst bodies are provided in the chamber 11 at a height of about 100 mm directly above the substrate support stage 12.

ここで、上記紫外線照射手段14は、紫外線光源18、紫外線照射窓19を有し、紫外線光源18の照射強度および照射時間等は光照射制御系20で高精度に制御される。そして、ガス供給系15には、第1反応物質である第1原料ガスにSiCl等SiCl等の塩化珪素化合物が使用できるようになっており、第2反応物質である第2原料ガスにNH、N、ヒドラジン(N)等のアンモニア系化合物が使用でき、さらにキャリア用、希釈用あるいはパージ用の不活性ガスが使用できるようになっている。また、原料ガスの触媒体となる金属線17は白金(Pt)、イリジウム(Ir)等の貴金属で成る。 Here, the ultraviolet irradiation means 14 has an ultraviolet light source 18 and an ultraviolet irradiation window 19, and the irradiation intensity and irradiation time of the ultraviolet light source 18 are controlled with high accuracy by the light irradiation control system 20. In the gas supply system 15, a silicon chloride compound such as SiCl 4 such as Si 2 Cl 6 can be used for the first source gas that is the first reactant, and the second source material that is the second reactant. As the gas, ammonia compounds such as NH 3 , N 2 H 2 , hydrazine (N 2 H 4 ) can be used, and an inert gas for carrier, dilution or purge can be used. The metal wire 17 serving as a source gas catalyst is made of a noble metal such as platinum (Pt) or iridium (Ir).

そして、半導体基板のような被処理基板21は、基板支持ステージ12に載置され基板加熱系13で所定の温度にされ一定速度の回転を受ける。そして、ガス導入口23より上記原料ガスが選択されてチャンバ11内に導入され、後述する処理を受けた処理ガスはガス排出口23から排気系16によりチャンバ11外に排出される。   A substrate 21 to be processed such as a semiconductor substrate is placed on the substrate support stage 12 and is heated to a predetermined temperature by the substrate heating system 13 and is rotated at a constant speed. Then, the source gas is selected from the gas inlet 23 and introduced into the chamber 11, and the processing gas that has undergone the processing described below is discharged from the gas outlet 23 to the outside of the chamber 11 through the exhaust system 16.

以下、本発明の第1の実施の形態のシリコン窒化膜の成膜方法について、図1および図2〜5を参照して説明する。この実施の形態における成膜方法の特徴は、光照射のCVDにおいて成膜ガスあるいは紫外線照射に変調を加え、所定のシリコン窒化膜の成膜と、紫外線照射を用いた前記所定のシリコン窒化膜中の塩素除去と、を繰り返して高品質シリコン窒化膜を形成するところにある。ここでは、前記所定のシリコン窒化膜中のSi−Cl結合の紫外光アシストによるSi−N変換を通して最終的に含有塩素量および含有水素量の少ないシリコン窒化膜が形成される。この実施の形態では、図1の成膜ガスの触媒体である金属線17には電力は全く印加しない。図2は成膜ガスに流量の変調を施して形成した高品質シリコン窒化膜と被処理基板の断面図であり、図4は成膜ガスおよび紫外線照射に変調を施して高品質シリコン窒化膜を形成する場合の工程別断面図である。そして、図3,5は上記それぞれの変調成膜のタイムシーケンスを示す図である。   Hereinafter, a silicon nitride film forming method according to the first embodiment of the present invention will be described with reference to FIG. 1 and FIGS. A feature of the film forming method in this embodiment is that a film forming gas or UV irradiation is modulated in light irradiation CVD to form a predetermined silicon nitride film, and in the predetermined silicon nitride film using ultraviolet irradiation. The high quality silicon nitride film is formed by repeating the chlorine removal. Here, a silicon nitride film having a small amount of chlorine and hydrogen is finally formed through Si-N conversion by ultraviolet light assist of Si-Cl bonds in the predetermined silicon nitride film. In this embodiment, no power is applied to the metal wire 17 which is the catalyst for the film forming gas in FIG. FIG. 2 is a cross-sectional view of a high-quality silicon nitride film formed by modulating the flow rate of the deposition gas and the substrate to be processed, and FIG. 4 shows a high-quality silicon nitride film by modulating the deposition gas and ultraviolet irradiation. It is sectional drawing according to process in the case of forming. 3 and 5 are diagrams showing time sequences of the respective modulation film formation.

図1に示すように、紫外線照射CVD装置10の基板支持ステージ12上に被処理基板である被処理基板21を載置し一定速度で回転させ、基板温度は250〜300℃にする。そして、ガス供給系15により、第1原料ガスとして液体ソースのSiClあるいはSiClをアルゴン等の不活性ガスでバブリングし気化させ、第2原料ガスであるNHガスとの流量比が1/50程度になるように設定し、図3に示すように、第1,2原料ガスをオン状態にしてガス導入口22よりチャンバ11内に導入する。ここで、第1原料ガスと第2原料ガスはチャンバ11内で混合されるいわゆるポストミキシングでチャンバ11に導入され、第1原料ガスの配管は結露防止の保温がなされる。そして、真空排気装置を有する排気系16により真空排気しチャンバ11内のガス圧力を約133Pa(1Torr)にする。 As shown in FIG. 1, a substrate 21 to be processed is placed on a substrate support stage 12 of an ultraviolet irradiation CVD apparatus 10 and rotated at a constant speed so that the substrate temperature is 250 to 300.degree. Then, the gas supply system 15 causes the liquid source Si 2 Cl 6 or SiCl 4 to be bubbled with an inert gas such as argon and vaporized as the first source gas, and the flow rate ratio with the NH 3 gas as the second source gas is increased. As shown in FIG. 3, the first and second source gases are turned on and introduced into the chamber 11 through the gas inlet 22. Here, the first source gas and the second source gas are introduced into the chamber 11 by so-called post-mixing in which the first source gas is mixed in the chamber 11, and the piping of the first source gas is kept warm to prevent condensation. Then, evacuation is performed by an evacuation system 16 having an evacuation device, and the gas pressure in the chamber 11 is set to about 133 Pa (1 Torr).

そして、図3に示すように光照射電力をオン状態にして、図2に示すように、被処理基板31表面に形成されている下地膜32表面に膜厚が0.5nm〜5nmの第1シリコン窒化薄膜層33aを堆積させる。ここで、光照射の紫外線として、光子エネルギーが4.16eV以上で5.0eV未満のレーザ光を用いると良い。このような光子エネルギーにすると、後述するようにシリコン窒化膜中のSi−Cl結合が容易に切断でき、Si−N結合は切断しないように制御できる。   Then, the light irradiation power is turned on as shown in FIG. 3, and as shown in FIG. 2, the first film thickness of 0.5 nm to 5 nm is formed on the surface of the base film 32 formed on the surface of the substrate 31 to be processed. A silicon nitride thin film layer 33a is deposited. Here, laser light having a photon energy of 4.16 eV or more and less than 5.0 eV may be used as the ultraviolet light for light irradiation. With such photon energy, it can be controlled that the Si—Cl bond in the silicon nitride film can be easily cut and the Si—N bond is not cut as will be described later.

次に、図3に示すように第1原料ガスにガス流量の変調を加え、第1原料ガスの流量を零(オフ状態)にして第2原料ガスであるNHガスのみを導入(オン状態)する。このようにしてシリコン窒化膜の堆積は一時停止する。ここで、光照射電力はオン状態に保持される。上記の状態で、チャンバ11内のNHガスは上記紫外線で解離され、窒素の活性種あるいはNH、NHのように窒素と水素の結合した活性種が生成されている。ここで、活性種は、窒素そして窒素と水素の化合物のイオンあるいはラジカルのことである。 Next, as shown in FIG. 3, the gas flow rate is modulated to the first source gas, the flow rate of the first source gas is set to zero (off state), and only the NH 3 gas as the second source gas is introduced (on state). ) In this way, the deposition of the silicon nitride film is temporarily stopped. Here, the light irradiation power is maintained in the ON state. In the above state, the NH 3 gas in the chamber 11 is dissociated by the ultraviolet light, and active species of nitrogen or active species in which nitrogen and hydrogen are combined such as NH and NH 2 are generated. Here, the active species are ions or radicals of nitrogen and a compound of nitrogen and hydrogen.

そして、上記第1シリコン窒化薄膜層33a中のSi−Cl結合が上記紫外線で容易に切断され、未結合状態になったSi−は上記活性種と反応しSi−N結合に変わる。なお、上記Si−Clから解離したClは水素と結合しHClとしてガス排出口23よりチャンバ11外に排気される。このようにして、上記堆積した第1シリコン窒化薄膜層33a中に含有するClは除去される。ここで、上記第1シリコン窒化薄膜層33aの膜厚は0.5nm〜5nmが良い。膜厚が厚すぎると膜中の塩素が充分に除去できなくなるからである。また、薄すぎると成膜の生産性が低下する。   Then, Si-Cl bonds in the first silicon nitride thin film layer 33a are easily cut by the ultraviolet rays, and Si- that is in an unbonded state reacts with the active species and changes to Si-N bonds. Note that Cl dissociated from the Si—Cl is combined with hydrogen and discharged as HCl from the gas exhaust port 23 to the outside of the chamber 11. In this way, Cl contained in the deposited first silicon nitride thin film layer 33a is removed. Here, the film thickness of the first silicon nitride thin film layer 33a is preferably 0.5 nm to 5 nm. This is because if the film thickness is too thick, chlorine in the film cannot be removed sufficiently. On the other hand, if it is too thin, the productivity of the film formation is lowered.

以後、上記第1原料ガスの流量をオン/オフの変調を繰り返し、図2のシリコン窒化薄膜層33b、33c、33d、33e・・・の堆積とそれぞれの膜中のSi−Cl結合の除去とを繰り返して、所望の膜厚の高品質シリコン窒化膜を成膜し、最終的に例えば50nmの膜厚の高品質シリコン窒化膜を形成する。   Thereafter, on / off modulation of the flow rate of the first source gas is repeated to deposit the silicon nitride thin film layers 33b, 33c, 33d, 33e... In FIG. 2 and to remove Si—Cl bonds in the respective films. Is repeated to form a high-quality silicon nitride film having a desired thickness, and finally a high-quality silicon nitride film having a thickness of 50 nm, for example, is formed.

この実施の形態により、最終的に形成した高品質シリコン窒化膜中に含まれるSi−Cl結合量は1at.%以下に低減させることが可能になる。また、この場合の成膜速度は20nm〜30nm/minとなる。そして、この実施の形態では、シリコン窒化膜中の含有水素量は1at.%以下になる。このようにして、上記含有不純物量が少なく高品質なシリコン窒化膜が、高速にしかも再現性良く形成できる。なお、上記のシリコン窒化膜の成膜において光照射電力のみをオフ状態にし、それ以外の条件を同一にして成膜した場合の膜中の含有塩素量は5at.%程度になり、含有水素量は上記実施の形態と同程度になる。   According to this embodiment, the Si—Cl bond amount contained in the finally formed high quality silicon nitride film is 1 at. % Or less can be reduced. In this case, the film formation rate is 20 nm to 30 nm / min. In this embodiment, the amount of hydrogen contained in the silicon nitride film is 1 at. % Or less. In this way, a high-quality silicon nitride film with a small amount of impurities can be formed at high speed and with good reproducibility. In the above-described silicon nitride film formation, the amount of chlorine contained in the film when the light irradiation power alone is turned off and the other conditions are the same is 5 at. %, And the hydrogen content is about the same as in the above embodiment.

次に、上記実施の形態で変調の仕方が異なる変形例を図4,5を参照して説明する。この変形例では上述したように光照射電力にも変調を施す。この場合、図4に示す被処理基板41の基板温度は400〜450℃にする。そして、ガス供給系15により、第1原料ガスとして液体ソースのSiClをアルゴン等の不活性ガスでバブリングし気化させ、第2原料ガスであるNガスとの流量比が1/20程度になるように設定し、図5に示すように、第1,2原料ガスをオン状態にしてガス導入口22よりチャンバ11内に導入する。この場合も、第1原料ガスと第2原料ガスの導入はポストミキシングである。そして、真空排気装置を有する排気系16により真空排気しチャンバ11内のガス圧力を約133Paにする。また、図5に示しているように光照射電力はオフ状態にする。 Next, a modified example in which the modulation method is different in the above embodiment will be described with reference to FIGS. In this modification, the light irradiation power is also modulated as described above. In this case, the substrate temperature of the substrate 41 to be processed shown in FIG. Then, the gas supply system 15 causes the liquid source Si 2 Cl 6 to be bubbled with an inert gas such as argon and vaporized as the first source gas, and the flow rate ratio to the N 2 H 4 gas that is the second source gas is 1. As shown in FIG. 5, the first and second source gases are turned on and introduced into the chamber 11 through the gas inlet 22. Also in this case, the introduction of the first source gas and the second source gas is post-mixing. Then, evacuation is performed by an evacuation system 16 having an evacuation device, and the gas pressure in the chamber 11 is set to about 133 Pa. Further, as shown in FIG. 5, the light irradiation power is turned off.

この状態で、図4(a)に示すように、被処理基板41表面の下地膜42上に形成している中途段階の高品質シリコン窒化膜43表面に膜厚が0.5nm〜5nmの新たなシリコン窒化薄膜層44を堆積させる。   In this state, as shown in FIG. 4A, a new film having a thickness of 0.5 nm to 5 nm is formed on the surface of the high-quality silicon nitride film 43 in the middle stage formed on the base film 42 on the surface of the substrate 41 to be processed. A thin silicon nitride thin film layer 44 is deposited.

次に、図5に示すように第1原料ガスにガス流量の変調を加え、第1原料ガスの流量を零(オフ状態)にして第2原料ガスであるN系ガスのみを導入(オン状態)する。このようにしてシリコン窒化膜の堆積は一時停止する。そして、光照射電力はオフ状態からオン状態に切り変える。この光照射では、光子エネルギーが4.16eV以上で5.0eV未満の紫外線を含む広い波長域の紫外線光源18として低圧水銀ランプを用いると良い。このようにして、図4(b)に示すように、シリコン窒化薄膜層44全面に紫外線光45を数msec〜10sec程度の間で照射する。 Next, as shown in FIG. 5, the gas flow rate is modulated to the first source gas, the first source gas flow rate is set to zero (off state), and only the N 2 H 4 system gas as the second source gas is introduced. (ON state). In this way, the deposition of the silicon nitride film is temporarily stopped. The light irradiation power is switched from the off state to the on state. In this light irradiation, a low-pressure mercury lamp may be used as the ultraviolet light source 18 in a wide wavelength range including ultraviolet light having a photon energy of 4.16 eV or more and less than 5.0 eV. In this way, as shown in FIG. 4B, the entire surface of the silicon nitride thin film layer 44 is irradiated with ultraviolet light 45 for several milliseconds to 10 seconds.

上記光照射により、チャンバ11内のNガスは上記紫外線光45で極めて容易に解離し、窒素の活性種あるいはNH、NHのように窒素と水素の結合した活性種が生成される。また、同時に上記シリコン窒化薄膜層44中のSi−Cl結合は上記紫外線光45で切断し、未結合状態になったSi−は上記活性種と反応しSi−N結合に変わる。このようにして、上記新たに堆積したシリコン窒化薄膜層44は、膜中に含有するClが除去され改質される。そして、図4(c)に示すように、塩素等の含有不純物の少ない高品質シリコン窒化薄膜層46になり、上記高品質シリコン窒化膜43上に積層される。 By the light irradiation, the N 2 H 4 gas in the chamber 11 is very easily dissociated by the ultraviolet light 45, and active species of nitrogen or hydrogen combined with nitrogen and hydrogen such as NH and NH 2 are generated. . At the same time, the Si—Cl bond in the silicon nitride thin film layer 44 is cut by the ultraviolet light 45, and Si— that has become unbonded reacts with the active species and changes to Si—N bonds. Thus, the newly deposited silicon nitride thin film layer 44 is modified by removing Cl contained in the film. Then, as shown in FIG. 4C, the high-quality silicon nitride thin film layer 46 containing less impurities such as chlorine is formed and laminated on the high-quality silicon nitride film 43.

以後、上記第1原料ガスの流量をオン/オフの変調と上記光照射電力のオン/オフの変調とを繰り返し、含有塩素量の低減した所望の膜厚の高品質シリコン窒化膜を成膜する。   Thereafter, on / off modulation of the flow rate of the first source gas and on / off modulation of the light irradiation power are repeated to form a high-quality silicon nitride film having a desired film thickness with reduced chlorine content. .

この実施の形態の変形例では、最終的に形成した高品質シリコン窒化膜中に含まれるSi−Cl結合量は0.5at.%以下に更に低減するようになる。また、この場合の成膜速度は10nm/min程度である。そして、この実施の形態では、シリコン窒化膜中の含有水素量は1at.%以下になる。   In the modification of this embodiment, the Si—Cl bond amount contained in the finally formed high-quality silicon nitride film is 0.5 at. % Is further reduced. In this case, the deposition rate is about 10 nm / min. In this embodiment, the amount of hydrogen contained in the silicon nitride film is 1 at. % Or less.

(実施の形態2)
次に、本発明の第2の実施の形態のシリコン窒化膜の成膜方法について、図1,2,4,6,7を参照して説明する。この場合の成膜方法の特徴は、加熱した触媒体に原料ガスを作用させて成膜するいわゆる触媒CVD法の成膜において、成膜ガス、紫外線照射あるいは触媒体に変調を加えるところにあり、成膜速度が第1の実施の形態の場合より大幅に増大する。ここでは、図1の成膜ガスの触媒体である金属線17に電力を印加する。図6,7は上記それぞれの変調成膜のタイムシーケンスを示す図である。
(Embodiment 2)
Next, a method for forming a silicon nitride film according to the second embodiment of the present invention will be described with reference to FIGS. The feature of the film formation method in this case is that in the film formation of the so-called catalytic CVD method in which the source gas is allowed to act on the heated catalyst body, the film formation gas, ultraviolet irradiation or the catalyst body is modulated, The film forming rate is significantly increased as compared with the case of the first embodiment. Here, electric power is applied to the metal wire 17 which is a catalyst body of the film forming gas in FIG. 6 and 7 are diagrams showing the time sequences of the respective modulation film formation.

第1の実施の形態で説明したのと同様に、図1に示す紫外線照射CVD装置10の基板支持ステージ12上に半導体ウエハあるいは液晶パネル等の被処理基板21を載置し一定速度で回転させ、基板温度は200〜300℃程度にする。そして、図6に示すように、ガス供給系15より、第1原料ガスとして液体ソースのSiClあるいはSiClをアルゴン等の不活性ガスでバブリングし気化させ、第2原料ガスであるNHガスとの流量比が1/50程度になるように設定し、図5に示すように、第1,2原料ガスをオン状態にしてガス導入口22よりチャンバ11内に導入する。そして、真空排気装置を有する排気系16により真空排気しチャンバ11内のガス圧力を約133Pa(1Torr)にする。 As described in the first embodiment, a substrate 21 such as a semiconductor wafer or a liquid crystal panel is placed on the substrate support stage 12 of the ultraviolet irradiation CVD apparatus 10 shown in FIG. 1 and rotated at a constant speed. The substrate temperature is about 200 to 300 ° C. Then, as shown in FIG. 6, from the gas supply system 15, liquid source Si 2 Cl 6 or SiCl 4 is bubbled with an inert gas such as argon as the first source gas, and is vaporized, and NH is the second source gas. The flow rate ratio with respect to the three gases is set to about 1/50, and the first and second source gases are turned on and introduced into the chamber 11 from the gas inlet 22 as shown in FIG. Then, evacuation is performed by an evacuation system 16 having an evacuation device, and the gas pressure in the chamber 11 is set to about 133 Pa (1 Torr).

そして、図6に示すように光照射電力をオン状態にして、図2で説明したように、被処理基板31表面に形成されている下地膜32上に膜厚が0.5nm〜5nmの第1シリコン窒化薄膜層33aを堆積させる。この光照射では、光子エネルギーが4.16eV以上で5.0eV未満の紫外線を含む紫外線光源18として低圧水銀ランプ、水銀キセノンランプ等を用いる。そして、紫外線光源18からの紫外光にフィルタをかけ所定の光子エネルギーを選ぶようにするとよい。   Then, the light irradiation power is turned on as shown in FIG. 6, and the first film having a thickness of 0.5 nm to 5 nm is formed on the base film 32 formed on the surface of the substrate 31 as described with reference to FIG. 2. A silicon nitride thin film layer 33a is deposited. In this light irradiation, a low-pressure mercury lamp, a mercury xenon lamp, or the like is used as the ultraviolet light source 18 including ultraviolet light having a photon energy of 4.16 eV or more and less than 5.0 eV. A predetermined photon energy may be selected by filtering the ultraviolet light from the ultraviolet light source 18.

次に、図6に示すように第1原料ガスにガス流量の変調を加え、1sec程度の間隔で第1原料ガスの流量を零(オフ状態)にして第2原料ガスであるNH系ガスのみを導入(オン状態のまま)する。そして、触媒体電力をオン状態にし白金製の金属線17に通電し触媒体温度を約2000℃にする。ここで、光照射電力はオン状態に保持されている。このようにすることで、NHガスが触媒体の金属線17でラジカル状態に励起され、窒素の活性種あるいはNH、NHのような窒素と水素の結合した活性種が非常に多量に生成される。そして、第1の実施の形態で説明したように、上記第1シリコン窒化薄膜層33a中のSi−Cl結合が上記紫外線で切断され、未結合状態になったSi−は上記多量に生成した活性種と急速に反応しSi−N結合に変わる。このようにして、上記堆積した第1シリコン窒化薄膜層33a中に含有するClは非常に短時間で除去される。この場合も、上記第1シリコン窒化薄膜層33aの膜厚は5nm以下が良い。 Next, the modulation of the gas flow in addition to the first raw material gas as shown in FIG. 6, NH 3 series gas as the second source gas and the flow rate of the first source gas at intervals of about 1sec to zero (OFF state) Only introduce (leave on). Then, the catalyst body power is turned on, and the platinum metal wire 17 is energized to bring the catalyst body temperature to about 2000 ° C. Here, the light irradiation power is maintained in the on state. By doing so, NH 3 gas is excited to a radical state by the metal wire 17 of the catalyst body, and a very large amount of active species of nitrogen or active species in which nitrogen and hydrogen are combined such as NH and NH 2 is generated. Is done. As described in the first embodiment, the Si-Cl bond in the first silicon nitride thin film layer 33a is cut by the ultraviolet rays, and the Si- which is in an unbonded state is generated in a large amount. It reacts rapidly with the seeds and turns into Si-N bonds. In this way, Cl contained in the deposited first silicon nitride thin film layer 33a is removed in a very short time. Also in this case, the film thickness of the first silicon nitride thin film layer 33a is preferably 5 nm or less.

以後、上記第1原料ガスの流量をオン/オフの変調を繰り返し、それに同期して触媒体電力にオフ/オンの変調を施し、シリコン窒化薄膜層33b、33c、33d、33e・・・の堆積とそれぞれの膜中のSi−Cl結合の除去とを繰り返して、所望の膜厚の高品質シリコン窒化膜を成膜する。   Thereafter, the on / off modulation of the flow rate of the first source gas is repeated, and the catalyst power is turned off / on in synchronization therewith to deposit the silicon nitride thin film layers 33b, 33c, 33d, 33e,. And the removal of the Si—Cl bond in each film are repeated to form a high-quality silicon nitride film having a desired film thickness.

この実施の形態により、最終的に形成した高品質シリコン窒化膜中に含まれるSi−Cl結合量は0.5at.%以下に低減させることが可能になる。また、この場合の成膜速度は30nm〜50nm/minとなる。そして、この実施の形態では、シリコン窒化膜中の含有水素量は1at.%以下になる。このようにして、上記含有不純物量が少なく高品質なシリコン窒化膜が、非常に高速にしかも再現性良く形成できる。   According to this embodiment, the Si—Cl bond amount contained in the finally formed high-quality silicon nitride film is 0.5 at. % Or less can be reduced. In this case, the film formation rate is 30 nm to 50 nm / min. In this embodiment, the amount of hydrogen contained in the silicon nitride film is 1 at. % Or less. In this manner, a high-quality silicon nitride film with a small amount of impurities can be formed at a very high speed and with good reproducibility.

次に、第2の実施の形態において変調の仕方が異なる変形例を図7を参照して説明する。この変形例では成膜ガスと光照射電力に変調を施す。この場合、成膜中では、触媒体電力はオン状態に維持される。図4に示す被処理基板41を基板支持テーブル12に載置し基板温度は100〜250℃にする。そして、ガス供給系15により、第1原料ガスとして液体ソースのSiClあるいはSiClをアルゴン等の不活性ガスでバブリングし気化させ、第2原料ガスであるNガスとの流量比が1/30程度になるように設定し、ガス導入口22よりチャンバ11内に導入(オン状態)する。そして、チャンバ11内のガス圧力を約133Paにする。そして、触媒体電力をオン状態にして触媒体温度を約1700℃にする。ここで、図7に示しているように光照射電力はオフ状態にする。 Next, a modification example in which the modulation method is different in the second embodiment will be described with reference to FIG. In this modification, the film forming gas and the light irradiation power are modulated. In this case, the catalyst power is maintained in the on state during film formation. A substrate to be processed 41 shown in FIG. 4 is placed on the substrate support table 12 and the substrate temperature is set to 100 to 250 ° C. Then, the gas supply system 15 causes the liquid source Si 2 Cl 6 or SiCl 4 to be bubbled with an inert gas such as argon and vaporized as the first source gas, and the flow rate with the N 2 H 4 gas that is the second source gas. The ratio is set to about 1/30, and the gas is introduced into the chamber 11 from the gas inlet 22 (ON state). Then, the gas pressure in the chamber 11 is set to about 133 Pa. Then, the catalyst body power is turned on to bring the catalyst body temperature to about 1700 ° C. Here, the light irradiation power is turned off as shown in FIG.

この状態で、図4(a)に示したように、被処理基板41表面に形成されている下地膜42上の中途段階の高品質シリコン窒化膜43表面に膜厚が0.5nm〜5nmの新たなシリコン窒化薄膜層44を堆積させる。   In this state, as shown in FIG. 4A, a film thickness of 0.5 nm to 5 nm is formed on the surface of the intermediate high quality silicon nitride film 43 on the base film 42 formed on the surface of the substrate 41 to be processed. A new silicon nitride thin film layer 44 is deposited.

次に、図7に示すように第1原料ガスにガス流量の変調を加え、第1原料ガスの流量を零(オフ状態)にして第2原料ガスであるNガスのみを導入(オン状態)する。そして、光照射電力はオフ状態からオン状態に切り変える。この光照射では、光子エネルギーが4.16eV以上で5.0eV未満の紫外線を含む広い波長域の紫外線光源18として上述した低圧水銀ランプを用いると良い。このようにして、図4(b)に示すシリコン窒化薄膜層44全面に紫外光線45を1sec程度の間で照射する。 Next, as shown in FIG. 7, the gas flow rate is modulated to the first source gas, the flow rate of the first source gas is set to zero (off state), and only the N 2 H 4 gas as the second source gas is introduced ( ON state). The light irradiation power is switched from the off state to the on state. In this light irradiation, the low-pressure mercury lamp described above may be used as the ultraviolet light source 18 having a wide wavelength range including ultraviolet light having a photon energy of 4.16 eV or more and less than 5.0 eV. In this way, the entire surface of the silicon nitride thin film layer 44 shown in FIG. 4B is irradiated with ultraviolet rays 45 for about 1 sec.

上記光照射により、上記シリコン窒化薄膜層44中のSi−Cl結合を切断し、未結合状態になったSi−は、上記触媒体によりチャンバ11内に多量に生成されている窒素の活性種あるいはNH、NHのように窒素と水素の結合した活性種と短時間に反応しSi−N結合に変わる。このようにして、上記新たに堆積したシリコン窒化薄膜層44中のClは除去され、図4(c)に示すように、上記高品質シリコン窒化膜43上に塩素等の含有不純物の少ない高品質シリコン窒化薄膜層46が形成される。 The Si—Cl bond in the silicon nitride thin film layer 44 cut by the light irradiation to be in an unbonded state is the active species of nitrogen produced in a large amount in the chamber 11 by the catalyst body or It reacts in a short time with active species in which nitrogen and hydrogen are bonded, such as NH and NH 2 , and changes to a Si—N bond. In this way, Cl in the newly deposited silicon nitride thin film layer 44 is removed, and as shown in FIG. 4C, the high quality silicon nitride film 43 has a high quality with less impurities such as chlorine. A silicon nitride thin film layer 46 is formed.

以後、触媒体電力はオン状態に維持したままで、上記第1原料ガスの流量をオン/オフの変調と上記光照射電力のオン/オフの変調とを繰り返し、含有塩素量の低減した所望の膜厚の高品質シリコン窒化膜を成膜する。   Thereafter, while the catalytic body power is kept on, the flow rate of the first source gas is repeatedly turned on / off and the light irradiation power is turned on / off, and the desired chlorine content is reduced. A high quality silicon nitride film having a thickness is formed.

この実施の形態の変形例では、最終的に形成した高品質シリコン窒化膜中に含まれるSi−Cl結合量は0.5at.%以下に更に低減するようになる。また、この場合の成膜速度は50nm/min以上と非常に増大する。そして、この第2の実施の形態の変形例においても、シリコン窒化膜中の含有水素量は1at.%以下になる。   In the modification of this embodiment, the Si—Cl bond amount contained in the finally formed high-quality silicon nitride film is 0.5 at. % Is further reduced. In this case, the film formation rate is greatly increased to 50 nm / min or more. In the modification of the second embodiment, the hydrogen content in the silicon nitride film is 1 at. % Or less.

上記実施の形態による高品質シリコン窒化膜の成膜方法を上述した半導体装置の製造に適用した結果、寸法基準で65nm〜45nmの微細なMISFETで構成される半導体装置の長期信頼性の問題ならびに塩素により生じる例えば浅接合の接合リーク等の問題は全て解決できることが明らかとなった。   As a result of applying the method for forming a high-quality silicon nitride film according to the above-described embodiment to the manufacture of the semiconductor device described above, the problem of long-term reliability of a semiconductor device composed of fine MISFETs of 65 nm to 45 nm on the basis of dimensions and It has become clear that all problems such as junction leakage in shallow junctions can be solved.

以上、本発明の実施の形態を説明したが、本発明における特徴は、シリコン窒化膜の成膜において、第1原料ガスに塩化珪素化合物を用い、成膜条件に変調を加えて、所定の薄膜のシリコン窒化膜の成膜と、前記所定の薄膜のシリコン窒化膜への紫外線照射による塩素除去とを繰り返し、所望の膜厚の高品質シリコン窒化膜を形成するところにあり、上述した実施の形態は本発明を限定するものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。   Although the embodiments of the present invention have been described above, the present invention is characterized in that, in the formation of a silicon nitride film, a silicon chloride compound is used as the first source gas, the film formation conditions are modulated, and a predetermined thin film is formed. The above-described embodiment is to form a high-quality silicon nitride film having a desired film thickness by repeating the formation of the silicon nitride film and the chlorine removal by ultraviolet irradiation of the predetermined thin silicon nitride film. The present invention does not limit the present invention, and design changes and the like without departing from the spirit of the present invention are also included in the present invention.

例えば、第1原料ガスとしてジクロルシラン(SiHCl)、トリクロルシラン(SiHCl)、あるいは実施の形態で説明したものも含めこれら塩化珪素化合物を混合したものを用いてもよい。また、アンモニア系化合物としてメチルアンモニア(CHNH)のような有機化合物を用いてもよいし、上記アンモニア系化合物の混合物を用いてよい。あるいは、その他に少なくともN−H結合を有する化合物であってもよい。 For example, dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), or a mixture of these silicon chloride compounds including those described in the embodiment may be used as the first source gas. Further, an organic compound such as methylammonia (CH 3 NH 2 ) may be used as the ammonia compound, or a mixture of the ammonia compounds may be used. Alternatively, it may be a compound having at least an N—H bond.

また、上記の実施の形態において、第1原料ガスをオフ状態にしてシリコン窒化膜の成膜を停止し、光照射を用いて膜中のSi−Cl結合を切断するステップにおいて未結合状態になるSi−に対して、成膜用の第2原料ガスとは別に、他のN−H結合を有する化合物あるいはその活性種を照射し反応させてSi−N結合に変えるようにしてもよい。   Further, in the above embodiment, the first source gas is turned off to stop the formation of the silicon nitride film, and in the step of cutting the Si—Cl bond in the film using light irradiation, the unbonded state is obtained. In addition to the second source gas for film formation, Si— may be changed to Si—N bonds by irradiation with other compounds having N—H bonds or active species thereof.

また、本発明の高品質シリコン窒化膜の成膜に使用する成膜装置は、図1で説明したものに全く限定されるものでなく、例えばマルチチャンバを有する装置、あるいは全体の熱容量を低減させた急速熱処理(RTP)装置等、種々の態様の成膜装置が本発明の実施において使用できるものである。   In addition, the film forming apparatus used for forming the high quality silicon nitride film of the present invention is not limited to the one described with reference to FIG. 1, and for example, an apparatus having a multi-chamber or reducing the overall heat capacity. Various film forming apparatuses such as a rapid thermal processing (RTP) apparatus can be used in the practice of the present invention.

更には、被処理基板としてプラズマディスプレイパネルあるいは有機ELパネルのようなフラットディスプレイパネル上にシリコン窒化膜を形成する場合でも上記シリコン窒化膜の紫外線照射を用いた変調成膜の手法は同様に適用できる。   Further, even when a silicon nitride film is formed on a flat display panel such as a plasma display panel or an organic EL panel as a substrate to be processed, the method of modulation film formation using ultraviolet irradiation of the silicon nitride film can be similarly applied. .

本発明の実施の形態で使用する成膜装置の模式的な略断面図である。1 is a schematic cross-sectional view of a film forming apparatus used in an embodiment of the present invention. 本発明の実施の形態にかかる高品質シリコン窒化膜の成膜方法を示す被処理基板等の断面図である。It is sectional drawing of the to-be-processed substrate etc. which show the film-forming method of the high quality silicon nitride film concerning embodiment of this invention. 本発明の第1の実施の形態にかかるシリコン窒化膜の第1の変調成膜を示すタイムシーケンス図である。FIG. 4 is a time sequence diagram showing a first modulated film formation of a silicon nitride film according to the first embodiment of the present invention. 本発明の実施の形態にかかる高品質シリコン窒化膜の成膜方法を示す工程別断面図である。It is sectional drawing according to process which shows the film-forming method of the high quality silicon nitride film concerning embodiment of this invention. 本発明の第1の実施の形態にかかるシリコン窒化膜の第2の変調成膜を示すタイムシーケンス図である。FIG. 6 is a time sequence diagram showing a second modulated film formation of the silicon nitride film according to the first embodiment of the present invention. 本発明の第2の実施の形態にかかるシリコン窒化膜の第1の変調成膜を示すタイムシーケンス図である。It is a time sequence diagram showing the first modulated film formation of the silicon nitride film according to the second embodiment of the present invention. 本発明の第2の実施の形態にかかるシリコン窒化膜の第2の変調成膜を示すタイムシーケンス図である。It is a time sequence figure showing the 2nd modulation film formation of the silicon nitride film concerning a 2nd embodiment of the present invention.

符号の説明Explanation of symbols

10 紫外線照射CVD装置
11 チャンバ
12 基板支持ステージ
13 基板加熱系
14 紫外線照射手段
15 ガス供給系
16 排気系
17 金属線
18 紫外線光源
19 紫外線照射窓
20 光照射制御系
22 ガス導入口
23 ガス排出口
21,31,41 被処理基板
32,42 下地膜
33,43 高品質シリコン窒化膜
33a 第1シリコン窒化薄膜層
33b 第2シリコン窒化薄膜層
33c 第3シリコン窒化薄膜層
33d 第4シリコン窒化薄膜層
33e 第5シリコン窒化薄膜層
44 シリコン窒化薄膜層
45 紫外線光
46 高品質シリコン窒化薄膜層

DESCRIPTION OF SYMBOLS 10 Ultraviolet irradiation CVD apparatus 11 Chamber 12 Substrate support stage 13 Substrate heating system 14 Ultraviolet irradiation means 15 Gas supply system 16 Exhaust system 17 Metal wire 18 Ultraviolet light source 19 Ultraviolet irradiation window 20 Light irradiation control system 22 Gas inlet 23 Gas outlet 21 , 31, 41 Substrate 32, 42 Base film 33, 43 High quality silicon nitride film 33a First silicon nitride thin film layer 33b Second silicon nitride thin film layer 33c Third silicon nitride thin film layer 33d Fourth silicon nitride thin film layer 33e 5 Silicon nitride thin film layer 44 Silicon nitride thin film layer 45 Ultraviolet light 46 High quality silicon nitride thin film layer

Claims (10)

第1反応物質に塩化珪素化合物を用い、第2反応物質にN−H結合を有する化合物を用いた化学気相成長法によるシリコン窒化膜の成膜方法であって、
前記化学気相成長により所定の膜厚のシリコン窒化膜を堆積させる工程(a)と、
前記所定の膜厚のシリコン窒化膜を紫外光で照射すると共に窒素原子を含んだ活性種に曝す工程(b)と、
を有する高品質シリコン窒化膜の成膜方法。
A method of forming a silicon nitride film by chemical vapor deposition using a silicon chloride compound as a first reactant and a compound having an N—H bond as a second reactant,
Depositing a silicon nitride film having a predetermined thickness by the chemical vapor deposition (a);
Irradiating the silicon nitride film having the predetermined thickness with ultraviolet light and exposing to an active species containing nitrogen atoms;
A method for forming a high-quality silicon nitride film comprising:
前記工程(a)と工程(b)を順次に繰り返して所望の膜厚のシリコン窒化膜を形成する請求項1に記載の高品質シリコン窒化膜の成膜方法。   2. The method for forming a high-quality silicon nitride film according to claim 1, wherein the silicon nitride film having a desired film thickness is formed by sequentially repeating the steps (a) and (b). 前記工程(b)では、前記第1反応物質と前記第2反応物質を用いた化学気相成長を停止させる請求項1又は2に記載の高品質シリコン窒化膜の成膜方法。   3. The method for forming a high-quality silicon nitride film according to claim 1, wherein in the step (b), chemical vapor deposition using the first reactant and the second reactant is stopped. 前記紫外光で前記第2反応物質を解離し前記窒素原子を含んだ活性種を生成することを特徴とする請求項1,2又は3に記載の高品質シリコン窒化膜の成膜方法。   4. The method of forming a high-quality silicon nitride film according to claim 1, wherein the second reactive substance is dissociated with the ultraviolet light to generate an active species containing the nitrogen atom. 前記化学気相成長法が加熱した触媒体に前記反応物質を作用させて成膜する触媒CVD法であり、前記加熱した触媒体で前記第2反応物質を解離し前記窒素原子を含んだ活性種を生成することを特徴とする請求項1,2又は3に記載の高品質シリコン窒化膜の成膜方法。   The chemical vapor deposition method is a catalytic CVD method in which the reactant is allowed to act on a heated catalyst body to form a film, and the second reactant is dissociated by the heated catalyst body to contain the nitrogen atoms. The method for forming a high-quality silicon nitride film according to claim 1, wherein the high-quality silicon nitride film is formed. 前記所定の膜厚のシリコン窒化膜に存在するシリコン原子と塩素原子が化学結合したSi−Cl結合の前記紫外光の照射による切断と、前記活性種によるSi−N結合の生成とで、前記所定の膜厚のシリコン窒化膜中の塩素を除去することを特徴とする請求項1〜5のいずれか一項に記載の高品質シリコン窒化膜の成膜方法。   Cutting the Si—Cl bond in which silicon atoms and chlorine atoms existing in the silicon nitride film having the predetermined thickness are chemically bonded by irradiation with the ultraviolet light and generating the Si—N bond by the active species. 6. The method for forming a high-quality silicon nitride film according to any one of claims 1 to 5, wherein chlorine in the silicon nitride film having a thickness of 5 is removed. 第1反応物質に塩化珪素化合物を用い、第2反応物質にN−H結合を有する化合物を用いた化学気相成長法により被処理基板上にシリコン窒化膜を形成するシリコン窒化膜の成膜方法において、前記被処理基板に紫外光を照射することを特徴とする高品質シリコン窒化膜の成膜方法。   Method of forming silicon nitride film on silicon substrate by chemical vapor deposition method using silicon chloride compound as first reactant and compound having NH bond as second reactant The method for forming a high-quality silicon nitride film according to claim 1, wherein the substrate to be processed is irradiated with ultraviolet light. 前記紫外光の光子エネルギーが4.16eV以上であり5.0eV未満であることを特徴とする請求項1〜7のいずれか一項に記載の高品質シリコン窒化膜の成膜方法。   8. The method for forming a high-quality silicon nitride film according to claim 1, wherein the photon energy of the ultraviolet light is 4.16 eV or more and less than 5.0 eV. 前記第1反応物質はSiClあるいはSiClであって、前記第2反応物質はNHあるいはNであることを特徴とする請求項1〜8のいずれか一項に記載の高品質シリコン窒化膜の成膜方法。 9. The method according to claim 1, wherein the first reactant is Si 2 Cl 6 or SiCl 4 , and the second reactant is NH 3 or N 2 H 4 . High quality silicon nitride film deposition method. 前記所定の膜厚は0.5nm〜5nmであることを特徴とする請求項1〜9のいずれか一項に記載の高品質シリコン窒化膜の成膜方法。

The method for forming a high-quality silicon nitride film according to claim 1, wherein the predetermined film thickness is 0.5 nm to 5 nm.

JP2004123639A 2004-04-20 2004-04-20 Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation Pending JP2005310927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123639A JP2005310927A (en) 2004-04-20 2004-04-20 Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123639A JP2005310927A (en) 2004-04-20 2004-04-20 Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation

Publications (1)

Publication Number Publication Date
JP2005310927A true JP2005310927A (en) 2005-11-04

Family

ID=35439366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123639A Pending JP2005310927A (en) 2004-04-20 2004-04-20 Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation

Country Status (1)

Country Link
JP (1) JP2005310927A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305845A (en) * 2006-05-12 2007-11-22 Ulvac Japan Ltd Catalyst chemical treatment device, and catalyst chemical treatment method
JP2007324589A (en) * 2006-05-22 2007-12-13 Samsung Electronics Co Ltd Semiconductor element with analog transistor improved in which operating characteristic and flicker noise characteristic, and method for manufacturing it
US20080113481A1 (en) * 2006-02-21 2008-05-15 Chih-Chun Wang Capacitance dielectric layer, capacitor and forming method thereof
JP2008535244A (en) * 2005-03-29 2008-08-28 東京エレクトロン株式会社 Method and system for increasing tensile stress in a thin film using parallel electromagnetic radiation
JP2008536303A (en) * 2005-03-29 2008-09-04 東京エレクトロン株式会社 Method and system for increasing tensile stress in thin films using multi-frequency electromagnetic radiation
JP2009224791A (en) * 2009-05-26 2009-10-01 Tokyo Electron Ltd Film-forming method
US8076251B2 (en) 2009-09-30 2011-12-13 Hitachi Kokusai Electric, Inc. Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
JP2015510263A (en) * 2012-01-26 2015-04-02 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated Conformal film deposition using ultraviolet light
US9673041B2 (en) 2010-04-15 2017-06-06 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for patterning applications
US9786570B2 (en) 2012-11-08 2017-10-10 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9793110B2 (en) 2010-04-15 2017-10-17 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
JP2018500462A (en) * 2014-12-22 2018-01-11 ピコサン オーワイPicosun Oy ALD method and ALD apparatus
US9875891B2 (en) 2014-11-24 2018-01-23 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10043655B2 (en) 2010-04-15 2018-08-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10373806B2 (en) 2016-06-30 2019-08-06 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10541127B2 (en) 2015-11-06 2020-01-21 Samsung Electronics Co., Ltd. Material layers, semiconductor devices including the same, and methods of fabricating material layers and semiconductor devices
WO2023272951A1 (en) * 2021-07-02 2023-01-05 长鑫存储技术有限公司 Thin film deposition method and semiconductor device
US11646198B2 (en) 2015-03-20 2023-05-09 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US12040181B2 (en) 2019-05-01 2024-07-16 Lam Research Corporation Modulated atomic layer deposition

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535244A (en) * 2005-03-29 2008-08-28 東京エレクトロン株式会社 Method and system for increasing tensile stress in a thin film using parallel electromagnetic radiation
JP2008536303A (en) * 2005-03-29 2008-09-04 東京エレクトロン株式会社 Method and system for increasing tensile stress in thin films using multi-frequency electromagnetic radiation
US20080113481A1 (en) * 2006-02-21 2008-05-15 Chih-Chun Wang Capacitance dielectric layer, capacitor and forming method thereof
JP2007305845A (en) * 2006-05-12 2007-11-22 Ulvac Japan Ltd Catalyst chemical treatment device, and catalyst chemical treatment method
JP2007324589A (en) * 2006-05-22 2007-12-13 Samsung Electronics Co Ltd Semiconductor element with analog transistor improved in which operating characteristic and flicker noise characteristic, and method for manufacturing it
US8445968B2 (en) 2006-05-22 2013-05-21 Samsung Electronics Co., Ltd. Semiconductor device having analog transistor with improved operating and flicker noise characteristics and method of making same
JP2009224791A (en) * 2009-05-26 2009-10-01 Tokyo Electron Ltd Film-forming method
US8076251B2 (en) 2009-09-30 2011-12-13 Hitachi Kokusai Electric, Inc. Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
US8415258B2 (en) 2009-09-30 2013-04-09 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
US9793110B2 (en) 2010-04-15 2017-10-17 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US10361076B2 (en) 2010-04-15 2019-07-23 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US10559468B2 (en) 2010-04-15 2020-02-11 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US11133180B2 (en) 2010-04-15 2021-09-28 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US10043655B2 (en) 2010-04-15 2018-08-07 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9673041B2 (en) 2010-04-15 2017-06-06 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for patterning applications
US10043657B2 (en) 2010-04-15 2018-08-07 Lam Research Corporation Plasma assisted atomic layer deposition metal oxide for patterning applications
US11011379B2 (en) 2010-04-15 2021-05-18 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
JP2015510263A (en) * 2012-01-26 2015-04-02 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated Conformal film deposition using ultraviolet light
US10008428B2 (en) 2012-11-08 2018-06-26 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US10741458B2 (en) 2012-11-08 2020-08-11 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9786570B2 (en) 2012-11-08 2017-10-10 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9875891B2 (en) 2014-11-24 2018-01-23 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10804099B2 (en) 2014-11-24 2020-10-13 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10619241B2 (en) 2014-12-22 2020-04-14 Picosun Oy ALD method and apparatus
KR102659545B1 (en) 2014-12-22 2024-04-23 피코순 오와이 Ald method and apparatus
JP2018500462A (en) * 2014-12-22 2018-01-11 ピコサン オーワイPicosun Oy ALD method and ALD apparatus
KR20230163589A (en) * 2014-12-22 2023-11-30 피코순 오와이 Ald method and apparatus
US11646198B2 (en) 2015-03-20 2023-05-09 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US10541127B2 (en) 2015-11-06 2020-01-21 Samsung Electronics Co., Ltd. Material layers, semiconductor devices including the same, and methods of fabricating material layers and semiconductor devices
US10373806B2 (en) 2016-06-30 2019-08-06 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10957514B2 (en) 2016-06-30 2021-03-23 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10679848B2 (en) 2016-07-01 2020-06-09 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US12040181B2 (en) 2019-05-01 2024-07-16 Lam Research Corporation Modulated atomic layer deposition
WO2023272951A1 (en) * 2021-07-02 2023-01-05 长鑫存储技术有限公司 Thin film deposition method and semiconductor device

Similar Documents

Publication Publication Date Title
JP2005310927A (en) Method of forming high-quality silicon nitride film by ultraviolet-ray irradiation
KR102588666B1 (en) Method of forming a structure on a substrate
JP7062817B2 (en) Sedimentation of SiN
JP6813983B2 (en) Selective deposition of materials containing aluminum and nitrogen
US7651953B2 (en) Method to form ultra high quality silicon-containing compound layers
US7629267B2 (en) High stress nitride film and method for formation thereof
KR102158903B1 (en) Method and apparatus for forming nitride film
CN111593329A (en) Cyclical deposition method comprising a processing step and device therefor
EP1449240B1 (en) Incorporation of nitrogen into high k dielectric film
JP6086942B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
US20070049053A1 (en) Pretreatment processes within a batch ALD reactor
US9546419B2 (en) Method of reducing tungsten film roughness and resistivity
JP2012506947A (en) Method for vapor deposition of ternary compounds
JP2007516599A (en) Surface preparation before deposition on germanium
JP2011097017A (en) Method of manufacturing semiconductor device and substrate treatment device
US11664219B2 (en) Selective deposition of SiOC thin films
JP5599623B2 (en) Protection of conductors from oxidation in the deposition chamber
KR102396170B1 (en) Semiconductor device manufacturing method and film forming apparatus
JP4032889B2 (en) Insulating film formation method
TWI515803B (en) Doping aluminum in tantalum silicide