JP2005300068A - Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace - Google Patents

Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace Download PDF

Info

Publication number
JP2005300068A
JP2005300068A JP2004118918A JP2004118918A JP2005300068A JP 2005300068 A JP2005300068 A JP 2005300068A JP 2004118918 A JP2004118918 A JP 2004118918A JP 2004118918 A JP2004118918 A JP 2004118918A JP 2005300068 A JP2005300068 A JP 2005300068A
Authority
JP
Japan
Prior art keywords
furnace chamber
temperature
oxygen concentration
exhaust gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004118918A
Other languages
Japanese (ja)
Inventor
Tetsuya Nishimura
哲也 西村
Kazunori Nagai
和範 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004118918A priority Critical patent/JP2005300068A/en
Publication of JP2005300068A publication Critical patent/JP2005300068A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable stable reduction treatment in a rotary hearth furnace which prevents a reducing atmosphere from reacting with atmospheric air entering an exhaust duct to cause unnecessary heat generation and pressure increase, by controlling the temperature and oxygen concentration of exhaust gas without sacrificing a reduction treatment degree and the temperature and oxygen concentration of the reducing atmosphere. <P>SOLUTION: Secondary combustion air is sprayed into a furnace chamber (a) just upstream of exhaust with respect to a gas flow to bring the oxygen concentration 28 of exhaust gas to a predetermined oxygen concentration, and second combustion air is next sprayed into a furnace chamber (b) upstream of the furnace chamber a to bring the temperature 29 of the exhaust gas into a predetermined temperature range. The two means are repeated until the oxygen concentration 28 and temperature 29 in the exhaust gas duct fall within the predetermined ranges. For further improved controllability, temperature control measures the furnace temperatures of the furnace chambers (a) and (b) and changes fuel and primary combustion air to bring each furnace chamber to a predetermined temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は製鉄プロセス等で発生する金属酸化物を還元処理し回収する還元処理方法に関するものである。特に、還元炉の排ガスの酸素濃度及び温度を制御する方法に関するものである。   The present invention relates to a reduction treatment method for reducing and recovering metal oxide generated in an iron making process or the like. In particular, the present invention relates to a method for controlling the oxygen concentration and temperature of exhaust gas from a reduction furnace.

製鋼ダスト、高炉ダスト、メッキスラッジ等の酸化鉄や酸化ニッケル等の金属酸化物を還元して金属を回収するための金属酸化物還元炉として、図1及び図2に示すような金属酸化物を石炭やコークス等の還元材と混合して造粒した被処理材1を炉室内を移動する炉床3に載せて、その炉室内を搬送しつつ還元雰囲気下で高温に加熱するインメトコ法と称される方法を適用したものが特許文献1で知られている。   As a metal oxide reduction furnace for recovering metal by reducing metal oxides such as iron oxide and nickel oxide such as steelmaking dust, blast furnace dust, and plating sludge, metal oxides as shown in FIGS. 1 and 2 are used. It is called an in-metoco method in which a material to be treated 1 that is granulated by mixing with a reducing material such as coal or coke is placed on a hearth 3 that moves in the furnace chamber and heated to a high temperature in a reducing atmosphere while being conveyed in the furnace chamber. Japanese Patent Application Laid-Open No. H10-228688 is known to which the method described above is applied.

しかし、この還元処理法では、特許文献2で説明されているとおり、還元炉室に設けたバーナー6を空気比1以下にて燃焼させることによって、該還元炉室に一酸化炭素等の未燃ガスを含む還元性の雰囲気ガスを生じさせている。また、加熱炉室に設けたバーナーは空気比1以上にて燃料ガスを完全燃焼させ十分な発熱をえることによって被処理材を高温度に加熱できるようにしている。
ところが、従来のインメトコ法を代表とする被処理材の搬送移動方向と雰囲気ガスの流動方向が逆となる交流式の回転炉床炉では、加熱炉室と還元炉室とが炉内で連通状態にあり、還元炉室で発生した還元性の雰囲気ガスが加熱炉室を通って排気ダクト30へ排出されるようにしている。このため、加熱炉室では還元炉室で発生した還元性の雰囲気ガスをも燃焼させその燃焼熱を利用すべく十分なる空気を導入している。しかし、必要以上に空気を導入するとかえって加熱炉室の温度を下げることとなり、燃料原単位を悪化させ排ガス処理設備も大型化するなど不都合を招く。
However, in this reduction treatment method, as explained in Patent Document 2, by burning the burner 6 provided in the reduction furnace chamber at an air ratio of 1 or less, unburned carbon monoxide or the like in the reduction furnace chamber. A reducing atmosphere gas containing gas is generated. In addition, the burner provided in the heating furnace chamber can heat the material to be treated at a high temperature by completely burning the fuel gas at an air ratio of 1 or more to generate sufficient heat.
However, in an AC rotary hearth furnace in which the direction of the material to be processed and the flow direction of the atmosphere gas are reversed, such as the conventional in-metoco method, the heating furnace chamber and the reduction furnace chamber are in communication with each other in the furnace. The reducing atmosphere gas generated in the reduction furnace chamber is discharged to the exhaust duct 30 through the heating furnace chamber. For this reason, in the heating furnace chamber, sufficient air is introduced to burn the reducing atmosphere gas generated in the reduction furnace chamber and to use the combustion heat. However, if air is introduced more than necessary, the temperature of the heating furnace chamber is lowered, resulting in inconveniences such as deterioration of the fuel consumption rate and increase in the size of the exhaust gas treatment facility.

そこで、特許文献2、特許文献3、及び特許文献4では、安定した還元反応を実現するために炉室内の温度及び酸素濃度を制御する方法が提案されている。
この炉室からの排ガスは高効率での熱回収、及び排ガス基準を達成するため粉塵等を除去するガス清浄化処理が施される。
先行特許及び公知文献には明記されていないが、この炉室からの排ガスは酸素濃度の制御と熱回収及びガス清浄との両立が難しい実態がある。
例えば、特許文献2において炉室内ガスの酸素濃度または一酸化炭素濃度の測定濃度に従い該炉室内に空気を導入し該炉室前炉室で発生した未燃ガスを該炉室で燃焼させると記載されている。しかし、実際には、該炉室内ガス成分は該炉室部位で大きな偏差を有し酸素濃度または一酸化炭素濃度を該炉室内平均値として測定することが実質上不可能である。また、該炉室内ガスの酸素濃度または一酸化炭素濃度の測定濃度に従い該炉室内に空気を導入した結果、該炉室内の未燃ガスが多く該炉室内温度が制御すべき温度範囲を超えて上昇する現象が発生することがある。
Therefore, Patent Document 2, Patent Document 3, and Patent Document 4 propose a method of controlling the temperature and oxygen concentration in the furnace chamber in order to realize a stable reduction reaction.
The exhaust gas from the furnace chamber is subjected to heat recovery with high efficiency and a gas cleaning process for removing dust and the like in order to achieve the exhaust gas standard.
Although not specified in the prior patents and publicly known documents, the exhaust gas from the furnace chamber is difficult to achieve both oxygen concentration control, heat recovery, and gas cleaning.
For example, Patent Document 2 describes that air is introduced into the furnace chamber according to the measured concentration of the oxygen concentration or carbon monoxide concentration in the furnace chamber gas, and unburned gas generated in the furnace chamber in front of the furnace chamber is burned in the furnace chamber. Has been. However, in practice, the furnace chamber gas component has a large deviation in the furnace chamber part, and it is practically impossible to measure the oxygen concentration or carbon monoxide concentration as the average value in the furnace chamber. Further, as a result of introducing air into the furnace chamber according to the measured oxygen concentration or carbon monoxide concentration of the furnace chamber gas, there are many unburned gases in the furnace chamber and the temperature inside the furnace chamber exceeds the temperature range to be controlled. Increasing phenomenon may occur.

特公昭64−5233Japanese Patent Publication No. 64-5233 特開平11−248359JP-A-11-248359 特開2002−81867JP 2002-81867 A 特開2001−115204JP 2001-115204 A

金属酸化物還元炉室では、金属酸化物を還元剤と反応させるため1000℃程度の高い温度と還元雰囲気、例えば一酸化炭素雰囲気を必要とする。この炉室雰囲気が排気ダクトにそのまま侵入すると、還元雰囲気が排気ダクトに侵入した大気と反応し不必要な発熱や圧力上昇を起こすことがある。そのため、排気ダクト直前のガス流れ上流側の炉室にて2次燃焼空気と称する還元雰囲気ガスを燃焼させる空気を吹き込む必要がある。
しかし、還元雰囲気ガスと2次空気が反応した結果、排気ガスが高温となり排ガスからの熱回収設備上限温度やガス清浄設備上限温度を超えたりする好ましくない事態を招く。このようなことが発生すると還元炉での処理量を低減し排ガス量を下げることにより排ガス温度を下げる操業を余儀なくされる。
本発明は、還元反応を進める炉室内での温度、酸素濃度及び還元ガス濃度を犠牲にすることなく排ガスの温度及び酸素濃度を制御し、廃熱回収とガス清浄化を円滑におこなうものである。
In the metal oxide reduction furnace chamber, a high temperature of about 1000 ° C. and a reducing atmosphere, for example, a carbon monoxide atmosphere are required to react the metal oxide with the reducing agent. If this furnace chamber atmosphere enters the exhaust duct as it is, the reducing atmosphere may react with the air that has entered the exhaust duct, causing unnecessary heat generation and pressure increase. Therefore, it is necessary to blow in air for combusting reducing atmosphere gas called secondary combustion air in the furnace chamber upstream of the gas flow just before the exhaust duct.
However, as a result of the reaction between the reducing atmosphere gas and the secondary air, the exhaust gas becomes high in temperature, leading to an undesirable situation in which the upper limit temperature of the heat recovery equipment from the exhaust gas or the upper limit temperature of the gas cleaning equipment is exceeded. When this occurs, it is necessary to reduce the exhaust gas temperature by reducing the throughput in the reduction furnace and reducing the exhaust gas amount.
The present invention controls exhaust gas temperature and oxygen concentration without sacrificing the temperature, oxygen concentration and reducing gas concentration in the furnace chamber for proceeding the reduction reaction, and smoothly performs waste heat recovery and gas purification. .

本発明は上記課題を解決するためになされたもので、その要旨は以下のとおりである。
(1)3室以上の炉室を有する回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法であって、排気ダクト中の排ガスの酸素濃度が所定の範囲になるように、排気ダクト直前のガス流れ上流側の炉室a内に2次燃焼空気を吹き込む第一の工程と、排気ダクト中の排ガスの温度が所定の範囲になるように、該炉室aの直前の炉室b内に2次燃焼空気を吹き込む第二の工程を、該所定の範囲の酸素濃度及び温度が共に満たされるまで交互に繰り返すことを特徴とする回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法。
(2)更に、前記炉室aの温度が所定の範囲になるように、炉室a内の燃料量と1次燃焼空気量を空気比一定の下で変更する第三の工程と、前記炉室bの温度が所定の範囲になるように、炉室b内の燃料量及び1次燃焼空気量を空気比一定の下で変更する第四の工程を、前記所定の酸素濃度範囲、前記排ガスの所定の温度範囲、該炉室aの所定の温度範囲、及び該炉室bの所定の温度範囲の全てが満たされるまで、第一から第四の工程を繰り返すことを特徴とする(1)記載の回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法。
(3)前記炉室a、炉室bの少なくとも何れかにおいて、2次燃焼空気を吹き込む代わりに、1次燃焼空気比を燃料量一定の下で調整することを特徴とする(1)記載の回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法。
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) A method for controlling the oxygen concentration and temperature of exhaust gas in a rotary hearth reducing furnace having three or more furnace chambers, wherein the exhaust duct has an exhaust duct so that the oxygen concentration in the exhaust duct falls within a predetermined range. The first step of blowing secondary combustion air into the furnace chamber a on the upstream side of the immediately preceding gas flow, and the furnace chamber b immediately before the furnace chamber a so that the temperature of the exhaust gas in the exhaust duct falls within a predetermined range. The second step of blowing the secondary combustion air into the inside is repeated alternately until the oxygen concentration and temperature within the predetermined range are both satisfied. Control method.
(2) Furthermore, a third step of changing the amount of fuel and the amount of primary combustion air in the furnace chamber a under a constant air ratio so that the temperature of the furnace chamber a is in a predetermined range, and the furnace A fourth step of changing the amount of fuel and the amount of primary combustion air in the furnace chamber b under a constant air ratio so that the temperature of the chamber b falls within a predetermined range, the predetermined oxygen concentration range, the exhaust gas The first to fourth steps are repeated until all of the predetermined temperature range, the predetermined temperature range of the furnace chamber a, and the predetermined temperature range of the furnace chamber b are satisfied (1) A method for controlling the oxygen concentration and temperature of exhaust gas in the rotary hearth reducing furnace as described.
(3) The primary combustion air ratio is adjusted under a constant fuel amount instead of blowing secondary combustion air in at least one of the furnace chamber a and the furnace chamber b. A method for controlling the oxygen concentration and temperature of exhaust gas in a rotary hearth reducing furnace.

排ガスの酸素濃度を測定し排気直前のガス流れ上流側の炉室a内に燃焼用空気を吹き込むだけでは排ガス温度が上昇するが、本発明を適用し排ガス温度を測定して排気直前炉室aのその前の炉室b内にも燃焼用空気を吹き込むことにより排気前炉室内一酸化炭素等の還元ガス濃度を低下することが出来るので排ガス中の酸素濃度を不必要な発熱や圧力上昇が発生しない濃度に保ちつつ排ガス温度を安定して制御することが可能となる。   The exhaust gas temperature rises only by measuring the oxygen concentration of the exhaust gas and blowing combustion air into the furnace chamber a upstream of the gas flow immediately before the exhaust, but the exhaust gas temperature is measured by applying the present invention to measure the exhaust gas temperature a By reducing the concentration of reducing gas such as carbon monoxide in the pre-exhaust furnace chamber by injecting combustion air into the previous furnace chamber b, unnecessary heat generation and pressure increase can be achieved. It is possible to stably control the exhaust gas temperature while maintaining a concentration that does not occur.

還元炉の排気ダクトと排気ダクト直前のガス流れ上流側の炉室a、炉室aのその前の炉室b、炉室cから構成される装置にて炉室a、炉室b、炉室cの各々の温度及び雰囲気ガスを制御して炉室内の材料を還元させる。排気ダクトへの入口からダクト径の3倍程度以上下流で排気ガスが完全に混合したと見なせる位置にて排気ダクト中の排ガス酸素濃度を酸素センサー等の酸素濃度分析計で測定し排気ダクト中の酸素濃度が制御目標酸素濃度未満(例えば1%未満)であれば炉室aの2次燃焼空気量を増加させ、排気ダクト中の酸素濃度が制御目標酸素濃度を超え(例えば2%超)れば炉室aの2次燃焼空気量を削減する。
次に排気ダクト中の排気ガス温度を熱電対等の温度測定器で測定し制御目標温度を超える(例えば1020℃超)であれば炉室bの2次燃焼空気量を増加させ、制御目標温度未満(例えば980℃未満)であれば炉室bの2次燃焼空気量を削減する。
炉室a及び炉室bの2次燃焼空気は該炉室内の一酸化炭素等の還元雰囲気ガスと反応する。炉室aにおける二次燃焼空気が還元雰囲気ガスの燃焼に必要な理論空気比以上であれば排気ダクト中で酸素を検出し、理論空気比以下であれば還元雰囲気ガスの未燃焼分が排気ダクト中に流れ込む。排気ダクト中での酸素濃度は理論上は0%以上であれば良いが、高すぎると排ガス量が増加し過大な排ガス処理設備が必要となったりエネルギ効率を悪化させるので、実設備では外乱や制御安定性を考慮して1〜2%を目標とすることが望ましい。
また、排気ダクト中の酸素濃度を目標値に収めるため炉室aの雰囲気ガスを理論空気比以上で燃焼したことにより炉室aで必要とする熱量以上となることがあり得る。その場合には排気ダクト中の温度が目標値を超えることになる。排気ダクト中の温度を制御する目的で炉室aにおける還元雰囲気ガスの濃度を下げるために炉室bに2次燃焼空気を投入する。
排気ガスの酸素濃度、温度の制御性を更に向上させるために炉室a及び炉室bの各々の炉室炉体に炉内雰囲気ガス温度を測定するように設けた熱電対等の温度測定器を用いて測定した各々の炉室温度を用いて当該炉室の燃料量と1次燃焼空気量を空気比一定で同時に制御する。
以上の制御方法をフローチャートに示したのが図3である。
尚、第一の工程と第二の工程の間に第三の工程を実行し、第二の工程の後に第四の工程を実行する等の手段の順序を変えても構わない。
A furnace chamber a, a furnace chamber b, a furnace chamber comprising an exhaust duct of the reduction furnace, a furnace chamber a upstream of the gas flow immediately before the exhaust duct, a furnace chamber b in front of the furnace chamber a, and a furnace chamber c The material in the furnace chamber is reduced by controlling the temperature and atmospheric gas of each of c. The exhaust gas oxygen concentration in the exhaust duct is measured with an oxygen concentration analyzer such as an oxygen sensor at a position where it can be considered that exhaust gas is completely mixed downstream from the entrance to the exhaust duct by about three times the diameter of the duct. If the oxygen concentration is less than the control target oxygen concentration (for example, less than 1%), the amount of secondary combustion air in the furnace chamber a is increased, and the oxygen concentration in the exhaust duct exceeds the control target oxygen concentration (for example, more than 2%). The amount of secondary combustion air in the furnace chamber a is reduced.
Next, if the exhaust gas temperature in the exhaust duct is measured with a temperature measuring device such as a thermocouple and exceeds the control target temperature (for example, more than 1020 ° C.), the amount of secondary combustion air in the furnace chamber b is increased to be less than the control target temperature. If it is (for example, less than 980 ° C.), the amount of secondary combustion air in the furnace chamber b is reduced.
The secondary combustion air in the furnace chamber a and the furnace chamber b reacts with a reducing atmosphere gas such as carbon monoxide in the furnace chamber. If the secondary combustion air in the furnace chamber a is greater than the theoretical air ratio required for the combustion of the reducing atmosphere gas, oxygen is detected in the exhaust duct, and if the secondary combustion air is less than the theoretical air ratio, the unburned portion of the reducing atmosphere gas is the exhaust duct. Flows in. The oxygen concentration in the exhaust duct should theoretically be 0% or more, but if it is too high, the amount of exhaust gas will increase and an excessive exhaust gas treatment facility will be required or energy efficiency will be deteriorated. In view of control stability, it is desirable to target 1 to 2%.
In addition, in order to keep the oxygen concentration in the exhaust duct at a target value, the amount of heat required in the furnace chamber a may be increased by burning the atmosphere gas in the furnace chamber a at a theoretical air ratio or higher. In that case, the temperature in the exhaust duct exceeds the target value. In order to control the temperature in the exhaust duct, secondary combustion air is introduced into the furnace chamber b in order to reduce the concentration of the reducing atmosphere gas in the furnace chamber a.
In order to further improve the controllability of the oxygen concentration and temperature of the exhaust gas, a temperature measuring device such as a thermocouple provided to measure the furnace atmosphere gas temperature in each furnace chamber furnace body of the furnace chamber a and the furnace chamber b. Using each furnace chamber temperature measured using the same, the fuel amount in the furnace chamber and the primary combustion air amount are simultaneously controlled at a constant air ratio.
FIG. 3 shows the above control method in a flowchart.
Note that the order of the means such as executing the third step between the first step and the second step and executing the fourth step after the second step may be changed.

排気ダクト中排気ガスの酸素濃度と温度とを制御するために必要な空気量を炉室a及び炉室bの2次燃焼空気で調整する代わりに、炉室a及び炉室bの1次燃焼空気量を変えることで調整することも可能である。
排気ダクトの位置は炉室端部に設定する場合の他に、図7に示すように、乾燥予熱炉室0を有し炉室0と炉室aとの間に設ける場合にも本発明の適用は有効である。その場合には乾燥予熱炉室0の排ガスとそれ以降の炉室排ガスとを混合する前の炉室a経由のみの排ガスの酸素濃度と温度とを測定することにより本発明が有効になる。
Instead of adjusting the amount of air required to control the oxygen concentration and temperature of the exhaust gas in the exhaust duct with the secondary combustion air in the furnace chamber a and the furnace chamber b, the primary combustion in the furnace chamber a and the furnace chamber b It is also possible to adjust by changing the amount of air.
In addition to the case where the position of the exhaust duct is set at the end of the furnace chamber, as shown in FIG. 7, the present invention can be applied to a case where the drying preheating furnace chamber 0 is provided between the furnace chamber 0 and the furnace chamber a. Application is effective. In that case, the present invention becomes effective by measuring the oxygen concentration and temperature of the exhaust gas only through the furnace chamber a before mixing the exhaust gas in the dry preheating furnace chamber 0 and the subsequent furnace chamber exhaust gas.

以下、本発明の実施例について図面を使用しさらに説明する。   Hereinafter, examples of the present invention will be further described with reference to the drawings.

図4は、還元炉室にて酸化物を還元材と反応させている炉室内を示している。炉室a及び炉室bは炉室内還元雰囲気を燃焼させる2次燃焼空気を供給できる。炉室cに燃料と燃焼用空気を反応させるバーナーを有して炉室温度を1050℃になるように制御している。炉室cから炉室bに移動する炉室内ガスは炉室bで発生する被処理物から発生する還元ガスと2次燃焼空気が燃焼した排ガスと混合して炉室b内ガスとなる。更に炉室aでも炉室bと同様の反応となり炉室a内ガスとなり排ガス処理の誘引ブロワーなどにより吸引されて排ガスとなり排気ダクトに移動する。   FIG. 4 shows the furnace chamber in which the oxide is reacted with the reducing material in the reduction furnace chamber. The furnace chamber a and the furnace chamber b can supply secondary combustion air for burning the reducing atmosphere in the furnace chamber. The furnace chamber c has a burner for reacting fuel and combustion air, and the furnace chamber temperature is controlled to 1050 ° C. The furnace chamber gas moving from the furnace chamber c to the furnace chamber b is mixed with the reducing gas generated from the object to be processed generated in the furnace chamber b and the exhaust gas burned by the secondary combustion air to become the gas in the furnace chamber b. Further, the reaction in the furnace chamber a is the same as that in the furnace chamber b, becomes the gas in the furnace chamber a, is sucked by an exhaust blower induction blower or the like, becomes exhaust gas, and moves to the exhaust duct.

本発明を適用する前は排ガス中の酸素濃度が0%で、COを3%程度検出していた。排ガス中の酸素濃度を測定して炉室aのみの2次燃焼空気の吹き込み量を変更する第一の工程を実行したところ排ガスダクト中の酸素濃度は所定の濃度1〜2%にできたが排ガス温度が1092℃と高くなった。そこで更に排ガスダクト中の温度を測定し炉室bの2次燃焼空気量も変更する第ニの工程を実行し、更に第一と第二の工程を繰り返したところ、約10分という短時間で、排ガスダクト中の酸素濃度は所定の1〜2%、温度は大半の場合に目標の980〜1020℃に安定した。   Prior to application of the present invention, the oxygen concentration in the exhaust gas was 0% and CO was detected at about 3%. When the first step of measuring the oxygen concentration in the exhaust gas and changing the amount of secondary combustion air blown only into the furnace chamber a was performed, the oxygen concentration in the exhaust gas duct could be a predetermined concentration of 1 to 2%. The exhaust gas temperature was as high as 1092 ° C. Therefore, the second step of measuring the temperature in the exhaust gas duct and changing the amount of secondary combustion air in the furnace chamber b is executed, and when the first and second steps are further repeated, in a short time of about 10 minutes. The oxygen concentration in the exhaust gas duct was predetermined 1 to 2%, and the temperature was stabilized at the target 980 to 1020 ° C. in most cases.

図5は、炉室a、炉室b、炉室c、それぞれに燃料と燃焼用空気を反応させるバーナーを有して炉室温度をそれぞれ所定の温度950℃、1000℃、1050℃になるように制御した例である。炉室a及び炉室bは炉室内還元雰囲気を燃焼させる2次燃焼空気を供給できる。炉室cから炉室bに移動する炉室内ガスは炉室bで発生する被処理物から発生する還元ガスと加熱バーナー排ガスと混合して炉室b内ガスとなる。更に炉室aでも炉室bと同様の反応となり炉室a内ガスとなり排ガス処理の誘引ブロワーなどにより吸引されて排気ガスとなり排気ダクトに移動する。   FIG. 5 shows that the furnace chamber a, the furnace chamber b, and the furnace chamber c each have a burner for reacting fuel and combustion air so that the furnace chamber temperatures become predetermined temperatures 950 ° C., 1000 ° C., and 1050 ° C., respectively. This is an example of control. The furnace chamber a and the furnace chamber b can supply secondary combustion air for burning the reducing atmosphere in the furnace chamber. The furnace chamber gas that moves from the furnace chamber c to the furnace chamber b is mixed with the reducing gas generated from the object to be processed generated in the furnace chamber b and the exhaust gas from the heating burner to become the gas in the furnace chamber b. Further, the reaction in the furnace chamber a is the same as that in the furnace chamber b, becomes the gas in the furnace chamber a, is sucked in by an exhaust blower induction blower, etc., becomes exhaust gas, and moves to the exhaust duct.

本発明を適用する前は排ガス中の酸素濃度が0%で、COを2%程度検出していた。排ガス中の酸素濃度を測定して炉室aのみの2次燃焼空気の吹き込み量を変更する第一の工程を実行したところ排ガスダクト中の酸素濃度は所定の濃度1〜2%にできたが排ガス温度が1085℃とやはり高くなった。そこで更に排ガスダクト中の温度を測定し炉室bの2次燃焼空気量も変更する第ニの工程を実行したところ、約5分という短時間で、排ガスダクト中の酸素濃度は所定の1〜2%、温度は目標の980〜1020℃となった。   Before the application of the present invention, the oxygen concentration in the exhaust gas was 0%, and CO was detected at about 2%. When the first step of measuring the oxygen concentration in the exhaust gas and changing the amount of secondary combustion air blown only into the furnace chamber a was performed, the oxygen concentration in the exhaust gas duct could be a predetermined concentration of 1 to 2%. The exhaust gas temperature was still as high as 1085 ° C. Therefore, when the second step of measuring the temperature in the exhaust gas duct and changing the amount of secondary combustion air in the furnace chamber b was performed, the oxygen concentration in the exhaust gas duct was set to a predetermined 1 to 2 in a short time of about 5 minutes. The target temperature was 980 to 1020 ° C. at 2%.

図6は、排気ガス中の酸素濃度と温度を制御する手段として実施例2における2次燃焼空気の代わりに、炉室a、炉室bの燃料燃焼用空気の量を燃料量一定の下で調整するようにしたものである。炉室a、炉室b、炉室c、それぞれ所定の温度950℃、1000℃、1050℃になるようにし制御した。本発明を適用する前は排ガス中の酸素濃度が0%で、COを2%程度検出していた。排ガス中の酸素濃度を測定して炉室aの燃焼空気の吹き込み量を変更する第一の工程を実行し、更に排ガスダクト中の温度を測定し炉室bの燃焼空気量も変更する第ニの工程を実行したところ、約7分という短時間で、排ガスダクト中の酸素濃度は所定の1〜2%、温度は目標の980〜1020℃となった。   FIG. 6 shows that the amount of fuel combustion air in the furnace chamber a and the furnace chamber b is constant under the amount of fuel instead of the secondary combustion air in the embodiment 2 as means for controlling the oxygen concentration and temperature in the exhaust gas. It is intended to be adjusted. The furnace chamber a, the furnace chamber b, and the furnace chamber c were controlled to have predetermined temperatures of 950 ° C., 1000 ° C., and 1050 ° C., respectively. Before the application of the present invention, the oxygen concentration in the exhaust gas was 0%, and CO was detected at about 2%. The first step of measuring the oxygen concentration in the exhaust gas and changing the amount of combustion air blown into the furnace chamber a is executed, and the temperature in the exhaust gas duct is further measured to change the amount of combustion air in the furnace chamber b. As a result, the oxygen concentration in the exhaust gas duct was a predetermined 1 to 2% and the target temperature was 980 to 1020 ° C. in a short time of about 7 minutes.

図7は、排気ダクトの位置を炉室端部に設置するのではなく炉室全体の中間部に設置した場合である。炉室0は所定温度900℃に制御し被処理物の乾燥予熱に用いている。バーナー64は空気比1.05にて燃料を完全燃焼させ十分な発熱を得ている。炉室0排ガスの余剰酸素約1%と炉室a排ガスの未燃ガスが排気ダクト内で反応し不必要な発熱や圧力上昇を起こさないように排気ダクトには仕切壁61を設け統合排気ダクトで混合する前に炉室a排ガスの酸素濃度と温度を測定し所定の酸素濃度と温度になるよう制御した例である。炉室a、炉室b、炉室c、それぞれ所定の温度950℃、1000℃、1050℃になるように制御した。   FIG. 7 shows a case where the position of the exhaust duct is not installed at the end of the furnace chamber but at the middle portion of the entire furnace chamber. The furnace chamber 0 is controlled to a predetermined temperature of 900 ° C. and is used for drying preheating of the object to be processed. The burner 64 obtains sufficient heat by completely burning the fuel at an air ratio of 1.05. The exhaust duct is provided with a partition wall 61 so that about 1% of excess oxygen in the exhaust gas from the furnace chamber 0 reacts with the unburned gas in the exhaust gas from the furnace chamber a to cause unnecessary heat generation and pressure rise. This is an example in which the oxygen concentration and temperature of the exhaust gas from the furnace chamber a are measured before being mixed in the above and controlled so as to obtain a predetermined oxygen concentration and temperature. The furnace chamber a, the furnace chamber b, and the furnace chamber c were controlled to have predetermined temperatures of 950 ° C., 1000 ° C., and 1050 ° C., respectively.

本発明を適用する前は、排ガス中の酸素濃度が0〜1%で、一酸化炭素を0〜3%程度検出していた。本発明の第一の工程、第二の工程、第三の工程、第四の工程の適用に加えて排気ダクトに仕切壁61を設け統合排気ダクトで混合する前に炉室a排ガスの酸素濃度と温度を測定し所定の酸素濃度と温度になるよう制御したところ、約8分という短時間で、炉室a排ガス中の酸素濃度は所定の1〜2%、温度は目標の980〜1020℃となった。   Before applying the present invention, the oxygen concentration in the exhaust gas was 0 to 1%, and carbon monoxide was detected about 0 to 3%. In addition to the application of the first step, the second step, the third step, and the fourth step of the present invention, the partition wall 61 is provided in the exhaust duct and the oxygen concentration in the exhaust gas from the furnace chamber a before mixing in the integrated exhaust duct The temperature was measured and controlled to reach a predetermined oxygen concentration and temperature. In a short time of about 8 minutes, the oxygen concentration in the exhaust gas from the furnace chamber a was a predetermined 1 to 2%, and the temperature was the target 980 to 1020 ° C. It became.

金属酸化物を還元処理する回転炉床炉の水平断面図。The horizontal sectional view of the rotary hearth furnace which carries out reduction processing of a metal oxide. 図1の回転炉床炉のA−A断面図。AA sectional drawing of the rotary hearth furnace of FIG. 本発明の制御フローチャート。The control flowchart of this invention. 本発明の実施例1に係る回転炉床炉排気ダクト及びダクト直前の炉室部の機器構成図。BRIEF DESCRIPTION OF THE DRAWINGS The equipment block diagram of the rotary hearth furnace exhaust duct which concerns on Example 1 of this invention, and the furnace chamber part just before a duct. 本発明の実施例2に係る炉室a、炉室bの加熱用バーナーを設けた機器構成図。The equipment block diagram which provided the burner for the heating of the furnace chamber a which concerns on Example 2 of this invention, and the furnace chamber b. 本発明の実施例3に係る排気ガス制御をバーナーで実施した機器構成図。The apparatus block diagram which implemented exhaust gas control which concerns on Example 3 of this invention with the burner. 本発明の実施例4に係る排気ダクトを炉室中間に設けた設備構成図。The equipment block diagram which provided the exhaust duct which concerns on Example 4 of this invention in the furnace chamber middle.

符号の説明Explanation of symbols

1…造粒被処理物
2…回転炉床炉
3…炉床
4…被処理物装入設備
5…被処理物排出設備
6…加熱用バーナー(総称)
7…炉床回転方向
8…炉内雰囲気ガス流れ方向
11…排気ガス
12…炉室a加熱用バーナー
13…炉室b加熱用バーナー
14…炉室c加熱用バーナー
15…炉室a加熱用バーナーへの燃料制御調節弁
16…炉室b加熱用バーナーへの燃料制御調節弁
17…炉室c加熱用バーナーへの燃料制御調節弁
18…炉室a加熱用バーナーへの1次燃焼用空気制御調節弁
19…炉室b加熱用バーナーへの1次燃焼用空気制御調節弁
20…炉室c加熱用バーナーへの1次燃焼用空気制御調節弁
21…炉室a内温度検出器
22…炉室b内温度検出器
23…炉室c内温度検出器
24…炉室aの2次燃焼用空気バーナー
25…炉室bの2次燃焼用空気バーナー
26…炉室aの2次燃焼用空気バーナーへの空気制御調節弁
27…炉室bの2次燃焼用空気バーナーへの空気制御調節弁
28…排気ダクト内酸素検出器
29…排気ダクト内温度検出器
30…排気ダクト
31…炉室a内で発生する還元ガス
32…炉室b内で発生する還元ガス
33…炉室cから炉室bへ移動する炉室c内ガス
34…炉室bから炉室aへ移動する炉室b内ガス
35…炉室a
36…炉室b
37…炉室c
38…炉室0(乾燥予熱炉)
51…炉室a加熱用電気ヒーター
52…炉室b加熱用電気ヒーター
53…炉室c加熱用電気ヒーター
61…仕切壁
62…炉室0用排気ダクト
63…統合排気ダクト
64…炉室0加熱用バーナー
65…炉室0加熱用バーナーへの燃料制御調節弁
66…炉室0加熱用バーナーへの1次燃焼用空気制御調節弁
67…炉室0内温度検出器
68…炉室0内で発生するガス(水蒸気他)
DESCRIPTION OF SYMBOLS 1 ... Granulation to-be-processed object 2 ... Rotary hearth furnace 3 ... Hearth 4 ... To-be-processed object charging equipment 5 ... To-be-processed object discharge equipment 6 ... Burner for heating (generic name)
7 ... hearth rotation direction 8 ... atmosphere gas flow direction in the furnace
11 ... Exhaust gas
12 ... Burner for heating furnace chamber a
13 ... Furnace chamber b heating burner
14 ... Furnace chamber c heating burner
15 ... Fuel control valve to the furnace chamber a heating burner
16 ... Fuel control valve to the furnace chamber b heating burner
17 ... Fuel control valve for furnace chamber heating burner
18 ... Air combustion control valve for primary combustion to the furnace chamber a heating burner
19 ... Air combustion control valve for primary combustion to furnace chamber b heating burner
20 ... Air combustion control valve for primary combustion to furnace chamber c heating burner
21 ... Furnace chamber a temperature detector
22 ... Temperature detector in furnace chamber b
23 ... Temperature detector in furnace chamber c
24 ... Secondary combustion air burner for furnace chamber a
25 ... Air burner for secondary combustion in furnace chamber b
26 ... Air control valve for secondary combustion air burner in furnace chamber a
27 ... Air control valve for secondary combustion air burner in furnace chamber b
28 ... Oxygen detector in exhaust duct
29… Exhaust duct temperature detector
30 ... Exhaust duct
31 ... Reducing gas generated in the furnace chamber a
32 ... Reducing gas generated in the furnace chamber b
33 ... Gas in furnace chamber c moving from furnace chamber c to furnace chamber b
34 ... Gas in furnace chamber b moving from furnace chamber b to furnace chamber a
35 ... Furnace chamber a
36 ... Furnace room b
37 ... Furnace chamber c
38 ... Furnace room 0 (dry preheating furnace)
51 ... Electric heater for heating furnace chamber a
52 ... Electric heater for heating furnace chamber b
53 ... Electric heater for heating furnace chamber c
61 ... Partition wall
62 ... Exhaust duct for furnace chamber 0
63 ... Integrated exhaust duct
64 ... Burner 0 heating burner
65 ... Fuel control valve for furnace chamber 0 heating burner
66 ... Air combustion control valve for primary combustion to furnace chamber 0 heating burner
67 ... Furnace chamber 0 temperature detector
68 ... Gas generated in furnace chamber 0 (water vapor, etc.)

Claims (3)

3室以上の炉室を有する回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法であって、排気ダクト中の排ガスの酸素濃度が所定の範囲になるように、排気ダクト直前のガス流れ上流側の炉室a内に2次燃焼空気を吹き込む第一の工程と、排気ダクト中の排ガスの温度が所定の範囲になるように、該炉室aの直前の炉室b内に2次燃焼空気を吹き込む第二の工程を、該所定の範囲の酸素濃度及び温度が共に満たされるまで交互に繰り返すことを特徴とする回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法。   A method for controlling the oxygen concentration and temperature of exhaust gas in a rotary hearth reduction furnace having three or more furnace chambers, wherein the gas immediately before the exhaust duct is adjusted so that the oxygen concentration of the exhaust gas in the exhaust duct falls within a predetermined range. A first step of blowing secondary combustion air into the furnace chamber a on the upstream side of the flow, and 2 in the furnace chamber b immediately before the furnace chamber a so that the temperature of the exhaust gas in the exhaust duct falls within a predetermined range. A method for controlling the oxygen concentration and temperature of exhaust gas in a rotary hearth reducing furnace, wherein the second step of blowing the next combustion air is alternately repeated until both the oxygen concentration and temperature in the predetermined range are satisfied. 更に、前記炉室aの温度が所定の範囲になるように、炉室a内の燃料量と1次燃焼空気量を空気比一定の下で変更する第三の工程と、前記炉室bの温度が所定の範囲になるように、炉室b内の燃料量及び1次燃焼空気量を空気比一定の下で変更する第四の工程を、前記所定の酸素濃度範囲、前記排ガスの所定の温度範囲、該炉室aの所定の温度範囲、及び該炉室bの所定の温度範囲の全てが満たされるまで、第一から第四の工程を繰り返すことを特徴とする請求項1記載の回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法。   Furthermore, a third step of changing the amount of fuel in the furnace chamber a and the amount of primary combustion air under a constant air ratio so that the temperature of the furnace chamber a is in a predetermined range; A fourth step of changing the amount of fuel in the furnace chamber b and the amount of primary combustion air under a constant air ratio so that the temperature falls within a predetermined range is performed in the predetermined oxygen concentration range, the predetermined amount of the exhaust gas The rotation according to claim 1, wherein the first to fourth steps are repeated until all of the temperature range, the predetermined temperature range of the furnace chamber a, and the predetermined temperature range of the furnace chamber b are satisfied. A method for controlling the oxygen concentration and temperature of exhaust gas in a hearth type reducing furnace. 前記炉室a、炉室bの少なくとも何れかにおいて、2次燃焼空気を吹き込む代わりに、1次燃焼空気比を燃料量一定の下で調整することを特徴とする請求項1記載の回転炉床式還元炉における排ガスの酸素濃度及び温度の制御方法。   The rotary hearth according to claim 1, wherein the primary combustion air ratio is adjusted under a constant amount of fuel instead of blowing secondary combustion air in at least one of the furnace chamber a and the furnace chamber b. Of controlling the oxygen concentration and temperature of exhaust gas in a gas reduction furnace.
JP2004118918A 2004-04-14 2004-04-14 Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace Withdrawn JP2005300068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118918A JP2005300068A (en) 2004-04-14 2004-04-14 Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118918A JP2005300068A (en) 2004-04-14 2004-04-14 Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace

Publications (1)

Publication Number Publication Date
JP2005300068A true JP2005300068A (en) 2005-10-27

Family

ID=35331811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118918A Withdrawn JP2005300068A (en) 2004-04-14 2004-04-14 Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace

Country Status (1)

Country Link
JP (1) JP2005300068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246957A (en) * 2006-03-14 2007-09-27 Jfe Steel Kk Method for producing reduced metal
CN102207354A (en) * 2011-06-22 2011-10-05 武汉北湖胜达制铁有限公司 Novel energy-saving combustion device based on tunnel kiln reducing process
CN104913633A (en) * 2015-05-28 2015-09-16 丁海涛 Biomass fuel furnace for brightness
JP2017052995A (en) * 2015-09-08 2017-03-16 住友金属鉱山株式会社 Smelting method of nickel oxide ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246957A (en) * 2006-03-14 2007-09-27 Jfe Steel Kk Method for producing reduced metal
CN102207354A (en) * 2011-06-22 2011-10-05 武汉北湖胜达制铁有限公司 Novel energy-saving combustion device based on tunnel kiln reducing process
CN104913633A (en) * 2015-05-28 2015-09-16 丁海涛 Biomass fuel furnace for brightness
CN104913633B (en) * 2015-05-28 2017-06-20 奉化市精翔热处理设备厂 A kind of biomass fuel furnace for brightness
JP2017052995A (en) * 2015-09-08 2017-03-16 住友金属鉱山株式会社 Smelting method of nickel oxide ore

Similar Documents

Publication Publication Date Title
JP5088919B2 (en) Cement baking apparatus and waste treatment method
US20140175714A1 (en) Apparatus and method for the thermal treatment of lump or agglomerated material
TW201736776A (en) Radiant tube burner facility
JP5297066B2 (en) Pyrolysis gas treatment method and apparatus in sludge carbonization equipment
US20170362122A1 (en) Direct-fired inclined counterflow rotary kilns and use thereof
JP4650106B2 (en) Sintering apparatus and sintering method
JP2005300068A (en) Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
KR20150068918A (en) Method for heating a metal material in an industrial furnace
JP4585666B2 (en) Control method of externally heated rotary kiln
AU2008212425B2 (en) Rotary hearth reducing furnace and method of operating the same
JP2009256746A (en) Method for adjusting furnace temperature in heating-combustion zone in rotary-hearth furnace, and rotary-hearth furnace
JP6521908B2 (en) Industrial furnace
CN206055643U (en) A kind of organic waste liquid burning device
JP2009155691A (en) Direct-fire type roller hearth continuous heat-treatment furnace
JP4771885B2 (en) Cement baking apparatus and method for drying water-containing organic waste
JP2002157023A (en) Furnace pressure control system
CA2468528A1 (en) Method and apparatus for increasing the capacity of a waste heat boiler in a metallurgic smelting furnace
JP3044286B2 (en) Continuous annealing furnace
JP7408255B2 (en) Heat treatment method for heating furnace, continuous heating furnace and batch heating furnace
JP2005249354A (en) Combustion control method for reduced iron manufacturing plant and its device
JP2009186072A (en) Low-nox combustion control method and manufacturing method of reduction treatment material
JP2002147751A (en) Furnace-pressure controller
JP2001272028A (en) Method for operating continuous heating furnace
JPH04222387A (en) Continuous tunnel kiln

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703