JP2005310637A - Organic el element - Google Patents

Organic el element Download PDF

Info

Publication number
JP2005310637A
JP2005310637A JP2004128064A JP2004128064A JP2005310637A JP 2005310637 A JP2005310637 A JP 2005310637A JP 2004128064 A JP2004128064 A JP 2004128064A JP 2004128064 A JP2004128064 A JP 2004128064A JP 2005310637 A JP2005310637 A JP 2005310637A
Authority
JP
Japan
Prior art keywords
electrode
film
electron injection
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004128064A
Other languages
Japanese (ja)
Inventor
Hiroto Yamaguchi
裕人 山口
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004128064A priority Critical patent/JP2005310637A/en
Publication of JP2005310637A publication Critical patent/JP2005310637A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the specific resistance of a transparent electrode film electrode on the side for extracting light to improve luminous efficiency, in a top emission type organic EL element. <P>SOLUTION: This top emission type organic EL element is provided with a pair of electrodes comprising a first electrode and a second electrode facing each other, and an organic compound layer between the pair of electrodes, and extracts light from the side of the second electrode formed on the side of a film surface. In the organic EL element, each of Sn and C included in an indium oxide-based transparent electrode film has a concentration gradient in the film thickness direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光を素子の陰極側で取り出すことができる有機電界発光素子に関する。   The present invention relates to an organic electroluminescent device capable of extracting light emission on the cathode side of the device.

現在主に開発が進められている有機EL素子の構成は、陽極/発光層/陰極の積層を基本とし、ガラス板などを用いた基板上に透明陽極を形成し、発光を基板側から取り出すいわゆるボトムエミッション型である。また最近になって発光画素ごとに駆動用トランジスタを設けた方式(アクティブマトリックス方式)のパネルの検討が進んでいる。ところが基板側より光を取り出す場合、これらの駆動回路、配線部が光を遮るため、画素の開口率(素子内で実際に発光する部分の面積比)が小さくなるという問題がある。   The structure of the organic EL element currently being developed mainly is based on the lamination of anode / light emitting layer / cathode, so that a transparent anode is formed on a substrate using a glass plate or the like, and light emission is extracted from the substrate side. Bottom emission type. Recently, a panel of an active matrix system in which a driving transistor is provided for each light emitting pixel has been studied. However, when light is extracted from the substrate side, these drive circuits and wiring portions block light, so that there is a problem that the aperture ratio of the pixel (the area ratio of the portion that actually emits light in the element) becomes small.

そこで特許文献1ないし2で開示されているように、有機層上の陰極を透明な電子注入金属層と非晶質透明導電膜で形成し、陰極側から光を取り出すいわゆるトップエミッション型の素子構成が試みられている。このトップエミッション型の素子構成は、TFT駆動回路基板の上に画素電極(陽極)を形成し、さらに有機EL層、透明陰極を設けるものである。光は陰極から取り出されるので、開口率の低下の問題は解決される。   Therefore, as disclosed in Patent Documents 1 and 2, a so-called top emission type element configuration in which a cathode on an organic layer is formed of a transparent electron injection metal layer and an amorphous transparent conductive film, and light is extracted from the cathode side. Has been tried. In this top emission type element configuration, a pixel electrode (anode) is formed on a TFT drive circuit substrate, and an organic EL layer and a transparent cathode are further provided. Since light is extracted from the cathode, the problem of lowering the aperture ratio is solved.

上記のボトムエミッション型、およびトップエミッション型の素子構成ともに、素子の発光効率を向上させるために、陽極から有機層への正孔の注入効率、陰極から有機層への注入効率の改善が検討されている。   In both the bottom emission type and top emission type device configurations described above, in order to improve the light emission efficiency of the device, improvement of the hole injection efficiency from the anode to the organic layer and the injection efficiency from the cathode to the organic layer has been studied. ing.

特許文献3ではボトムエミッション型の素子構成において、陽極である透明導電膜中にCを一様に含有させることにより仕事関数を高めて正孔輸送層の仕事関数に近づけることにより、正孔輸送層と陽極とのエネルギー障壁を小さくし有機層への正孔の注入効率を向上させるという提案がされている。   In Patent Document 3, in a bottom emission type device configuration, by uniformly containing C in a transparent conductive film as an anode, the work function is increased and brought close to the work function of the hole transport layer. It has been proposed to improve the efficiency of hole injection into the organic layer by reducing the energy barrier between the anode and the anode.

特許文献1ではトップエミッション型の素子構成において、有機膜層と非晶質透明導電膜の間に形成される電子注入金属層を島状の構造にすることにより電子の注入性を高めて素子としての発光特性を改善する提案がされている。
特開平10−162959号公報 特開2001−043980号公報 特開2000−340033号公報
In Patent Document 1, in a top emission type device structure, an electron injection metal layer formed between an organic film layer and an amorphous transparent conductive film is formed into an island-like structure, thereby improving electron injection properties. There have been proposals to improve the light emission characteristics.
Japanese Patent Laid-Open No. 10-162959 JP 2001-043980 A JP 2000-340033 A

しかしながら特許文献3では、正孔輸送層と陽極とのエネルギー障壁を小さくすることによる有機層への正孔の注入効率の改善は望めるが、透明導電膜中に一様にCを含有させることから透明導電膜の透過率が低下してしまい素子の発光効率としては大幅な改善は望めない。また、上記提案では透明導電膜を陰極として用いるトップエミッション素子構成に関しては何ら述べられておらず、電子の注入効率の改善による発光効率の改善は望めない。   However, although Patent Document 3 can be expected to improve the efficiency of hole injection into the organic layer by reducing the energy barrier between the hole transport layer and the anode, since C is uniformly contained in the transparent conductive film. The transmittance of the transparent conductive film is lowered, and no significant improvement can be expected in the light emission efficiency of the device. In the above proposal, there is no mention of a top emission element configuration using a transparent conductive film as a cathode, and no improvement in light emission efficiency can be expected by improving electron injection efficiency.

また、特許文献1は、電子注入金属層における電子注入効率の改善の提案であり、陰極である透明導電膜による電子注入性の改善がなされておらず、電子注入性の十分な改善が得られていないため発光効率の大幅な改善は得がたい。   Further, Patent Document 1 is a proposal for improving the electron injection efficiency in the electron injection metal layer, and the electron injection property is not improved by the transparent conductive film as the cathode, and the electron injection property is sufficiently improved. It is difficult to obtain a significant improvement in luminous efficiency.

本発明は、発光を素子の膜表面側に設けられた透明電極側で取り出すことができる金属陽極が形成された基板を用いて良好な発光特性が得られる有機EL発光素子を提供することを目的とする。   An object of the present invention is to provide an organic EL light-emitting device capable of obtaining good light-emitting characteristics using a substrate on which a metal anode capable of taking out light emission on the transparent electrode side provided on the film surface side of the device is formed. And

即ち膜表面側に設けられた電極である透明導電膜を高キャリア密度化し低比抵抗化するとともに前記透明導電膜と電子注入金属層または正孔注入層、正孔輸送層との密着性を改善し有機層への電子および正孔の注入性を改善することにより、素子の発光効率を大幅に改善するものである。   That is, the transparent conductive film, which is an electrode provided on the film surface side, has a high carrier density and a low specific resistance, and improves the adhesion between the transparent conductive film and the electron injection metal layer, the hole injection layer, or the hole transport layer. By improving the injection property of electrons and holes into the organic layer, the luminous efficiency of the device is greatly improved.

そして上記目的は以下の構成により達成される。   And the said objective is achieved by the following structures.

対向する第1電極と第2電極からなる1対の電極と、前記1対の電極の間に有機化合物層が設けられ、膜表面側に設けられた第2電極側より光を取り出すトップエミッション型の有機EL素子において、前記第2電極はドーパント金属であるSnおよびCを含む酸化インジウム系の透明導電膜であり、前記第2電極である前記透明導電膜中の前記ドーパント金属Snおよび前記Cが膜厚方向で濃度勾配を有することを特徴とする有機EL素子。   A top emission type in which an organic compound layer is provided between the pair of electrodes, the first electrode and the second electrode facing each other, and the second electrode side provided on the film surface side is provided with an organic compound layer. In the organic EL element, the second electrode is an indium oxide-based transparent conductive film containing Sn and C as dopant metals, and the dopant metal Sn and C in the transparent conductive film as the second electrode An organic EL element having a concentration gradient in a film thickness direction.

本発明によれば、膜表面側に形成される透明電極から有機層への電子または正孔の注入効率の改善および、前記透明電極の低比抵抗化により、発光特性が良好なトップエミッション型の有機EL素子を提供することができる。   According to the present invention, the top emission type having good emission characteristics by improving the injection efficiency of electrons or holes from the transparent electrode formed on the film surface side to the organic layer and reducing the specific resistance of the transparent electrode. An organic EL element can be provided.

以下図面を参照して本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明にかかるトップエミッション型の有機EL素子の基本的な構成を示す断面図である。   FIG. 1 is a sectional view showing a basic configuration of a top emission type organic EL element according to the present invention.

陽極である第1電極2と、陰極である第2電極3と、両者の間に保持された有機EL層10とからなる。有機層10は第1電極2から供給される正孔と第2電極3から供給される電子との再結合によって発光する発光層102を含んでいる。さらに正孔輸送層101、電子注入層103とを含んでいる。   It consists of a first electrode 2 that is an anode, a second electrode 3 that is a cathode, and an organic EL layer 10 held between the two. The organic layer 10 includes a light emitting layer 102 that emits light by recombination of holes supplied from the first electrode 2 and electrons supplied from the second electrode 3. Further, a hole transport layer 101 and an electron injection layer 103 are included.

本発明の特徴となる陰極である第2電極3について説明する。第2電極3は、インジウム酸化物系のインジウム錫酸化物(ITO)の低抵抗の透明導電膜であり、膜中にドーパント金属であるSnおよびCが含有されており、膜の深さ方向にドーパント金属SnおよびCの濃度勾配が形成されている。   The second electrode 3 which is a cathode that is a feature of the present invention will be described. The second electrode 3 is an indium oxide-based indium tin oxide (ITO) low-resistance transparent conductive film containing Sn and C as dopant metals in the film, and extending in the depth direction of the film. A concentration gradient of dopant metals Sn and C is formed.

Cの濃度勾配は、電子注入層103と接する界面近傍で含有量が一番大きく、第2電極3表面側に向かって濃度が連続的に小さくなり、膜厚の中心付近で0となるように形成されている。第2電極3の膜中にCを含有させることによる効果は、第2電極3の歪を小さくするとともに結晶を大きく形を滑らかにすることにより第2電極3と電子注入層103との密着性を向上することである。そして、第2電極3と電子注入層103の密着性が向上したことにより第2電極3から有機層への電子の注入効率を改善し、素子の発光効率を向上することである。また、他の効果は、第2電極3の歪を小さくするとともに結晶を大きく形を滑らかにすることにより、第2電極3の結晶内に取り込まれるドーパント金属を増加させ高キャリア密度の膜とし比抵抗値を低下させることであり、第2電極3の比抵抗値が低下したことにより素子の発光効率が向上することである。第2電極3中のCの濃度勾配、含有量の値は、電子注入層界面近傍おいてCを全金属原子に対して3〜5at%で、第2電極3膜表面方向に向かって連続的に濃度を低下し、第2電極3の膜厚中心付近でCの含有量がほぼ0(<100ppm)とすることが望ましい。上記のCの濃度勾配および含有量の値は実験的に求められた値であり以下の理由による。
(1)Cの含有量が大きすぎると第2電極3の光の透過率が減少し発光効率が減少する。
(2)Cの含有量が電子注入層103との界面近傍で大きすぎると第2電極3の結晶粒径が大きくなりすぎてしまい電子注入層103との密着性がかえって低下する。
(3)Cの濃度勾配が第2電極3の膜厚中心付近を越えて膜表面近傍までCを含有させても、膜の密着性としてはCを膜厚中心付近まで含有させた場合と変わらず、かえってCの全体の含有量が増加したことにより第2電極3の光透過率の減少、および膜の比抵抗値が増加し発光効率が減少する。
The concentration gradient of C is such that the content is the largest near the interface in contact with the electron injection layer 103, the concentration continuously decreases toward the surface of the second electrode 3, and becomes 0 near the center of the film thickness. Is formed. The effect of containing C in the film of the second electrode 3 is that the strain between the second electrode 3 and the electron injection layer 103 is reduced by reducing the distortion of the second electrode 3 and making the crystal large and smooth. Is to improve. The improvement in the adhesion between the second electrode 3 and the electron injection layer 103 improves the efficiency of electron injection from the second electrode 3 to the organic layer, thereby improving the light emission efficiency of the device. Another effect is that, by reducing the distortion of the second electrode 3 and making the crystal large and smooth, the amount of dopant metal incorporated into the crystal of the second electrode 3 is increased, resulting in a high carrier density film. This is to reduce the resistance value, and to reduce the specific resistance value of the second electrode 3 to improve the light emission efficiency of the device. The concentration gradient and content of C in the second electrode 3 are 3-5 at% with respect to all metal atoms in the vicinity of the electron injection layer interface, and continuously toward the surface of the second electrode 3 film. It is desirable that the concentration of C be reduced to about 0 (<100 ppm) near the center of the film thickness of the second electrode 3. The above concentration gradient and content of C are experimentally determined values for the following reasons.
(1) If the C content is too large, the light transmittance of the second electrode 3 is decreased, and the light emission efficiency is decreased.
(2) If the C content is too large in the vicinity of the interface with the electron injection layer 103, the crystal grain size of the second electrode 3 becomes too large, and the adhesion with the electron injection layer 103 is lowered.
(3) Even if the concentration gradient of C exceeds the vicinity of the film thickness center of the second electrode 3 to the vicinity of the film surface, the adhesion of the film is different from the case where C is included to the vicinity of the film thickness center. On the contrary, when the total content of C is increased, the light transmittance of the second electrode 3 is decreased and the specific resistance value of the film is increased, so that the light emission efficiency is decreased.

ドーパント金属であるSnの濃度勾配は、Cの濃度勾配と同様に電子注入層103と接する界面で含有量が一番大きく、第2電極3表面側に向かって濃度が連続的に小さくなり、膜厚の中心付近で最小となり以降膜表面まで一定となるように形成されている。第2電極3の膜の結晶中に活性なドナーとして取り込まれるドーパント金属Snの量は、第2電極3の歪の大きさ、第2電極3中の結晶の大きさおよび滑らかさに大きく依存する。すなわち、第2電極3の歪が小さく、結晶が大きく滑らかなほどドナーの取り込まれ量が増加する。ドナーの増加により膜中のキャリア密度が増加し、第2電極3が低比抵抗の膜となる。ところで、第2電極3の歪の大きさ、第2電極3中の結晶の大きさおよび滑らかさは、膜中のCの含有量にほぼ比例する。上記したように、第2電極3中のCの含有量は、電子注入層103と接する界面で含有量が一番大きく、第2電極3表面側に向かって濃度が連続的に小さくなり、膜厚の中心付近で0となるように形成されている。したがって第2電極3は、電子注入層103側ほど歪が小さく、結晶が大きく滑らかとなっており、電子注入層103側ほどドーパント金属の活性なドナーを取り込みやすい状態となることから、ドーパント金属Snの濃度勾配は、Cの濃度勾配と同様に電子注入層103と接する界面で含有量が一番大きく、第2電極3表面側に向かって濃度が連続的に小さくなり、膜厚の中心付近から膜表面まで一定となるように形成することが望ましい。そして上記したCが含有された第2電極3中のドーパント金属Snの濃度勾配、含有量の値は、電子注入層界面近傍おいてドーパント金属Snを全金属原子に対して10〜12at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで5〜8at%とすることが望ましい。第2電極3中の各部位で上記した値以上にドーパント金属Snを含有させると、結晶内に取り込まれないで偏析するドーパント金属Snが増加して結晶性が低下し、膜の比抵抗値が上昇してしまう。また、第2電極3中の各部位におけるドーパント金属Snの含有量を上記の値以下とすると、膜中の活性なドナーが不足してキャリア密度が低下し、膜の比抵抗値が上昇してしまう。   The concentration gradient of Sn, which is a dopant metal, is the largest at the interface in contact with the electron injection layer 103 as in the case of the concentration gradient of C, and the concentration continuously decreases toward the surface of the second electrode 3. It is formed so as to be the minimum near the center of the thickness and to be constant up to the film surface thereafter. The amount of dopant metal Sn incorporated as an active donor in the crystal of the film of the second electrode 3 depends greatly on the magnitude of strain of the second electrode 3, the size of the crystal in the second electrode 3, and the smoothness. . That is, the amount of donor incorporation increases as the strain of the second electrode 3 is smaller and the crystal is larger and smoother. The increase in the donor increases the carrier density in the film, and the second electrode 3 becomes a low resistivity film. By the way, the magnitude | size of the distortion of the 2nd electrode 3, the magnitude | size and smoothness of the crystal | crystallization in the 2nd electrode 3 are substantially proportional to content of C in a film | membrane. As described above, the content of C in the second electrode 3 is the largest at the interface in contact with the electron injection layer 103, and the concentration continuously decreases toward the surface side of the second electrode 3. It is formed to be 0 near the center of the thickness. Accordingly, the second electrode 3 has a smaller strain and a larger crystal as the electron injection layer 103 side becomes smoother, and the electron injection layer 103 side is more likely to take in an active donor of the dopant metal. Like the C concentration gradient, the concentration gradient is the largest at the interface in contact with the electron injection layer 103, the concentration continuously decreases toward the surface of the second electrode 3, and from the vicinity of the center of the film thickness. It is desirable to form the film so as to be constant up to the film surface. And the concentration gradient and content value of the dopant metal Sn in the second electrode 3 containing C described above are 10 to 12 at% of the dopant metal Sn with respect to all metal atoms in the vicinity of the interface of the electron injection layer, It is desirable that the continuous concentration is lowered toward the film surface direction of the second electrode 3 to be 5 to 8 at% from the vicinity of the film thickness center of the second electrode 3 to the film surface. If the dopant metal Sn is contained in each part of the second electrode 3 in excess of the above-described value, the dopant metal Sn that segregates without being taken into the crystal is increased, the crystallinity is lowered, and the specific resistance value of the film is reduced. It will rise. Further, if the content of the dopant metal Sn at each part in the second electrode 3 is not more than the above value, the active donor in the film is insufficient, the carrier density is decreased, and the specific resistance value of the film is increased. End up.

陽極となる第1電極2としては、仕事関数の大きなものが望ましく、例えば金(Au)、白金(Pt)クロム(Cr)、パラジウム(Pd)、セレン(Se)、イリジウム(Ir)、ヨウ化銅等や、合金等を用いることができる。   The first electrode 2 serving as the anode preferably has a high work function. For example, gold (Au), platinum (Pt) chromium (Cr), palladium (Pd), selenium (Se), iridium (Ir), and iodide. Copper or an alloy can be used.

正孔輸送層101として使用できる有機化合物としては、特に限定はないが、例えばトリフェニルジアミン誘導体、オキサジアゾール誘導体、ポリフィリル誘導体、スチルベン誘導体等を用いることができるが、これに限られるものではない。   The organic compound that can be used as the hole transport layer 101 is not particularly limited, and for example, a triphenyldiamine derivative, an oxadiazole derivative, a polyphylyl derivative, a stilbene derivative, and the like can be used, but the organic compound is not limited thereto. .

発光層102の材料として使用できる有機化合物としては、トリアリールアミン誘導体、スチルベン誘導体、ポリアリーレン、芳香族縮合多環化合物、芳香族複素環化合物、芳香族複素縮合環化合物、金属錯体化合物等及びこれらの単独オリゴ体あるいは複合オリゴ体等から採用できる。またこれらの発光材料の一種以上を正孔注入層や、正孔輸送層又は、電子電子輸送層にドーピングして用いることもできる。これら材料、構成は、いずれもこれに限定されない。   Examples of organic compounds that can be used as the material for the light-emitting layer 102 include triarylamine derivatives, stilbene derivatives, polyarylenes, aromatic condensed polycyclic compounds, aromatic heterocyclic compounds, aromatic heterocyclic condensed ring compounds, metal complex compounds, and the like. These can be employed from single oligo compounds or composite oligo compounds. One or more of these light emitting materials can be doped into the hole injection layer, the hole transport layer, or the electron electron transport layer. These materials and configurations are not limited to these.

電子注入層103の材料として使用できる有機化合物としては、炭酸セシウム、炭酸リチウム等の炭酸塩がドーピングされた有機化合物が好適であり、公知の有機化合物としては例えばAlq3等があげられる。また、無機の混合層でも良くLiF等もあげられる。   As an organic compound that can be used as the material of the electron injection layer 103, an organic compound doped with a carbonate such as cesium carbonate or lithium carbonate is preferable, and examples of the known organic compound include Alq3. Further, an inorganic mixed layer may be used, and LiF and the like can be mentioned.

第2電極3を成膜するにあたっては、マグネトロンスパッタリング装置を用いることが好適である。具体的には同一成膜空間内に配置されたITO、またはIn23の透明導電膜材料のターゲットと、ドーパント金属であるSnO2ターゲット、およびCターゲットの3個のターゲットを同時に放電させる多元同時スパッタ法(いわゆるコースパッタ)にて基板(電子注入層103)上に透明導電膜を形成する。成膜中においては、成膜時間の経過につれてSnO2ターゲットおよびCターゲットに印加するパワーを減少させることにより第2電極3の膜厚方向にドーパント金属SnとCの濃度勾配を形成する。なお、第2電極3の成膜法としてはマグネトロンスパッタリング法の他に電子銃を用いた多元同時蒸着法、抵抗加熱による多元同時蒸着法、プラズマ銃を用いた多元同時イオンプレーティング法も採用可能である。成膜された第2電極3中の全金属原子に対するCの比率および膜の組成は、高感度のXPS(X線光電子分光法)を用いArイオンエッチングを併用して膜の深さ方向分析を行い測定することが有効であり、本実施形態においても使用した。 In forming the second electrode 3, it is preferable to use a magnetron sputtering apparatus. Specifically, a multi-source that simultaneously discharges three targets of ITO or In 2 O 3 transparent conductive film material, SnO 2 target that is a dopant metal, and C target disposed in the same film formation space. A transparent conductive film is formed on the substrate (electron injection layer 103) by simultaneous sputtering (so-called co-sputtering). During the film formation, the power applied to the SnO 2 target and the C target is decreased with the passage of the film formation time, thereby forming a concentration gradient of dopant metals Sn and C in the film thickness direction of the second electrode 3. In addition to the magnetron sputtering method, the multiple electrode simultaneous vapor deposition method using an electron gun, the multiple element simultaneous vapor deposition method by resistance heating, and the multiple element simultaneous ion plating method using a plasma gun can be adopted as the method of forming the second electrode 3. It is. The ratio of C to the total metal atoms in the second electrode 3 formed and the composition of the film were analyzed using the highly sensitive XPS (X-ray photoelectron spectroscopy) in combination with Ar ion etching in the depth direction of the film. It is effective to perform the measurement, and it was also used in this embodiment.

正孔輸送層101、発光層102、電子注入層103を形成するにあたっては、いかなる薄膜形成方法であってもよく、例えば蒸着法やスパッタ法、CVD法、分子線蒸着法(MBE法)、ディッピング法、スピン塗布法、キャスティング法、バーコート法、ロールコート法等が使用できるが、抵抗加熱またはクヌーセンセルを使用した蒸着装置を用いることが好適である。また、電子注入層においては、ドーピング材料と有機化合物を同時に加熱蒸着する共蒸着法用いることが好適である。   In forming the hole transport layer 101, the light emitting layer 102, and the electron injection layer 103, any thin film forming method may be used. For example, a vapor deposition method, a sputtering method, a CVD method, a molecular beam vapor deposition method (MBE method), dipping Method, spin coating method, casting method, bar coating method, roll coating method and the like can be used, but it is preferable to use a vapor deposition apparatus using resistance heating or Knudsen cell. In the electron injection layer, it is preferable to use a co-evaporation method in which a doping material and an organic compound are simultaneously deposited by heating.

本発明は、図2に示す有機層が逆の構成になった膜表面側の第2電極3を陽極とした素子においても有効である。即ち、正孔輸送層と陽極である第2電極3との密着性が改善されることにより正孔の注入性が改善され素子の発光効率が向上するものである。   The present invention is also effective in an element in which the second electrode 3 on the film surface side in which the organic layer shown in FIG. That is, by improving the adhesion between the hole transport layer and the second electrode 3 that is the anode, the hole injection property is improved and the luminous efficiency of the device is improved.

図3は、有機EL素子作製に使われるTFT基板の有機EL発光画素とTFTの一部を含む断面構造を模式的に示している。発光画素部は陽極8、有機層10及び陰極11を順に重ねたものである。陽極8は画素毎に分離しており、例えばCrからなり、基本的に反射性である。陰極11は画素間で共通接続されており、基本的に光透過性である。TFTはガラス等からなる基板1の上に形成されたゲート電極2と、その上面に重ねられたゲート絶縁膜3と、このゲート絶縁膜3を介してゲート電極2の上方に重ねられた半導体薄膜4とからなる。この半導体薄膜4は例えば多結晶シリコン薄膜からなる。TFTは画素電極に供給される電流の通路となるソース6、チャンネルCh及びドレイン7を備えている。このボトムゲート構造のTFTは層間絶縁膜5により被覆されており、その上にはソース電極6及びドレイン電極7が形成されている。これらの上には別の層間絶縁膜9を介して画素電極(陽極8)が形成されている。   FIG. 3 schematically shows a cross-sectional structure including a part of a TFT and an organic EL light emitting pixel of a TFT substrate used for manufacturing an organic EL element. The light emitting pixel portion is formed by sequentially stacking an anode 8, an organic layer 10, and a cathode 11. The anode 8 is separated for each pixel, is made of, for example, Cr, and is basically reflective. The cathode 11 is commonly connected between the pixels and is basically light transmissive. The TFT includes a gate electrode 2 formed on a substrate 1 made of glass or the like, a gate insulating film 3 overlaid on the upper surface thereof, and a semiconductor thin film overlaid on the gate electrode 2 via the gate insulating film 3. It consists of four. The semiconductor thin film 4 is made of, for example, a polycrystalline silicon thin film. The TFT includes a source 6, a channel Ch, and a drain 7 that serve as a path for a current supplied to the pixel electrode. The bottom gate TFT is covered with an interlayer insulating film 5 on which a source electrode 6 and a drain electrode 7 are formed. A pixel electrode (anode 8) is formed on these via another interlayer insulating film 9.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
*Cr電極形成(陽極である第1電極2)
ガラス基板上に、CrターゲットをDCスパッタし陽極2として100nmの厚さにCr膜を成膜した。この際成膜マスクを用いて、3mmのストライプとした。Arガスを用いて、0.2Paの圧力、300Wの投入Pw条件で行った。
(Example 1)
* Cr electrode formation (first electrode 2 as anode)
On the glass substrate, a Cr target was DC sputtered to form a Cr film having a thickness of 100 nm as the anode 2. At this time, a 3 mm stripe was formed using a film formation mask. Ar gas was used under the conditions of 0.2 Pa pressure and 300 W input Pw conditions.

*大気開放
次に基板をスパッタ装置より取り出してアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。
* Opening to the atmosphere Next, the substrate was taken out of the sputtering apparatus, successively ultrasonically washed with acetone and isopropyl alcohol (IPA), then boiled and washed with IPA, and then dried. Further, UV / ozone cleaning was performed.

*前処理
有機EL蒸着装置へ移し真空排気し、前処理室で基板付近に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は0.6Pa、処理時間は40秒であった。
* Pretreatment The sample was transferred to an organic EL vapor deposition apparatus and evacuated, and 50 W RF power was applied to a ring electrode provided near the substrate in the pretreatment chamber to perform oxygen plasma cleaning treatment. The oxygen pressure was 0.6 Pa and the treatment time was 40 seconds.

*正孔輸送層形成
基板を前処理室より成膜室へ移動し、成膜室を、1E−4Paまで排気した後、正孔輸送性を有するα−NPD(化学式を図4に示す)を抵抗加熱蒸着法により成膜速度0.2〜0.3nm/secの条件で成膜し膜厚35nm正孔輸送層101を形成した。なお、正孔輸送層101、発光層102、および電子注入層103は、同一の蒸着マスクを用いることにより所定の部分に蒸着した。所定の部分とは基板上で、Crが露出している部分である。(画素電極)
*発光層蒸着
続いて正孔輸送層102の上にアルキレート錯体であるAlq3を抵抗加熱蒸着法により正孔輸送層101と同様の成膜条件で膜厚15nm成膜し発光層102を形成した。成膜速度は〜0.5nm/Sで成膜した。
* Hole transport layer formation After the substrate is moved from the pretreatment chamber to the film formation chamber, the film formation chamber is evacuated to 1E-4 Pa, and then α-NPD (chemical formula is shown in FIG. 4) having hole transportability. A 35 nm-thickness hole transport layer 101 was formed by resistance heating vapor deposition at a film formation rate of 0.2 to 0.3 nm / sec. Note that the hole transport layer 101, the light emitting layer 102, and the electron injection layer 103 were deposited on predetermined portions by using the same deposition mask. The predetermined portion is a portion where Cr is exposed on the substrate. (Pixel electrode)
* Light-Emitting Layer Deposition Subsequently, Alq3, which is an alkylate complex, was deposited on the hole-transporting layer 102 by a resistance heating deposition method to form a light-emitting layer 102 with a film thickness of 15 nm under the same film-forming conditions as the hole-transporting layer 101. . The film formation rate was ˜0.5 nm / S.

*電子注入層形成
次に、発光層102の上に抵抗加熱共蒸着法によりAlq3と炭酸セシウム(Cs2CO3)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して成膜し膜厚35nm電子注入層103を形成した。詳しくは、それぞれの蒸着ボートにセットした材料を抵抗加熱方式で蒸発させ、それぞれのボート電流値を調整することで、あわせて〜5A/Sの蒸着速度で膜形成を行った。
* Electron injection layer formation Next, the deposition rate is adjusted so that Alq3 and cesium carbonate (Cs2CO3) are mixed on the light emitting layer 102 by a resistance heating co-evaporation method at a film thickness ratio of 9: 1. An electron injection layer 103 having a thickness of 35 nm was formed. Specifically, the material set in each vapor deposition boat was evaporated by a resistance heating method, and each boat current value was adjusted to form a film at a vapor deposition rate of ˜5 A / S.

*透明導電膜形成(陰極である第2電極3)
最後に別の成膜室に基板を移し、電子注入層103の上にITOターゲット、SnO2ターゲット、およびCターゲットを用いてDCマグネトロン多元同時スパッタリング法により、膜厚130nmマスク成膜によりCr画素電極を覆って、Crストライプに交差するように、第2電極3を形成した。
* Transparent conductive film formation (second electrode 3 as a cathode)
Finally, the substrate is transferred to another film formation chamber, and a Cr pixel electrode is formed on the electron injection layer 103 by a DC magnetron multi-source sputtering method using an ITO target, a SnO 2 target, and a C target, and with a film thickness of 130 nm. And the second electrode 3 was formed so as to cross the Cr stripe.

成膜中においては、成膜時間の経過につれてSnO2ターゲットおよびCターゲットに印加するパワーを連続的に減少させることにより第2電極3の膜厚方向にドーパント金属であるSnとCの濃度勾配を形成した。Cの濃度勾配は、電子注入層103界面近傍おいてCを全金属原子に対して5at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近(電子注入層103界面より65nm)でCの含有量がほぼ0(<100ppm)とした。ドーパント金属Snの濃度勾配は、電子注入層103界面近傍おいてドーパント金属Snを全金属原子に対して12at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで(電子注入層103界面より65nm〜130nm)8at%とした。なお、ITOターゲットおよびSnO2ターゲット裏面には強磁場タイプのマグネットが配置されており、低電圧スパッタリングが可能となっている。 During the film formation, the power applied to the SnO 2 target and the C target is continuously decreased as the film formation time elapses, so that the concentration gradient of Sn and C, which are dopant metals, is increased in the film thickness direction of the second electrode 3. Formed. The concentration gradient of C is 5 at% with respect to all metal atoms in the vicinity of the interface of the electron injection layer 103, and the continuous concentration decreases toward the surface of the second electrode 3 film. The C content was almost 0 (<100 ppm) near the center (65 nm from the interface of the electron injection layer 103). The concentration gradient of the dopant metal Sn is 12 at% with respect to the total metal atoms in the vicinity of the interface of the electron injection layer 103, and the concentration of the dopant metal Sn decreases continuously toward the surface of the second electrode 3 film. 3 from the vicinity of the film thickness center to the film surface (65 nm to 130 nm from the interface of the electron injection layer 103), and 8 at%. A strong magnetic field type magnet is disposed on the back surface of the ITO target and the SnO 2 target to enable low voltage sputtering.

成膜条件としては、基板加熱なしの室温成膜で成膜圧力を1.0Pa、Ar、およびO2ガスを用いそれぞれの流量は100、1.0scccmとし、それぞれのターゲットに印加する投入パワーはITO:500W、SnO2:150〜100W、C:50〜0W連続変化で成膜を行った。第2電極3の単膜の特性としては、透過率は86%(at.450nm)、比抵抗値は5.5E−4Ωcmであった。 The film formation conditions are: room temperature film formation without substrate heating, film formation pressure of 1.0 Pa, Ar, and O 2 gas, flow rates of 100 and 1.0 scccm, and the input power applied to each target is ITO: Film formation was performed with 500 W, SnO 2 : 150 to 100 W, and C: 50 to 0 W continuously changed. As the characteristics of the single film of the second electrode 3, the transmittance was 86% (at 450 nm), and the specific resistance value was 5.5E-4 Ωcm.

*素子評価
このようにして、ガラス基板上に、陽極である第1電極2、正孔輸送層101、発光層102、電子注入層103、および陰極である第2電極3を設け、発光素子を得た。続いて、この発光素子において、Crを陽極、C含有の透明導電膜を陰極として直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧8Vにて最高輝度13000cd/m2を示した。また、印加電圧2.4Vにて最高効率10lm/Wを示した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
* Element Evaluation In this way, the first electrode 2 that is an anode, the hole transport layer 101, the light-emitting layer 102, the electron injection layer 103, and the second electrode 3 that is a cathode are provided on the glass substrate. Obtained. Subsequently, in this light emitting device, a direct current voltage was applied using Cr as an anode and a C-containing transparent conductive film as a cathode, and the light emission characteristics of the device were examined. As a result, this device showed a maximum luminance of 13000 cd / m 2 at an applied voltage of 8V. The maximum efficiency was 10 lm / W at an applied voltage of 2.4V. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例2)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して11at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで(電子注入層103界面より65nm〜130nm)Snの含有量がほぼ7at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Example 2)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 11 at% with respect to all metal atoms, the continuous concentration decreases toward the surface of the second electrode 3, and the film thickness center of the second electrode 3 From the vicinity to the film surface (65 nm to 130 nm from the interface of the electron injection layer 103), a light emitting device was fabricated under the conditions of Example 1 except that the Sn content was approximately 7 at%. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例3)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して10at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで(電子注入層103界面より65nm〜130nm)Snの含有量がほぼ5at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Example 3)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 10 at% with respect to all metal atoms, the continuous concentration decreases toward the surface of the second electrode 3, and the film thickness center of the second electrode 3 From the vicinity to the film surface (65 nm to 130 nm from the interface of the electron injection layer 103), a light emitting device was manufactured under the conditions of Example 1 except that the Sn content was approximately 5 at%. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例4)
Cの濃度勾配を電子注入層103界面近傍おいてCを全金属原子に対して3at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近(電子注入層103界面より65nm)でCの含有量がほぼ0(<100ppm)としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
Example 4
The C concentration gradient is in the vicinity of the interface of the electron injection layer 103, C is 3 at% with respect to all metal atoms, the continuous concentration decreases toward the surface of the second electrode 3 film, and the film thickness center of the second electrode 3 A light emitting device was manufactured under the conditions of Example 1 except that the C content was approximately 0 (<100 ppm) in the vicinity (65 nm from the interface of the electron injection layer 103). The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例5)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して10at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで(電子注入層103界面より65nm〜130nm)Snの含有量がほぼ5at%としたことを除き実施例4の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Example 5)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 10 at% with respect to all metal atoms, the continuous concentration decreases toward the surface of the second electrode 3, and the film thickness center of the second electrode 3 From the vicinity to the film surface (65 nm to 130 nm from the interface of the electron injection layer 103), a light emitting device was fabricated under the conditions of Example 4 except that the Sn content was approximately 5 at%. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例6)
発光層102の上に抵抗加熱共蒸着法によりAlq3と炭酸リチウム(Li2CO3)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して成膜し膜厚35nm電子注入層103を形成したことを除き実施例2の条件にて発光素子を作製した。このようにして作製した素子について、実施例2同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Example 6)
A film is formed on the light-emitting layer 102 by adjusting the deposition rate so that Alq 3 and lithium carbonate (Li 2 CO 3 ) are mixed at a ratio of 9: 1 by resistance heating co-evaporation. A light emitting device was fabricated under the conditions of Example 2 except that the 35 nm electron injection layer 103 was formed. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 2. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例7)
発光層102の上に抵抗加熱共蒸着法によりAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して成膜し膜厚35nm電子注入層103を形成したことを除き実施例2の条件にて発光素子を作製した。このようにして作製した素子について、実施例2同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Example 7)
A film was formed on the light emitting layer 102 by adjusting each vapor deposition rate so that Alq3 and lithium fluoride (LiF) were mixed at a film thickness ratio of 9: 1 by resistance heating co-evaporation. A light emitting device was manufactured under the conditions of Example 2 except that the injection layer 103 was formed. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 2. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(実施例8)
図2に示すような有機層を逆の構成に形成したことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陽極である第2電極3の単膜特性を表1に示す。
(Example 8)
A light emitting device was produced under the conditions of Example 1 except that the organic layer as shown in FIG. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the anode.

(比較例1)
陰極である第2電極3として、第2電極3内でSnの濃度勾配がなく膜厚方向に均一にSnを全金属原子に対して8at%含有させて形成したことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Comparative Example 1)
The conditions of Example 1 except that the second electrode 3 serving as the cathode was formed by containing 8 at% Sn with respect to all metal atoms uniformly in the film thickness direction without the Sn concentration gradient in the second electrode 3. A light emitting device was manufactured. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(比較例2)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して13at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで(電子注入層103界面より65nm〜130nm)Snの含有量がほぼ8at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Comparative Example 2)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 13 at% with respect to all metal atoms, the continuous concentration decreases toward the surface of the second electrode 3, and the film thickness center of the second electrode 3 From the vicinity to the film surface (65 nm to 130 nm from the interface of the electron injection layer 103), a light emitting device was fabricated under the conditions of Example 1 except that the Sn content was approximately 8 at%. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(比較例3)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して9at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、第2電極3の膜厚中心付近から膜表面まで(電子注入層103界面より65nm〜130nm)Snの含有量がほぼ8at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Comparative Example 3)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 9 at% with respect to all metal atoms, the continuous concentration decreases toward the surface of the second electrode 3, and the film thickness center of the second electrode 3 From the vicinity to the film surface (65 nm to 130 nm from the interface of the electron injection layer 103), a light emitting device was fabricated under the conditions of Example 1 except that the Sn content was approximately 8 at%. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(比較例4)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して11at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、電子注入層界面より第2電極3の全膜厚2/5付近から膜表面まで(電子注入層103界面より52nm〜130nm)Snの含有量がほぼ7at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Comparative Example 4)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 11 at% with respect to all metal atoms, and the continuous concentration decreases toward the surface of the second electrode 3 film. A light-emitting element was fabricated under the conditions of Example 1 except that the Sn content was about 7 at% from about 2/5 of the total film thickness 3 to the film surface (52 nm to 130 nm from the interface of the electron injection layer 103). The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(比較例5)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して11at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、電子注入層界面より第2電極3の全膜厚4/5付近から膜表面まで(電子注入層103界面より104nm〜130nm)Snの含有量がほぼ7at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Comparative Example 5)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103, Sn is 11 at% with respect to all metal atoms, and the continuous concentration decreases toward the surface of the second electrode 3 film. A light emitting device was fabricated under the conditions of Example 1 except that the Sn content was about 7 at% from the entire film thickness of 4/5 to the film surface (104 nm to 130 nm from the interface of the electron injection layer 103). The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(比較例6)
Snの濃度勾配を電子注入層103界面近傍おいてSnを全金属原子に対して22at%で、第2電極3膜表面方向に向かって連続的濃度を低下し、電子注入層界面より第2電極3の全膜厚1/4付近から膜表面まで(電子注入層103界面より26nm〜130nm)Snの含有量がほぼ7at%としたことを除き実施例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陰極である第2電極3の単膜特性を表1に示す。
(Comparative Example 6)
The Sn concentration gradient is in the vicinity of the interface of the electron injection layer 103 and Sn is 22 at% with respect to all metal atoms, and the continuous concentration decreases toward the surface of the second electrode 3 film. A light emitting device was fabricated under the conditions of Example 1 except that the Sn content was about 7 at% from about 1/4 of the total thickness of 3 to the film surface (26 nm to 130 nm from the interface of the electron injection layer 103). The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the cathode.

(比較例7)
図2に示すような有機層を逆の構成に形成したことを除き比較例1の条件にて発光素子を作製した。このようにして作製した素子について、実施例1同様に発光特性を評価した。この発光素子の特性および陽極である第2電極3の単膜特性を表1に示す。
(Comparative Example 7)
A light emitting device was fabricated under the conditions of Comparative Example 1 except that the organic layer as shown in FIG. The light emitting characteristics of the device thus fabricated were evaluated in the same manner as in Example 1. Table 1 shows the characteristics of the light-emitting element and the single-film characteristics of the second electrode 3 serving as the anode.

Figure 2005310637
Figure 2005310637

電子注入層103の違いおよび有機層の違いにより発光特性の差はあるが、膜表面側に設けられた透明電極である第2電極3にCおよびSnを規定膜厚範囲内に規定量含有することにより、CとSnを含有させない場合、およびCとSnを規定膜厚範囲外または規定量以外含有させた場合と比較し素子の発光特性を大幅に向上することができる。   Although there are differences in light emission characteristics due to differences in the electron injection layer 103 and the organic layer, the second electrode 3, which is a transparent electrode provided on the film surface side, contains C and Sn within a specified film thickness range. As a result, the light emission characteristics of the device can be greatly improved as compared with the case where C and Sn are not contained and the case where C and Sn are contained outside the specified film thickness range or other than the specified amount.

本発明の発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the example of laminated structure of the light emitting element of this invention. 本発明の発光素子の積層構造例を示す模式図である。It is a schematic diagram which shows the example of laminated structure of the light emitting element of this invention. 本発明の有機EL発光画素とTFTの一部を含む素子の断面構造模式図である。It is a cross-sectional structure schematic diagram of the element containing a part of organic electroluminescent light emitting pixel and TFT of this invention. α―NPDの構造式である。This is the structural formula of α-NPD.

符号の説明Explanation of symbols

1 ガラス基板
2 ゲート電極
3 ゲート絶縁層
4 半導体層
5 層間絶縁膜
6 ドレイン
7 ソース
8 陽極
9 層間絶縁膜
10 有機層
11 陰極
20 陽極
101 正孔輸送層
102 発光層
103 電子注入層
30 陰極
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Gate electrode 3 Gate insulating layer 4 Semiconductor layer 5 Interlayer insulating film 6 Drain 7 Source 8 Anode 9 Interlayer insulating film 10 Organic layer 11 Cathode 20 Anode 101 Hole transport layer 102 Light emitting layer 103 Electron injection layer 30 Cathode

Claims (1)

対向する第1電極と第2電極からなる1対の電極と、前記1対の電極の間に有機化合物層が設けられ、膜表面側に設けられた第2電極側より光を取り出すトップエミッション型の有機EL素子において、前記第2電極はドーパント金属であるSnおよびCを含む酸化インジウム系の透明導電膜であり、前記第2電極である前記透明導電膜中の前記ドーパント金属Snおよび前記Cが膜厚方向で濃度勾配を有することを特徴とする有機EL素子。   A top emission type in which an organic compound layer is provided between the pair of electrodes, the first electrode and the second electrode facing each other, and the second electrode side provided on the film surface side is provided with an organic compound layer. In the organic EL element, the second electrode is an indium oxide-based transparent conductive film containing Sn and C as dopant metals, and the dopant metal Sn and C in the transparent conductive film as the second electrode An organic EL element having a concentration gradient in a film thickness direction.
JP2004128064A 2004-04-23 2004-04-23 Organic el element Withdrawn JP2005310637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128064A JP2005310637A (en) 2004-04-23 2004-04-23 Organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128064A JP2005310637A (en) 2004-04-23 2004-04-23 Organic el element

Publications (1)

Publication Number Publication Date
JP2005310637A true JP2005310637A (en) 2005-11-04

Family

ID=35439149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128064A Withdrawn JP2005310637A (en) 2004-04-23 2004-04-23 Organic el element

Country Status (1)

Country Link
JP (1) JP2005310637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111192A1 (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings, Inc. Organic electroluminescent element, and organic electroluminescent display
JP2010050095A (en) * 2008-08-20 2010-03-04 Samsung Mobile Display Co Ltd Organic light-emitting device
CN105070845A (en) * 2015-07-17 2015-11-18 京东方科技集团股份有限公司 Organic light-emitting device, manufacturing method thereof, and display method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111192A1 (en) * 2006-03-24 2007-10-04 Konica Minolta Holdings, Inc. Organic electroluminescent element, and organic electroluminescent display
JP2010050095A (en) * 2008-08-20 2010-03-04 Samsung Mobile Display Co Ltd Organic light-emitting device
US8125140B2 (en) 2008-08-20 2012-02-28 Samsung Mobile Display Co., Ltd. Organic light emitting display with improved light emitting efficiency
TWI408995B (en) * 2008-08-20 2013-09-11 Samsung Display Co Ltd Organic light emitting display
CN105070845A (en) * 2015-07-17 2015-11-18 京东方科技集团股份有限公司 Organic light-emitting device, manufacturing method thereof, and display method

Similar Documents

Publication Publication Date Title
US11094909B2 (en) Thin film of metal oxide, organic electroluminescent device including the thin film, photovoltaic cell including the thin film and organic photovoltaic cell including the thin film
TWI375346B (en) Metal compound-metal multilayer electrodes for organic electronic devices
JP2019201231A (en) Metal oxide thin film, organic electroluminescence element having the same, solar cell, and manufacturing method of thin film
US8125140B2 (en) Organic light emitting display with improved light emitting efficiency
TW200401832A (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element and solar cell
CN108293281B (en) Method for manufacturing photoelectric conversion element
JP2002367780A (en) Organic el device and manufacturing method therefor
KR20070079926A (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
WO2013138550A1 (en) Plasma-chlorinated electrode and organic electronic devices using the same
CN101405366B (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP2005063910A (en) Organic light emitting element and its manufacturing method
KR100615221B1 (en) An organic electro luminescent display device and a method for preparing the same
JPH11126689A (en) Manufacture of organic electroluminescent element and organic el element
JP2005310637A (en) Organic el element
JP3849937B2 (en) Organic EL device and method for manufacturing the same
JP2005310638A (en) Organic el element
JP2005322463A (en) Organic el element
JP2005322465A (en) Organic el device
KR100563066B1 (en) An organic electro luminescent display device and a method for preparing the same
JPH10294176A (en) Manufacture of organic el element and organic el element
JP2006140275A (en) Organic el device
JP2005310473A (en) Manufacturing method of organic el element
KR20180120986A (en) A transparent light emitting diode comprising a multi-layer transparent electrode
Chen et al. Vanadium-doped indium tin oxide as hole-injection layer in organic light-emitting devices
CN101453000A (en) Organic electroluminescent element, conductive laminate, and display device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703