JP2005300006A - Multiple type air conditioner - Google Patents

Multiple type air conditioner Download PDF

Info

Publication number
JP2005300006A
JP2005300006A JP2004116312A JP2004116312A JP2005300006A JP 2005300006 A JP2005300006 A JP 2005300006A JP 2004116312 A JP2004116312 A JP 2004116312A JP 2004116312 A JP2004116312 A JP 2004116312A JP 2005300006 A JP2005300006 A JP 2005300006A
Authority
JP
Japan
Prior art keywords
pressure gas
cooling
indoor
connection pipe
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116312A
Other languages
Japanese (ja)
Inventor
Koji Naito
宏治 内藤
Susumu Nakayama
進 中山
Kenichi Nakamura
憲一 中村
Kazumiki Urata
和幹 浦田
Hiroaki Tsuboe
宏明 坪江
Yasutaka Yoshida
康孝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004116312A priority Critical patent/JP2005300006A/en
Publication of JP2005300006A publication Critical patent/JP2005300006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To secure a cooling capacity that is necessary in a cooling indoor unit when a cooling operation indoor unit and a heating operation indoor unit are operated at the same time. <P>SOLUTION: The multiple type air conditioner is provided with a liquid connection pipe 22, a low pressure gas connection pipe 24, a high pressure gas connection pipe 26, and a cooling-heating change-over unit 30. The low pressure gas connection pipe 24 and the high pressure gas connection pipe 26 are connected to the cooling-heating change-over unit 30, and the liquid connection pipe 22 is connected to the indoor unit 40. When heating operation is carried out by connecting at least one of a plurality of indoor units 40 to the high pressure gas connection pipe 26 by the cooling-heating change-over unit 30, and connecting the other plurality of indoor units 40 to the low pressure gas connection pipe 4 by the cooling-heating change-over unit 30, opening of an indoor expansion valve 41 is increased and decreased in the indoor unit 40 carrying out cooling operation to compensate capacity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、室内機が複数接続されるマルチ型空気調和機に関し、特に冷暖切換ユニットを用い冷暖同時運転を行うものに好適である。   The present invention relates to a multi-type air conditioner to which a plurality of indoor units are connected, and is particularly suitable for a unit that performs a cooling / heating simultaneous operation using a cooling / heating switching unit.

冷房運転室内機と暖房運転室内機が同時に運転されるマルチ型冷暖同時運転空気調和機には、室外機側より高圧ガス管、低圧ガス管、液管の3本の接続配管が引出されている。一方、室内機側にはガス管、液管の2本の接続配管があり、室内機側の3本と室外機側の2本の配管を接続するように冷暖切換ユニットが設置されている。   In a multi-type cooling / heating simultaneous operation air conditioner in which a cooling operation indoor unit and a heating operation indoor unit are simultaneously operated, three connection pipes of a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe are drawn from the outdoor unit side. . On the other hand, on the indoor unit side, there are two connection pipes, a gas pipe and a liquid pipe, and a cooling / heating switching unit is installed so as to connect three pipes on the indoor unit side and two pipes on the outdoor unit side.

冷暖切換ユニットは、室内ガス管につなぐ配管を高圧ガス管か低圧ガス管のいずれかに切換えることにより、室内機の運転を暖房か冷房に切換える。例えば、室内ガス管に低圧ガス管を接続すると室内機は冷房運転を行い、室内ガス管に高圧ガス管を接続すると室内機は暖房運転を行う。つまり、室外機の運転モードと室内機の配管接続状態により、暖房運転室内機からの液冷媒は室内機の液管、液接続配管を介して冷房運転室内機に送られ冷房運転に使用される。   The cooling / heating switching unit switches the operation of the indoor unit to heating or cooling by switching the pipe connected to the indoor gas pipe to either the high pressure gas pipe or the low pressure gas pipe. For example, when a low pressure gas pipe is connected to the indoor gas pipe, the indoor unit performs a cooling operation, and when a high pressure gas pipe is connected to the indoor gas pipe, the indoor unit performs a heating operation. That is, depending on the operation mode of the outdoor unit and the pipe connection state of the indoor unit, the liquid refrigerant from the heating operation indoor unit is sent to the cooling operation indoor unit via the liquid pipe and liquid connection pipe of the indoor unit and used for the cooling operation. .

しかし、暖房運転室内機より流出する液冷媒は、暖房運転室内機の運転状態や吐出圧力等により冷却不足となり、フラッシュした状態で冷房運転室内機に送られる場合があり、冷房運転室内機が複数台ある場合、同―冷媒循環量となるように液冷媒を分配すると、フラッシュした液冷媒が多く流れる室内機では、冷房能力が不足する。   However, the liquid refrigerant flowing out from the heating operation indoor unit may be insufficiently cooled due to the operation state or discharge pressure of the heating operation indoor unit, and may be sent to the cooling operation indoor unit in a flushed state. In the case where there is a stand, if the liquid refrigerant is distributed so as to have the same amount of refrigerant circulation, the indoor unit in which a large amount of liquid refrigerant that has been flushed has insufficient cooling capacity.

そこで、液接続配管から低圧ガス管へ接続するバイパス回路を設け、暖房運転室内機より流出する液冷媒を過冷却しフラッシュを防止することが知られ、例えば、特開平03−063467号公報に記載されている。   Therefore, it is known to provide a bypass circuit connected from the liquid connection pipe to the low-pressure gas pipe to supercool the liquid refrigerant flowing out from the heating operation indoor unit to prevent flushing. For example, it is described in JP-A-03-063467. Has been.

特開平03−063467号公報Japanese Patent Laid-Open No. 03-063467

上記従来技術においては、室内暖房機の出口における二相液の一部を低圧ガス管にバイパスし、過冷却をとり液単相にして冷房室内機へ送っている。しかし、バイパス回路に抵抗があるので、暖房機出口と低圧ガス管の差圧が小さいとバイパス量が少なくなり過冷却が不足し、この液冷媒が多く流れる室内機は冷房能力が不足する。
また、差圧が大きいとバイパス量が必要以上に多くなり、暖房室内機から冷房室内機に送られる液冷媒循環量が減り、液冷媒量が不足した室内機の冷房能力が低下する。
In the above prior art, a part of the two-phase liquid at the outlet of the indoor heater is bypassed to the low-pressure gas pipe, supercooled to obtain a liquid single phase, and sent to the cooling indoor unit. However, since there is resistance in the bypass circuit, if the differential pressure between the outlet of the heater and the low pressure gas pipe is small, the amount of bypass decreases and supercooling is insufficient, and the indoor unit in which a large amount of liquid refrigerant flows has insufficient cooling capacity.
In addition, if the differential pressure is large, the amount of bypass increases more than necessary, the amount of liquid refrigerant circulating from the heating indoor unit to the cooling indoor unit decreases, and the cooling capacity of the indoor unit lacking the amount of liquid refrigerant decreases.

本発明の目的は、冷房運転室内機と暖房運転室内機が同時に運転される場合において冷房室内機に必要とされる冷房能力を確保することにある。   An object of the present invention is to ensure the cooling capacity required for a cooling indoor unit when the cooling operation indoor unit and the heating operation indoor unit are operated simultaneously.

また、他の目的は、冷暖切換ユニット内の部品点数を低減し、コンパクト化を図ることにある。さらに、他の目的は、冷暖切換ユニットと室内機の接続配管を少なくして施工性を向上することにある。なお、本発明は上記目的の少なくとも一つを達成することにある。   Another object is to reduce the number of parts in the cooling / heating switching unit to achieve compactness. Another object is to improve workability by reducing the number of connecting pipes between the cooling / heating switching unit and the indoor unit. The present invention is to achieve at least one of the above objects.

上記目的を達成するため、本発明は、室内熱交換器と室内膨張弁を有する複数台の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有する室外機と、該室外機から引出された液接続配管、低圧ガス接続配管、高圧ガス接続配管と、室外機と室内機の接続配管経路の途中に配置され、前記室内機のガス接続配管への接続を前記低圧ガス接続配管あるいは前記高圧ガス接続配管のいずれかに切換える冷暖切換ユニットと、を備えたマルチ型空気調和機において、前記低圧ガス接続配管及び前記高圧ガス接続配管は前記冷暖切換ユニットへ接続され、前記液接続配管は前記室内機に接続され、前記複数台の室内機のうち少なくとも1台が前記冷暖切換ユニットにより前記高圧ガス接続配管へ接続されて暖房運転され、他の複数台の前記室内機が前記冷暖切換ユニットにより前記低圧ガス接続配管へ接続されて冷房運転される場合、冷房運転される前記室内機は前記室内膨張弁の開度が増減されて能力が補償されるものである。   To achieve the above object, the present invention provides a plurality of indoor units having an indoor heat exchanger and an indoor expansion valve, an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve, and the outdoor unit. The liquid connection pipe drawn out, the low pressure gas connection pipe, the high pressure gas connection pipe, and the connection pipe route between the outdoor unit and the indoor unit are arranged in the middle, and the connection to the gas connection pipe of the indoor unit is connected to the low pressure gas connection pipe or In a multi-type air conditioner comprising a cooling / heating switching unit that switches to one of the high-pressure gas connection pipes, the low-pressure gas connection pipe and the high-pressure gas connection pipe are connected to the cooling / heating switching unit, and the liquid connection pipe is Connected to the indoor unit, and at least one of the plurality of indoor units is connected to the high-pressure gas connection pipe by the cooling / heating switching unit for heating operation, and the other plurality of indoor units are in front Cooling and heating if connected to the low-pressure gas connection pipe by the switching unit is the cooling operation, the indoor unit is cooling operation are those opening increases or decreases has been the ability of the indoor expansion valve is compensated.

また、上記のものにおいて、冷房運転される前記室内機のうち暖房運転される前記室内機に隣接されて配置される前記室内膨張弁の開度は他の前記室内機のものより増加されて運転されることが望ましい。
さらに、上記のものにおいて、冷房運転される前記室内機の能力が前記圧縮機の運転周波数によって制御されることが望ましい。
Further, in the above, the opening degree of the indoor expansion valve arranged adjacent to the indoor unit to be heated among the indoor units to be cooled is increased and operated from that of the other indoor units. It is desirable that
Further, in the above, it is desirable that the capacity of the indoor unit to be cooled is controlled by the operating frequency of the compressor.

さらに、上記のものにおいて、冷房運転される前記室内機の吸込空気温度と吹出空気温度との差に関連して前記室内膨張弁の開度を制御することが望ましい。
さらに、上記のものにおいて、前記冷暖切換ユニットは前記低圧ガス接続配管への接続を開閉する低圧ガス管用電磁弁と、前記高圧ガス接続配管への接続を開閉する高圧ガス管用電磁弁と、を有することが望ましい。
Furthermore, in the above, it is desirable to control the opening degree of the indoor expansion valve in relation to the difference between the intake air temperature and the blown air temperature of the indoor unit that is in the cooling operation.
Further, in the above, the cooling / heating switching unit has a low pressure gas pipe solenoid valve for opening and closing a connection to the low pressure gas connection pipe and a high pressure gas pipe solenoid valve for opening and closing a connection to the high pressure gas connection pipe. It is desirable.

本発明によれば、暖房運転室内機より流出する液冷媒を冷房運転室内機に送ると共に、暖房運転室内機の運転状態や吐出圧力等により冷却不足となる冷房室内機の室内膨張弁開度を大きくして冷媒循環量を増やすので、必要冷房能力を確保できる。   According to the present invention, the liquid refrigerant flowing out from the heating operation indoor unit is sent to the cooling operation indoor unit, and the indoor expansion valve opening degree of the cooling indoor unit that is insufficiently cooled due to the operating state, discharge pressure, etc. of the heating operation indoor unit is set. Since the refrigerant circulation rate is increased to increase the required cooling capacity, the necessary cooling capacity can be secured.

また、室外機からの液接続配管を室内機へ直接接続するので、冷暖切換ユニットの部品点数を減らして、コスト低減と冷暖切換ユニットの小型化が可能となる。さらに、室外機、冷暖切換ユニット、室内機の配管接続数が低減されて、施工性が向上される。   Further, since the liquid connection pipe from the outdoor unit is directly connected to the indoor unit, the number of parts of the cooling / heating switching unit can be reduced, and the cost can be reduced and the cooling / heating switching unit can be downsized. Furthermore, the number of pipe connections of the outdoor unit, the cooling / heating switching unit, and the indoor unit is reduced, and workability is improved.

冷房運転室内機と暖房運転室内機が同時に運転されるマルチ型冷暖同時運転空気調和機には、室内機側の3本と室外機側の2本の配管を接続するように冷暖切換ユニットが設置され、冷暖切換ユニットは、室内ガス管につなぐ配管を高圧ガス管か低圧ガス管のいずれかに切換えることにより、室内機の運転を暖房か冷房に切換えている。そこで、複数室内機のうち1台が暖房運転、他の複数台が冷房運転を行っている場合、暖房運転室内機より流出する液冷媒は、暖房運転室内機の運転状態や吐出圧力等により冷却不足となり、フラッシュした状態で冷房運転室内機に送られ、複数台の冷房運転室内機で同―冷媒循環量となるように液冷媒を分配すると、フラッシュした液冷媒が多く流れる室内機では冷房能力が不足する。   A cooling / heating switching unit is installed in the multi-type cooling / heating simultaneous operation air conditioner in which the cooling operation indoor unit and the heating operation indoor unit are operated at the same time so that three pipes on the indoor unit side and two pipes on the outdoor unit side are connected. The cooling / heating switching unit switches the operation of the indoor unit to heating or cooling by switching the pipe connected to the indoor gas pipe to either the high pressure gas pipe or the low pressure gas pipe. Therefore, when one of the plurality of indoor units is in the heating operation and the other plurality is in the cooling operation, the liquid refrigerant flowing out of the heating operation indoor unit is cooled by the operating state, discharge pressure, etc. of the heating operation indoor unit. If the liquid refrigerant is distributed so that it is flushed and sent to the cooling operation indoor unit in a flushed state and the same amount of refrigerant is circulated among multiple cooling operation indoor units, the cooling capacity of the indoor unit in which the flashed liquid refrigerant flows a lot Is lacking.

図1は冷凍サイクルを示し、例えば室内機3台の容量が全て同じで、室内機40aが暖房運転、40b、40cが冷房運転をしている。まず、冷凍サイクル内の冷媒の流れを説明する。
圧縮機11a、11b、11cで圧縮された高圧ガス冷媒は、暖房負荷に比べ冷房負荷の方が多いため、一部が四方弁12aを通って室外熱交換器13aへと送られ、残りは四方弁12bを通って高圧ガス阻止弁25、高圧ガス接続配管26に送られる。
FIG. 1 shows a refrigeration cycle. For example, the capacity of all three indoor units is the same, the indoor unit 40a is in heating operation, and 40b and 40c are in cooling operation. First, the flow of the refrigerant in the refrigeration cycle will be described.
Since the high-pressure gas refrigerant compressed by the compressors 11a, 11b, and 11c has more cooling load than the heating load, a part of the high-pressure gas refrigerant is sent to the outdoor heat exchanger 13a through the four-way valve 12a, and the rest is four-way It is sent to the high-pressure gas blocking valve 25 and the high-pressure gas connection pipe 26 through the valve 12b.

室外熱交換器13aへと送られた高圧ガス冷媒の流れについて説明する。高圧ガス冷媒は室外空気と熱交換し凝縮して、高圧液冷媒となり、室外膨張弁14a、レシーバ15を通りプレート熱交換器16に入る。室外膨張弁14bは閉止されており、室外熱交換器13bには冷媒は流れない。
プレート熱交換器16では高圧液冷媒の一部をバイパスし熱交換することにより、残りの液冷媒が過冷却される。この過冷却された液冷媒は液阻止弁21、液接続配管22を通って、室外熱交に近い冷房運転室内機40cにまず送られ、残った分がその次に近い冷房運転室内機40bに送られる。室内機40cに入った過冷却液は室内膨張弁41cで膨張し、室内熱交換器42cで室内空気と熱交換し低圧ガスとなり、ガス接続配管27cを通って冷暖切換ユニット30cに入る。このとき高圧ガス管用電磁弁31cは閉、低圧ガス管用電磁弁32cは開となるため低圧ガスは低圧ガス管用電磁弁32cを通り低圧ガス接続配管24、低圧ガス阻止弁23、アキュムレータ18を経て、圧縮機11a、11b、11cに戻り再循環する。
The flow of the high-pressure gas refrigerant sent to the outdoor heat exchanger 13a will be described. The high-pressure gas refrigerant exchanges heat with outdoor air and condenses to become high-pressure liquid refrigerant, and enters the plate heat exchanger 16 through the outdoor expansion valve 14 a and the receiver 15. The outdoor expansion valve 14b is closed, and no refrigerant flows into the outdoor heat exchanger 13b.
In the plate heat exchanger 16, the remaining liquid refrigerant is supercooled by bypassing a part of the high-pressure liquid refrigerant and exchanging heat. The supercooled liquid refrigerant passes through the liquid blocking valve 21 and the liquid connection pipe 22 and is first sent to the cooling operation indoor unit 40c close to the outdoor heat exchange, and the remaining amount is sent to the next closest cooling operation indoor unit 40b. Sent. The supercooled liquid that has entered the indoor unit 40c is expanded by the indoor expansion valve 41c, exchanges heat with indoor air in the indoor heat exchanger 42c, becomes low-pressure gas, and enters the cooling / heating switching unit 30c through the gas connection pipe 27c. At this time, the high-pressure gas pipe solenoid valve 31c is closed and the low-pressure gas pipe solenoid valve 32c is opened, so that the low-pressure gas passes through the low-pressure gas pipe solenoid valve 32c, the low-pressure gas connection pipe 24, the low-pressure gas blocking valve 23, and the accumulator 18. Return to the compressors 11a, 11b, 11c and recirculate.

高圧ガス接続配管26に送られた高圧ガス冷媒の流れについて説明する。暖房運転を行う室内機は40aであり、これに高圧ガスを送るために、冷暖切換ユニット30aの高圧ガス管用電磁弁31aは開、低圧ガス管用電磁弁32aは閉となる。そして冷暖切換ユニット30aを通過した高圧ガス冷媒はガス接続配管27aを通り室内機40aに入り、室内熱交換器42aで室内空気と熱交換した後、高圧液あるいは高圧二相液(フラッシュ状態)となって液接続配管22に入る。つぎに、液阻止弁21、液接続配管22を通って室外機より送られてきた過冷却液が残っていればこれと合流し、冷房室内機40bに入る。
室内機40bに入った過冷却液は室内膨張弁41bで絞られ、室内熱交換器42bで室内空気と熱交換し低圧ガスとなり、ガス接続配管27bを通って冷暖切換ユニット30bに入る。このとき高圧ガス管用電磁弁31bは閉、低圧ガス管用電磁弁32bは開となるため低圧ガスは低圧ガス管用電磁弁32bを通り低圧ガス接続配管24、低圧ガス阻止弁23、アキュムレータ18を経て、圧縮機11a、11b、11cに戻り再循環する。
The flow of the high-pressure gas refrigerant sent to the high-pressure gas connection pipe 26 will be described. The indoor unit that performs the heating operation is 40a. In order to send high-pressure gas to the indoor unit, the high-pressure gas pipe electromagnetic valve 31a of the cooling / heating switching unit 30a is opened and the low-pressure gas pipe electromagnetic valve 32a is closed. The high-pressure gas refrigerant that has passed through the cooling / heating switching unit 30a passes through the gas connection pipe 27a, enters the indoor unit 40a, exchanges heat with the indoor air in the indoor heat exchanger 42a, and then enters a high-pressure liquid or a high-pressure two-phase liquid (flash state). And enters the liquid connection pipe 22. Next, if the supercooled liquid sent from the outdoor unit through the liquid blocking valve 21 and the liquid connection pipe 22 remains, it merges with this and enters the cooling indoor unit 40b.
The supercooled liquid that has entered the indoor unit 40b is throttled by the indoor expansion valve 41b, exchanges heat with the indoor air by the indoor heat exchanger 42b to become low-pressure gas, and enters the cooling / heating switching unit 30b through the gas connection pipe 27b. At this time, the high pressure gas pipe solenoid valve 31b is closed and the low pressure gas pipe solenoid valve 32b is opened, so that the low pressure gas passes through the low pressure gas pipe solenoid valve 32b, passes through the low pressure gas connection pipe 24, the low pressure gas blocking valve 23, and the accumulator 18. Return to the compressors 11a, 11b, 11c and recirculate.

冷房運転室内機40bの入口がフラッシュしている場合に、室内機40bと40cに冷媒を均等に分配すると室内機40bの方が冷房能力が少なくなる。このため、冷房運転室内機の能力バランスをみて、室内機40bの能力が不足し室内機40cの能力が過剰にある場合は、室内膨張弁41bの開度を増やし冷媒循環量を多くし、室内膨張弁41cの開度を減らし冷媒循環量を減らすように制御する。
逆に室内機40bの能力が過剰で室内機40cの能力が不足する場合は、室内膨張弁41bの開度を減らし室内膨張弁41cの開度を増やすようにバランス制御する。また、全ての冷房室内機能力が過剰の場合は圧縮機の運転周波数(圧縮機周波数)を減らして冷媒循環量を減らし、全ての冷房室内機能力が不足の場合は圧縮機周波数を増やして冷媒循環量を増やす。
When the inlet of the cooling operation indoor unit 40b is flushed, if the refrigerant is evenly distributed to the indoor units 40b and 40c, the indoor unit 40b has less cooling capacity. For this reason, when the capacity balance of the cooling operation indoor unit is viewed, and the capacity of the indoor unit 40b is insufficient and the capacity of the indoor unit 40c is excessive, the opening degree of the indoor expansion valve 41b is increased to increase the refrigerant circulation amount. Control is performed so as to reduce the amount of refrigerant circulation by reducing the opening of the expansion valve 41c.
On the contrary, when the capacity of the indoor unit 40b is excessive and the capacity of the indoor unit 40c is insufficient, the balance control is performed so that the opening degree of the indoor expansion valve 41b is decreased and the opening degree of the indoor expansion valve 41c is increased. In addition, when all the cooling room functional forces are excessive, the compressor operating frequency (compressor frequency) is reduced to reduce the refrigerant circulation rate, and when all the cooling room functional forces are insufficient, the compressor frequency is increased to increase the refrigerant. Increase circulation.

冷凍サイクル内の冷媒状態に対応するモリエル線図を説明する。図2のモリエル線図は横軸に比エンタルピ、縦軸に圧力をとったものであり、冷凍サイクル各部での冷媒状態を表すと同時に、ある2点の比エンタルピ差、(例えば室内熱交換器入口と出口のエンタルピ差ΔH)に冷媒循環量(室内機の冷媒循環量Gr)を乗じることにより、熱交換量(室内機能力Q=ΔH×Gr)を求めることができる。
室外機近傍の冷房運転室内機の場合、室内機に入る液冷媒は、室外機プレート熱交換器でΔHscだけ過冷却される。このため、室内熱交換器出入口の比エンタルピ差ΔHc1は大きい。一方、暖房機近傍冷房運転室内機の場合、暖房室内機による放熱ΔHh1が少ないと、室内熱交換器入口は二相域になり、フラッシュし、室内熱交換器出口との比エンタルピ差ΔHc2はΔHc1に比べ小さくなる。
A Mollier diagram corresponding to the refrigerant state in the refrigeration cycle will be described. The Mollier diagram in FIG. 2 has specific enthalpy on the horizontal axis and pressure on the vertical axis. It represents the refrigerant state in each part of the refrigeration cycle, and at the same time, the specific enthalpy difference between two points (for example, indoor heat exchanger) By multiplying the enthalpy difference ΔH between the inlet and outlet by the refrigerant circulation amount (refrigerant circulation amount Gr of the indoor unit), the heat exchange amount (indoor functional force Q = ΔH × Gr) can be obtained.
In the case of a cooling operation indoor unit in the vicinity of the outdoor unit, the liquid refrigerant entering the indoor unit is supercooled by ΔHsc in the outdoor unit plate heat exchanger. For this reason, the specific enthalpy difference ΔHc1 at the indoor heat exchanger entrance / exit is large. On the other hand, in the case of an indoor unit in the vicinity of a heater, if the heat radiation ΔHh1 by the heating indoor unit is small, the indoor heat exchanger inlet becomes a two-phase region, flashes, and the specific enthalpy difference ΔHc2 with the indoor heat exchanger outlet is ΔHc1. Smaller than

それぞれの室内機の冷媒循環量が同じ、つまりGr1=Gr2だとすると、能力比Q1:Q2は室内熱交換器入口と出口の比エンタルピ差ΔHc1:ΔHc2に依存するためQ2はQ1より小さくなり、アンバランスが生じる。このため、従来は冷暖切換ユニット内の液バイパスにより、室内熱交換器入口を過冷却させ、ΔHc2を大きくしていた。しかし、本実施例ではGr1に比べGr2を大きくすることによって能力バランス(Q1≒Q2)することとした。
そのため、暖房機近傍の冷房運転室内機の室内膨張弁開度を大きくし、室外機近傍冷房運転室内機の室内膨張弁開度を小さくするよう制御している。つまり、冷房室内機それぞれの能力をみて、能力不足の室内機の膨張弁開度は大きくし、能力が過剰な室内機の膨張弁開度は小さくしていく。また、全ての冷房室内機能力が過剰の場合は圧縮機周波数を減らして冷媒循環量を減らし、全ての冷房室内機能力が不足の場合は圧縮機周波数を増やして冷媒循環量を増やせば良い。
If the refrigerant circulation amount of each indoor unit is the same, that is, Gr1 = Gr2, the capacity ratio Q1: Q2 depends on the specific enthalpy difference ΔHc1: ΔHc2 between the inlet and outlet of the indoor heat exchanger, so Q2 is smaller than Q1 and unbalanced. Occurs. For this reason, conventionally, the indoor heat exchanger inlet is supercooled by a liquid bypass in the cooling / heating switching unit to increase ΔHc2. However, in this embodiment, the capacity balance (Q1≈Q2) is set by increasing Gr2 compared to Gr1.
Therefore, the indoor expansion valve opening degree of the cooling operation indoor unit in the vicinity of the heater is increased and the indoor expansion valve opening degree of the outdoor unit vicinity cooling operation indoor unit is reduced. That is, in view of the capabilities of each cooling indoor unit, the expansion valve opening degree of the indoor unit with insufficient capacity is increased, and the expansion valve opening degree of the indoor unit with excessive capacity is decreased. In addition, when all the cooling chamber functional forces are excessive, the compressor frequency is reduced to reduce the refrigerant circulation amount, and when all the cooling chamber functional forces are insufficient, the compressor frequency is increased to increase the refrigerant circulation amount.

次に、冷房室内機の能力バランスの為の膨張弁制御例を説明する。図3は室内膨張弁制御の例を示し、冷房室内機の能力を、(冷房機吸込空気温度Ti)−(冷房機吹出空気温度To)より求まる室内機吸込吹出空気温度差ΔTで推定する。
室内風量設定が異なる場合、例えは弱風の場合は、室内機吸込吹出空気温度差ΔTでも実際の能力は小さくなるため、冷房室内機設定吸込吹出温度差ΔTsetや室内機吸込吹出空気温度差ΔTに補正係数をかけて処理する。
Next, an example of expansion valve control for balancing the capacity of the cooling indoor unit will be described. FIG. 3 shows an example of indoor expansion valve control, and the capacity of the cooling indoor unit is estimated by an indoor unit intake air temperature difference ΔT obtained from (cooling air intake air temperature Ti) − (cooling air outlet air temperature To).
When the indoor air volume setting is different, for example, in the case of a weak wind, the actual capacity is reduced even with the indoor unit intake / exhaust air temperature difference ΔT, so the cooling indoor unit set intake / exhaust air temperature difference ΔTset and the indoor unit intake / exhaust air temperature difference ΔT Is processed with a correction coefficient.

冷房室内機設定吸込吹出温度差ΔTsetより室内機吸込吹出空気温度差ΔTが小さい場合、冷房能力が不足しているとみなし、室内膨張弁を開くように制御する。これにより、室内機への冷媒循環量が増加し、冷房能力が増加するため、冷房機吹出空気温度Toが下がり、室内機吸込吹出空気温度差ΔTが大きくなる。逆に冷房室内機設定吸込吹出温度差ΔTsetより室内機吸込吹出空気温度差ΔTが大きい場合、冷房能力が過剰であるとみなし、室内膨張弁を閉じるように制御する。これにより、室内機への冷媒循環量が減少し、冷房能力が減少するため、冷房機吹出空気温度Toが上り、室内機吸込吹出空気温度差ΔTが小さくなる。この膨張弁制御は冷房運転を行う各室内機毎に、所定時間毎に、繰り返し、各室内機毎の能力アンバランスを解消する。   When the indoor unit suction / intake air temperature difference ΔT is smaller than the cooling indoor unit setting suction / injection temperature difference ΔTset, it is considered that the cooling capacity is insufficient, and the indoor expansion valve is controlled to open. As a result, the amount of refrigerant circulation to the indoor unit increases and the cooling capacity increases, so that the cooling unit blown air temperature To decreases and the indoor unit intake and blown air temperature difference ΔT increases. On the contrary, when the indoor unit suction / intake air temperature difference ΔT is larger than the cooling indoor unit set suction / injection temperature difference ΔTset, it is considered that the cooling capacity is excessive and the indoor expansion valve is closed. As a result, the refrigerant circulation amount to the indoor unit is reduced and the cooling capacity is reduced, so that the cooling unit blown air temperature To rises and the indoor unit intake blown air temperature difference ΔT becomes small. This expansion valve control is repeated every predetermined time for each indoor unit performing the cooling operation, and the capacity imbalance for each indoor unit is eliminated.

図4は冷暖切換ユニット内の電磁弁切換の例であり、室内機の運転状態に応じて合計4通りの組合せが存在する。室内機全室が冷房運転の場合低圧ガス管用電磁弁ON、高圧ガス管用電磁弁ONとなる。この場合のみ高圧ガス管は低圧に引かれるため、高圧ガス管用電磁弁を開くことにより、冷暖切換ユニットから室外機へ低圧ガスが送られる。
次に、冷暖同時運転時の室内機冷房運転の場合、低圧ガス管用電磁弁ON、高圧ガス管用電磁弁OFFとする。この場合、高圧ガス管には他の暖房運転室内機に送られる高圧ガスが入っている。ここで高圧ガス管から低圧ガス管側へのキャピラリバイパスが無いと仮定すると、この冷暖切換ユニットに接続される高圧ガス管の末端では電磁弁で閉止されて流動せず、また高圧ガス管は周囲空気温度より高いため徐々に放熱し、ガス冷媒が一部凝縮をおこし、高圧ガス管に液冷媒が溜まっていくこととなる。 そこで、凝縮した冷媒を、高圧ガス管から低圧ガス管に繋がる部位にキャピラリを介してバイパスすることにより、液冷媒が溜まるのを防止している。
FIG. 4 is an example of electromagnetic valve switching in the cooling / heating switching unit, and there are a total of four combinations depending on the operating state of the indoor unit. When all the indoor units are in cooling operation, the low pressure gas pipe solenoid valve is ON and the high pressure gas pipe solenoid valve is ON. Only in this case, since the high-pressure gas pipe is pulled to a low pressure, the low-pressure gas is sent from the cooling / heating switching unit to the outdoor unit by opening the solenoid valve for the high-pressure gas pipe.
Next, in the case of the indoor unit cooling operation during the cooling and heating simultaneous operation, the low pressure gas pipe solenoid valve is turned on and the high pressure gas pipe solenoid valve is turned off. In this case, the high-pressure gas pipe contains high-pressure gas that is sent to another indoor unit for heating operation. Assuming that there is no capillary bypass from the high-pressure gas pipe to the low-pressure gas pipe, the end of the high-pressure gas pipe connected to the cooling / heating switching unit is closed by an electromagnetic valve and does not flow. Since the temperature is higher than the air temperature, heat is gradually dissipated, the gas refrigerant partially condenses, and the liquid refrigerant accumulates in the high-pressure gas pipe. Therefore, the condensed refrigerant is prevented from accumulating by bypassing the condensed refrigerant from the high-pressure gas pipe to the portion connecting the low-pressure gas pipe via the capillary.

次に、室内機暖房運転の場合、低圧ガス管用電磁弁OFF、高圧ガス管用電磁弁ONとする。高圧ガス管からのバイパス位置を低圧ガス管電磁弁の室外側、つまり低圧ガス管側にすると、高圧ガス管から低圧ガス管に冷媒がバイパスされ損失となるため、図4のように低圧ガス管の電磁弁の室内機側にする必要がある。
室内機暖房サーモオフ或いは運転停止の場合、低圧ガス管用電磁弁OFF、高圧ガス管用電磁弁OFFとする。運転停止時には高圧ガス管と低圧ガス管の冷媒は均圧するためキャピラリバイパスに冷媒は流れないが、暖房サーモオフ室内機の場合は、高圧ガス管は高圧、低圧ガス管は低圧になっているため、サーモオフした室内機に高圧ガスが流れ込む。ただし、キャピラリで絞られているためバイパス量は僅かである。
Next, in the indoor unit heating operation, the low pressure gas pipe solenoid valve is turned off and the high pressure gas pipe solenoid valve is turned on. If the bypass position from the high-pressure gas pipe is outside the low-pressure gas pipe solenoid valve, that is, the low-pressure gas pipe side, the refrigerant is bypassed from the high-pressure gas pipe to the low-pressure gas pipe, resulting in a loss. It is necessary to be on the indoor unit side of the solenoid valve.
When the indoor unit heating thermostat is off or the operation is stopped, the low pressure gas pipe solenoid valve is OFF and the high pressure gas pipe solenoid valve is OFF. When the operation is stopped, the refrigerant in the high-pressure gas pipe and the low-pressure gas pipe equalizes the pressure so that the refrigerant does not flow into the capillary bypass, but in the case of a heating thermo-off indoor unit, the high-pressure gas pipe is high pressure and the low-pressure gas pipe is low pressure. High-pressure gas flows into the indoor unit that was thermo-off. However, the amount of bypass is small because it is narrowed by a capillary.

図5は冷暖切換ユニット内の電磁弁切換を示し、図4における暖房サーモオフ時の高圧ガスの室内機へのバイパスを防止するため、バイパスキャピラリに電磁弁を設けたものである。このため電磁弁の切換が1通り多くなり5通りとなる。
室内機全室が冷房運転の場合、低圧ガス管用電磁弁ON、高圧ガス管用電磁弁ON、高圧ガスバイパス電磁弁OFFとする。この運転では電磁弁が開いていてもほとんどバイパスされず、影響はないため高圧ガスバイパス電磁弁はONでもよい。
冷暖同時運転時の室内機冷房運転の場合、低圧ガス管用電磁弁ON、高圧ガス管用電磁弁OFF、高圧ガス管用電磁弁ONとなる。バイパス量を調整するために電磁弁をON/OFF操作してもよい。
室内機暖房運転の場合、低圧ガス管用電磁弁OFF、高圧ガス管用電磁弁ON、高圧ガス管用電磁弁OFFとする。高圧ガス管用電磁弁がOFFとなるため、高圧ガスバイパスが低圧ガス管用電磁弁の室外機側、つまり低圧ガス管側につながっていても高圧ガス冷媒がバイパスされることはない。
室内機暖房サーモオフの場合、低圧ガス管用電磁弁OFF、高圧ガス管用電磁弁OFF、高圧ガス管用電磁弁ONとする。これにより高圧ガス冷媒を室内機ではなく低圧ガス管にバイパスすることができる。
運転停止時の場合、低圧ガス管用電磁弁OFF、高圧ガス管用電磁弁OFF、高圧ガス管用電磁弁OFFとする。
FIG. 5 shows electromagnetic valve switching in the cooling / heating switching unit. In order to prevent bypassing of the high pressure gas to the indoor unit when the heating thermo-off in FIG. 4 is performed, an electromagnetic valve is provided in the bypass capillary. For this reason, the number of switching of the electromagnetic valve is increased by one and becomes five.
When all indoor units are in cooling operation, the low pressure gas pipe solenoid valve is ON, the high pressure gas pipe solenoid valve is ON, and the high pressure gas bypass solenoid valve is OFF. In this operation, even if the solenoid valve is open, it is hardly bypassed and there is no influence, so the high pressure gas bypass solenoid valve may be ON.
In the case of indoor unit cooling operation during simultaneous cooling and heating, the low pressure gas pipe solenoid valve is ON, the high pressure gas pipe solenoid valve is OFF, and the high pressure gas pipe solenoid valve is ON. In order to adjust the bypass amount, the solenoid valve may be turned ON / OFF.
In the indoor unit heating operation, the solenoid valve for the low pressure gas pipe is turned off, the solenoid valve for the high pressure gas pipe is turned on, and the solenoid valve for the high pressure gas pipe is turned off. Since the high pressure gas pipe solenoid valve is turned off, the high pressure gas refrigerant is not bypassed even if the high pressure gas bypass is connected to the outdoor unit side of the low pressure gas pipe solenoid valve, that is, the low pressure gas pipe side.
In the case of indoor unit heating thermo-off, the low-pressure gas pipe solenoid valve is OFF, the high-pressure gas pipe solenoid valve is OFF, and the high-pressure gas pipe solenoid valve is ON. Thereby, the high pressure gas refrigerant can be bypassed to the low pressure gas pipe instead of the indoor unit.
When the operation is stopped, the solenoid valve for the low pressure gas pipe is turned off, the solenoid valve for the high pressure gas pipe is turned off, and the solenoid valve for the high pressure gas pipe is turned off.

本発明の一実施の形態による冷凍サイクルを示すブロック図。The block diagram which shows the refrigerating cycle by one embodiment of this invention. 一実施の形態のモリエル線図。The Mollier diagram of one embodiment. 一実施の形態による室内膨張弁の制御フローチャート。The control flowchart of the indoor expansion valve by one embodiment. 一実施の形態による冷暖切換ユニット内の電磁弁切換を示す図。The figure which shows solenoid valve switching in the cooling / heating switching unit by one Embodiment. 他の実施の形態による冷暖切換ユニット内の電磁弁切換を示す図。The figure which shows solenoid valve switching in the cooling / heating switching unit by other embodiment.

符号の説明Explanation of symbols

10…室外機、11a、11b、11c…圧縮機、12a、12b…四方弁、13a、13b…室外熱交換器、14a、14b…室外膨張弁、15…レシーバ、16…プレート熱交換器、17プレートバイパス膨張弁、18…アキュムレータ、21…液阻止弁、22…液接続配管、23…低圧ガス阻止弁、24…低圧ガス接続配管、25…高圧ガス阻止弁、26…高圧ガス接続配管、27a、27b、27c…ガス接続配管、30a、30b、30c…冷暖切換ユニット、31a、31b、31c…高圧ガス管用電磁弁、32a、32b、32c…低圧ガス管用電磁弁、33a、33b、33c…液管バイパス弁、34a、34b、34c…高圧ガス管バイパスキャピラリ、35a、35b、35c…配管熱交換器、40a、40b、40c…室内機、41a、41b、41c…室内膨張弁、42a、42b、42c…室内熱交換器。
DESCRIPTION OF SYMBOLS 10 ... Outdoor unit, 11a, 11b, 11c ... Compressor, 12a, 12b ... Four-way valve, 13a, 13b ... Outdoor heat exchanger, 14a, 14b ... Outdoor expansion valve, 15 ... Receiver, 16 ... Plate heat exchanger, 17 Plate bypass expansion valve, 18 ... Accumulator, 21 ... Liquid blocking valve, 22 ... Liquid connecting pipe, 23 ... Low pressure gas blocking valve, 24 ... Low pressure gas connecting pipe, 25 ... High pressure gas blocking valve, 26 ... High pressure gas connecting pipe, 27a 27b, 27c ... Gas connection piping, 30a, 30b, 30c ... Cooling / heating switching unit, 31a, 31b, 31c ... Solenoid valve for high pressure gas pipe, 32a, 32b, 32c ... Solenoid valve for low pressure gas pipe, 33a, 33b, 33c ... Liquid Pipe bypass valve, 34a, 34b, 34c ... High pressure gas pipe bypass capillary, 35a, 35b, 35c ... Pipe heat exchanger, 40a, 40b, 40c ... Chamber Machine, 41a, 41b, 41c ... indoor expansion valves, 42a, 42b, 42c ... indoor heat exchanger.

Claims (5)

室内熱交換器と室内膨張弁を有する複数台の室内機と、圧縮機と室外熱交換器と室外膨張弁とを有する室外機と、該室外機から引出された液接続配管、低圧ガス接続配管、高圧ガス接続配管と、室外機と室内機の接続配管経路の途中に配置され、前記室内機のガス接続配管への接続を前記低圧ガス接続配管あるいは前記高圧ガス接続配管のいずれかに切換える冷暖切換ユニットと、を備えたマルチ型空気調和機において、
前記低圧ガス接続配管及び前記高圧ガス接続配管は前記冷暖切換ユニットへ接続され、前記液接続配管は前記室内機に接続され、
前記複数台の室内機のうち少なくとも1台が前記冷暖切換ユニットにより前記高圧ガス接続配管へ接続されて暖房運転され、他の複数台の前記室内機が前記冷暖切換ユニットにより前記低圧ガス接続配管へ接続されて冷房運転される場合、冷房運転される前記室内機は前記室内膨張弁の開度が増減されて能力が補償されることを特徴とするマルチ型空気調和機。
A plurality of indoor units having an indoor heat exchanger and an indoor expansion valve, an outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve, a liquid connection pipe drawn from the outdoor unit, and a low-pressure gas connection pipe And a high-temperature gas connection pipe and a cooling / heating unit arranged in the middle of the connection pipe path between the outdoor unit and the indoor unit, and switches the connection of the indoor unit to the gas connection pipe to either the low-pressure gas connection pipe or the high-pressure gas connection pipe. In a multi-type air conditioner comprising a switching unit,
The low pressure gas connection pipe and the high pressure gas connection pipe are connected to the cooling / heating switching unit, the liquid connection pipe is connected to the indoor unit,
At least one of the plurality of indoor units is connected to the high-pressure gas connection pipe by the cooling / heating switching unit for heating operation, and the other plurality of indoor units are connected to the low-pressure gas connection pipe by the cooling / heating switching unit. The multi-type air conditioner is characterized in that, when connected and operated for cooling, the indoor unit operated for cooling is compensated for capacity by increasing or decreasing the opening of the indoor expansion valve.
請求項1に記載のものにおいて、冷房運転される前記室内機のうち暖房運転される前記室内機に隣接されて配置される前記室内膨張弁の開度は他の前記室内機のものより増加されて運転されることを特徴とするマルチ型空気調和機。   2. The opening of the indoor expansion valve disposed adjacent to the indoor unit to be heated among the indoor units to be cooled is increased from those of the other indoor units. A multi-type air conditioner that is operated by 請求項1に記載のものにおいて、冷房運転される前記室内機の能力が前記圧縮機の運転周波数によって制御されることを特徴とするマルチ型空気調和機。   2. The multi-type air conditioner according to claim 1, wherein the capacity of the indoor unit to be cooled is controlled by an operating frequency of the compressor. 請求項1に記載のものにおいて、冷房運転される前記室内機の吸込空気温度と吹出空気温度との差に関連して前記室内膨張弁の開度を制御することを特徴とするマルチ型空気調和機。   2. The multi-type air conditioner according to claim 1, wherein the opening degree of the indoor expansion valve is controlled in relation to a difference between the intake air temperature and the blown air temperature of the indoor unit that is operated for cooling. Machine. 請求項1に記載のものにおいて、前記冷暖切換ユニットは前記低圧ガス接続配管への接続を開閉する低圧ガス管用電磁弁と、前記高圧ガス接続配管への接続を開閉する高圧ガス管用電磁弁と、を有することを特徴とするマルチ型空気調和機。
The cooling / heating switching unit according to claim 1, wherein the cooling / heating switching unit is a solenoid valve for a low pressure gas pipe that opens and closes a connection to the low pressure gas connection pipe, and a solenoid valve for a high pressure gas pipe that opens and closes a connection to the high pressure gas connection pipe; A multi-type air conditioner characterized by comprising:
JP2004116312A 2004-04-12 2004-04-12 Multiple type air conditioner Pending JP2005300006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116312A JP2005300006A (en) 2004-04-12 2004-04-12 Multiple type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116312A JP2005300006A (en) 2004-04-12 2004-04-12 Multiple type air conditioner

Publications (1)

Publication Number Publication Date
JP2005300006A true JP2005300006A (en) 2005-10-27

Family

ID=35331751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116312A Pending JP2005300006A (en) 2004-04-12 2004-04-12 Multiple type air conditioner

Country Status (1)

Country Link
JP (1) JP2005300006A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426438A2 (en) 2010-08-27 2012-03-07 Mitsubishi Heavy Industries Multi-unit air conditioning system
CN102695929A (en) * 2009-11-18 2012-09-26 三菱电机株式会社 Refrigeration cycle device and information propagation method adapted thereto
CN105588362A (en) * 2015-11-09 2016-05-18 青岛海信日立空调***有限公司 Multi-split air-conditioning system and control method thereof
CN108151350A (en) * 2017-12-20 2018-06-12 广东美的暖通设备有限公司 Three control multi-line systems and its control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695929A (en) * 2009-11-18 2012-09-26 三菱电机株式会社 Refrigeration cycle device and information propagation method adapted thereto
JPWO2011061792A1 (en) * 2009-11-18 2013-04-04 三菱電機株式会社 Refrigeration cycle apparatus and information transmission method applied thereto
CN102695929B (en) * 2009-11-18 2014-07-30 三菱电机株式会社 Refrigeration cycle device and information propagation method adapted thereto
JP5642085B2 (en) * 2009-11-18 2014-12-17 三菱電機株式会社 Refrigeration cycle apparatus and information transmission method applied thereto
EP2426438A2 (en) 2010-08-27 2012-03-07 Mitsubishi Heavy Industries Multi-unit air conditioning system
JP2012047409A (en) * 2010-08-27 2012-03-08 Mitsubishi Heavy Ind Ltd Multi-type air conditioning system
CN105588362A (en) * 2015-11-09 2016-05-18 青岛海信日立空调***有限公司 Multi-split air-conditioning system and control method thereof
CN108151350A (en) * 2017-12-20 2018-06-12 广东美的暖通设备有限公司 Three control multi-line systems and its control method

Similar Documents

Publication Publication Date Title
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
KR100188860B1 (en) A refrigerator
CN107709900B (en) Refrigeration cycle device
EP2128535B1 (en) Air conditioner
JP6644154B2 (en) Air conditioner
JP4909093B2 (en) Multi-type air conditioner
KR100589913B1 (en) Air conditioning apparatus
WO2006057141A1 (en) Air conditioner
KR101706865B1 (en) Air conditioning system
EP1643196B1 (en) Air conditioner
JP6698862B2 (en) Air conditioner
EP1643195B1 (en) Multi-unit air conditioner and method for controlling the same
KR101186331B1 (en) Multi-air conditioner for heating and cooling operations at the same time
KR20100072943A (en) Multi-type air conditioner and operating method thereof
KR101269462B1 (en) Control method for simultaneous cooling-heating type multi-type air
JPWO2004013550A1 (en) Refrigeration equipment
JP2005300006A (en) Multiple type air conditioner
JP5537906B2 (en) Air conditioner
KR20190088693A (en) Method for controlling multi-type air conditioner
KR101218862B1 (en) Multi-type air conditioner for cooling/heating the same time
KR100854829B1 (en) Air conditioning system and control method for the same
KR100885566B1 (en) Controlling method for air conditioner
JPH10176869A (en) Refrigeration cycle device
WO2021005737A1 (en) Outdoor unit and air-conditioning apparatus
KR20040094101A (en) By-pass device with variable flow rate of multi air-conditioner system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424