JP2005302641A - Organic electroluminescent element, its manufacturing method, and electronic device - Google Patents

Organic electroluminescent element, its manufacturing method, and electronic device Download PDF

Info

Publication number
JP2005302641A
JP2005302641A JP2004120325A JP2004120325A JP2005302641A JP 2005302641 A JP2005302641 A JP 2005302641A JP 2004120325 A JP2004120325 A JP 2004120325A JP 2004120325 A JP2004120325 A JP 2004120325A JP 2005302641 A JP2005302641 A JP 2005302641A
Authority
JP
Japan
Prior art keywords
liquid crystal
organic
layer
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004120325A
Other languages
Japanese (ja)
Inventor
剛 ▲帯▼川
Takeshi Obikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004120325A priority Critical patent/JP2005302641A/en
Publication of JP2005302641A publication Critical patent/JP2005302641A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent element, capable of emitting light efficiently with a polymer liquid crystal layer which is aligned properly when being heated and superior in charge transportability, and to provide a method for manufacturing the element. <P>SOLUTION: The electroluminescent element 20 comprises an organic functional layer 21, containing polymer dispersed liquid crystal which exhibits liquid crystallinity, and a positive electrode 12 and a negative electrode 17 put across the organic functional layer 21. The polymer dispersed liquid crystal layer is composed of a mixture of an organic compound, which has photo-alignment groups and polymerizing groups, and a liquid crystal compound. After the photo-alignment groups are oriented in a predetermined direction by light irradiation, the polymerizing groups are thermally polymerized by to fix the orientation of the photo-alignment groups, and then the liquid crystal compound is reoriented with respect to them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機エレクトロルミネッセンス素子、及びその製造方法、並びに電子機器に関するものである。   The present invention relates to an organic electroluminescence element, a manufacturing method thereof, and an electronic device.

次世代の表示装置として、有機エレクトロルミネッセンス装置(有機EL装置)が期待されている。有機EL装置は、発光層を上下の電極間に挟持した有機エレクトロルミネッセンス素子(有機EL素子)を基体上に配設して構成されており、典型的には、ガラス等の透光性の基板上に、陽極と、有機機能層(正孔輸送層、発光層、電子輸送層等)と、陰極とを順次積層した構造が採られる。
近年、このような有機EL素子に適用可能な電荷輸送材料として、液晶組成物を含む材料を用いることが提案されている(例えば特許文献1参照)。
特開2000−347432号公報
An organic electroluminescence device (organic EL device) is expected as a next-generation display device. An organic EL device is configured by disposing an organic electroluminescence element (organic EL element) having a light emitting layer sandwiched between upper and lower electrodes on a base, and is typically a translucent substrate such as glass. A structure in which an anode, an organic functional layer (a hole transport layer, a light-emitting layer, an electron transport layer, etc.), and a cathode are sequentially laminated is employed.
In recent years, it has been proposed to use a material containing a liquid crystal composition as a charge transport material applicable to such an organic EL element (see, for example, Patent Document 1).
JP 2000-347432 A

上記特許文献1に記載の電荷輸送材料は、棒状液晶を含有する重合性液晶組成物の重合体からなる配向可能な電荷輸送材料であり、前記重合性液晶組成物を磁場を用いてホモジニアス配向させた状態で光又は電子線により重合することで形成するようになっている。係る技術により得られる電荷輸送材料は、磁場で配向させた状態で光重合されることで配向性を付与されており、また前記電荷輸送材料は側鎖型高分子液晶であることから比較的高い配向秩序度を得られるという利点を有している。しかしながら係る電荷輸送材料は、配向の耐熱性が低く、特に一旦等方相まで加熱されると配向に乱れを生じて、次に冷却して液晶状態にした場合には元の配向状態に戻らず、所望の特性を得られなくなるという問題がある。またこの耐熱性の低さは、有機EL素子等のデバイスへの適用に際しては、プロセス設計等の制約要素となり、また有機EL装置駆動時の発熱による配向乱れの発生は発光輝度の低下や寿命低下の原因となる。   The charge transport material described in Patent Document 1 is an alignable charge transport material made of a polymer of a polymerizable liquid crystal composition containing a rod-like liquid crystal, and the polymerizable liquid crystal composition is homogeneously aligned using a magnetic field. It is formed by polymerizing with light or an electron beam in a heated state. The charge transport material obtained by such a technique is imparted with orientation by being photopolymerized in a state of being oriented in a magnetic field, and the charge transport material is relatively high because it is a side chain polymer liquid crystal. It has the advantage that the degree of orientational order can be obtained. However, the charge transporting material has low heat resistance of alignment, and particularly when heated to an isotropic phase, the alignment is disturbed, and when cooled to the liquid crystal state, it does not return to the original alignment state. There is a problem that desired characteristics cannot be obtained. In addition, this low heat resistance is a limiting factor for process design when applied to devices such as organic EL elements, and the occurrence of orientation disturbance due to heat generation during driving of the organic EL device reduces the emission luminance and lifetime. Cause.

本発明は、上記従来技術の問題点に鑑み成されたものであって、等方相にまで加熱してから液晶相に冷却した場合にも良好に配向性を維持できる電荷輸送性に優れた高分子分散液晶層を具備し、もって高効率に発光可能で長寿命な有機エレクトロルミネッセンス素子、及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems of the prior art, and is excellent in charge transportability that can maintain good orientation even when heated to an isotropic phase and then cooled to a liquid crystal phase. An object of the present invention is to provide an organic electroluminescence device having a polymer-dispersed liquid crystal layer and capable of emitting light with high efficiency and having a long lifetime, and a method for producing the same.

本発明は、上記課題を解決するために、高分子分散液晶層を含む有機機能層を具備した有機エレクトロルミネッセンス素子であって、前記高分子分散型液晶層が、光配向性基及び重合性基を有する有機化合物と液晶化合物からなる混合物に対して、前記光配向性基及び重合性基を有する有機化合物に光を照射して光配向性基を所定方向に配向させ、次に加熱して重合性基を重合して配向を固定させ、前記配向をさせた光配向性基に対して前記液晶化合物を再配向させたものであることを特徴とする有機エレクトロルミネッセンス素子を提供する。
このような構成とすれば、前記高分子分散液晶層が、高い配向性をもって形成され、優れた電荷輸送性を有するので、高効率に発光可能な有機エレクトロルミネッセンス素子を提供することができる。また前記光配向され、さらに重合性基の重合反応により配向を固定された光配向性基は、当該高分子分散液晶層が等方性を示す温度に加熱された場合にもその配向機能を保持するため、加熱処理により高分子分散液晶の配向秩序の乱れが生じ難く、製造プロセス設計での制限が少なく、容易かつ効率的に製造することが可能になる。
In order to solve the above-mentioned problems, the present invention provides an organic electroluminescence device comprising an organic functional layer including a polymer-dispersed liquid crystal layer, wherein the polymer-dispersed liquid crystal layer comprises a photo-alignment group and a polymerizable group. The organic compound having an organic compound and a liquid crystal compound is irradiated with light to the organic compound having the photo-alignable group and polymerizable group to align the photo-alignable group in a predetermined direction, and then heated to polymerize. There is provided an organic electroluminescence device characterized in that the alignment is fixed by polymerizing an organic group, and the liquid crystal compound is re-orientated with respect to the aligned photo-alignment group.
With such a configuration, the polymer-dispersed liquid crystal layer is formed with a high orientation and has an excellent charge transporting property, so that an organic electroluminescence device capable of emitting light with high efficiency can be provided. In addition, the photo-alignable group that has been photo-aligned and further fixed in alignment by a polymerization reaction of the polymerizable group retains its alignment function even when the polymer-dispersed liquid crystal layer is heated to an isotropic temperature. Therefore, the disorder of the alignment order of the polymer-dispersed liquid crystal hardly occurs due to the heat treatment, and there are few restrictions on the manufacturing process design, and the manufacturing can be easily and efficiently performed.

本発明の有機エレクトロルミネッセンス素子では、前記高分子分散液晶層の示す液晶相が、スメクチック相又はディスコチック相であることが好ましい。この構成によれば、前記高分子分散液晶層における電荷輸送効率が向上する。スメクチック相又はディスコチック相の持つ層状の分子配列により、隣接する液晶化合物間の電荷輸送を担う部位(電子密度が高い部位又は低い部位)の距離が小さくなるからである。   In the organic electroluminescence element of the present invention, it is preferable that a liquid crystal phase indicated by the polymer dispersed liquid crystal layer is a smectic phase or a discotic phase. According to this configuration, the charge transport efficiency in the polymer dispersed liquid crystal layer is improved. This is because, due to the layered molecular arrangement of the smectic phase or the discotic phase, the distance between the sites responsible for charge transport between adjacent liquid crystal compounds (sites with high or low electron density) is reduced.

本発明の有機エレクトロルミネッセンス素子では、前記有機機能層を挟持して対向する一対の電極を備え、前記高分子分散液晶層に含まれる液晶化合物の分子長軸が、前記電極の表面に対して略垂直に配列されていることが好ましい。ここで、略垂直とは電極表面に対してなす角度が60度から90度を言う。この構成によれば、電極間に流れる電流の方向と、高分子分散液晶層中を輸送される電荷の移動方向とがほぼ一致するので、より効率的に電荷を輸送でき、電流密度を向上させることができる。   The organic electroluminescence device of the present invention includes a pair of electrodes opposed to each other with the organic functional layer interposed therebetween, and the molecular long axis of the liquid crystal compound contained in the polymer-dispersed liquid crystal layer is approximately the surface of the electrode. It is preferable that they are arranged vertically. Here, “substantially perpendicular” means that the angle formed with respect to the electrode surface is 60 to 90 degrees. According to this configuration, the direction of the current flowing between the electrodes and the direction of movement of the charge transported in the polymer-dispersed liquid crystal layer substantially coincide with each other, so that the charge can be transported more efficiently and the current density is improved. be able to.

本発明の有機エレクトロルミネッセンス素子では、前記高分子分散液晶層が、発光層として機能する構成とすることができる。
また本発明の有機エレクトロルミネッセンス素子では、前記高分子分散液晶層が、正孔輸送層又は正孔注入層として機能する構成とすることもできる。
また本発明の有機エレクトロルミネッセンス素子では、前記高分子分散液晶層が、電子輸送層又は電子注入層として機能する構成とすることもできる。
本発明に係る有機エレクトロルミネッセンス素子にあっては、有機機能層の主要部を成す機能層のいずれについても高分子分散液晶層からなるものとすることができ、2以上の機能層が高分子分散液晶層である構成とすることもできる。
In the organic electroluminescence device of the present invention, the polymer dispersed liquid crystal layer can function as a light emitting layer.
In the organic electroluminescence device of the present invention, the polymer dispersed liquid crystal layer may function as a hole transport layer or a hole injection layer.
In the organic electroluminescence device of the present invention, the polymer-dispersed liquid crystal layer may function as an electron transport layer or an electron injection layer.
In the organic electroluminescence device according to the present invention, any of the functional layers constituting the main part of the organic functional layer can be composed of a polymer-dispersed liquid crystal layer, and two or more functional layers can be polymer-dispersed. It can also be set as the structure which is a liquid crystal layer.

本発明は、液晶性を呈する高分子分散液晶層を含む有機機能層を具備した有機エレクトロルミネッセンス素子の製造方法であって、光配向性基及び重合性基を有する有機化合物と液晶化合物を含む混合物薄膜に光を照射して前記光配向性基を配向させる光配向工程と、前記光配向された混合物薄膜を加熱して前記重合性基を重合反応させて前記光配向性基の配向を固定させる配向固定工程と、前記配向を固定された混合物薄膜の温度をスメクチック相又はディスコチック相を呈する温度範囲に保持することで、該混合物薄膜中の前記液晶化合物を再配向させる再配向工程と、を含む工程により前記高分子分散液晶層を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法を提供する。この製造方法によれば、高い配向秩序を有する配向性の高分子分散液晶層を容易に形成でき、もって高効率に電荷輸送及び発光可能な有機エレクトロルミネッセンス素子を容易に製造できる。   The present invention relates to a method for producing an organic electroluminescent device comprising an organic functional layer including a polymer-dispersed liquid crystal layer exhibiting liquid crystallinity, and a mixture comprising an organic compound having a photoalignable group and a polymerizable group and a liquid crystal compound A photo-alignment step of aligning the photo-alignable group by irradiating light to the thin film, and heating the photo-aligned mixture thin film to polymerize the polymerizable group to fix the orientation of the photo-alignable group An alignment fixing step, and a realignment step of realigning the liquid crystal compound in the mixture thin film by maintaining the temperature of the mixture thin film in which the alignment is fixed in a temperature range exhibiting a smectic phase or a discotic phase. Provided is a method for producing an organic electroluminescent element, wherein the polymer-dispersed liquid crystal layer is formed by an included process. According to this production method, an oriented polymer dispersed liquid crystal layer having a high orientation order can be easily formed, and thus an organic electroluminescence device capable of transporting and emitting light with high efficiency can be easily produced.

本発明の電子機器は、先に記載の有機エレクトロルミネッセンス素子を備えたことを特徴としている。この構成によれば、前記有機エレクトロルミネッセンス素子による高輝度表示が可能で長寿命な表示部を備えた電子機器が提供される。   An electronic apparatus according to the present invention is characterized by including the organic electroluminescence element described above. According to this configuration, it is possible to provide an electronic apparatus including a display unit that can display with high luminance by the organic electroluminescence element and has a long lifetime.

以下、本発明の実施の形態について、図面を参照しつつ説明する。
図1は、本発明に係る有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する。)を備えた有機エレクトロルミネッセンス装置(以下、有機EL装置と略記する。)の一構成例を示す図である。同図に示す有機EL装置10は、基板11上に有機EL素子20を配設してなる構成を備えており、有機EL素子20は、基板11上に順に積層された陽極12と、有機機能層21と、電子注入層16と、陰極17とを備えている。有機機能層21は、正孔注入層(正孔輸送層)13と、発光層14と、電子注入層15とを順次積層してなるものである。従って本構成例に示す有機EL素子20は、2層構造の電子注入層を備えたものとなっている。
上記構成を備えた有機EL装置10は、陽極12と陰極18との間に所定の電力を供給することで、有機機能層21の発光層14を発光させて基板11側に取り出す、いわゆるボトムエミッション構造の有機EL装置とされている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration example of an organic electroluminescence device (hereinafter abbreviated as an organic EL device) including an organic electroluminescence element (hereinafter abbreviated as an organic EL device) according to the present invention. . The organic EL device 10 shown in the figure includes a configuration in which an organic EL element 20 is disposed on a substrate 11, and the organic EL element 20 includes an anode 12 stacked in order on the substrate 11, and an organic function. A layer 21, an electron injection layer 16, and a cathode 17 are provided. The organic functional layer 21 is formed by sequentially laminating a hole injection layer (hole transport layer) 13, a light emitting layer 14, and an electron injection layer 15. Therefore, the organic EL element 20 shown in this configuration example includes an electron injection layer having a two-layer structure.
The organic EL device 10 having the above configuration emits the light emitting layer 14 of the organic functional layer 21 and supplies the light to the substrate 11 side by supplying predetermined power between the anode 12 and the cathode 18, so-called bottom emission. The organic EL device has a structure.

本実施形態に係る有機機能層12では、その構成層(正孔注入層13、発光層14、及び電子注入層15)のうち1層以上が高分子分散液晶層とされる。そして、その高分子分散液晶層に含まれる液晶化合物は、所定方向に配向制御されており、その配向性に起因して良好な電荷輸送性を奏するものとなっている。   In the organic functional layer 12 according to the present embodiment, one or more of the constituent layers (the hole injection layer 13, the light emitting layer 14, and the electron injection layer 15) are polymer dispersed liquid crystal layers. The liquid crystal compound contained in the polymer-dispersed liquid crystal layer is controlled in orientation in a predetermined direction, and exhibits good charge transportability due to the orientation.

このような高分子分散液晶層を形成するには、まず、光配向性基及び重合性基を有する有機化合物と液晶化合物を含む混合物からなる混合物薄膜を形成する。この成膜後の混合物薄膜では光配向性基及び重合性基を有する有機化合物及び液晶化合物はともにランダムな配列となっている。この混合物薄膜に光を照射して光配向性基を配向させる(光配向工程)。
次いで、光照射後の混合物薄膜を加熱して重合性基を重合反応させて光配向性基の配向を固定させる(配向固定工程)。
次いで、配向を固定された混合物薄膜の温度をスメクチック相又はディスコチック相を呈する温度範囲に保持することで、混合物薄膜中でランダムに配列されていた液晶化合物が、配向を固定された光配向性基に沿って再配列した高分子分散液晶相が得られる(再配向工程)。
In order to form such a polymer-dispersed liquid crystal layer, first, a mixed thin film composed of a mixture containing an organic compound having a photo-alignable group and a polymerizable group and a liquid crystal compound is formed. In the mixture thin film after the film formation, the organic compound and the liquid crystal compound having a photo-alignment group and a polymerizable group are both randomly arranged. The mixture thin film is irradiated with light to align the photo-alignment group (photo-alignment step).
Next, the mixture thin film after light irradiation is heated to cause the polymerizable group to undergo a polymerization reaction to fix the orientation of the photo-alignable group (orientation fixing step).
Next, by maintaining the temperature of the mixture thin film in which the orientation is fixed within a temperature range exhibiting a smectic phase or a discotic phase, the liquid crystal compound randomly arranged in the mixture thin film has a photo-alignment property in which the orientation is fixed. A polymer dispersed liquid crystal phase rearranged along the group is obtained (realignment step).

上記光配向工程において、照射に用いられる光は直線偏光または非偏光の擬似平行光であり、その波長は、光配向性基が特性吸収帯を有する300nmから600nmの紫外及び可視光が好ましい。また、光の入射角度は電極表面に対してなす角度が0度から90度が好ましい。   In the photo-alignment step, the light used for irradiation is linearly polarized light or non-polarized pseudo-parallel light, and the wavelength is preferably 300 nm to 600 nm ultraviolet and visible light in which the photo-alignable group has a characteristic absorption band. The incident angle of light is preferably 0 to 90 degrees with respect to the electrode surface.

従来一般的に有機EL素子に用いられてきた有機化合物膜はアモルファス膜であり、分子の配列に規則性を持たないため正孔及び電子等のキャリア(電荷)の移動度が小さかったが、分子配列に一定の秩序を有する液晶有機化合物において高移動度の材料が見出されている。また、分子配列の秩序が高くなるほど移動が大きくなることが知られている。従って、本発明に係る高分子分散液晶層の如く、高い分子配列の秩序を持つスメクチック液晶相又はディスコチック液晶相を示す化合物を配向させた高分子分散液晶層とすることで、高い電荷移動度が得られる。   Conventionally, the organic compound film generally used for organic EL elements is an amorphous film, and the mobility of carriers (charges) such as holes and electrons is small because there is no regularity in the arrangement of molecules. High mobility materials have been found in liquid crystal organic compounds with a certain order of arrangement. It is also known that the higher the order of the molecular arrangement, the greater the movement. Therefore, by using a polymer dispersed liquid crystal layer in which a compound exhibiting a smectic liquid crystal phase or a discotic liquid crystal phase having a high molecular order is aligned as in the polymer dispersed liquid crystal layer according to the present invention, a high charge mobility can be obtained. Is obtained.

配向性の高分子分散液晶層内では、正孔は液晶化合物の電子密度の高い部位、電子は液晶化合物の電子密度の低い部位を化合物から化合物へ、前者はラジカルカチオン、後者はラジカルアニオンとしてホッピング輸送される。従って、液晶化合物が電極表面に対して一定方向に配列させたときは液晶化合物がランダムな場合と比較して、正孔又は電子が円滑に輸送される。さらに、スメクチック相又はディスコチック相では、液晶化合物が同一向きに重なった層状構造をとるため、隣接する電子密度の低い部位又は高い部位の間の距離が最小となり、正孔又は電子がさらに円滑に輸送される。   In the oriented polymer-dispersed liquid crystal layer, holes are hopped from the compound to the compound where the electron density of the liquid crystal compound is high, electrons are the low electron density of the liquid crystal compound, the former is a radical cation, and the latter is a radical anion. Transported. Therefore, when the liquid crystal compound is aligned in a certain direction with respect to the electrode surface, holes or electrons are transported more smoothly than when the liquid crystal compound is random. Further, in the smectic phase or discotic phase, the liquid crystal compound has a layered structure in which the liquid crystal compounds are stacked in the same direction, so the distance between adjacent sites with low or high electron density is minimized, and holes or electrons are more smoothly generated. Transported.

上記高分子分散液晶層の形成材料として用いられる光配向性基及び重合性基を有する有機化合物の光配向性基としては、光配向性基の可視-紫外光特性吸収帯の直線偏光を照射したとき、光配向性基がその主軸を偏光の振動方向に対して垂直になるように回転する性質を持つ化合物誘導体が利用できる。このような性質を持つ化合物誘導体としては、アゾベンゼン誘導体、アゾキシベンゼン誘導体、スチルベン誘導体、ベンジリデンアニリン誘導体等が挙げられる。これらの化合物誘導体には可視-紫外光を照射すると、不必要な副反応であるシス-トランス転位、光2量体化等の光化学反応をするのもがある。これらの副反応を起こさない化合物で実用可能な材料としては、下記(化1)に示す一般式で表される、光配向性基であるアゾベンゼン誘導体の両末端に重合性基を結合した化合物が利用できる。   The photo-alignment group of the organic compound having a photo-alignment group and a polymerizable group used as a material for forming the polymer-dispersed liquid crystal layer was irradiated with linearly polarized light in the visible-ultraviolet light absorption band of the photo-alignment group. In some cases, a compound derivative having a property that the photo-alignment group rotates so that its main axis is perpendicular to the vibration direction of polarized light can be used. Examples of compound derivatives having such properties include azobenzene derivatives, azoxybenzene derivatives, stilbene derivatives, benzylideneaniline derivatives, and the like. When these compound derivatives are irradiated with visible-ultraviolet light, they may undergo photochemical reactions such as cis-trans rearrangement and photodimerization, which are unnecessary side reactions. As a material that can be practically used as a compound that does not cause these side reactions, a compound in which a polymerizable group is bonded to both ends of an azobenzene derivative that is a photo-alignable group, represented by the general formula shown in the following (Chemical Formula 1). Available.

Figure 2005302641
Figure 2005302641

(化1)に示す重合性基Pは、下記(化2)で表される基のいずれかであることが好ましい。なお、重合性基Pの重合方法としては熱重合反応が用いられ、反応開始剤としては、重合性基Pがアクリル基、メタクリル、エチレン基のときはジクミルペルオキシド、過酸化ベンゾイル等の過酸化物またはアゾビスイソブチロニトリル等が用いられ、重合性基Pがエポキシ基、オキセタニル基のときはルイス酸、トリアルキルオキソニウム塩、超強酸エステル、ヨードニウム塩等が用いられる。   The polymerizable group P represented by (Chemical Formula 1) is preferably any of the groups represented by the following (Chemical Formula 2). As a polymerization method for the polymerizable group P, a thermal polymerization reaction is used. As the reaction initiator, when the polymerizable group P is an acryl group, methacryl, or ethylene group, a peroxide such as dicumyl peroxide or benzoyl peroxide is used. Or azobisisobutyronitrile is used, and when the polymerizable group P is an epoxy group or an oxetanyl group, a Lewis acid, a trialkyloxonium salt, a superacid ester, an iodonium salt, or the like is used.

Figure 2005302641
Figure 2005302641

(化1)に示すアゾ結合を2個有する光配向性基に直線偏光紫外又は可視光を照射すると、光配向性基がその主軸を偏光光の振動方向に対して垂直になるように回転する。偏光紫外又は可視光を膜面に対して垂直方向から照射することにより、主軸が偏光光の振動方向に対して垂直で一軸に水平配向した薄膜が得られる。また、偏光紫外又は可視光を膜面に対して斜め方向から照射することにより、主軸が偏光光の振動方向に対して垂直で一軸に傾斜配向した薄膜が得られる。次に、非偏光の平行紫外又は可視光を照射すると、その主軸が入射光の振動方向と垂直となる安定方向は唯一非偏光の入射方向のみであるため、光配向性基は入射方向と平行に配列する。この性質を用いて、非偏光の平行紫外及び可視光を膜面に垂直に照射すると、膜面に垂直に配列した光配向性基が得られる。   When the photo-alignable group having two azo bonds shown in (Chemical Formula 1) is irradiated with linearly polarized ultraviolet light or visible light, the photo-alignable group rotates so that its main axis is perpendicular to the vibration direction of the polarized light. . By irradiating polarized ultraviolet light or visible light from a direction perpendicular to the film surface, a thin film in which the main axis is perpendicular to the vibration direction of the polarized light and is uniaxially horizontally aligned can be obtained. Further, by irradiating polarized ultraviolet light or visible light from an oblique direction with respect to the film surface, a thin film having a main axis perpendicular to the vibration direction of the polarized light and uniaxially inclined is obtained. Next, when irradiated with non-polarized parallel ultraviolet or visible light, the only stable direction in which the principal axis is perpendicular to the oscillation direction of the incident light is the only non-polarized incident direction, so the photo-alignment group is parallel to the incident direction. Array. When this property is used to irradiate non-polarized parallel ultraviolet light and visible light perpendicular to the film surface, a photo-alignment group arranged perpendicular to the film surface is obtained.

光配光工程で配向された光配向基は重合性基を熱架橋重合反応することにより固定されて、その重合体のガラス転位温度は200℃以上となり、有機EL素子の製造時の加熱処理又は駆動による発熱で光配向基の配列が乱れる心配はない。   The photo-alignment group aligned in the light distribution step is fixed by subjecting the polymerizable group to a thermal cross-linking polymerization reaction, and the glass transition temperature of the polymer becomes 200 ° C. or higher, and the heat treatment during the production of the organic EL device or There is no fear that the alignment of the photo-alignment group is disturbed by heat generated by driving.

一方、液晶化合物はスメクチック相又はディスコチック相を示す温度範囲に保持すると、その長軸が光配向性基の長軸と一致するように再配列する。仮に、液晶化合物を等方相を示す温度に加熱した場合でも、スメクチック相又はディスコチック相を示す温度まで冷却すれば、液晶化合物は元の配列に戻る。したがって、有機EL素子の耐熱性は液晶化合物のスメクチック相又はディスコチック相の上限温度に依存し、この温度が高い液晶化合物を選択することにより耐熱性の向上が可能である。   On the other hand, when the liquid crystal compound is kept in a temperature range showing a smectic phase or a discotic phase, it rearranges so that its major axis coincides with the major axis of the photoalignable group. Even if the liquid crystal compound is heated to a temperature exhibiting an isotropic phase, the liquid crystal compound returns to its original alignment if it is cooled to a temperature exhibiting a smectic phase or a discotic phase. Accordingly, the heat resistance of the organic EL element depends on the upper limit temperature of the smectic phase or the discotic phase of the liquid crystal compound, and the heat resistance can be improved by selecting a liquid crystal compound having a high temperature.

一方、液晶化合物としては、低分子液晶化合物または高分子液晶化合物が利用できる。低分子液晶化合物は、例えばπ電子共役系を有する液晶化合物であり、ベンゼン、ピリジン、ピリミジン、ピペラジン、ナフタレン、アントラセン、ナフタセン、チオフェン、トリフェニレン、ヘキサアザトリフェニレン、フタロシアニン、ルブレン等を組み合わせた化合物、並びにその誘導体、金属錯体であることが好ましい。低分子液晶化合物は単一成分又は複数の成分を適切に混合した液晶組成物として用いることができる。液晶化合物を複数用いた場合、液晶温度範囲が拡大され、広い温度範囲でスメクチック相またはディスコチック相を呈する液晶組成物を得ることが可能になる。また、発光波長の異なる液晶化合物を組み合わせることで、発光色の調整が可能になるという利点も得られる。
高分子液晶化合物は主鎖型又は側鎖型高分子液晶が利用でき、主鎖型高分子液晶は上記低分子液晶化合物の骨格の両末端をエステル基、アミド基、イミド基、エーテル基、アルキル基等で結合させた化合物が好ましく、側鎖型高分子液晶はアクリル系、メタクリル系、エポキシ系等の樹脂の側鎖にアルキレン基、アルコキシメチレン基等のスペーサー基を介して、上記低分子液晶化合物の末端を結合させた化合物が好ましい。高分子液晶化合物に用いられる低分子液晶残基は単一成分、または複数の成分をランダム共重合、ブロック共重合体、交互重合体等として用いることができる。この場合にも、低分子液晶化合物を複数用いたときと同様な利点がある。
また、上記液晶化合物の示す液晶相はスメクチック相又はディスコチック相であることが好ましい。層状配列を有するスメクチック相又はディスコチック相では、電荷の伝導経路が短くなるため、電荷輸送性の向上効果を得られるからである。従って、光配向性基及び重合性基を有する有機化合物の光配向性基及び液晶化合物の双方がスメクチック相又はディスコチック相を呈するものであれば、より良好な電荷輸送性を備えた高分子分散液晶層を形成できる。
On the other hand, a low molecular liquid crystal compound or a high molecular liquid crystal compound can be used as the liquid crystal compound. The low-molecular liquid crystal compound is, for example, a liquid crystal compound having a π-electron conjugated system, a compound combining benzene, pyridine, pyrimidine, piperazine, naphthalene, anthracene, naphthacene, thiophene, triphenylene, hexaazatriphenylene, phthalocyanine, rubrene, and the like, and A derivative or metal complex thereof is preferable. The low molecular liquid crystal compound can be used as a liquid crystal composition in which a single component or a plurality of components are appropriately mixed. When a plurality of liquid crystal compounds are used, the liquid crystal temperature range is expanded, and a liquid crystal composition exhibiting a smectic phase or a discotic phase in a wide temperature range can be obtained. Further, by combining liquid crystal compounds having different emission wavelengths, there is an advantage that the emission color can be adjusted.
As the polymer liquid crystal compound, a main chain type or side chain type polymer liquid crystal can be used, and the main chain type polymer liquid crystal has an ester group, an amide group, an imide group, an ether group, an alkyl group at both ends of the skeleton of the low molecular liquid crystal compound. A compound bonded with a group or the like is preferable, and the side-chain polymer liquid crystal is a low-molecular liquid crystal described above via a spacer group such as an alkylene group or an alkoxymethylene group on the side chain of an acrylic, methacrylic, or epoxy resin. A compound in which the ends of the compound are bound is preferred. The low-molecular liquid crystal residue used in the high-molecular liquid crystal compound can be used as a single component or a plurality of components as a random copolymer, a block copolymer, an alternating polymer, or the like. This case also has the same advantage as when a plurality of low-molecular liquid crystal compounds are used.
The liquid crystal phase represented by the liquid crystal compound is preferably a smectic phase or a discotic phase. This is because, in the smectic phase or the discotic phase having a layered arrangement, the charge conduction path is shortened, so that the effect of improving the charge transport property can be obtained. Therefore, if both the photoalignable group and the liquid crystal compound of the organic compound having a photoalignable group and a polymerizable group exhibit a smectic phase or a discotic phase, the polymer dispersion having better charge transportability A liquid crystal layer can be formed.

高分子分散液晶層を正孔注入層13として用いる場合、HOMOのエネルギー順位が高く、LUMOのエネルギー順位が高く、π電子が過剰な部位を有する液晶化合物が用いられ、例えばπ電子共役系化合物の骨格に、アルキル基、アルコキシ基、アミン誘導体、ヒドロキシ基等の電子供与性置換基を付与した部位を持つ液晶化合物を好適なものとして挙げることができる。電子注入層15として用いる場合には、HOMOのエネルギー順位が低く、LUMOのエネルギー順位が低く、π電子が欠乏している部位を有する液晶化合物が用いられ、例えば、π電子共役系化合物の骨格に、ハロゲン、ニトロ基、シアノ基、カルボキシル基、金属錯体等の電子吸引性置換基を付与した部位を持つ液晶化合物を好適なものとして挙げることができる。発光層14として用いる場合には、上述した全ての種類の液晶化合物を用いることができ、正孔注入層又は電子注入層を兼ねることも可能である。また、高分子分散液晶層中に燐光又は蛍光を発する発光性色素を分散させて発光層14を形成してもよい。   When a polymer-dispersed liquid crystal layer is used as the hole injection layer 13, a liquid crystal compound having a high HOMO energy level, a high LUMO energy level, and a portion having excessive π electrons is used. A liquid crystal compound having a moiety to which an electron-donating substituent such as an alkyl group, an alkoxy group, an amine derivative, or a hydroxy group is added to the skeleton can be given as a preferable example. When used as the electron injection layer 15, a liquid crystal compound having a low HOMO energy level, a low LUMO energy level, and a deficient π electron is used. For example, a skeleton of a π electron conjugated compound is used. A liquid crystal compound having a site to which an electron withdrawing substituent such as a halogen, a nitro group, a cyano group, a carboxyl group, or a metal complex is added can be mentioned as a preferable example. When used as the light emitting layer 14, all kinds of liquid crystal compounds described above can be used, and it can also serve as a hole injection layer or an electron injection layer. Alternatively, the light-emitting layer 14 may be formed by dispersing phosphorescent or fluorescent light-emitting dyes in the polymer-dispersed liquid crystal layer.

尚、有機機能層の各構成層を高分子分散液晶層としない場合には、特にその構成材料に限定はなく、公知の正孔注入層形成材料、発光層形成材料、電子注入層形成材料から適宜選択した材料を用いればよい。具体例を挙げるならば、後述の実施例にも記載しているが、正孔注入層形成材料としては、3,4−ポリエチレンジオキシチオフェン/ポリスチレンスルフォン酸(PEDOT/PSS)、銅フタロシアニン(CuP)、またα-NDP、TPD、TPTE等のトリフェニルアミン誘導体を用いることができる。発光層形成材料としては、Alq3等のアルミキノリノール錯体誘導体、クマリン誘導体、ペリレン、ルブレン、またDPVBi等のジスチリルアリーレン誘導体を用いることができ、これらの材料を高分子分散液晶層中に分散させて用いることもできる。また、電子輸送層形成材料としてはAlq3、Bebq2、ZnPBT等の金属錯体、PBD等のオキサジアゾール誘導体、TAZ等のトリアゾール誘導体を用いることができ、電子注入層を高分子液晶層としない場合には、Li合金等の公知の電子注入層形成材料からなる電子注入層16を単層で用いればよい。   In the case where each constituent layer of the organic functional layer is not a polymer-dispersed liquid crystal layer, the constituent material is not particularly limited, and it may be selected from known hole injection layer forming materials, light emitting layer forming materials, and electron injection layer forming materials. An appropriately selected material may be used. If a specific example is given, it will also be described in the examples below, but as the hole injection layer forming material, 3,4-polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS), copper phthalocyanine (CuP) ), And triphenylamine derivatives such as α-NDP, TPD, and TPTE can be used. As the light emitting layer forming material, aluminum quinolinol complex derivatives such as Alq3, coumarin derivatives, perylene, rubrene, and distyrylarylene derivatives such as DPVBi can be used. These materials are dispersed in a polymer-dispersed liquid crystal layer. It can also be used. As the electron transport layer forming material, metal complexes such as Alq3, Bebq2, and ZnPBT, oxadiazole derivatives such as PBD, and triazole derivatives such as TAZ can be used. When the electron injection layer is not a polymer liquid crystal layer The electron injection layer 16 made of a known electron injection layer forming material such as a Li alloy may be used as a single layer.

液晶化合物の再配向工程は、高分子分散液晶層に使用した液晶化合物の温度をスメクチック相またはディスコチック相を示す温度又はそれ以上の温度に加熱し、一定時間この温度を保持し、液晶化合物が光配向させた光配向性基に対して再配向させることにより達成される。また、この工程は配向固定工程の加熱処理後、高分子分散液晶層を室温まで冷却することで代用できる。   In the realignment step of the liquid crystal compound, the temperature of the liquid crystal compound used in the polymer dispersed liquid crystal layer is heated to a temperature showing a smectic phase or a discotic phase or higher, and this temperature is maintained for a certain time. This is achieved by reorienting the photoaligned photoalignable group. This step can be substituted by cooling the polymer-dispersed liquid crystal layer to room temperature after the heat treatment in the alignment fixing step.

ボトムエミッション型の本実施形態の有機EL装置の場合、基板11は、ガラスやプラスチック等の可視光を透過する材料を用いる。陽極12は、インジウム−スズ酸化物(ITO)等の可視光を透過する導電材料により形成される。陰極17は、アルミニウム(Al)やマグネシウム(Mg)、金(Au)、銀(Ag)等の金属を形成材料とし発光層6から発光する光に対して反射性を有する反射電極である。
基板11と反対側の素子面から光を取り出すトップエミッション型では、非透光性材料を用いた基板とすることができ、またこの場合には、陽極12と陰極17のうち、光射出側に配される電極が可視光透過性電極とされる。
In the case of the bottom emission type organic EL device of this embodiment, the substrate 11 is made of a material that transmits visible light, such as glass or plastic. The anode 12 is formed of a conductive material that transmits visible light, such as indium-tin oxide (ITO). The cathode 17 is a reflective electrode that is made of a metal such as aluminum (Al), magnesium (Mg), gold (Au), or silver (Ag) and has reflectivity with respect to light emitted from the light emitting layer 6.
In the top emission type in which light is extracted from the element surface opposite to the substrate 11, a substrate using a non-translucent material can be used. In this case, of the anode 12 and the cathode 17, on the light emission side. The arranged electrode is a visible light transmissive electrode.

以下、実施例により本発明をさらに具体的に説明するが、本発明の技術範囲は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the technical scope of this invention is not limited to a following example.

(実施例1)
本例では、図2に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、下記(化3)に示す光配向性基及び重合性基を有する有機化合物<1>の0.1gと、(化4)に示す正孔注入機能を有する液晶化合物<2>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。
(Example 1)
In this example, an organic EL device having the configuration shown in FIG. 2 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, 0.1 g of the organic compound <1> having a photo-alignment group and a polymerizable group shown in the following (Chemical Formula 3), and 1. of the liquid crystal compound <2> having a hole injection function shown in (Chemical Formula 4). 0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、陽極12が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて非偏光の平行紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して垂直に配向させた。次いで、ガラス基板11を150℃で1時間アニール処理して、重合性基を熱重合反応させた後、室温まで冷却することで、高分子分散液晶層の正孔注入層13を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the anode 12 was formed to form a mixture thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, non-polarized parallel ultraviolet light was irradiated to the mixture thin film of the substrate 11 from 50 J / cm 2 vertically upward to align the photo-alignment group perpendicularly to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour to thermally polymerize the polymerizable group, and then cooled to room temperature, whereby the hole injection layer 13 of the polymer dispersed liquid crystal layer was formed.

次に、上記正孔注入層13上に、(化5)に示す発光機能を有するジスチリルアリーレン誘導体のDPVBi<3>を真空蒸着して、膜厚約50nmのDPVBi薄膜からなる発光層14を形成した。   Next, DPVBi <3>, a distyrylarylene derivative having a light emitting function shown in (Chemical Formula 5), is vacuum-deposited on the hole injection layer 13 to form a light emitting layer 14 made of a DPVBi thin film having a thickness of about 50 nm. Formed.

Figure 2005302641
Figure 2005302641

次に、発光層14上に、Al−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金薄膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl薄膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 to form an electron injection layer 16 made of an Al—Li alloy thin film having a thickness of about 10 nm. And Al was vacuum-deposited on it, and the cathode 17 which consists of an Al thin film with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる正孔注入層13を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図2に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the hole injection layer 13 composed of the polymer dispersed liquid crystal layer, a layer similar to that shown in FIG. 2 is used as a similar step except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device having the configuration was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でもDPVBi<3>からなる発光層14からの青色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、ホール注入層13形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.5倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above steps, blue light was emitted from the light emitting layer 14 made of DPVBi <3> in any organic EL device. Obtained. Further, when the current density at the time of light emission was measured, the organic EL device having the configuration according to the present invention was about 1. compared with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the hole injection layer 13 was formed. It was confirmed that a current density of 5 times was obtained.

(実施例2)
次に、(実施例1)と同様に、図2に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、下記(化3)に示す光配向性基及び重合性基を有する有機化合物<1>の0.1gと、(化4)に示す正孔注入機能を有する液晶化合物<2>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。
(Example 2)
Next, similarly to (Example 1), an organic EL device having the configuration shown in FIG. 2 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, 0.1 g of the organic compound <1> having a photo-alignment group and a polymerizable group shown in the following (Chemical Formula 3), and 1. of the liquid crystal compound <2> having a hole injection function shown in (Chemical Formula 4). 0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、陽極12が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて直線偏光の紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して平行に配向させた。次いで、ガラス基板11を150℃で1時間アニール処理して、重合性基を熱重合反応させた後、室温まで冷却することで、高分子分散液晶層の正孔注入層13を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the anode 12 was formed to form a mixture thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, linearly polarized ultraviolet light was irradiated to the mixture thin film of the substrate 11 from the top vertically at 50 J / cm 2 to align the photo-alignment group in parallel with the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour to thermally polymerize the polymerizable group, and then cooled to room temperature, whereby the hole injection layer 13 of the polymer dispersed liquid crystal layer was formed.

次に、上記正孔注入層13上に、(化5)に示す発光機能を有するジスチリルアリーレン誘導体のDPVBi<3>を真空蒸着して、膜厚約50nmのDPVBi薄膜からなる発光層14を形成した。   Next, DPVBi <3>, a distyrylarylene derivative having a light emitting function shown in (Chemical Formula 5), is vacuum-deposited on the hole injection layer 13 to form a light emitting layer 14 made of a DPVBi thin film having a thickness of about 50 nm. Formed.

Figure 2005302641
Figure 2005302641

次に、発光層14上に、Al−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金薄膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl薄膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 to form an electron injection layer 16 made of an Al—Li alloy thin film having a thickness of about 10 nm. And Al was vacuum-deposited on it, and the cathode 17 which consists of an Al thin film with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる正孔注入層13を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図2に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the hole injection layer 13 composed of the polymer dispersed liquid crystal layer, a layer similar to that shown in FIG. 2 is used as a similar step except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device having the configuration was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でもDPVBi<3>からなる発光層14からの青色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、ホール注入層13形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.8倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above steps, blue light was emitted from the light emitting layer 14 made of DPVBi <3> in any organic EL device. Obtained. Further, when the current density at the time of light emission was measured, the organic EL device having the configuration according to the present invention was about 1. compared with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the hole injection layer 13 was formed. It was confirmed that a current density of 8 times was obtained.

(実施例3)
次に、図3に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、下記(化6)に示す、正孔注入機能を有するポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホナート)<4>の水溶液(PEDOT/PSS水溶液)をスピンコートして、膜厚約20nmの正孔注入層13を形成した。
次に、上記正孔注入層13上に、(化7)に示した発光機能を有するアルミキノリノール錯体誘導体のAlq3<5>を蒸着して、膜厚約50nmのAlq3薄膜からなる発光層14を形成した。
(Example 3)
Next, an organic EL device having the configuration shown in FIG. 3 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, an aqueous solution (PEDOT / PSS aqueous solution) of poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) <4> having a hole injection function shown in the following (Chemical Formula 6) is spin-coated. A hole injection layer 13 having a thickness of about 20 nm was formed.
Next, Alq3 <5> of an aluminum quinolinol complex derivative having a light emitting function shown in (Chemical Formula 7) is vapor-deposited on the hole injection layer 13 to form a light emitting layer 14 made of an Alq3 thin film having a thickness of about 50 nm. Formed.

Figure 2005302641
Figure 2005302641

Figure 2005302641
Figure 2005302641

次に、(化8)に示す、光配向性基及び重合性基を有する有機化合物<6>の0.1gと、(化9)に示す電子注入機能を有する液晶化合物<7>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <6> having a photo-alignment group and a polymerizable group shown in (Chemical Formula 8) and 1. 1 of the liquid crystal compound <7> having an electron injection function shown in (Chemical Formula 9). 0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、発光層14までが形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて非偏光の平行紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して垂直に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層からなる電子注入層15を形成した。 Next, the above chloroform solution was spin-coated on the substrate 11 on which the light emitting layer 14 was formed to form a mixed thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, non-polarized parallel ultraviolet light was irradiated to the mixture thin film of the substrate 11 from 50 J / cm 2 vertically upward to align the photo-alignment group perpendicularly to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the electron injection layer 15 made of a polymer-dispersed liquid crystal layer was formed.

次に、Al−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる電子注入層15を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図3に示すものと同様の層構成の有機EL装置を作製した。   For comparison, when the electron injection layer 15 composed of the polymer dispersed liquid crystal layer is formed, a layer structure similar to that shown in FIG. 3 is used as a similar process except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device was prepared.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でもAlq3<5>からなる発光層14からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、電子注入層15形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.5倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above steps, green light was emitted from the light emitting layer 14 made of Alq3 <5> in any organic EL device. Obtained. In addition, when the current density at the time of light emission was measured, in the organic EL device having the configuration according to the present invention, it was about 1. compared with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the electron injection layer 15 was formed. It was confirmed that a current density of 5 times was obtained.

(実施例4)
次に、図4に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、(化10)に示す正孔注入機能を有するトリフェニルアミン誘導体のα-NPD<8>を真空蒸着して、膜厚約20nmの正孔注入層13を形成した。
Example 4
Next, an organic EL device having the configuration shown in FIG. 4 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to obtain an anode 12. Next, α-NPD <8> of a triphenylamine derivative having a hole injection function shown in (Chemical Formula 10) was vacuum-deposited to form a hole injection layer 13 having a thickness of about 20 nm.

Figure 2005302641
Figure 2005302641

次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと下記の(化11)に示す、発光機能を有する液晶化合物<9>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <1> having a photo-alignable group and a polymerizable group shown in the above (Chemical Formula 3) and a liquid crystal compound <9> having a light emitting function shown in the Chemical Formula 11 below. Of 1.0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、正孔注入層13が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて非偏光の平行紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して垂直に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層からなる発光層14を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the hole injection layer 13 was formed to form a mixed thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, non-polarized parallel ultraviolet light was irradiated to the mixture thin film of the substrate 11 from 50 J / cm 2 vertically upward to align the photo-alignment group perpendicularly to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the light emitting layer 14 composed of a polymer dispersed liquid crystal layer was formed.

次に、上記高分子液晶層の発光層14上にAl−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 of the polymer liquid crystal layer to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. . And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる発光層14を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図4に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the light-emitting layer 14 composed of the polymer-dispersed liquid crystal layer, a layer structure similar to that shown in FIG. 4 is used as a similar process except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でも、発光機能を有する液晶化合物<9>からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、発光層14形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.5倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above steps, green light emission from the liquid crystal compound <9> having a light-emitting function was obtained in any organic EL device. was gotten. Moreover, when the current density at the time of light emission was measured, in the organic EL device having the configuration according to the present invention, it was about 1.5 as compared with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when forming the light emitting layer 14. It was confirmed that double current density was obtained.

(実施例5)
次に、(実施例4)と同様に、図4に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、(化10)に示す正孔注入機能を有するトリフェニルアミン誘導体のα-NPD<8>を真空蒸着して、膜厚約20nmの正孔注入層13を形成した。
(Example 5)
Next, similarly to (Example 4), an organic EL device having the configuration shown in FIG. 4 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, α-NPD <8> of a triphenylamine derivative having a hole injection function shown in (Chemical Formula 10) was vacuum-deposited to form a hole injection layer 13 having a thickness of about 20 nm.

Figure 2005302641
Figure 2005302641

次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと下記の(化11)に示す、発光機能を有する液晶化合物<9>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <1> having a photo-alignable group and a polymerizable group shown in the above (Chemical Formula 3) and a liquid crystal compound <9> having a light emitting function shown in the Chemical Formula 11 below. Of 1.0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、正孔注入層13が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて非偏光の平行紫外光を基板11の混合物薄膜に対して鉛直方向に対して45度の方向から70J/cm2照射して、光配向性基を基板11に対して45度に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層からなる発光層14を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the hole injection layer 13 was formed to form a mixed thin film having a thickness of about 50 nm. After that, using a high-pressure mercury lamp, non-polarized parallel ultraviolet light is irradiated to the mixed thin film of the substrate 11 at 70 J / cm 2 from a direction of 45 degrees with respect to the vertical direction, and the photo-alignment group is applied to the substrate 11. The orientation was 45 degrees. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the light emitting layer 14 composed of a polymer dispersed liquid crystal layer was formed.

次に、上記高分子液晶層の発光層14上にAl−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 of the polymer liquid crystal layer to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. . And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる発光層14を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図4に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the light-emitting layer 14 composed of the polymer-dispersed liquid crystal layer, a layer structure similar to that shown in FIG. 4 is used as a similar process except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でも、発光機能を有する液晶化合物<9>からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、発光層14形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.4倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above steps, green light emission from the liquid crystal compound <9> having a light-emitting function was obtained in any organic EL device. was gotten. Moreover, when the current density at the time of light emission was measured, in the organic EL device provided with the configuration according to the present invention, it was about 1.4 as compared with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the light emitting layer 14 was formed. It was confirmed that double current density was obtained.

(実施例6)
次に、(実施例4)と同様に、図4に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、(化10)に示す正孔注入機能を有するトリフェニルアミン誘導体のα-NPD<8>を真空蒸着して、膜厚約20nmの正孔注入層13を形成した。
(Example 6)
Next, similarly to (Example 4), an organic EL device having the configuration shown in FIG. 4 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, α-NPD <8> of a triphenylamine derivative having a hole injection function shown in (Chemical Formula 10) was vacuum-deposited to form a hole injection layer 13 having a thickness of about 20 nm.

Figure 2005302641
Figure 2005302641

次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと下記の(化11)に示す、発光機能を有する液晶化合物<9>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <1> having a photo-alignable group and a polymerizable group shown in the above (Chemical Formula 3) and a liquid crystal compound <9> having a light emitting function shown in the Chemical Formula 11 below. Of 1.0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、正孔注入層13が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて直線偏光の紫外光を基板11の混合物薄膜に対して鉛直方向から50J/cm2照射して、光配向性基を基板11に対して平行に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層からなる発光層14を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the hole injection layer 13 was formed to form a mixed thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, linearly polarized ultraviolet light was irradiated from the vertical direction to the mixture thin film of the substrate 11 at 50 J / cm 2 to align the photo-alignment group parallel to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the light emitting layer 14 composed of a polymer dispersed liquid crystal layer was formed.

次に、上記高分子液晶層の発光層14上にAl−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 of the polymer liquid crystal layer to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. . And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる発光層14を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図4に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the light-emitting layer 14 composed of the polymer-dispersed liquid crystal layer, a layer structure similar to that shown in FIG. 4 is used as a similar process except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でも、発光機能を有する液晶化合物<9>からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、発光層14形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.6倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above steps, green light emission from the liquid crystal compound <9> having a light-emitting function was obtained in any organic EL device. was gotten. Moreover, when the current density at the time of light emission was measured, in the organic EL device having the configuration according to the present invention, it was about 1.6 compared with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the light emitting layer 14 was formed. It was confirmed that double current density was obtained.

また、本発明に係る構成を備えた有機EL装置をオーブン中で200℃で100時間加熱後室温に冷却してから、発光時の電流密度を測定したところ、加熱前と同じ値であった。   In addition, when the organic EL device having the configuration according to the present invention was heated in an oven at 200 ° C. for 100 hours and then cooled to room temperature, the current density at the time of light emission was measured.

(実施例7)
次に、図5に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、先の(化10)に示す正孔注入機能を有するトリフェニルアミン誘導体のα-NPD<8>を真空蒸着して、膜厚約50nmの正孔注入層13を形成した。
(Example 7)
Next, an organic EL device having the configuration shown in FIG. 5 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, α-NPD <8> of a triphenylamine derivative having a hole injection function shown in the above (Chemical Formula 10) was vacuum-deposited to form a hole injection layer 13 having a film thickness of about 50 nm.

次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと下記の(化12)に示す、発光機能を有する液晶化合物<10>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <1> having a photo-alignable group and a polymerizable group shown in the above (Chemical Formula 3) and a liquid crystal compound <10> having a light emitting function shown in the Chemical Formula 12 below. Of 1.0 g and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、正孔注入層13が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて非偏光の平行紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して垂直に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層からなる発光層14を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the hole injection layer 13 was formed to form a mixed thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, non-polarized parallel ultraviolet light was irradiated to the mixture thin film of the substrate 11 from 50 J / cm 2 vertically upward to align the photo-alignment group perpendicularly to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the light emitting layer 14 composed of a polymer dispersed liquid crystal layer was formed.

次に、上記高分子液晶層の発光層14上にAl−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 of the polymer liquid crystal layer to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. . And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる発光層14を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図4に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the light-emitting layer 14 composed of the polymer-dispersed liquid crystal layer, a layer structure similar to that shown in FIG. 4 is used as a similar process except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でも、発光機能を有する液晶化合物<10>からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、発光層14形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.8倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices produced by the above-described steps, the green light emission from the liquid crystal compound <10> having a light-emitting function was obtained in any organic EL device. was gotten. Further, when the current density at the time of light emission was measured, the organic EL device having the configuration according to the present invention was about 1.8 in comparison with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the light emitting layer 14 was formed. It was confirmed that double current density was obtained.

(実施例8)
次に、図6に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。次いで、先の(化10)に示す正孔注入機能を有するトリフェニルアミン誘導体のα-NPD<8>を真空蒸着して、膜厚約50nmの正孔注入層13を形成した。
(Example 8)
Next, an organic EL device having the configuration shown in FIG. 6 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12. Next, α-NPD <8> of a triphenylamine derivative having a hole injection function shown in the above (Chemical Formula 10) was vacuum-deposited to form a hole injection layer 13 having a film thickness of about 50 nm.

次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと先の(化11)に示す、発光機能を有する液晶化合物<9>の0.5g、下記の(化13)に示す、発光機能を有する液晶化合物<11>の0.5g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <1> having a photo-alignable group and a polymerizable group shown in the above (Chemical Formula 3) and the liquid crystal compound <9> having a light emitting function shown in the Chemical Formula 11 above. 0.5 g of the liquid crystal compound <11> having a light emitting function shown in the following (Chemical Formula 13) and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次に、上記のクロロホルム溶液を、正孔注入層13までが形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて非偏光の平行紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して垂直に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層からなる発光層14を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the hole injection layer 13 was formed to form a mixed thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, non-polarized parallel ultraviolet light was irradiated to the mixture thin film of the substrate 11 from 50 J / cm 2 vertically upward to align the photo-alignment group perpendicularly to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the light emitting layer 14 composed of a polymer dispersed liquid crystal layer was formed.

次に、上記高分子液晶層の発光層14上にAl−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) was vacuum-deposited on the light emitting layer 14 of the polymer liquid crystal layer to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. . And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなる発光層14を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図4に示すものと同様の層構成の有機EL装置を作製した。   For comparison, in forming the light-emitting layer 14 composed of the polymer-dispersed liquid crystal layer, a layer structure similar to that shown in FIG. 4 is used as a similar process except that the mixture thin film is not irradiated with ultraviolet rays. An organic EL device was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でも、発光機能を有する液晶化合物<9>及び<10>からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、発光層14形成時に混合物薄膜に紫外線照射を行わなかった有機EL装置に比して約1.7倍の電流密度が得られることが確認された。   With respect to the two types of organic EL devices produced by the above steps, when a voltage was applied between the anode 12 and the cathode 17, the liquid crystal compounds <9> and <10> having a light emitting function were used in any organic EL device. Green luminescence was obtained. Further, when the current density at the time of light emission was measured, the organic EL device having the configuration according to the present invention was about 1.7 in comparison with the organic EL device in which the mixture thin film was not irradiated with ultraviolet rays when the light emitting layer 14 was formed. It was confirmed that double current density was obtained.

(実施例9)
次に、図7に示す構成の有機EL装置を作製した。
まず、ガラス基板11上に、ITOからなる膜厚50nmの透明導電膜をスパッタ法により形成して陽極12とした。
次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと、下記の(化14)に示す、正孔注入機能を有する高分子液晶<12>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。
Example 9
Next, an organic EL device having the configuration shown in FIG. 7 was produced.
First, a transparent conductive film made of ITO having a film thickness of 50 nm was formed on the glass substrate 11 by a sputtering method to form an anode 12.
Next, 0.1 g of the organic compound <1> having a photo-alignment group and a polymerizable group shown in the above (Chemical Formula 3), and a polymer having a hole injection function shown in the following (Chemical Formula 14) 1.0 g of liquid crystal <12> and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次いで、上記のクロロホルム溶液を、陽極12が形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて直線偏光の紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して平行に配向させた。次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層の正孔注入層13を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the anode 12 was formed to form a mixture thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, linearly polarized ultraviolet light was irradiated to the mixture thin film of the substrate 11 from the top vertically at 50 J / cm 2 to align the photo-alignment group in parallel with the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the hole injection layer 13 of the polymer dispersed liquid crystal layer was formed.

次に、先の(化8)に示す、光配向性基及び重合性基を有する有機化合物<6>の0.1gと、下記の(化15)に示す、発光機能を有する高分子液晶<13>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <6> having a photo-alignable group and a polymerizable group shown in the above (Chemical Formula 8), and a polymer liquid crystal having a light emitting function shown in the following (Chemical Formula 15) < 13> 1.0 g and azobisisobutyronitrile 0.01 g were dissolved in chloroform 100 ml.

Figure 2005302641
Figure 2005302641

次いで、上記のクロロホルム溶液を、正孔注入層13が形成された基板11上ににスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて直線偏光の紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対し平行に配向させた。 次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層の発光層14を形成した。 Next, the chloroform solution was spin-coated on the substrate 11 on which the hole injection layer 13 was formed to form a mixture thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, linearly polarized ultraviolet light was irradiated to the mixture thin film of the substrate 11 at 50 J / cm 2 from vertically above to align the photo-alignment group parallel to the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the light emitting layer 14 of the polymer dispersed liquid crystal layer was formed.

次に、先の(化3)に示す、光配向性基及び重合性基を有する有機化合物<1>の0.1gと、下記の(化16)に示す、電子注入機能を有する高分子液晶<14>の1.0g、アゾビスイソブチロニトリルの0.01gをクロロホルム100mlに溶解した。   Next, 0.1 g of the organic compound <1> having a photo-alignment group and a polymerizable group shown in the above (Chemical Formula 3), and a polymer liquid crystal having an electron injection function shown in the following (Chemical Formula 16) 1.0 g of <14> and 0.01 g of azobisisobutyronitrile were dissolved in 100 ml of chloroform.

Figure 2005302641
Figure 2005302641

次いで、上記のクロロホルム溶液を、発光層14までが形成された基板11上にスピンコートして膜厚約50nmの混合物薄膜を形成した。その後、高圧水銀ランプを用いて直線偏光の紫外光を基板11の混合物薄膜に対して鉛直上方から50J/cm2照射して、光配向性基を基板11に対して平行に配向させた。次いで、ガラス基板11を150℃で1時間アニール処理した後、室温まで冷却することで、高分子分散液晶層の電子注入層15を形成した。 Next, the above chloroform solution was spin-coated on the substrate 11 on which the light emitting layer 14 was formed to form a mixture thin film having a thickness of about 50 nm. Thereafter, using a high-pressure mercury lamp, linearly polarized ultraviolet light was irradiated to the mixture thin film of the substrate 11 from the top vertically at 50 J / cm 2 to align the photo-alignment group in parallel with the substrate 11. Next, the glass substrate 11 was annealed at 150 ° C. for 1 hour, and then cooled to room temperature, whereby the electron injection layer 15 of the polymer dispersed liquid crystal layer was formed.

次に、上記高分子液晶層の電子注入層15上にAl−Li合金(Li約2wt%含有)を真空蒸着して、膜厚約10nmのAl−Li合金膜からなる電子注入層16を形成した。そして、その上にAlを真空蒸着して、膜厚約150nmのAl膜からなる陰極17を形成して、本発明に係る構成を備える有機EL装置を得た。   Next, an Al—Li alloy (containing about 2 wt% Li) is vacuum-deposited on the electron injection layer 15 of the polymer liquid crystal layer to form an electron injection layer 16 made of an Al—Li alloy film having a thickness of about 10 nm. did. And Al was vacuum-deposited on it, and the cathode 17 which consists of Al film | membrane with a film thickness of about 150 nm was formed, and the organic EL apparatus provided with the structure based on this invention was obtained.

また比較のために、上記高分子分散液晶層からなるホール注入層13、発光層14、及び電子注入層15を形成するに際して、混合物薄膜への紫外線照射を行わなかった以外は同様の工程として、図5に示すものと同様の層構成の有機EL装置を作製した。   For comparison, when forming the hole injection layer 13, the light emitting layer 14, and the electron injection layer 15 made of the polymer dispersed liquid crystal layer, the same process was performed except that the mixture thin film was not irradiated with ultraviolet rays. An organic EL device having the same layer structure as that shown in FIG. 5 was produced.

上記の工程により作製した2種類の有機EL装置について、陽極12と陰極17との間に電圧を印加したところ、いずれの有機EL装置でも、発光機能を有する高分子液晶<12>からの緑色の発光が得られた。また、発光時の電流密度を測定したところ、本発明に係る構成を備えた有機EL装置では、高分子液晶層の形成時に重合体薄膜に紫外線照射を行わなかった有機EL装置に比して約2.0倍の電流密度が得られることが確認された。   When two voltages were applied between the anode 12 and the cathode 17 for the two types of organic EL devices prepared by the above steps, the green light from the polymer liquid crystal <12> having a light emitting function was used in any organic EL device. Luminescence was obtained. In addition, when the current density at the time of light emission was measured, the organic EL device having the configuration according to the present invention was approximately compared with the organic EL device in which the polymer thin film was not irradiated with ultraviolet rays when the polymer liquid crystal layer was formed. It was confirmed that a current density of 2.0 times can be obtained.

以上、実施例1〜9により詳細に説明したように、本発明に係る構成を備えた有機EL素子は、光配向性及び重合性の有機化合物に平行紫外線を照射することにより光配向性部位を基板面に垂直に配向させ、次に熱重合させて光配向性部位の配向を固定させ、これに対して液晶化合物を再配向させて高度に配向制御された高分子分散液晶層を、正孔注入層13、発光層14、又は電子注入層15として備えたことで、発光時の電流密度を上昇させることができるようになっており、さらには、単に配向制御をしない高分子分散液晶層を有機機能層の一部として備えた有機EL素子に比しても、1.4〜2倍の電流密度の向上効果を得られるようになっている。   As described above in detail in Examples 1 to 9, the organic EL device having the configuration according to the present invention has a photo-alignment site by irradiating the photo-alignment and polymerizable organic compound with parallel ultraviolet rays. A polymer-dispersed liquid crystal layer, which is aligned vertically to the substrate surface and then thermally polymerized to fix the orientation of the photo-alignment site and re-orientate the liquid crystal compound to control the orientation of the polymer dispersed liquid crystal layer. By providing the injection layer 13, the light emitting layer 14, or the electron injection layer 15, the current density at the time of light emission can be increased, and further, a polymer-dispersed liquid crystal layer that does not simply perform orientation control is provided. Even if it is compared with the organic EL element provided as a part of the organic functional layer, a current density improvement effect of 1.4 to 2 times can be obtained.

また実施例の結果から明らかなように、本発明に係る高分子分散液晶層では、光配向性部位の配向を重合反応により固定させた構造とすることで、極めて良好な加熱耐性を奏するものとなっている。すなわち、高分子分散液晶層からなる正孔注入層13、発光層14及び電子注入層15を形成する際に、ホットプレートを用いて150℃まで加熱されているが、得られた有機EL素子では、比較サンプルと比較して2倍もの電流密度が得られている。また、本発明に係る構成を備えた有機EL素子は200℃に100時間加熱した後においても発光電流密度が変化しない。これらのことから、正孔注入層13、発光層14及び電子注入層15中の液晶化合物は加熱により配向を乱されたとしても、光配向性部位の配向が保持されているため、冷却過程でスメクチック相又はディスコチック相を経由することにより再配向して、冷却後には良好に配向した状態となっていることが示唆される。   Further, as is clear from the results of the examples, the polymer dispersed liquid crystal layer according to the present invention has a structure in which the orientation of the photo-alignment portion is fixed by a polymerization reaction, thereby exhibiting extremely good heat resistance. It has become. That is, when forming the hole injection layer 13, the light emitting layer 14, and the electron injection layer 15 made of a polymer dispersed liquid crystal layer, it is heated to 150 ° C. using a hot plate. In the obtained organic EL element, The current density is twice as high as that of the comparative sample. Further, the organic EL element having the configuration according to the present invention does not change the light emission current density even after being heated to 200 ° C. for 100 hours. For these reasons, the liquid crystal compounds in the hole injection layer 13, the light emitting layer 14, and the electron injection layer 15 are maintained in the cooling process because the orientation of the photo-alignment site is maintained even when the orientation is disturbed by heating. It is suggested that the film is reoriented by passing through the smectic phase or the discotic phase, and is well oriented after cooling.

(電子機器)
図8は、上記実施の形態の有機EL装置を備えた電子機器の一例を示す斜視構成図である。同図に示す携帯電話機1300は、複数の操作ボタン1302と、受話口1303と、送話口1304と、先の実施形態の有機EL装置からなる表示部1301とを備えて構成されている。そして、この携帯電話機1300によれば、表示部に備えられた有機EL装置による高輝度、高効率の表示が可能になっている。
なお、本発明における有機EL装置を備えた電子機器としては、上記のものに限らず、他に例えば、デジタルカメラ、パーソナルコンピュータ、テレビ、携帯用テレビ、ビューファインダ型・モニタ直視型のビデオテープレコーダ、PDA、携帯用ゲーム機、車載用オーディオ機器、自動車用計器、CRT、カーナビゲーション装置、ページャ、電子手帳、電卓、時計、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器などを挙げることができる。
(Electronics)
FIG. 8 is a perspective configuration diagram illustrating an example of an electronic apparatus including the organic EL device according to the above embodiment. A cellular phone 1300 shown in the figure includes a plurality of operation buttons 1302, an earpiece 1303, a mouthpiece 1304, and a display unit 1301 including the organic EL device of the previous embodiment. According to the mobile phone 1300, high luminance and high efficiency display can be performed by the organic EL device provided in the display unit.
The electronic apparatus provided with the organic EL device according to the present invention is not limited to the above-mentioned ones. For example, digital cameras, personal computers, televisions, portable televisions, viewfinder type / monitor direct view type video tape recorders. , PDAs, portable game machines, in-vehicle audio equipment, automotive instruments, CRTs, car navigation devices, pagers, electronic notebooks, calculators, watches, word processors, workstations, videophones, POS terminals, devices with touch panels, etc. Can be mentioned.

図1は、実施形態に係る有機EL装置の一構成例を示す断面構成図。FIG. 1 is a cross-sectional configuration diagram illustrating a configuration example of an organic EL device according to an embodiment. 図2は、実施例1及び2に係る有機EL装置の断面構成図。FIG. 2 is a cross-sectional configuration diagram of the organic EL device according to the first and second embodiments. 図3は、実施例3に係る有機EL装置の断面構成図。FIG. 3 is a cross-sectional configuration diagram of an organic EL device according to a third embodiment. 図4は、実施例4,5及び6に係る有機EL装置の断面構成図。FIG. 4 is a cross-sectional configuration diagram of an organic EL device according to Examples 4, 5 and 6. 図5は、実施例7に係る有機EL装置の断面構成図。FIG. 5 is a cross-sectional configuration diagram of an organic EL device according to Example 7. 図6は、実施例8に係る有機EL装置の断面構成図。FIG. 6 is a cross-sectional configuration diagram of an organic EL device according to Example 8. 図7は、実施例9に係る有機EL装置の断面構成図。FIG. 7 is a cross-sectional configuration diagram of an organic EL device according to Example 9. 図8は、電子機器の一例を示す斜視構成図。FIG. 8 is a perspective configuration diagram illustrating an example of an electronic apparatus.

符号の説明Explanation of symbols

10 有機EL装置、20 有機EL素子(有機エレクトロルミネッセンス素子)、
21 有機機能層、11 基板、12 陽極(電極)、13 正孔注入層、14 発光層、15,16 電子注入層、17 陰極(電極)。
10 organic EL devices, 20 organic EL elements (organic electroluminescence elements),
21 organic functional layer, 11 substrate, 12 anode (electrode), 13 hole injection layer, 14 light emitting layer, 15, 16 electron injection layer, 17 cathode (electrode).

Claims (7)

高分子分散液晶層を含む有機機能層を具備した有機エレクトロルミネッセンス素子であって、
前記高分子分散液晶層が、光配向性基及び重合性基を有する有機化合物と、液晶化合物からなる混合物に対して、前記光配向性基及び重合性基を有する有機化合物に光を照射して光配向性基を所定方向に配向させ、次に重合性基を重合して配向を固定させ、前記配向をさせた光配向性基に対して前記液晶化合物を再配向させたものであることを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescence device comprising an organic functional layer including a polymer-dispersed liquid crystal layer,
The polymer-dispersed liquid crystal layer irradiates the organic compound having a photoalignable group and a polymerizable group with light to a mixture of the organic compound having a photoalignable group and a polymerizable group and a liquid crystal compound. The photo-alignment group is aligned in a predetermined direction, the polymerization group is then polymerized to fix the alignment, and the liquid crystal compound is re-aligned with respect to the aligned photo-alignment group. An organic electroluminescence device characterized.
前記高分子分散液晶層の示す液晶相が、スメクチック相又はディスコチック相であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to claim 1, wherein the liquid crystal phase of the polymer dispersed liquid crystal layer is a smectic phase or a discotic phase. 前記高分子分散液晶層が、発光層として機能することを特徴とする請求項1から2のいずれか1項に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence element according to claim 1, wherein the polymer dispersed liquid crystal layer functions as a light emitting layer. 前記高分子分散液晶層が、正孔輸送層又は正孔注入層として機能することを特徴とする請求項1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to any one of claims 1 to 3, wherein the polymer-dispersed liquid crystal layer functions as a hole transport layer or a hole injection layer. 前記高分子分散液晶層が、電子輸送層又は電子注入層として機能することを特徴とする請求項1から4のいずれか1項に記載の有機エレクトロルミネッセンス素子。   The organic electroluminescence device according to any one of claims 1 to 4, wherein the polymer-dispersed liquid crystal layer functions as an electron transport layer or an electron injection layer. 高分子分散液晶層を含む有機機能層を具備した有機エレクトロルミネッセンス素子の製造方法であって、
光配向性基及び重合性基を有する有機化合物と液晶化合物を含む混合物薄膜に光を照射して前記光配向性基を配向させる光配向工程と、
前記光配向された混合物薄膜を加熱して前記重合性基を重合反応させて前記光配向性基の配向を固定させる配向固定工程と、
前記配向を固定された混合物薄膜の温度をスメクチック相又はディスコチック相を呈する温度範囲に保持することで、該混合物薄膜中の前記液晶化合物を再配向させる再配向工程と、
を含む工程により前記高分子分散液晶層を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
A method for producing an organic electroluminescence device comprising an organic functional layer including a polymer-dispersed liquid crystal layer,
A photo-alignment step of aligning the photo-alignment group by irradiating light onto a mixture thin film comprising a liquid crystal compound and an organic compound having a photo-alignment group and a polymerizable group;
An orientation fixing step of fixing the orientation of the photo-alignable group by heating the photo-aligned mixture thin film to polymerize the polymerizable group;
A realignment step of reorienting the liquid crystal compound in the mixture thin film by maintaining the temperature of the mixture thin film in which the alignment is fixed in a temperature range exhibiting a smectic phase or a discotic phase;
And forming the polymer-dispersed liquid crystal layer by a process including: a method for producing an organic electroluminescence element.
請求項1から5のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする電子機器。
An electronic apparatus comprising the organic electroluminescence element according to claim 1.
JP2004120325A 2004-04-15 2004-04-15 Organic electroluminescent element, its manufacturing method, and electronic device Withdrawn JP2005302641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004120325A JP2005302641A (en) 2004-04-15 2004-04-15 Organic electroluminescent element, its manufacturing method, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004120325A JP2005302641A (en) 2004-04-15 2004-04-15 Organic electroluminescent element, its manufacturing method, and electronic device

Publications (1)

Publication Number Publication Date
JP2005302641A true JP2005302641A (en) 2005-10-27

Family

ID=35333859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004120325A Withdrawn JP2005302641A (en) 2004-04-15 2004-04-15 Organic electroluminescent element, its manufacturing method, and electronic device

Country Status (1)

Country Link
JP (1) JP2005302641A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239180A (en) * 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd Organic electroluminescent device
JP2012079901A (en) * 2010-09-30 2012-04-19 Fujifilm Corp Material for organic electroluminescent element, film, luminescent layer, organic electroluminescent element, and manufacturing method for organic electroluminescent element
JP2012079892A (en) * 2010-09-30 2012-04-19 Fujifilm Corp Organic electroluminescent device
WO2013019978A1 (en) * 2011-08-03 2013-02-07 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Fluorescence detection of cysteine and homocysteine
JP2013543214A (en) * 2010-09-15 2013-11-28 ロモックス リミテッド Organic light emitting diode device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239180A (en) * 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd Organic electroluminescent device
JP2013543214A (en) * 2010-09-15 2013-11-28 ロモックス リミテッド Organic light emitting diode device
JP2012079901A (en) * 2010-09-30 2012-04-19 Fujifilm Corp Material for organic electroluminescent element, film, luminescent layer, organic electroluminescent element, and manufacturing method for organic electroluminescent element
JP2012079892A (en) * 2010-09-30 2012-04-19 Fujifilm Corp Organic electroluminescent device
WO2013019978A1 (en) * 2011-08-03 2013-02-07 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Fluorescence detection of cysteine and homocysteine
US9229007B2 (en) 2011-08-03 2016-01-05 Portland State University Fluorescence detection of cysteine and homocysteine
US9709572B2 (en) 2011-08-03 2017-07-18 Portland State University Fluorescence detection of cysteine and homocysteine

Similar Documents

Publication Publication Date Title
O'Neill et al. Liquid crystals for charge transport, luminescence, and photonics
Shu et al. Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups
Youssef et al. Fundamentals of Materials Selection for Light‐Emitting Electrochemical Cells
JP5293120B2 (en) Organic electroluminescence device and method for producing the same
Geng et al. Monodisperse glassy-nematic conjugated oligomers with chemically tunable polarized light emission
TW541852B (en) Method for patterning oriented materials for organic electronic displays and devices
Liu et al. Efficient thermally activated delayed fluorescence conjugated polymeric emitters with tunable nature of excited states regulated via carbazole derivatives for solution-processed OLEDs
JPH10106748A (en) Organic electroluminescent element having exciplex
TW200539748A (en) Organic electroluminescent device, and electronic device
Sakamoto et al. Highly polarized polymer-based light-emitting diodes fabricated by using very thin photoaligned polyimide layers
Chen et al. Light-emitting organic materials with variable charge injection and transport properties
JPH10321371A (en) Novel organic electroluminescent element, manufacture thereof and application thereof
JP2003277741A (en) Organic el light-emitting element and liquid crystal display device obtained using the same
Mikroyannidis et al. Poly (fluorenevinylene) copolymers containing bis (phenyl) oxadiazole and triphenylamine moieties: synthesis, photophysics, and redox and electroluminescent properties
Yang et al. Effect of a Pendant Acceptor on Thermally Activated Delayed Fluorescence Properties of Conjugated Polymers with Backbone‐Donor/Pendant‐Acceptor Architecture
Aldred et al. Linearly polarised organic light-emitting diodes (OLEDs): synthesis and characterisation of a novel hole-transporting photoalignment copolymer
JP2007197587A (en) Composition for electrically conductive material, electrically conductive material, electrically conductive layer, electronic device and electronic equipment
JP2005302641A (en) Organic electroluminescent element, its manufacturing method, and electronic device
JP2006522860A (en) Crosslinkable materials for organic light emitting devices and methods
Kawamoto et al. Side-chain polymer liquid crystals containing oxadiazole and amine moieties with carrier-transporting abilities for single-layer light-emitting diodes
JP3796787B2 (en) Light emitting element
JP2005317440A (en) Organic electroluminescent element, its manufacturing method and electronic apparatus
JP2013030406A (en) Method for manufacturing carrier-transporting organic amorphous thin film
JP2001357972A (en) Organic electroluminescent element
JP2006245178A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703