JP2005307334A - Copper alloy and manufacturing method therefor - Google Patents

Copper alloy and manufacturing method therefor Download PDF

Info

Publication number
JP2005307334A
JP2005307334A JP2004234891A JP2004234891A JP2005307334A JP 2005307334 A JP2005307334 A JP 2005307334A JP 2004234891 A JP2004234891 A JP 2004234891A JP 2004234891 A JP2004234891 A JP 2004234891A JP 2005307334 A JP2005307334 A JP 2005307334A
Authority
JP
Japan
Prior art keywords
precipitates
inclusions
particle size
alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004234891A
Other languages
Japanese (ja)
Inventor
Yasuhiro Maehara
泰裕 前原
Mitsuharu Yonemura
光治 米村
Takaharu Nakajima
敬治 中島
Tokiaki Nagamichi
常昭 長道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004234891A priority Critical patent/JP2005307334A/en
Priority to KR1020067018569A priority patent/KR20060120276A/en
Priority to EP05719817A priority patent/EP1731624A4/en
Priority to PCT/JP2005/003502 priority patent/WO2005087957A1/en
Priority to CA002559103A priority patent/CA2559103A1/en
Priority to TW094107552A priority patent/TW200538562A/en
Publication of JP2005307334A publication Critical patent/JP2005307334A/en
Priority to US11/518,194 priority patent/US20070062619A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy which has adequate performance in each of electroconductivity, tensile strength and hot strength, and can be inexpensively manufactured, and to provide a manufacturing method therefor. <P>SOLUTION: The copper alloy includes 0.1-5% Be and other alloy components; and includes precipitates and inclusions with particle sizes of 1 μm or larger so that the total number of them can satisfy a relationship expressed by the following expression; logN≤0.4742+17.629×exp(-0.1133×X), wherein N represents the total number of the precipitates and inclusions per unit area (pieces/mm<SP>2</SP>) and X represents the particle size (μm) of the precipitates and inclusions. The method for manufacturing the copper alloy comprises the steps of: smelting the raw material; casting it; and cooling it at a cooling rate of 0.5°C/s or higher at least in the temperature region between the temperature of the slab right after having been cast and 450°C. The copper alloy after having been cooled is preferably worked in the temperature range of 600°C or lower, and then is subjected to heat treatment of holding it in the temperature range of 150 to 750°C for 30 seconds or longer. It is further preferable to subject it to the working and the heat treatment several times. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶体化処理を必要とせずに安価に製造でき、しかも機械的性質と電気伝導度が共に優れた銅合金およびその製造方法に関する。この銅合金の用途としては、電気電子部品、安全工具などが挙げられる。   The present invention relates to a copper alloy that can be manufactured at low cost without requiring solution treatment, and that is excellent in both mechanical properties and electrical conductivity, and a method for manufacturing the same. Applications of this copper alloy include electrical and electronic parts, safety tools, and the like.

電気電子部品としては、例えば下記のものがある。エレクトロニクス分野ではパソコン用コネクタ、半導体ソケット、光ピックアップ、同軸コネクタ、ICチェッカーピンなどが挙げられる。コミュニケーション分野では携帯電話部品(コネクタ、バッテリー端子、アンテナ部品)、海底中継器筐体、交換機用コネクタなどが挙げられる。自動車分野ではリレー、各種スイッチ、マイクロモータ、ダイヤフラム、各種端子類などの種々の電装部品が挙げられる。航空・宇宙分野では航空機用ランディングギアなどが挙げられる。医療・分析機器分野では医療用コネクタ、産業用コネクタなどが挙げられる。家電分野ではエアコン等家電製品用リレー、ゲーム機用光ピックアップ、カードメディアコネクタなどが挙げられる。   Examples of electrical and electronic parts include the following. In the electronics field, there are PC connectors, semiconductor sockets, optical pickups, coaxial connectors, IC checker pins, and the like. In the communication field, mobile phone parts (connectors, battery terminals, antenna parts), submarine repeater cases, exchange connectors, and the like can be given. In the automotive field, various electrical components such as relays, various switches, micromotors, diaphragms, various terminals and the like can be mentioned. In the aerospace field, there are aircraft landing gears. In the medical / analytical instrument field, there are medical connectors, industrial connectors, and the like. In the home appliance field, relays for home appliances such as air conditioners, optical pickups for game machines, card media connectors, and the like can be given.

安全工具としては、例えば、弾薬庫や炭坑等、火花から引火して爆発する危険性がある場所で用いられる掘削棒やスパナ、チェーンブロック、ハンマー、ドライバー、ペンチ、ニッパなどの工具がある。   Examples of safety tools include tools such as excavation rods, spanners, chain blocks, hammers, drivers, pliers, and nippers that are used in places where there is a risk of being ignited from sparks and exploding, such as ammunition stores and coal mines.

従来、上記の電気電子部品に用いられる銅合金としては、Beの時効析出による強化を狙ったCu−Be合金が知られている。この合金は、引張強度と導電率の双方が優れるので、ばね用材料などとして広く使用されている。しかしながら、Cu−Be合金の製造には、熱間加工と溶体化処理が必須であり、そのために製造コストが嵩むという欠点がある。   Conventionally, as a copper alloy used for the above-mentioned electric and electronic parts, a Cu-Be alloy aimed at strengthening by aging precipitation of Be is known. This alloy is widely used as a spring material and the like because of its excellent tensile strength and electrical conductivity. However, hot-working and solution treatment are indispensable for the production of Cu-Be alloys, which has the disadvantage of increasing the production cost.

また、Beは環境に有害な物質であるから、上記の熱間加工や溶体化処理時の加熱工程においては、Be酸化物の処理工程を設ける必要があり、これもCu−Be合金の製造コストを上昇させる。従って、使用するBeを極力少なくすることが、コストおよび環境汚染防止の点から望ましい。   In addition, since Be is a substance harmful to the environment, it is necessary to provide a treatment process for Be oxide in the heating process during the hot processing and solution treatment described above, which is also the manufacturing cost of the Cu-Be alloy. To raise. Therefore, it is desirable to reduce the amount of Be used as much as possible from the viewpoints of cost and environmental pollution prevention.

特許文献1には、コルソン系と呼ばれるNi2Siを析出させた銅合金が提案されている。このコルソン系合金は、その引張強度が750〜820MPaで導電率が40%程度であり、比較的、引張強度と導電率とのバランスがよいものである。 Patent Document 1 proposes a copper alloy in which Ni 2 Si, called a Corson system, is precipitated. This Corson alloy has a tensile strength of 750 to 820 MPa and an electrical conductivity of about 40%, and has a relatively good balance between tensile strength and electrical conductivity.

しかしながら、この合金は、その高強度化および高導電率化のいずれにも限界があり、以下に示すように製品バリエーションの点で問題が残る。この合金は、Ni2Siの析出による時効硬化性を持つものである。そして、NiおよびSiの含有量を低減して導電率を高めると、引張強度が著しく低下する。一方、Ni2Siの析出量を増すためにNiおよびSiを増量しても、引張強度の上昇に限界があり、しかも導電率が著しく低下する。このため、コルソン系合金は、引張強度が高い領域および導電率が高い領域での引張強度と導電率のバランスが悪くなり、ひいては製品バリエーションが狭くなる。これは、下記の理由による。 However, this alloy has limitations in increasing strength and conductivity, and problems remain in terms of product variations as described below. This alloy has age hardenability due to precipitation of Ni 2 Si. And if Ni and Si content are reduced and electrical conductivity is raised, tensile strength will fall remarkably. On the other hand, even if Ni and Si are increased in order to increase the precipitation amount of Ni 2 Si, there is a limit to the increase in tensile strength, and the conductivity is remarkably decreased. For this reason, the Corson-based alloy has a poor balance between the tensile strength and the electrical conductivity in the region where the tensile strength is high and the region where the electrical conductivity is high, resulting in narrow product variations. This is due to the following reason.

合金の電気抵抗(または、その逆数である導電率)は、電子散乱によって決定されるものであり、合金中に固溶した元素の種類によって大きく変動する。合金中に固溶したNiは、電気抵抗値を著しく上昇させる(導電率を著しく低下させる)ので、上記のコルソン系合金では、Niを増量すると導電率が低下する。一方、銅合金の引張強度は、時効硬化作用により得られるものである。引張強度は、析出物の量が多いほど、また、析出物が微細に分散するほど、向上する。コルソン系合金の場合、析出粒子はNiSiのみであるため、析出量の面でも、分散状態の面でも、高強度化に限界がある。 The electrical resistance (or the reciprocal conductivity) of the alloy is determined by electron scattering, and varies greatly depending on the type of element dissolved in the alloy. Ni dissolved in the alloy remarkably increases the electrical resistance value (remarkably decreases the electrical conductivity). Therefore, in the above Corson alloy, the electrical conductivity decreases when the Ni content is increased. On the other hand, the tensile strength of a copper alloy is obtained by age hardening. The tensile strength increases as the amount of precipitate increases and as the precipitate is finely dispersed. In the case of a Corson alloy, since the precipitated particles are only Ni 2 Si, there is a limit to increasing the strength in terms of both the amount of precipitation and the state of dispersion.

特許文献2にはCr、Zr等の元素を含み、表面硬さおよび表面粗さを規定したワイヤーボンディング性の良好な銅合金が開示されている。その実施例に記載されるように、この銅合金は、熱間圧延および溶体化処理を前提として製造されるものである。   Patent Document 2 discloses a copper alloy containing elements such as Cr and Zr and having good surface bonding and having good wire bonding properties. As described in the examples, this copper alloy is manufactured on the premise of hot rolling and solution treatment.

しかし、熱間圧延を行うには、熱間割れ防止やスケール除去のために表面手入れの必要があり、歩留が低下する。また、大気中で加熱されることが多いので、Si、Mg、Al等の活性な添加元素が酸化しやすい。このため、生成した粗大な内部酸化物が最終製品の特性劣化を招くなど、問題が多い。さらに、熱間圧延や溶体化処理には、膨大なエネルギーを必要とする。このように、引用文献2に記載の銅合金では、熱間加工および溶体化処理を前提とするので、製造コストの低減および省エネルギー化等の観点からの問題があるとともに、粗大な酸化物の生成等に起因する製品特性(引張強度および導電率のほか、曲げ加工性や疲労特性など)が劣化するという問題を招来する。   However, in order to perform hot rolling, it is necessary to clean the surface for preventing hot cracking and removing scales, and the yield decreases. Moreover, since it is often heated in the atmosphere, active additive elements such as Si, Mg, Al and the like are easily oxidized. For this reason, there are many problems such as the generated coarse internal oxide causes the characteristic deterioration of the final product. Furthermore, enormous energy is required for hot rolling and solution treatment. Thus, since the copper alloy described in the cited document 2 is premised on hot working and solution treatment, there is a problem from the viewpoint of reduction in manufacturing cost and energy saving, and generation of coarse oxides. As a result, product characteristics (such as bending workability and fatigue properties as well as tensile strength and electrical conductivity) deteriorate.

一方、前記の安全工具用材料としては、工具鋼に匹敵する機械的性質、例えば強度や耐摩耗性が要求されるとともに、爆発の原因となる火花が出ないこと、すなわち耐火花発生性に優れることが要求される。このため、安全工具用材料にも、熱伝導性の高い銅合金、特にBeの時効析出による強化を狙ったCu−Be合金が多用されてきた。前述のように、Cu−Be合金は環境上の問題が多い材料であるが、それにもかかわらず、Cu−Be合金が安全工具用材料として多用されてきたのは次の理由による。   On the other hand, the material for the safety tool is required to have mechanical properties comparable to tool steel, for example, strength and wear resistance, and does not generate a spark that causes an explosion, that is, has excellent spark resistance. Is required. For this reason, copper alloys with high thermal conductivity, particularly Cu-Be alloys aimed at strengthening by aging precipitation of Be, have been frequently used as safety tool materials. As described above, the Cu—Be alloy is a material with many environmental problems, but nevertheless, the Cu—Be alloy has been frequently used as a material for safety tools for the following reason.

図1は、銅合金の導電率〔IACS(%)〕と熱伝導度〔TC(W/m・K)〕との関係を示す図である。図1に示すように、両者はほぼ1:1の関係にあり、導電率〔IACS(%)〕を高めることは熱伝導度〔TC(W/m・K)〕を高めること、言い換えれば耐火花発生性を高めることに他ならない。工具の使用時に打撃等による急激な力が加わると、火花が発生するのは、衝撃等により発生する熱によって合金中の特定の成分が燃焼するためである。非特許文献1に記載のとおり、鋼は、その熱伝導度が銅のそれの1/5以下と低いため、局所的な温度上昇が発生しやすい。鋼は、Cを含有するので、「C+O→CO」の反応を起こして火花を発生させるのである。事実、Cを含有しない純鉄では火花が発生しないことが知られている。他の金属で火花を発生しやすいのは、TiまたはTi合金である。これは、Tiの熱伝導度が銅のそれの1/20と極めて低く、しかも、「Ti+O→TiO」の反応が起こるためである。なお、図1は、非特許文献2に示されるデータを整理したものである。 FIG. 1 is a graph showing the relationship between the electrical conductivity [IACS (%)] and the thermal conductivity [TC (W / m · K)] of a copper alloy. As shown in FIG. 1, the two have a substantially 1: 1 relationship. Increasing conductivity [IACS (%)] increases thermal conductivity [TC (W / m · K)], in other words, fire resistance. It is none other than enhancing flower development. When a rapid force due to impact or the like is applied during use of the tool, a spark is generated because a specific component in the alloy is burned by heat generated by impact or the like. As described in Non-Patent Document 1, since the thermal conductivity of steel is as low as 1/5 or less of that of copper, local temperature rise is likely to occur. Since steel contains C, a reaction of “C + O 2 → CO 2 ” is caused to generate a spark. In fact, it is known that pure iron containing no C does not generate sparks. Ti or Ti alloys are more likely to generate sparks with other metals. This is because the thermal conductivity of Ti is extremely low, 1/20 that of copper, and a reaction of “Ti + O 2 → TiO 2 ” occurs. FIG. 1 is a summary of the data shown in Non-Patent Document 2.

しかし、前述のように導電率〔IACS(%)〕と引張強さ〔TS(MPa)〕とはトレードオフの関係にあり、両者を同時に高めることは極めて困難で、従来にあっては工具鋼並みの高い引張強度を有しながら十分に高い熱伝導度TCを具備する銅合金としては、上記のCu−Be合金以外になかったためである。   However, as described above, electrical conductivity [IACS (%)] and tensile strength [TS (MPa)] are in a trade-off relationship, and it is extremely difficult to increase both at the same time. This is because there was no copper alloy other than the above-mentioned Cu-Be alloy as a copper alloy having a sufficiently high thermal conductivity TC while having a relatively high tensile strength.

特許第2572042号公報Japanese Patent No. 2572042 特許第2714561号公報Japanese Patent No. 2714561 工業加熱、Vol.36、No.3(1999)、(社)日本工業炉協会発行、59頁Industrial Heating, Vol.36, No.3 (1999), published by Japan Industrial Furnace Association, page 59 伸銅品データブック、平成9年8月1日、日本伸銅協会発行、328〜355頁Copper Products Data Book, August 1, 1997, published by Japan Copper and Brass Association, pages 328-355

本発明の第1の目的は、Beを含む銅合金でありながら、熱間加工および溶体化処理をいずれも必要とせず、しかも、機械的性質および導電性に優れ、製品バリエーションが豊富であり、延性および加工性にも優れる合金を提供することにある。また、安全工具用材料に要求される性能、即ち、熱伝導度、耐摩耗性および耐火花発生性にも優れる銅合金を提供することにある。本発明の第2の目的は、上記の銅合金の製造方法を提供することにある。   The first object of the present invention is a copper alloy containing Be, which does not require any hot working or solution treatment, is excellent in mechanical properties and conductivity, and has abundant product variations. The object is to provide an alloy having excellent ductility and workability. Another object of the present invention is to provide a copper alloy that is excellent in performance required for a safety tool material, that is, thermal conductivity, wear resistance, and spark resistance. The second object of the present invention is to provide a method for producing the above copper alloy.

「製品バリエーションが豊富である」とは、添加量および/または製造条件を微調整することにより、導電率および引張強度のバランスを既存のCu−Be合金と同程度またはそれ以上の高いレベルから、従来知られている銅合金と同程度の低いレベルまで調整することができることを意味する。   “Product variation is abundant” means that the balance between conductivity and tensile strength is as high as or higher than that of existing Cu-Be alloys by finely adjusting the addition amount and / or manufacturing conditions. This means that it can be adjusted to a level as low as that of conventionally known copper alloys.

なお、「導電率および引張強度のバランスがCu−Be合金と同程度またはそれ以上の高いレベルである」とは、具体的には下記の(a)式を満足するような状態を意味する。以下、この状態を「引張強度と導電率のバランスが極めて良好な状態」と呼ぶこととする。
TS≧648.06+985.48×exp(−0.0513×IACS) ・・・ (a)
但し、(a)式中のTSは引張強度(MPa)を意味し、IACSは導電率(%)を意味する。
Note that “the balance between conductivity and tensile strength is at a level as high as or higher than that of the Cu—Be alloy” specifically means a state that satisfies the following expression (a). Hereinafter, this state is referred to as “a state where the balance between tensile strength and electrical conductivity is extremely good”.
TS ≧ 648.06 + 985.48 × exp (−0.0513 × IACS) (a)
However, TS in the formula (a) means tensile strength (MPa), and IACS means conductivity (%).

曲げ加工性についても既存のCu−Be系合金等と同等のレベル以上であることが望ましい。具体的には、試験片に様々な曲率半径で90°曲げ試験を実施し、割れが発生しない最小の曲率半径Rを測定し、これと板厚tとの比B(=R/t)により曲げ加工性を評価できる。曲げ加工性の良好な範囲は、引張強度TSが800MPa以下の板材ではB≦2.0を満たすもの、引張強度TSが800MPaを超える板材では下記の(b)式を満たすものとする。
B≦41.2686−39.4583×exp[−{(TS−615.675)/2358.08}2] ・・・ (b)
It is desirable that the bending workability is equal to or higher than that of existing Cu-Be alloys. Specifically, the test piece is subjected to a 90 ° bending test with various radii of curvature, and the minimum radius of curvature R at which cracking does not occur is measured, and the ratio B (= R / t) of this to the thickness t Bending workability can be evaluated. The range where the bending workability is good is that the plate material having a tensile strength TS of 800 MPa or less satisfies B ≦ 2.0, and the plate material having a tensile strength TS exceeding 800 MPa satisfies the following formula (b).
B ≦ 41.2686−39.4583 × exp [− {(TS−615.675) /2358.08} 2 ] (b)

安全工具としての銅合金には、上記のような引張強度TSおよび導電率IACSの特性のほか、耐摩耗性も要求される。従って、安全工具用銅合金の場合、耐摩耗性としても工具鋼と同等のレベルであることが必要である。具体的には、室温下における硬さがビッカース硬さで250以上であることを耐摩耗性が優れることとする。   In addition to the properties of tensile strength TS and conductivity IACS as described above, wear resistance is also required for copper alloys as safety tools. Therefore, in the case of a copper alloy for safety tools, it is necessary that the wear resistance is at a level equivalent to that of tool steel. Specifically, the wear resistance is excellent when the hardness at room temperature is 250 or more in terms of Vickers hardness.

本発明は、下記の(A)〜(C)に示す銅合金および下記の(D)〜(F)に示す銅合金の製造方法を要旨とする。   The gist of the present invention is a copper alloy shown in the following (A) to (C) and a method for producing a copper alloy shown in the following (D) to (F).

(A) 0.1〜5質量%のBeならびに下記の第イ群から第ハ群までの少なくとも1群から選んだ少なくとも1種を含み、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することを特徴とする銅合金。
第イ群:それぞれ0.1〜5質量%のCr、Fe、Co、Nb、Ta、V、Ni、Mn、SnおよびAg
(但し、2種以上の場合は合計で0.1〜5質量%)
第ロ群:でそれぞれ0.01〜5質量%のAl、Si、Mo、WおよびGe
(但し、2種以上の場合は合計で0.01〜5質量%)
第ハ群:それぞれ0.01〜3質量%のZn、Te、SeおよびCd
(但し、または2種以上の場合は合計で0.01〜3質量%)
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
(A) 0.1 to 5% by mass of Be and at least one selected from at least one of groups (a) to (c) below, with the balance consisting of copper and impurities, and precipitates present in the alloy and A copper alloy characterized in that the particle size of inclusions having a particle size of 1 μm or more and the total number of precipitates and inclusions satisfy the relationship represented by the following formula (1).
Group I: 0.1 to 5% by mass of Cr, Fe, Co, Nb, Ta, V, Ni, Mn, Sn and Ag, respectively
(However, in the case of 2 or more types, the total is 0.1 to 5% by mass)
Group B: 0.01 to 5% by mass of Al, Si, Mo, W and Ge respectively
(However, in the case of 2 or more types, the total is 0.01 to 5% by mass)
Group C: 0.01 to 3% by mass of Zn, Te, Se and Cd, respectively
(However, in the case of 2 or more types, a total of 0.01 to 3% by mass)
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.

(B) 0.1〜5質量%のBe、それぞれ0.01〜3質量%のTi、ZrおよびHfの1種以上(但し、2種以上場合は合計で0.01〜3質量%)ならびに下記の第イ群から第ハ群までの少なくとも1群から選んだ少なくとも1種を含み、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが前記(1)式で示される関係を満足することを特徴とする銅合金。
第イ群:それぞれ0.1〜5質量%のCr、Fe、Co、Nb、Ta、V、Ni、Mn、SnおよびAg
(但し、2種以上の場合は合計で0.1〜5質量%)
第ロ群:でそれぞれ0.01〜5質量%のAl、Si、Mo、WおよびGe
(但し、2種以上の場合は合計で0.01〜5質量%)
第ハ群:それぞれ0.01〜3質量%のZn、Te、SeおよびCd
(但し、または2種以上の場合は合計で0.01〜3質量%)
(B) 0.1 to 5% by mass of Be, 0.01 to 3% by mass of Ti, Zr and Hf, respectively (provided that the total is 0.01 to 3% by mass in the case of 2 or more) and the following group I Including at least one selected from at least one group up to Group C, the balance consisting of copper and impurities, and the precipitates and inclusions present in the alloy having a particle size of 1 μm or more, and precipitates And the total number of inclusions satisfies the relationship represented by the above formula (1).
Group I: 0.1 to 5% by mass of Cr, Fe, Co, Nb, Ta, V, Ni, Mn, Sn and Ag, respectively
(However, in the case of 2 or more types, the total is 0.1 to 5% by mass)
Group B: 0.01 to 5% by mass of Al, Si, Mo, W and Ge respectively
(However, in the case of 2 or more types, the total is 0.01 to 5% by mass)
Group C: 0.01 to 3% by mass of Zn, Te, Se and Cd, respectively
(However, in the case of 2 or more types, a total of 0.01 to 3% by mass)

(C)上記の(A)または(B)に記載の成分に加えて更に下記の第ニ群、第ホ群および第ヘ群の少なくとも1群から選んだ少なくとも1種を含み、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが前記(1)式で示される関係を満足することを特徴とする銅合金。
第ニ群:質量%でそれぞれ0.001〜0.5%のP、B、S、PdおよびAs。
第ホ群:質量%でそれぞれ0.001〜1%のBi、Pb、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、AuおよびGa。但し、2種以上の場合は合計で0.001〜1%とする。
第へ群:質量%でそれぞれ0.001〜2%のMg、Li、Caおよび希土類元素。但し、2種以上の場合は合計で0.001〜2%とする。
(C) In addition to the component described in the above (A) or (B), it further contains at least one selected from the following group II, group E and group F, with the balance being copper and Of the precipitates and inclusions that are made of impurities and have a particle size of 1 μm or more among the precipitates and inclusions, the total number of precipitates and inclusions satisfies the relationship expressed by the above formula (1). Copper alloy characterized by
Group II: 0.001 to 0.5% by mass of P, B, S, Pd and As, respectively.
Group E: 0.001 to 1% by mass of Bi, Pb, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, and Ga, respectively. However, in the case of 2 or more types, the total content is 0.001 to 1%.
Group H: 0.001 to 2% by mass of Mg, Li, Ca and rare earth elements, respectively. However, in the case of 2 or more types, the total content is 0.001 to 2%.

これらの銅合金は、少なくとも1種の合金元素の微小領域における平均含有量の最大値と平均含有量の最小値との比が1.5以上であることが望ましい。また、その結晶粒径が0.01〜35μmであることが望ましい。   In these copper alloys, the ratio of the maximum value of the average content and the minimum value of the average content in a micro region of at least one alloy element is desirably 1.5 or more. Further, the crystal grain size is desirably 0.01 to 35 μm.

(D) 上記(A)から(C)までのいずれかに記載の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却することを特徴とする、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが前記(1)式で示される関係を満足する銅合金の製造方法。   (D) A slab obtained by melting and casting a copper alloy having the chemical composition according to any one of (A) to (C) above, at least from a slab temperature immediately after casting to 450 ° C. Cooling at a cooling rate of 0.5 ° C./s or more in the temperature range, among the precipitates and inclusions present in the alloy, the particle size of those having a particle size of 1 μm or more, and the sum of the precipitates and inclusions A method for producing a copper alloy, the number of which satisfies the relationship represented by the formula (1).

(E) 上記(A)から(C)までのいずれかに記載の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却し、600℃以下の温度域で加工することを特徴とする、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが前記(1)式で示される関係を満足する銅合金の製造方法。   (E) A slab obtained by melting and casting a copper alloy having the chemical composition according to any one of (A) to (C) above, at least from a slab temperature immediately after casting to 450 ° C. Cooling at a cooling rate of 0.5 ° C./s or higher in the temperature range, and processing at a temperature range of 600 ° C. or lower, and grains having a grain size of 1 μm or more among precipitates and inclusions present in the alloy A method for producing a copper alloy, wherein the diameter and the total number of precipitates and inclusions satisfy the relationship represented by the formula (1).

(F) 上記(A)から(C)までのいずれかに記載の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却し、600℃以下の温度域で加工した後、150〜750℃の温度域で30秒以上保持する熱処理に供することを特徴とする、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが前記(1)式で示される関係を満足する銅合金の製造方法。   (F) A slab obtained by melting and casting a copper alloy having the chemical composition according to any one of (A) to (C) above, at least from a slab temperature immediately after casting to 450 ° C. The alloy is characterized in that it is cooled at a cooling rate of 0.5 ° C / s or higher in the temperature range, processed in a temperature range of 600 ° C or lower, and then subjected to a heat treatment that is held at a temperature range of 150 to 750 ° C for 30 seconds or longer. Among the precipitates and inclusions present in 1 and the total number of precipitates and inclusions satisfies the relationship represented by the above formula (1).

上記(F)の製造方法においては、600℃以下の温度域での加工および150〜750℃の温度域で30秒以上保持する熱処理を複数回行ってもよい。また、最後の熱処理の後に、600℃以下の温度域での加工を行ってもよい。   In the production method (F), the processing in the temperature range of 600 ° C. or lower and the heat treatment for 30 seconds or more in the temperature range of 150 to 750 ° C. may be performed a plurality of times. Further, after the final heat treatment, processing in a temperature range of 600 ° C. or lower may be performed.

本発明の銅合金における「析出物」とは金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等であり、例えば、Ti添加材ではCu4Ti、Zr添加材ではCu9Zr2、また、Cr添加剤では金属Crがそれぞれ析出する。また、「介在物」とは金属酸化物、金属炭化物、金属窒化物等である。 The “precipitate” in the copper alloy of the present invention is a metal or a compound of copper and an additive element, or a compound of additive elements, for example, Cu 4 Ti for a Ti additive, Cu 9 Zr 2 for a Zr additive. Also, Cr is deposited in the Cr additive. The “inclusions” are metal oxides, metal carbides, metal nitrides, and the like.

以下、本発明の実施の形態について説明する。なお、以下の説明において、各元素の含有量についての「%」は「質量%」を意味する。   Embodiments of the present invention will be described below. In the following description, “%” for the content of each element means “mass%”.

1.本発明の銅合金について
(a) 化学組成について
本発明の銅合金の一つは、前記(A)の合金であり、これは、0.1〜5%のBe、ならびに前記の第イ群から第ハ群までの少なくとも1群から選んだ少なくとも1種を含み残部が銅および不純物からなる。
1. About the copper alloy of the present invention (a) About the chemical composition One of the copper alloys of the present invention is the alloy of the above (A), which is 0.1 to 5% of Be, as well as the first group to the second group. Including at least one selected from at least one group up to the group, the balance consists of copper and impurities.

まず、Beは、導電率を大きく損ねずに合金の析出強化に寄与する元素である。その含有量が0.1%未満ではこの効果が得られない。一方、5%を超えると、導電率が低下するばかりか、延性が低下して圧延や曲げ加工等における加工性が劣化する。従って、Beの適正含有量は0.1〜5%である。   First, Be is an element that contributes to precipitation strengthening of an alloy without significantly impairing electrical conductivity. If the content is less than 0.1%, this effect cannot be obtained. On the other hand, if it exceeds 5%, not only the electrical conductivity is lowered, but also the ductility is lowered and the workability in rolling, bending and the like is deteriorated. Therefore, the proper content of Be is 0.1 to 5%.

イ群、ロ群およびハ群の元素は、いずれも本発明合金の強度と導電率のバランスを従来のCu−Be合金と同等に維持しながら耐食性および耐熱性の改善に寄与する。ただし、適正含有量は、それぞれの群によって異なる。   The elements of Group A, Group B and Group C all contribute to improvement in corrosion resistance and heat resistance while maintaining the balance between strength and conductivity of the alloy of the present invention equivalent to that of the conventional Cu-Be alloy. However, the appropriate content varies depending on each group.

第イ群の元素、即ち、Cr、Fe、Co、Nb、Ta、V、Ni、Mn、SnおよびAgは、それぞれ、または合計含有量で0.1%以上のときに上記の効果が顕著になる。一方、それぞれ、または合計含有量で、5%を超えると、導電率の低下を招く。従って、これらの元素は、1種または2種以上の合計含有量で0.1〜5%の範囲とする必要がある。特にAgおよびSnは微細析出により高強度化に寄与するので、積極的に利用するのが好ましい。   The above effects become remarkable when the elements of the first group, that is, Cr, Fe, Co, Nb, Ta, V, Ni, Mn, Sn, and Ag are each 0.1% or more in total. On the other hand, if the total content exceeds 5%, the electrical conductivity decreases. Therefore, these elements need to be in the range of 0.1 to 5% in total content of one kind or two or more kinds. In particular, Ag and Sn are preferably used positively because they contribute to high strength through fine precipitation.

第ロ群の元素、即ち、Al、Si、Mo、WおよびGeは、0.01%以上のときに上記の効果が現れ、それぞれ、または合計含有量で、5%を超えると、導電率の低下を招く。   The above-mentioned effect appears when the element of the second group, that is, Al, Si, Mo, W and Ge, is 0.01% or more, and when the total content exceeds 5%, the conductivity decreases. Invite.

第ハ群の元素、即ち、Zn、Te、SeおよびCdは、それぞれ、または合計含有量で、0.01%以上のときに上記の効果が現れ、それぞれ、または合計含有量で、3%を超えると、導電率の低下を招く。   Group C elements, that is, Zn, Te, Se and Cd, respectively, or the total content, the above effect appears when the content is 0.01% or more, and when each or the total content exceeds 3% , Leading to a decrease in conductivity.

本発明の合金の他の一つ(前記(B)の合金)は、質量%でそれぞれ0.01〜3%のTi、ZrおよびHfを含む。これらは、いずれも引張強度を向上させるのに有効な元素であるため、これらの元素のいずれか1種を本発明の銅合金に含有させてもよい。強度向上の効果は、これらの元素の含有量が0.01%以上の場合に顕著となる。しかし、その含有量が3%を超えると、強度は上昇するものの導電性が劣化する。さらに、鋳造時にTi、ZrまたはHfの偏析を招いて均質な鋳片が得られにくくなり、その後の加工時に割れや欠けが発生しやすくなる。従って、Ti、ZrおよびHfのいずれか1種を含有させる場合の含有量はいずれも0.01〜3%とするのが望ましい。引張強度と導電率のバランスが極めて良好な状態を得るためには、これらの元素を0.1%以上含有させるのがより望ましい。   Another one of the alloys of the present invention (alloy (B)) contains 0.01 to 3% by mass of Ti, Zr and Hf, respectively. Since these are all effective elements for improving the tensile strength, any one of these elements may be contained in the copper alloy of the present invention. The effect of improving the strength becomes significant when the content of these elements is 0.01% or more. However, when its content exceeds 3%, the strength increases but the conductivity deteriorates. Furthermore, segregation of Ti, Zr or Hf is caused during casting, and it becomes difficult to obtain a homogeneous slab, and cracks and chips are likely to occur during subsequent processing. Therefore, the content of any one of Ti, Zr and Hf is preferably 0.01 to 3%. In order to obtain a state where the balance between the tensile strength and the electrical conductivity is extremely good, it is more desirable to contain these elements in an amount of 0.1% or more.

上記の本発明合金は、前記ニ群およびホ群のいずれか一方または両方から選んだ少なくとも1種を含んでもよい。これらの群の元素は、合金の鋳込み時の液相線と固相線の幅(ΔT)を拡げる効果を有する。このΔTが大きいと、鋳込み後から凝固するまでに一定時間を確保できるので、鋳込みが容易になる。   The above-mentioned alloy of the present invention may contain at least one selected from either one or both of the above-mentioned group D and group E. These groups of elements have the effect of widening the width (ΔT) of the liquidus and solidus at the time of casting of the alloy. If this ΔT is large, a certain time can be secured until solidification after casting, so that casting becomes easy.

第ニ群の元素、即ち、P、B、S、PdおよびAsは、それぞれ0.001〜0.5%とするのがよい。第ホ群の元素、即ち、Bi、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、AuおよびGaは、それぞれ0.001〜1%(但し2種以上併用する場合は、合計で0.001〜1%)とするのがよい。なお、ΔTは、急冷凝固の場合には、いわゆる過冷現象により大きくなるが、ここでは、目安として熱平衡状態でのΔTについて考える。   The elements of the second group, that is, P, B, S, Pd and As are preferably 0.001 to 0.5%, respectively. Group E elements, namely Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, and Ga, are 0.001 to 1% each (however, two types) When used in combination, the total content is preferably 0.001 to 1%). In the case of rapid solidification, ΔT increases due to a so-called supercooling phenomenon, but here, ΔT in a thermal equilibrium state is considered as a guide.

上記のように、これらの元素には固相線を低下させてΔTを大きくする効果があるが、ΔTが広すぎると、低温域での耐力が低下し、凝固末期に割れが生じる、いわゆるハンダ脆性が生じる。このため、ΔTは50〜200℃の範囲とするのが好ましい。上記のそれぞれの含有量は、この50〜200℃を得るのに適当な含有量である。   As described above, these elements have the effect of lowering the solidus and increasing ΔT. However, if ΔT is too wide, the proof stress in the low temperature range decreases and cracking occurs at the end of solidification. Brittleness occurs. For this reason, ΔT is preferably in the range of 50 to 200 ° C. Each of the above contents is an appropriate content for obtaining this 50 to 200 ° C.

本発明合金はまた、前記の第ヘ群の元素、即ち、それぞれ0.001〜2%のMg、Li、Caおよび希土類元素の1種以上を含んでもよい。但し、2種以上の場合は合計で0.001〜2%とする。   The alloy of the present invention may also contain one or more elements of the above-mentioned group F, that is, 0.001 to 2% of Mg, Li, Ca and rare earth elements. However, in the case of 2 or more types, the total content is 0.001 to 2%.

Mg、Li、Caおよび希土類元素は、銅マトリックス中の酸素原子と結びついて微細な酸化物を生成して高温強度を上げる元素である。その効果は、これらの元素の合計含有量が0.001%以上のときに顕著となる。しかし、その含有量がそれぞれ、または合計で、2%を超えると、上記の効果が飽和し、しかも導電率を低下させ、曲げ加工性を劣化させる等の問題がある。従って、Mg、Li、Caおよび希土類元素の中から選ばれた1種または2種以上を含有させる場合の合計含有量は0.001〜2%が望ましい。なお、希土類元素は、Sc、Yおよびランタノイドを意味し、それぞれの元素の単体を添加してもよく、また、ミッシュメタルを添加してもよい。   Mg, Li, Ca and rare earth elements are elements that increase the high-temperature strength by combining with oxygen atoms in the copper matrix to form fine oxides. The effect becomes remarkable when the total content of these elements is 0.001% or more. However, when the content thereof exceeds 2% in total or in total, there are problems such as saturation of the above effects, lowering of conductivity, and deterioration of bending workability. Accordingly, the total content when one or more selected from Mg, Li, Ca and rare earth elements is contained is preferably 0.001 to 2%. In addition, rare earth elements mean Sc, Y, and a lanthanoid, and the simple substance of each element may be added and a misch metal may be added.

C、NおよびOは通常不純物として含まれる元素である。これらの元素は合金中の金属元素と炭化物、窒化物および酸化物を形成する。これらの析出物または介在物が微細であれば、後述する金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物と同様に合金の強化、特に高温強度を上げる作用があるので、積極的に添加してもよい。例えば、Oは酸化物を形成して高温強度を上げる効果を有する。この効果は、Mg、Li、Caおよび希土類元素、Al、Si等の酸化物を作りやすい元素を含有する合金において得られやすい。ただし、その場合も固溶Oが残らないような条件を選定する必要がある。残留固溶酸素は、水素雰囲気下での熱処理時にHOガスとなって水蒸気爆発を起こす、いわゆる水素病を発生し、ブリスター等が生成して製品の品質を劣化させることがあるので、注意を要する。 C, N and O are elements usually contained as impurities. These elements form carbides, nitrides and oxides with the metal elements in the alloy. If these precipitates or inclusions are fine, they have the effect of strengthening the alloy, particularly increasing the high-temperature strength, in the same manner as precipitates such as compounds of metals or copper and additive elements described later, or compounds of additive elements. Therefore, you may add actively. For example, O has an effect of increasing the high temperature strength by forming an oxide. This effect is easily obtained in an alloy containing an element that easily forms an oxide such as Mg, Li, Ca, rare earth elements, Al, and Si. In this case, however, it is necessary to select conditions that do not leave solid solution O. Residual dissolved oxygen, cause steam explosion becomes the H 2 O gas in the heat treatment in the hydrogen atmosphere and generates a so-called hydrogen disease, since the generated blister like may degrade the quality of the products, attention Cost.

これらの元素がそれぞれ1%を超えると粗大析出物または介在物となり、延性を低下させる。よって、それぞれ1%以下に制限することが好ましい。更に好ましいのは、0.1%以下である。また、Hは、合金中に不純物として含まれると、Hガスが合金中に残り、圧延疵等の原因となるので、その含有量はできるだけ少ないことが望ましい。 When each of these elements exceeds 1%, coarse precipitates or inclusions are formed, and ductility is lowered. Therefore, it is preferable to limit each to 1% or less. More preferred is 0.1% or less. Further, if H is contained as an impurity in the alloy, H 2 gas remains in the alloy and causes rolling defects or the like. Therefore, its content is desirably as small as possible.

(b)析出物および介在物の合計個数について
本発明の銅合金においては、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することが必要である。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。(1)式には、析出物および介在物の粒径の測定値が1.0μm以上1.5μm未満の場合、X=1を代入し、「α−0.5」μm以上「α+0.5」μm未満の場合、X=α(αは2以上の整数)を代入すればよい。
(B) About the total number of precipitates and inclusions In the copper alloy of the present invention, among the precipitates and inclusions present in the alloy, the particle size of those having a particle size of 1 μm or more, and the total of the precipitates and inclusions It is necessary for the number to satisfy the relationship represented by the following formula (1).
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions. In the formula (1), when the measured value of the particle size of the precipitates and inclusions is 1.0 μm or more and less than 1.5 μm, X = 1 is substituted and “α−0.5” or more and “α + 0.5” less than “μm”. In this case, X = α (α is an integer of 2 or more) may be substituted.

本発明の銅合金では、金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物を微細に析出させることによって、導電率を低下させることなく強度を向上させることができる。これらは、析出硬化により強度を高める。固溶したCr、TiおよびZrは、Cuまたは/および他の合金元素との金属間化合物や金属析出物として析出し、導電性に有害な固溶元素を減少させ、導電性を純銅のそれに近づける作用を持つ。   In the copper alloy of the present invention, the strength can be improved without reducing the electrical conductivity by finely depositing a precipitate such as a metal or a compound of copper and an additive element, or a compound of additive elements. These increase the strength by precipitation hardening. Solid solution of Cr, Ti and Zr precipitates as intermetallic compounds and metal precipitates with Cu or / and other alloy elements, reduces solid solution elements harmful to conductivity, and brings conductivity closer to that of pure copper Has an effect.

しかし、これらの析出物および金属酸化物、金属炭化物、金属窒化物等の介在物の粒径が20μm以上と粗大に析出すると、延性が低下して例えばコネクタへの加工時の曲げ加工や打ち抜き時に割れや欠けが発生し易くなる。また、使用時に疲労特性や耐衝撃特性に悪影響を及ぼすことがある。特に、凝固後の冷却時に粗大なTi−Cr化合物が生成すると、その後の加工工程で割れや欠けが生じやすくなる。また、時効処理工程で硬さが増加しすぎるので、これらの析出物等の微細析出を阻害し、銅合金の高強度化ができなくなる。このような問題は、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数と上記(1)式で示される関係を満たさない場合に顕著となる。   However, if these precipitates and inclusions such as metal oxides, metal carbides, and metal nitrides are coarsely deposited with a particle size of 20 μm or more, the ductility deteriorates, for example, during bending or punching when processing connectors. Cracks and chips are likely to occur. In addition, fatigue characteristics and impact resistance characteristics may be adversely affected during use. In particular, when a coarse Ti—Cr compound is produced during cooling after solidification, cracks and chips are likely to occur in subsequent processing steps. Moreover, since hardness increases too much at an aging treatment process, fine precipitation of these precipitates etc. is inhibited and it becomes impossible to make copper alloy high intensity | strength. Such a problem does not satisfy the relationship represented by the above formula (1) with the particle size of the precipitates and inclusions present in the alloy having a particle size of 1 μm or more, the total number of precipitates and inclusions. The case becomes noticeable.

このため、本発明では、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数と上記(1)式で示される関係を満足することを必須要件として規定した。望ましい析出物および介在物の合計個数は、下記(2)式で示される関係を満たす場合であり、更に望ましいのは、下記(3)式で示される関係を満たす場合である。なお、これらの粒径と、析出物および介在物の合計個数とは、実施例に示す方法により求められる。
logN≦0.4742+7.9749×exp(−0.1133×X) ・・・ (2)
logN≦0.4742+6.3579×exp(−0.1133×X) ・・・ (3)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
For this reason, in the present invention, among the precipitates and inclusions present in the alloy, the particle size of the particles having a particle size of 1 μm or more, the total number of precipitates and inclusions, and the relationship represented by the above formula (1) are satisfied. It was stipulated as an essential requirement. Desirable total number of precipitates and inclusions is a case where the relationship represented by the following formula (2) is satisfied, and more desirable is a case where the relationship represented by the following formula (3) is satisfied. In addition, these particle sizes and the total number of precipitates and inclusions can be obtained by the method shown in the examples.
logN ≦ 0.4742 + 7.9749 × exp (−0.1133 × X) (2)
logN ≦ 0.4742 + 6.3579 × exp (−0.1133 × X) (3)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.

(c) 少なくとも1種の合金元素の微小領域における平均含有量の最大値と含有量の最小値との比について
銅合金中に合金元素の濃度が異なる領域が微細に混在した組織、すなわち周期的な濃度変化が生じると、各元素のミクロ拡散を抑制し、粒界移動を抑制するので、微細結晶粒組織が得やすいという効果がある。その結果、いわゆるホールペッチ則に従い、銅合金の強度・延性が向上する。微小領域とは、0.1〜1μm径からなる領域をいい、実質的にはX線分析したときの照射面積と対応する領域を言う。
(C) The ratio of the maximum value of the average content and the minimum value of the content of at least one kind of alloy element in a minute region A structure in which regions of different concentrations of alloy elements are finely mixed in a copper alloy, that is, periodic When such a concentration change occurs, the microdiffusion of each element is suppressed and the grain boundary movement is suppressed, so that there is an effect that a fine crystal grain structure is easily obtained. As a result, the strength and ductility of the copper alloy are improved according to the so-called Hall Petch rule. The micro area refers to an area having a diameter of 0.1 to 1 μm, and substantially refers to an area corresponding to an irradiation area when X-ray analysis is performed.

なお、本発明における合金元素濃度が異なる領域とは、以下の2種類である。
(1)基本的にCuと同じfcc構造を持つが、合金元素濃度の異なる状態。合金元素濃度が異なるので、同じfcc構造でありながら一般には格子定数が異なり、加工硬化の程度も当然異なる。
(2)fcc母相中に微細な析出物が分散する状態。合金元素濃度が異なるので、加工・熱処理を経た後の析出物の分散状況も当然異なる。
The regions having different alloy element concentrations in the present invention are the following two types.
(1) Basically the same fcc structure as Cu, but with different alloy element concentrations. Since the alloy element concentrations are different, the lattice constants are generally different while the fcc structure is the same, and the degree of work hardening is naturally different.
(2) A state in which fine precipitates are dispersed in the fcc matrix. Since the alloy element concentrations are different, the dispersion state of the precipitates after processing and heat treatment is naturally different.

微小領域における平均含有量とは、X線分析において一定の1μm以下のビーム径に絞ったときの分析面積での値、すなわち該領域における平均値を意味する。X線分析であれば、フィールドエミッションタイプの電子銃を有する分析装置が望ましい。分析手段については、濃度周期の1/5以下の分解能を持った分析手法が望ましく、更に望ましくは1/10である。この理由は、濃度周期に対して分析領域が大きすぎると全体が平均化されて濃度差が現れにくくなるためである。一般的にはプローブ径が1μm程度のX線分析法で測定できる。   The average content in a minute region means a value in an analysis area when the beam diameter is reduced to a certain 1 μm or less in X-ray analysis, that is, an average value in the region. For X-ray analysis, an analyzer having a field emission type electron gun is desirable. As the analysis means, an analysis method having a resolution of 1/5 or less of the concentration cycle is desirable, and more preferably 1/10. This is because if the analysis region is too large with respect to the concentration period, the whole is averaged and it is difficult for a concentration difference to appear. Generally, it can be measured by an X-ray analysis method with a probe diameter of about 1 μm.

材料特性を決定するのは母相中における合金元素濃度と微細析出物であり、本発明では微細析出物を含めた微小領域の濃度差を問題にする。したがって、1μm以上の粗大析出物や粗大介在物からのシグナルは外乱要因となる。しかし、工業材料から粗大析出物あるいは粗大介在物を完全に除去するのは困難であり、分析時には上記の粗大析出物・介在物からの外乱要因を除去する必要がある。そのためには以下のようにする。   The material characteristics are determined by the alloy element concentration and fine precipitates in the parent phase. In the present invention, the difference in concentration in a minute region including the fine precipitates is a problem. Therefore, a signal from coarse precipitates and coarse inclusions of 1 μm or more becomes a disturbance factor. However, it is difficult to completely remove coarse precipitates or coarse inclusions from industrial materials, and it is necessary to remove disturbance factors from the coarse precipitates / inclusions during analysis. To do so, do the following:

すなわち、まず、材料にもよるが、プローブ径が1μm径程度のX線分析装置で線分析を行って濃度の周期構造を把握する。上述のようにプローブ径が濃度周期の1/5程度以下になるように分析方法を決定する。次いで周期が3回程度以上現れる十分な長さの線分析長さを決定する。この条件でm回(10回以上が望ましい)の線分析を行い、それぞれの線分析結果について濃度の最大値と最小値を決定する。   That is, first, although depending on the material, the periodic structure of the concentration is grasped by performing a line analysis with an X-ray analyzer having a probe diameter of about 1 μm. As described above, the analysis method is determined so that the probe diameter is about 1/5 or less of the concentration period. Next, a line analysis length having a sufficient length in which the cycle appears about three times or more is determined. Under this condition, line analysis is performed m times (preferably 10 times or more), and the maximum and minimum concentrations are determined for each line analysis result.

最大値と最小値の数はmとなるが、それぞれについて値の大きい方から2割をカットして平均化する。以上によって、上述の粗大析出物・介在物からのシグナルは外乱要因を除去できる。   The number of maximum and minimum values is m, but for each, cut 20% from the larger value and average. As described above, the signal from the coarse precipitates / inclusions described above can remove disturbance factors.

前述した外乱要因を除去した最大値および最小値の比によって、濃度比を求める。なお、濃度比は、1μm程度以上の周期的な濃度変化を有する合金元素について求めればよく、スピノーダル分解や微細析出物のような10nm程度以下の原子レベルの濃度変化は考慮しない。   The concentration ratio is obtained by the ratio between the maximum value and the minimum value from which the disturbance factors are removed. The concentration ratio may be obtained for an alloy element having a periodic concentration change of about 1 μm or more, and does not take into account atomic level concentration change of about 10 nm or less such as spinodal decomposition or fine precipitates.

合金元素が微細に分布することによって延性が向上する理由についてやや詳細に説明する。合金元素の濃度変化が生じると、高濃度部分と低濃度部分とで材料の固溶硬化の程度、あるいは上述のように析出物の分散状況が異なるので、両部分で機械的性質が異なってくる。このような材料の変形中には、まず、相対的に軟らかい低濃度部分が加工硬化し、次いで相対的に硬い高濃度部分の変形が始まる。言い換えると、材料全体では複数回の加工硬化が起こるので、例えば引張変形の場合には高い伸びを示すことになり、別の延性向上効果が現れる。かくして、合金元素の周期的な濃度変化が生じた合金では、導電率および引張強度のバランスを保ちながら、曲げ加工時等に有利な高延性を発揮できる。   The reason why the ductility is improved by finely distributing the alloy elements will be described in some detail. When the concentration of the alloy element changes, the degree of solid solution hardening of the material in the high concentration portion and the low concentration portion, or the dispersion state of the precipitates as described above, the mechanical properties differ in both portions. . During the deformation of such a material, first, the relatively soft low concentration portion is work-hardened, and then the relatively hard high concentration portion begins to deform. In other words, since the work hardening occurs several times in the entire material, for example, in the case of tensile deformation, high elongation is exhibited, and another effect of improving ductility appears. Thus, in an alloy in which a periodic concentration change of the alloy element occurs, high ductility advantageous at the time of bending or the like can be exhibited while maintaining a balance between conductivity and tensile strength.

なお、電気抵抗(導電率の逆数)は、主として電子移動が固溶元素の散乱に起因して低下する現象に対応しており、結晶粒界のようなマクロな欠陥にはほとんど影響されないので、上記の細粒組織によって導電率が低下することはない。   The electrical resistance (reciprocal of electrical conductivity) mainly corresponds to a phenomenon in which electron transfer decreases due to scattering of solid solution elements, and is hardly affected by macro defects such as crystal grain boundaries. The conductivity is not lowered by the fine grain structure.

これらの効果は、母相中における少なくとも1種の合金元素の微小領域における平均含有量の最大値と平均含有量の最小値の比(以下、単に「濃度比」という。)が1.5以上である場合に顕著となる。濃度比は、上限を特に定めないが、濃度比が大き過ぎると、Cu合金の持つfcc構造が保てなく恐れがある他、電気化学特性の差が大きくなりすぎて局部腐食を起こしやすくなるなどの弊害が出る可能性がある。従って、濃度比は、好ましくは20以下、さらに好ましくは10以下とするのがよい。   As for these effects, the ratio of the maximum value of the average content to the minimum value of the average content (hereinafter simply referred to as “concentration ratio”) in a micro region of at least one alloy element in the matrix is 1.5 or more. The case becomes noticeable. The upper limit of the concentration ratio is not particularly limited, but if the concentration ratio is too large, the fcc structure of the Cu alloy may not be maintained, and the difference in electrochemical characteristics may become too large to cause local corrosion. May be harmful. Therefore, the concentration ratio is preferably 20 or less, more preferably 10 or less.

(d) 結晶粒径について
銅合金の結晶粒径を細かくすると、高強度化に有利であるとともに、延性も向上して曲げ加工性などが向上する。しかし、結晶粒径が0.01μmを下回ると高温強度が低下しやすくなり、35μmを超えると延性が低下する。従って、結晶粒径は0.01〜35μmであるのが望ましい。
(D) About crystal grain size When the crystal grain size of the copper alloy is made fine, it is advantageous for increasing the strength and also improves ductility and improves bending workability. However, when the crystal grain size is less than 0.01 μm, the high-temperature strength tends to decrease, and when it exceeds 35 μm, the ductility decreases. Therefore, the crystal grain size is desirably 0.01 to 35 μm.

2.本発明の銅合金の製造方法について
本発明の銅合金においては、金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の微細析出を妨げる金属酸化物、金属炭化物、金属窒化物等の介在物が鋳片の凝固直後の時点で生成しやすい。このような介在物は、仮に、鋳造後に溶体化処理を施し、この溶体化温度を上げても固溶化させるのは困難である。高温での溶体化処理は、介在物の凝集、粗大化を招くだけである。
2. About the manufacturing method of the copper alloy of this invention In the copper alloy of this invention, the metal oxide, metal carbide, metal nitride, etc. which prevent fine precipitation, such as a compound of a metal or copper, and an additive element, or a compound of additive elements, etc. The inclusions are likely to be generated immediately after solidification of the slab. Even if such inclusions are subjected to a solution treatment after casting and raising the solution temperature, it is difficult to make them solid. The solution treatment at high temperature only leads to aggregation and coarsening of inclusions.

そこで、本発明の銅合金の製造方法においては、上記の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において、0.5℃/s以上の冷却速度で冷却することによって、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足させることとした。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
Therefore, in the method for producing a copper alloy of the present invention, a slab obtained by melting and casting a copper alloy having the above chemical composition is at least in a temperature range from a slab temperature immediately after casting to 450 ° C. , By cooling at a cooling rate of 0.5 ° C./s or more, among the precipitates and inclusions present in the alloy, the particle size of those having a particle size of 1 μm or more and the total number of precipitates and inclusions are as follows ( The relationship expressed by equation (1) was satisfied.
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.

この冷却後には、600℃以下の温度域での加工、または更に、150〜750℃の温度域で30秒以上保持する熱処理を施すことが望ましい。600℃以下の温度域での加工および150〜750℃の温度域で30秒以上保持する熱処理は、複数回実施してもよい。また、最後の熱処理の後に、600℃以下の温度域での加工を実施してもよい。   After this cooling, it is desirable to perform processing in a temperature range of 600 ° C. or lower, or further heat treatment for holding in a temperature range of 150 to 750 ° C. for 30 seconds or more. The processing in the temperature range of 600 ° C. or less and the heat treatment for holding in the temperature range of 150 to 750 ° C. for 30 seconds or more may be performed a plurality of times. Further, after the final heat treatment, processing in a temperature range of 600 ° C. or lower may be performed.

(a)少なくとも鋳造直後の鋳片温度から450℃までの温度域における冷却速度:0.5℃/s以上
金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物は280℃以上の温度域で生成する。特に、鋳造直後の鋳片温度から450℃までの温度域における冷却速度が遅いと、金属酸化物、金属炭化物、金属窒化物等の介在物が粗大に生成し、その粒径が20μm以上、更には数百μmに達することがある。また、上記の析出物も20μm以上に粗大化する。このような粗大な析出物および介在物が生成した状態では、その後の加工時に割れや折れが発生する恐れがあるだけでなく、時効工程での上記の析出物の析出硬化作用が損なわれ、合金を高強度化できなくなる。従って、少なくともこの温度域においては、0.5℃/s以上の冷却速度で鋳片を冷却する必要がある。冷却速度は大きい程よく、好ましい冷却速度は、2℃/s以上であり、さらに好ましいのは10℃/s以上である。
(A) Cooling rate at least in the temperature range from slab temperature immediately after casting to 450 ° C .: 0.5 ° C./s or more Precipitates such as compounds of metals or copper and additive elements, or compounds of additive elements are 280 ° C. or more It is generated in the temperature range. In particular, when the cooling rate in the temperature range from slab temperature immediately after casting to 450 ° C. is slow, inclusions such as metal oxides, metal carbides, and metal nitrides are generated coarsely, and the particle size is 20 μm or more. Can reach hundreds of micrometers. In addition, the above precipitate is also coarsened to 20 μm or more. In the state in which such coarse precipitates and inclusions are generated, not only may there be a risk of cracking or breaking during subsequent processing, but the precipitation hardening action of the precipitates in the aging process is impaired, and the alloy The strength cannot be increased. Therefore, at least in this temperature range, it is necessary to cool the slab at a cooling rate of 0.5 ° C./s or more. The higher the cooling rate, the better. The preferable cooling rate is 2 ° C./s or more, and more preferably 10 ° C./s or more.

(b)冷却後の加工温度:600℃以下の温度域
本発明の銅合金の製造方法においては、鋳造して得た鋳片は、所定の条件で冷却された後、熱間圧延や溶体化処理等の熱間プロセスを経ることなく、加工と時効熱処理の組み合わせのみによって最終製品に至る。
(B) Processing temperature after cooling: Temperature range of 600 ° C. or lower In the method for producing a copper alloy of the present invention, a cast piece obtained by casting is cooled under a predetermined condition, and then hot rolled or solutionized. Without passing through a hot process such as processing, the final product is reached only by a combination of processing and aging heat treatment.

圧延、線引き等の加工は、600℃以下であればよい。例えば、連続鋳造を採用する場合には、凝固後の冷却過程でこれらの加工を行ってもよい。600℃を超える温度域で加工を行うと、加工時に金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物が粗大に析出し、最終製品の延性、耐衝撃性、疲労特性を低下させる。また、これらの析出物は、加工時に粗大に析出すると、時効処理において微細に析出することができなくなり、銅合金の高強度化が不十分となる。   Processing such as rolling and drawing may be performed at 600 ° C. or lower. For example, when continuous casting is employed, these processes may be performed in the cooling process after solidification. When processing in a temperature range exceeding 600 ° C, precipitates such as compounds of metals or copper and additive elements, or compounds of additive elements precipitate coarsely during processing, resulting in ductility, impact resistance and fatigue of the final product. Degrading properties. In addition, if these precipitates are coarsely deposited during processing, they cannot be finely precipitated in the aging treatment, and the strength of the copper alloy is not sufficiently increased.

加工温度は、低いほど加工時の転位密度が上昇するので、引き続いて行う時効処理で金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物をより微細に析出させることができる。このため、より高い強度を銅合金に与えることができる。従って、好ましい加工温度は450℃以下であり、より好ましいのは250℃以下である。最も好ましいのは200℃以下である。25℃以下でもよい。   The lower the processing temperature, the higher the dislocation density at the time of processing, so that precipitates such as a compound of a metal or copper and an additive element, or a compound of additive elements may be more finely precipitated by subsequent aging treatment. it can. For this reason, higher strength can be imparted to the copper alloy. Therefore, the preferable processing temperature is 450 ° C. or lower, and more preferably 250 ° C. or lower. Most preferred is 200 ° C. or lower. It may be 25 ° C or lower.

なお、上記の温度域での加工は、その加工率(断面減少率)を20%以上として行うことが望ましい。より好ましいのは50%以上である。このような加工率での加工を行えば、それによって導入された転位が時効処理時に析出核となるので、析出物の微細化をもたらし、また、析出に要する時間を短縮させ、導電性に有害な固溶元素の低減を早期に実現できる。   Note that the processing in the above temperature range is desirably performed at a processing rate (cross-sectional reduction rate) of 20% or more. More preferred is 50% or more. If processing is performed at such a processing rate, the dislocations introduced thereby become precipitation nuclei during the aging treatment, resulting in finer precipitates and shortening the time required for precipitation, which is harmful to conductivity. Reduction of solid solution elements can be realized at an early stage.

(c) 時効処理条件:150〜750℃の温度域で30秒以上保持する
時効処理は、金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物を析出させて銅合金を高強度化し、あわせて導電性に害を及ぼす固溶元素(Cr、Ti等)を低減して導電率を向上させるのに有効である。しかし、その処理温度が150℃未満の場合、析出元素の拡散に長時間を要し、生産性を低下させる。一方、処理温度が750℃を超えると、析出物が粗大になりすぎて、析出硬化作用による高強度化ができないばかりか、延性、耐衝撃性および疲労特性が低下する。このため、時効処理を150〜750℃の温度域で行うことが望ましい。望ましい時効処理温度は200〜700℃であり、更に望ましいのは、250〜650℃である。最も望ましいのは、280〜550℃である。
(C) Aging treatment condition: Hold for 30 seconds or more in a temperature range of 150 to 750 ° C. Aging treatment is a copper alloy by depositing a metal or a compound of copper and an additive element or a compound of additive elements. It is effective to improve the electrical conductivity by reducing the solid solution elements (Cr, Ti, etc.) that have an adverse effect on the electrical conductivity. However, when the treatment temperature is lower than 150 ° C., it takes a long time to diffuse the precipitated elements, which decreases productivity. On the other hand, when the treatment temperature exceeds 750 ° C., the precipitate becomes too coarse, and not only the strength cannot be increased by the precipitation hardening action, but also the ductility, impact resistance and fatigue characteristics are lowered. For this reason, it is desirable to perform an aging treatment in the temperature range of 150-750 degreeC. A desirable aging treatment temperature is 200 to 700 ° C, and more desirably 250 to 650 ° C. Most preferred is 280-550 ° C.

時効処理時間が30秒未満の場合、時効処理温度を高く設定しても所望の析出量を確保できず、72時間を超えると処理費用がかさむ。従って、150〜750℃の温度域で時効処理を30秒以上行うのが望ましい。この処理時間は5分以上が望ましく、更には10分以上が望ましい。最も望ましいのは15分以上である。処理時間の上限は特に定めないが、処理費用の観点から72時間以下とするのが望ましい。なお、時効処理温度が高い場合には、時効処理時間を短くすることができる。   If the aging treatment time is less than 30 seconds, the desired precipitation amount cannot be secured even if the aging treatment temperature is set high, and if it exceeds 72 hours, the treatment cost increases. Therefore, it is desirable to perform an aging treatment for 30 seconds or more in a temperature range of 150 to 750 ° C. This treatment time is preferably 5 minutes or longer, and more preferably 10 minutes or longer. Most desirable is 15 minutes or more. The upper limit of the processing time is not particularly defined, but is preferably 72 hours or less from the viewpoint of processing cost. In addition, when the aging treatment temperature is high, the aging treatment time can be shortened.

なお、時効処理は、表面の酸化によるスケールの発生を防ぐために、還元性雰囲気中、不活性ガス雰囲気中または20Pa以下の真空中で行うのがよい。このような雰囲気下での処理によって優れたメッキ性も確保される。   The aging treatment is preferably performed in a reducing atmosphere, in an inert gas atmosphere, or in a vacuum of 20 Pa or less in order to prevent generation of scale due to surface oxidation. Excellent plating properties are also ensured by the treatment under such an atmosphere.

上記の加工と時効処理は、必要に応じて、繰り返して行ってもよい。繰り返し行えば、1回の処理(加工および時効処理)で行うよりも、短い時間で所望の析出量を得ることができ、金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物をより微細に析出させることができる。このとき、例えば、処理を2回繰り返して行う場合には、1回目の時効処理温度よりも2回目の時効処理温度を若干低くする(20〜70℃低くする)のがよい。このような熱処理を行うのは、2回目の時効処理温度の方が高い場合、1回目の時効処理の際に生成した析出物が粗大化するからである。3回目以降の時効処理においても、上記と同様に、その前に行った時効処理温度より低くするのが望ましい。また、最後の熱処理の後に、600℃以下の温度域での加工を実施してもよい。   The above processing and aging treatment may be repeated as necessary. If repeated, a desired amount of precipitation can be obtained in a shorter time than in a single treatment (processing and aging treatment), such as a compound of a metal or copper and an additive element, or a compound of additive elements, etc. Precipitates can be more finely precipitated. At this time, for example, when the treatment is repeated twice, the second aging treatment temperature is preferably slightly lower (20-70 ° C.) than the first aging treatment temperature. The reason why such a heat treatment is performed is that when the temperature of the second aging treatment is higher, the precipitate generated during the first aging treatment becomes coarse. In the third and subsequent aging treatments, it is desirable that the temperature is lower than the aging treatment temperature performed before, similarly to the above. Further, after the final heat treatment, processing in a temperature range of 600 ° C. or lower may be performed.

(d) その他
本発明の銅合金の製造方法において、上記の製造条件以外の条件、例えば溶解、鋳造等の条件については特に限定はないが、例えば、下記のように行えばよい。
溶解は、非酸化性または還元性の雰囲気下で行うのがよい。これは、溶銅中の固溶酸素が多くなると後工程で、水蒸気が生成してブリスターが発生する、いわゆる水素病などが起こるからである。また、酸化しやすい固溶元素、例えば、Ti、Cr等の粗大酸化物が生成し、これが最終製品まで残存すると、延性や疲労特性を著しく低下させる。
(D) Others In the method for producing a copper alloy of the present invention, conditions other than the above production conditions, for example, conditions such as melting and casting are not particularly limited, but may be performed as follows, for example.
The dissolution is preferably performed in a non-oxidizing or reducing atmosphere. This is because when the amount of dissolved oxygen in the molten copper increases, so-called hydrogen disease, in which water vapor is generated and blisters are generated in the subsequent process, occurs. In addition, solid oxide elements that easily oxidize, for example, coarse oxides such as Ti and Cr, are generated, and when these remain in the final product, the ductility and fatigue characteristics are significantly reduced.

鋳片を得る方法は、生産性や凝固速度の点で連続鋳造が好ましいが、上述の条件を満たす方法であれば、他の方法、例えばインゴット法でも構わない。また、好ましい鋳込温度は、1250℃以上である。さらに好ましいのは1350℃以上である。この温度であれば、Cr、TiおよびZrを十分溶解させることができ、また金属酸化物、金属炭化物、金属窒化物等の介在物、金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物を生成させないからである。   As a method for obtaining a slab, continuous casting is preferable in terms of productivity and solidification speed, but other methods such as an ingot method may be used as long as the method satisfies the above-described conditions. A preferable casting temperature is 1250 ° C. or higher. More preferred is 1350 ° C. or higher. At this temperature, Cr, Ti and Zr can be sufficiently dissolved, and inclusions such as metal oxides, metal carbides and metal nitrides, compounds of metals or copper and additive elements, or between additive elements This is because precipitates such as compounds are not generated.

連続鋳造により鋳片を得る場合には、銅合金で通常行われる黒鉛モールドを用いる方法が潤滑性の観点から推奨される。モールド材質としては主要な合金元素であるTi、CrまたはZrと反応しにくい耐火物、例えばジルコニアを用いてもよい。   When obtaining a slab by continuous casting, a method using a graphite mold usually performed with a copper alloy is recommended from the viewpoint of lubricity. As the mold material, a refractory material that does not easily react with Ti, Cr, or Zr, which are main alloy elements, such as zirconia, may be used.

表1および表2に示す化学組成を有するCu合金を高周波溶解炉にて真空溶製し、ジルコニア製の鋳型に鋳込み、厚さ12mmの鋳片を得た。希土類元素は、各元素の単体またはミッシュメタルを添加した。得られた鋳片を、鋳造直後の温度(鋳型から取り出した直後の温度)である950℃から450℃までの温度域において噴霧冷却により所定の冷却速度で冷却した。鋳型に埋め込んだ熱電対によって所定の場所の鋳型の温度変化を計測し、鋳片が鋳型を出た後の表面温度を接触式温度計で数点計測した。これらの結果と伝熱解析との併用によって450℃までの鋳片表面の平均冷却速度を算出した。凝固開始点は、それぞれの成分における溶湯を0.2g用意し、所定の速度での連続冷却中の熱分析によって求めた。得られた鋳片から、切断と切削により厚さ10mm×幅80mm×長さ150mmの圧延素材を作製した。   Cu alloys having chemical compositions shown in Tables 1 and 2 were vacuum-melted in a high-frequency melting furnace and cast into a zirconia mold to obtain a slab having a thickness of 12 mm. As the rare earth element, a simple substance of each element or misch metal was added. The obtained slab was cooled at a predetermined cooling rate by spray cooling in a temperature range from 950 ° C. to 450 ° C., which is a temperature immediately after casting (temperature immediately after removal from the mold). The temperature change of the mold at a predetermined place was measured with a thermocouple embedded in the mold, and the surface temperature after the slab exited the mold was measured with a contact thermometer. The average cooling rate of the slab surface up to 450 ° C was calculated by combining these results and heat transfer analysis. The solidification start point was obtained by thermal analysis during continuous cooling at a predetermined rate by preparing 0.2 g of molten metal in each component. A rolled material having a thickness of 10 mm, a width of 80 mm, and a length of 150 mm was produced from the obtained slab by cutting and cutting.

比較のために一部の圧延素材については、950℃で溶体化熱処理を行った。これらの圧延素材に室温にて圧下率80%の圧延(1回目圧延)を施して厚さ2mmの板材とし、所定の条件で時効処理(1回目時効)を施して供試材を作製した。一部の供試材については、更に、室温にて圧下率95%の圧延(2回目圧延)を行って厚さ0.1mmとし、所定の条件で時効処理(2回目時効)を施した。これらの製造条件を表3および表4に示す。   For comparison, some of the rolling materials were subjected to solution heat treatment at 950 ° C. These rolled materials were subjected to rolling at a reduction rate of 80% at room temperature (first rolling) to obtain a plate material having a thickness of 2 mm, and subjected to aging treatment (first aging) under predetermined conditions to prepare test materials. Some test materials were further rolled at a reduction rate of 95% at room temperature (second rolling) to a thickness of 0.1 mm and subjected to aging treatment (second aging) under predetermined conditions. These production conditions are shown in Tables 3 and 4.

このように作製した供試材について、下記の手法により、析出物および介在物の粒径および単位面積当たりの合計個数、引張強度、導電率および曲げ加工性を求めた。これらの結果を表3および表4に併記する。   With respect to the test material thus prepared, the particle size of precipitates and inclusions, the total number per unit area, tensile strength, electrical conductivity, and bending workability were determined by the following method. These results are also shown in Tables 3 and 4.

1.析出物および介在物の合計個数
各供試材の圧延面に垂直で、かつ圧延方向と平行な断面を鏡面研磨し、そのままの状態で、またはアンモニア水溶液でエッチングした後、光学顕微鏡により100倍の倍率で1mm×1mmの視野を観察した。その後、析出物および介在物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)を測定して得た値を粒径と定義する。
1. The total number of precipitates and inclusions The cross section perpendicular to the rolling surface of each specimen and parallel to the rolling direction is mirror-polished and etched as it is or with an aqueous ammonia solution. A field of view of 1 mm × 1 mm was observed at a magnification. Thereafter, the value obtained by measuring the major axis of the precipitates and inclusions (the length of the straight line that can be drawn the longest in the grain under conditions that do not contact the grain boundary in the middle) is defined as the grain size.

前記の(1)式には、析出物および介在物の粒径の測定値が1.0μm以上1.5μm未満の場合はX=1を代入し、「α−0.5」μm以上で「α+0.5」μm未満の場合はX=α(αは2以上の整数)を代入すればよい。更に、粒径毎に1mm×1mmの視野の枠線を交差するものを1/2個、枠線内にあるものを1個として合計個数n1算出し、任意に選んだ10視野における個数N(=n1+n2+・・・+n10)の平均値(N/10)をその試料のそれぞれの粒径についての析出物および介在物の合計個数と定義する。 In the above formula (1), X = 1 is substituted when the measured value of the particle size of the precipitates and inclusions is 1.0 μm or more and less than 1.5 μm, and “α + 0.5” when “α−0.5” μm or more. If it is less than μm, X = α (α is an integer of 2 or more) may be substituted. Furthermore, for each particle size, the total number n 1 is calculated by assuming that one that intersects the frame of the 1 mm × 1 mm field of view and one that is within the frame, and the number N in 10 fields of view selected arbitrarily. The average value (N / 10) of (= n 1 + n 2 +... + N 10 ) is defined as the total number of precipitates and inclusions for each particle size of the sample.

2.濃度比
合金の断面を研磨して0.5μmのビーム径で、2000倍の視野で50μm長さをX線分析によって無作為に10回線分析し、それぞれの線分析における各合金元素の含有量の最大値および最小値を求めた。最大値と最小値それぞれについて値の大きい2ヶを除去した残りの8回分について最大値と最小値の平均値を求め、その比を濃度比として算出した。
2. Concentration ratio Polishing the cross section of the alloy, analyzing 10 lines randomly by X-ray analysis of 50μm length with a beam diameter of 0.5μm and a field of view of 2000 times, and maximizing the content of each alloy element in each line analysis Values and minimum values were determined. The average value of the maximum value and the minimum value was obtained for the remaining 8 times from which two large values were removed for the maximum value and the minimum value, and the ratio was calculated as the concentration ratio.

3.引張強度
上記の供試材から引張方向と圧延方向が平行になるようにJIS Z 2201に規定される13B号試験片を採取し、JIS Z 2241に規定される方法に従い、室温(25℃)での引張強度〔TS(MPa)〕を求めた。
3. Tensile strength Take a 13B test piece specified in JIS Z 2201 so that the tensile direction and the rolling direction are parallel to each other from the above specimens, and follow the method specified in JIS Z 2241 at room temperature (25 ° C). Tensile strength [TS (MPa)] of was determined.

4.導電率
上記の供試材から長手方向と圧延方向が平行になるように幅10mm×長さ60mmの試験片を採取し、試験片の長手方向に電流を流して試験片の両端の電位差を測定し、4端子法により電気抵抗を求めた。続いてマイクロメータで計測した試験片の体積から、単位体積当たりの電気抵抗(抵抗率)を算出し、多結晶純銅を焼鈍した標準試料の抵抗率1.72μΩ・cmとの比から導電率〔IACS(%)〕を求めた。
4). Conductivity Take a test piece of width 10mm x length 60mm so that the longitudinal direction and the rolling direction are parallel to each other from the above specimens, and measure the potential difference between both ends of the test piece by passing current in the longitudinal direction of the test piece Then, the electric resistance was obtained by a four-terminal method. Subsequently, the electrical resistance (resistivity) per unit volume is calculated from the volume of the test piece measured with a micrometer, and the conductivity [IACS is calculated from the ratio of the resistivity of 1.72 μΩ · cm of the standard sample annealed with polycrystalline pure copper. (%)].

5.曲げ加工性
上記の供試材から長手方向と圧延方向が平行になるように、幅10mm×長さ60mmの試験片を複数採取し、曲げ部の曲率半径(内径)を変えて、90°曲げ試験を実施した。光学顕微鏡を用いて、試験後の試験片の曲げ部を外径側から観察した。そして、割れが発生しない最小の曲率半径をRとし、試験片の厚さtとの比B(=R/t)を求めた。曲げ加工性の欄の「評価」は、引張強度TSが800MPa以下の板材ではB≦2.0を満たすもの、引張強度TSが800MPaを超える板材では下記の(b)式を満たす場合を「○」とし、これらを満たさない場合を「×」とした。
B≦41.2686−39.4583×exp[−{(TS−615.675)/2358.08}2] ・・・ (b)
5). Bending workability Collect multiple test pieces of width 10mm x length 60mm from the above specimens so that the longitudinal direction and rolling direction are parallel, and change the radius of curvature (inner diameter) of the bent part to bend 90 ° The test was conducted. The bending part of the test piece after the test was observed from the outer diameter side using an optical microscope. Then, the minimum curvature radius at which no cracks occur was R, and a ratio B (= R / t) with the thickness t of the test piece was obtained. “Evaluation” in the column of bending workability is “○” when a plate material with a tensile strength TS of 800 MPa or less satisfies B ≦ 2.0, and a plate material with a tensile strength TS of over 800 MPa satisfies the following formula (b): The case where these were not satisfied was designated as “x”.
B ≦ 41.2686−39.4583 × exp [− {(TS−615.675) /2358.08} 2 ] (b)

Figure 2005307334
Figure 2005307334

Figure 2005307334
Figure 2005307334

Figure 2005307334
Figure 2005307334

Figure 2005307334
Figure 2005307334

図2は、各実施例の引張強度(TS)と導電率(IACS)との関係を示す図である。表3と表4および図2に示すように、本発明例1〜45では、化学組成、ならびに析出物および介在物の合計個数が本発明で規定される範囲にあるので、引張強度および導電率が前述の(a)式を満たしていた。従って、これらの合金は、導電率および引張強度のバランスが、従来のBe添加Cu合金と同程度かまたはそれ以上の高いレベルにあるといえる。即ち、本発明のCu合金は、引張強度および導電率のバリエーションが豊富であることが分かる。   FIG. 2 is a diagram showing the relationship between tensile strength (TS) and electrical conductivity (IACS) in each example. As shown in Tables 3 and 4 and FIG. 2, in Examples 1 to 45 of the present invention, the chemical composition and the total number of precipitates and inclusions are in the range defined by the present invention. Satisfies the above-mentioned formula (a). Therefore, it can be said that these alloys have a balance between electrical conductivity and tensile strength at a level that is the same as or higher than that of conventional Be-added Cu alloys. That is, it can be seen that the Cu alloy of the present invention has abundant variations in tensile strength and electrical conductivity.

本発明例1、10、14、16および40は、同一成分系で添加量および/または製造条件を微調整した例である。これらの合金は、図2中の「△」で示すような引張強度と導電率との関係を有し、従来知られているCu合金の特性を持ったCu合金であるといえる。曲げ特性も良好であった。   Invention Examples 1, 10, 14, 16 and 40 are examples in which the addition amount and / or production conditions were finely adjusted in the same component system. These alloys have a relationship between tensile strength and electrical conductivity as indicated by “Δ” in FIG. 2, and can be said to be Cu alloys having the characteristics of conventionally known Cu alloys. The bending properties were also good.

一方、比較例5、6、8〜10、12および13は、合金成分のいずれかの含有量が本発明で規定される範囲を外れ、曲げ加工性に劣り、導電率が低い。比較例3、4、7および11は、2回目の圧延で耳割れがひどく試料採取が不可能であったため特性評価に到らなかった。また、950℃での溶体化処理を実施した比較例1および2は、引張強度が劣り、曲げ加工性も悪かった。   On the other hand, in Comparative Examples 5, 6, 8 to 10, 12, and 13, the content of any of the alloy components is out of the range defined in the present invention, the bending workability is inferior, and the electrical conductivity is low. In Comparative Examples 3, 4, 7 and 11, the ear cracking was severe in the second rolling, and the sample could not be collected. Further, Comparative Examples 1 and 2 in which the solution treatment at 950 ° C. was performed were inferior in tensile strength and in bending workability.

安全工具への適応性を評価すべく、以下の方法で試料を作製し、摩耗性(ビッカース硬度)および耐火花発生性を評価した。   In order to evaluate the adaptability to safety tools, samples were prepared by the following method, and the wearability (Vickers hardness) and the spark resistance were evaluated.

表5に示す化学組成を有する合金を大気中、高周波炉にて溶解し、ダービル法によって金型鋳造した。即ち、図3の(a)に示すような状態で金型1を保持し、木炭粉末で還元雰囲気を確保しながら約1300℃の溶湯を金型1に注湯した後、これを図3の(b)に示す様に傾転して図3の(c)の状態で凝固させて鋳片を作製した。   An alloy having the chemical composition shown in Table 5 was melted in a high-frequency furnace in the atmosphere, and die-cast by the Darville method. That is, the mold 1 is held in the state as shown in FIG. 3 (a), and after pouring a molten metal at about 1300 ° C. into the mold 1 while securing a reducing atmosphere with charcoal powder, this is shown in FIG. As shown in (b), it was tilted and solidified in the state of (c) in FIG. 3 to produce a slab.

金型1は厚さが50mmの鋳鉄製とし、その内部に冷却用穴を開けて空気冷却できるように配管した。鋳片は注湯が容易になるように楔形とし、下断面が30×300mm、上断面が50×400mm、高さが700mmとした。   The mold 1 was made of cast iron with a thickness of 50 mm, and a cooling hole was formed in the mold 1 and piped so that air could be cooled. The slab was wedged to facilitate pouring, with a lower cross section of 30 x 300 mm, an upper cross section of 50 x 400 mm, and a height of 700 mm.

得られた鋳片の下端から300mmまでの部分を採取して表面研削後、250℃に加熱して30mmから10mmに圧延、続いて熱処理(375℃×16時間)を施し、厚さ10mmの板を得た。これらの板を用い、上記の方法により析出物および介在物の合計個数、引張強度、導電率および曲げ加工性を調査し、更に、下記の方法により耐摩耗性、熱伝導度および耐火花発生性を調査した。これらの結果を表5に示す。   A portion from the bottom of the resulting slab to 300mm is collected, surface ground, heated to 250 ° C and rolled from 30mm to 10mm, followed by heat treatment (375 ° C x 16 hours), a 10mm thick plate Got. Using these plates, the total number of precipitates and inclusions, tensile strength, electrical conductivity and bending workability were investigated by the above method, and further, wear resistance, thermal conductivity and spark resistance were examined by the following methods. investigated. These results are shown in Table 5.

1.耐摩耗性
供試材からそれぞれ幅10mm×長さ10mmの試験片を採取し、圧延面に垂直で、かつ圧延方向と平行な断面を鏡面研磨し、JIS Z 2244に規定される方法により、25℃、荷重9.8Nでのビッカース硬さを測定した。
1. Abrasion resistance Specimens each having a width of 10 mm and a length of 10 mm were taken from the test material, and a cross section perpendicular to the rolling surface and parallel to the rolling direction was mirror-polished and subjected to the method specified in JIS Z 2244, 25 The Vickers hardness at ℃ and a load of 9.8 N was measured.

2.熱伝導度
熱伝導度〔TC(W/m・K)〕は、上記の導電率〔IACS(%)〕を、図1中に記載の式「TC=14.804+3.8172×IACS」から求めた。
2. Thermal conductivity Thermal conductivity [TC (W / m · K)] was obtained from the above-described conductivity [IACS (%)] from the formula “TC = 14.804 + 3.8172 × IACS” described in FIG. .

3.耐火花発生性
回転数が12000rpmの卓上グラインダーを使用しJIS G 0566に規定される方法に準じた火花試験を行い、目視により火花発生の有無を確認した。なお、下断面から100mm位置の鋳型内壁面下5mmの位置に熱電対を挿入して測温し、伝熱計算から得た液相線に基づいて求めた450℃までの平均冷却速度は、10℃/sであった。
3. Spark resistance Using a table grinder with a rotational speed of 12000 rpm, a spark test was performed according to the method specified in JIS G 0566, and the presence or absence of sparks was confirmed visually. Note that the average cooling rate up to 450 ° C obtained from the liquidus obtained from the heat transfer calculation by inserting a thermocouple at a position 5mm below the inner wall of the mold 100mm from the lower cross section is 10 It was ° C / s.

Figure 2005307334
Figure 2005307334

表5に示すように、本発明例A〜Cでは、耐摩耗性が良好で、熱伝導度も大きく、火花が観察されることはなかった。一方、比較例のAおよびBは、いずれも本発明で規定される化学組成および(1)式で規定される関係を満たさないため、熱伝導度が小さく、火花が観察された。   As shown in Table 5, in Invention Examples A to C, the wear resistance was good, the thermal conductivity was large, and no spark was observed. On the other hand, since A and B of Comparative Example did not satisfy the chemical composition defined in the present invention and the relationship defined by the formula (1), the thermal conductivity was small and sparks were observed.

本発明の銅合金は、高温強度および加工性にも優れ、更に、安全工具用材料に要求される性能、即ち、熱伝導度、耐摩耗性および耐火花発生性にも優れる銅合金である。この合金は、熱間加工および溶体化処理という工程を経ずに上記の特性を有するに到るので、安価に製造できる。   The copper alloy of the present invention is a copper alloy that is excellent in high-temperature strength and workability, and also excellent in performance required for a safety tool material, that is, thermal conductivity, wear resistance, and spark resistance. Since this alloy has the above-mentioned properties without going through the steps of hot working and solution treatment, it can be manufactured at low cost.

導電率と熱伝導度との関係を示す図である。It is a figure which shows the relationship between electrical conductivity and thermal conductivity. 実施例の合金の引張強度と導電率との関係を示す図である。It is a figure which shows the relationship between the tensile strength of the alloy of an Example, and electrical conductivity. ダービル法による鋳造方法を示す模式図である。It is a schematic diagram which shows the casting method by a Darville method.

符号の説明Explanation of symbols

1.金型 1. Mold

Claims (12)

0.1〜5質量%のBeならびに下記の第イ群から第ハ群までの少なくとも1群から選んだ少なくとも1種を含み、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することを特徴とする銅合金。
第イ群:それぞれ0.1〜5質量%のCr、Fe、Co、Nb、Ta、V、Ni、Mn、SnおよびAg
(但し、2種以上の場合は合計で0.1〜5質量%)
第ロ群:でそれぞれ0.01〜5質量%のAl、Si、Mo、WおよびGe
(但し、2種以上の場合は合計で0.01〜5質量%)
第ハ群:それぞれ0.01〜3質量%のZn、Te、SeおよびCd
(但し、または2種以上の場合は合計で0.01〜3質量%)
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
0.1 to 5% by mass of Be and at least one selected from the following groups (a) to (c), with the balance being copper and impurities, and the presence of precipitates and inclusions in the alloy A copper alloy characterized in that the particle size of those having a particle size of 1 μm or more and the total number of precipitates and inclusions satisfy the relationship represented by the following formula (1).
Group I: 0.1 to 5% by mass of Cr, Fe, Co, Nb, Ta, V, Ni, Mn, Sn and Ag, respectively
(However, in the case of 2 or more types, the total is 0.1 to 5% by mass)
Group B: 0.01 to 5% by mass of Al, Si, Mo, W and Ge respectively
(However, in the case of 2 or more types, the total is 0.01 to 5% by mass)
Group C: 0.01 to 3% by mass of Zn, Te, Se and Cd, respectively
(However, in the case of 2 or more types, a total of 0.01 to 3% by mass)
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
0.1〜5質量%のBe、それぞれ0.01〜3質量%のTi、ZrおよびHfの1種以上(但し、2種以上の場合は合計で0.01〜3質量%)ならびに下記の第イ群から第ハ群までの少なくとも1群から選んだ少なくとも1種を含み、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することを特徴とする銅合金。
第イ群:それぞれ0.1〜5質量%のCr、Fe、Co、Nb、Ta、V、Ni、Mn、SnおよびAg
(但し、2種以上の場合は合計で0.1〜5質量%)
第ロ群:でそれぞれ0.01〜5質量%のAl、Si、Mo、WおよびGe
(但し、2種以上の場合は合計で0.01〜5質量%)
第ハ群:それぞれ0.01〜3質量%のZn、Te、SeおよびCd
(但し、または2種以上の場合は合計で0.01〜3質量%)
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
0.1 to 5% by mass of Be, 0.01 to 3% by mass of Ti, Zr and Hf, respectively (provided that 0.01 to 3% by mass in the case of 2 or more types) and Including at least one selected from at least one group up to the group, the balance being copper and impurities, and the precipitates and inclusions present in the alloy having a particle size of 1 μm or more, and the precipitates and inclusions A copper alloy characterized in that the total number of objects satisfies a relationship represented by the following formula (1):
Group I: 0.1 to 5% by mass of Cr, Fe, Co, Nb, Ta, V, Ni, Mn, Sn and Ag, respectively
(However, in the case of 2 or more types, the total is 0.1 to 5% by mass)
Group B: 0.01 to 5% by mass of Al, Si, Mo, W and Ge respectively
(However, in the case of 2 or more types, the total is 0.01 to 5% by mass)
Group C: 0.01 to 3% by mass of Zn, Te, Se and Cd, respectively
(However, in the case of 2 or more types, a total of 0.01 to 3% by mass)
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
請求項1または2に記載の合金成分に加えて、更に下記の第ニ群および第ホ群のうちの少なくとも1群から選んだ少なくとも1種を含有し、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することを特徴とする銅合金。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
第ニ群:質量%でそれぞれ0.001〜0.5%のP、B、S、PdおよびAs
第ホ群:質量%でそれぞれ0.001〜1%のBi、Pb、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、AuおよびGa。但し、2種以上の場合は合計で0.001〜1%とする。
In addition to the alloy component according to claim 1 or 2, the alloy further contains at least one selected from at least one of the following second group and first group, and the balance is made of copper and impurities, A copper alloy characterized in that the particle size of the precipitates and inclusions present in the particle size of 1 μm or more and the total number of precipitates and inclusions satisfy the relationship represented by the following formula (1) .
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
Group D: 0.001 to 0.5% by mass of P, B, S, Pd and As, respectively
Group E: 0.001 to 1% by mass of Bi, Pb, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, and Ga, respectively. However, in the case of 2 or more types, the total content is 0.001 to 1%.
請求項1または2に記載の合金成分に加えて、更に下記の第へ群から選んだ少なくとも1種を含有し、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することを特徴とする銅合金。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
第へ群:質量%でそれぞれ0.001〜2%のMg、Li、Caおよび希土類元素
但し、2種以上の場合は合計で0.001〜2%とする。
In addition to the alloy component according to claim 1 or 2, further comprising at least one selected from the following group, the balance is made of copper and impurities, and the precipitates and inclusions present in the alloy A copper alloy characterized in that the particle size of those having a particle size of 1 μm or more and the total number of precipitates and inclusions satisfy the relationship represented by the following formula (1).
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
Group H: 0.001 to 2% by mass of Mg, Li, Ca and rare earth elements, respectively
However, in the case of 2 or more types, the total content is 0.001 to 2%.
請求項1または2に記載の合金成分に加えて、更に下記の第ニ群および第ホ群のうちの少なくとも1群から選んだ少なくとも1種、ならびに下記の第へ群から選んだ少なくとも1種を含有し、残部が銅および不純物からなり、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足することを特徴とする銅合金。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
第ニ群:質量%でそれぞれ0.001〜0.5%のP、B、S、PdおよびAs。
第ホ群:質量%でそれぞれ0.001〜1%のBi、Pb、Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、AuおよびGa。但し、2種以上の場合は合計で0.001〜1%とする。
第へ群:質量%でそれぞれ0.001〜2%のMg、Li、Caおよび希土類元素。但し、2種以上の場合は合計で0.001〜2%とする。
In addition to the alloy component according to claim 1 or 2, at least one selected from at least one of the following second group and group e, and at least one selected from the following second group: And the balance is made of copper and impurities. Among the precipitates and inclusions present in the alloy, the particle size of those having a particle size of 1 μm or more and the total number of precipitates and inclusions are expressed by the following formula (1): A copper alloy characterized by satisfying the relationship shown.
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
Group II: 0.001 to 0.5% by mass of P, B, S, Pd and As, respectively.
Group E: 0.001 to 1% by mass of Bi, Pb, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, and Ga, respectively. However, in the case of 2 or more types, the total content is 0.001 to 1%.
Group H: 0.001 to 2% by mass of Mg, Li, Ca and rare earth elements, respectively. However, in the case of 2 or more types, the total content is 0.001 to 2%.
少なくとも1種の合金元素の微小領域における平均含有量の最大値と平均含有量の最小値との比が1.5以上であることを特徴とする請求項1から5までのいずれかに記載の銅合金。   The copper alloy according to any one of claims 1 to 5, wherein the ratio of the maximum value of the average content and the minimum value of the average content in a micro region of at least one alloy element is 1.5 or more. . 結晶粒径が0.01〜35μmであることを特徴とする請求項1から請求項6までのいずれかに記載の銅合金。   The copper alloy according to any one of claims 1 to 6, wherein a crystal grain size is 0.01 to 35 µm. 請求項1から請求項5までのいずれかに記載の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却することを特徴とする、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足する銅合金の製造方法。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
A slab obtained by melting and casting the copper alloy having the chemical composition according to any one of claims 1 to 5 is at least 0.5 in a temperature range from a slab temperature immediately after casting to 450 ° C. The precipitates and inclusions present in the alloy are cooled at a cooling rate of ° C / s or more, and the particle size of those having a particle size of 1 μm or more and the total number of precipitates and inclusions are as follows: A method for producing a copper alloy satisfying the relationship represented by formula (1).
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
請求項1から請求項5までのいずれかに記載の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却し、600℃以下の温度域で加工することを特徴とする、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足する銅合金の製造方法。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
A slab obtained by melting and casting the copper alloy having the chemical composition according to any one of claims 1 to 5 is at least 0.5 in a temperature range from a slab temperature immediately after casting to 450 ° C. It is cooled at a cooling rate of ℃ / s or more and processed in a temperature range of 600 ℃ or less, and among the precipitates and inclusions existing in the alloy, the particle size of those having a particle size of 1 μm or more, precipitation A method for producing a copper alloy in which the total number of inclusions and inclusions satisfies the relationship represented by the following formula (1):
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
請求項1から請求項5までのいずれかに記載の化学組成を有する銅合金を溶製し、鋳造して得た鋳片を、少なくとも鋳造直後の鋳片温度から450℃までの温度域において0.5℃/s以上の冷却速度で冷却し、600℃以下の温度域で加工した後、150〜750℃の温度域で30秒以上保持する熱処理に供することを特徴とする、合金中に存在する析出物および介在物のうち粒径が1μm以上のものの粒径と、析出物および介在物の合計個数とが下記(1)式で示される関係を満足する銅合金の製造方法。
logN≦0.4742+17.629×exp(−0.1133×X) ・・・ (1)
但し、Nは単位面積当たりの析出物および介在物の合計個数(個/mm2)、Xは析出物および介在物の粒径(μm)を意味する。
A slab obtained by melting and casting the copper alloy having the chemical composition according to any one of claims 1 to 5 is at least 0.5 in a temperature range from a slab temperature immediately after casting to 450 ° C. Precipitation existing in the alloy, characterized by being cooled at a cooling rate of ℃ / s or more, processed in a temperature range of 600 ℃ or less, and then subjected to a heat treatment for holding at 150 to 750 ℃ for 30 seconds or more. A method for producing a copper alloy in which the particle size of the inclusions and inclusions having a particle size of 1 μm or more and the total number of precipitates and inclusions satisfy the relationship represented by the following formula (1).
log N ≦ 0.4742 + 17.629 × exp (−0.1133 × X) (1)
However, N means the total number of precipitates and inclusions per unit area (pieces / mm 2 ), and X means the particle size (μm) of the precipitates and inclusions.
600℃以下の温度域での加工および150〜750℃の温度域で30秒以上保持する熱処理を複数回行うことを特徴とする請求項10に記載の銅合金の製造方法。   11. The method for producing a copper alloy according to claim 10, wherein the processing in a temperature range of 600 ° C. or lower and the heat treatment for holding for 30 seconds or more in a temperature range of 150 to 750 ° C. are performed a plurality of times. 最後の熱処理の後に、600℃以下の温度域での加工を行うことを特徴とする請求項10または11に記載の銅合金の製造方法。
The method for producing a copper alloy according to claim 10 or 11, wherein processing is performed in a temperature range of 600 ° C or lower after the last heat treatment.
JP2004234891A 2004-03-12 2004-08-11 Copper alloy and manufacturing method therefor Pending JP2005307334A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004234891A JP2005307334A (en) 2004-03-26 2004-08-11 Copper alloy and manufacturing method therefor
KR1020067018569A KR20060120276A (en) 2004-03-12 2005-03-02 Copper alloy and method for production thereof
EP05719817A EP1731624A4 (en) 2004-03-12 2005-03-02 Copper alloy and method for production thereof
PCT/JP2005/003502 WO2005087957A1 (en) 2004-03-12 2005-03-02 Copper alloy and method for production thereof
CA002559103A CA2559103A1 (en) 2004-03-12 2005-03-02 Copper alloy and method for production thereof
TW094107552A TW200538562A (en) 2004-03-12 2005-03-11 Copper alloy and method for production thereof
US11/518,194 US20070062619A1 (en) 2004-03-12 2006-09-11 Copper alloy and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004093661 2004-03-26
JP2004234891A JP2005307334A (en) 2004-03-26 2004-08-11 Copper alloy and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005307334A true JP2005307334A (en) 2005-11-04

Family

ID=35436427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234891A Pending JP2005307334A (en) 2004-03-12 2004-08-11 Copper alloy and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005307334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109801A1 (en) * 2005-04-12 2006-10-19 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
WO2007060953A1 (en) * 2005-11-24 2007-05-31 The Furukawa Electric Co., Ltd. Crimp-style terminal for aluminum strand and terminal structure of aluminum strand having the crimp-style terminal connected thereto
JP2012045600A (en) * 2010-08-27 2012-03-08 Furukawa Electric Co Ltd:The Ingot of copper alloy, manufacturing method thereof, and copper alloy sheet material made therefrom
CN117512385A (en) * 2023-10-31 2024-02-06 江苏康耐特精密机械有限公司 High-precision structural member material with multi-energy-field composite surface post-treatment and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109801A1 (en) * 2005-04-12 2006-10-19 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
WO2007060953A1 (en) * 2005-11-24 2007-05-31 The Furukawa Electric Co., Ltd. Crimp-style terminal for aluminum strand and terminal structure of aluminum strand having the crimp-style terminal connected thereto
JP2007173215A (en) * 2005-11-24 2007-07-05 Furukawa Electric Co Ltd:The Crimp terminal for aluminum strand and terminal structure of aluminum strand having the same connected thereto
US7544892B2 (en) 2005-11-24 2009-06-09 The Furukawa Electric Co., Ltd. Crimp contact for an aluminum stranded wire, and cable end structure of an aluminum stranded wire having the crimp contact connected thereto
JP4550791B2 (en) * 2005-11-24 2010-09-22 古河電気工業株式会社 Aluminum stranded wire crimp terminal and aluminum stranded wire terminal structure to which the crimp terminal is connected
US7923637B2 (en) 2005-11-24 2011-04-12 The Furukawa Electric Co., Ltd. Crimp contact for an aluminum stranded wire, and cable end structure of an aluminum stranded wire having the crimp contact connected thereto
JP2012045600A (en) * 2010-08-27 2012-03-08 Furukawa Electric Co Ltd:The Ingot of copper alloy, manufacturing method thereof, and copper alloy sheet material made therefrom
CN117512385A (en) * 2023-10-31 2024-02-06 江苏康耐特精密机械有限公司 High-precision structural member material with multi-energy-field composite surface post-treatment and preparation method thereof
CN117512385B (en) * 2023-10-31 2024-05-14 江苏康耐特精密机械有限公司 High-precision structural member material with multi-energy-field composite surface post-treatment and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3731600B2 (en) Copper alloy and manufacturing method thereof
JP4134279B1 (en) Cu alloy material
WO2005087957A1 (en) Copper alloy and method for production thereof
WO2006109801A1 (en) Copper alloy and process for producing the same
EP2570505B1 (en) Copper alloy and copper alloy rolled material for electronic device and method for producing this alloy
US10294547B2 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
JP2005113259A (en) Cu ALLOY AND MANUFACTURING METHOD THEREFOR
WO2006104152A1 (en) Copper alloy and process for producing the same
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP2005290543A (en) Copper alloy and its production method
JP2014185370A (en) Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREFOR AND ELECTRIC CONDUCTION PARTS
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP2004225093A (en) Copper-base alloy and manufacturing method therefor
JP2006265731A (en) Copper alloy
TWI548761B (en) Copper alloy for electronic/electric device, plastically-worked copper alloy material for electronic/electric device, part for electronic/electric device, and terminal
JP4129807B2 (en) Copper alloy for connector and manufacturing method thereof
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP2007126739A (en) Copper alloy for electronic material
JP2019178399A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
JP4459067B2 (en) High strength and high conductivity copper alloy
JP2005307334A (en) Copper alloy and manufacturing method therefor
JP2017039959A (en) Cu-Ti-BASED COPPER ALLOY SHEET AND MANUFACTURING METHOD THEREFOR AND ELECTRIFICATION COMPONENT
EP4174200A1 (en) Copper alloy, plastically worked copper alloy material, component for electronic/electrical equipment, terminal, and heat dissipation substrate
JP5607460B2 (en) Copper alloy ingot and copper alloy material excellent in machinability, and copper alloy parts using the same
JP3779830B2 (en) Copper alloy for semiconductor lead frames