JP2005299490A - Manufacturing method of refrigerant compressor - Google Patents

Manufacturing method of refrigerant compressor Download PDF

Info

Publication number
JP2005299490A
JP2005299490A JP2004116400A JP2004116400A JP2005299490A JP 2005299490 A JP2005299490 A JP 2005299490A JP 2004116400 A JP2004116400 A JP 2004116400A JP 2004116400 A JP2004116400 A JP 2004116400A JP 2005299490 A JP2005299490 A JP 2005299490A
Authority
JP
Japan
Prior art keywords
vane
nitriding
corner
cylinder
corners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116400A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakanishi
博志 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004116400A priority Critical patent/JP2005299490A/en
Publication of JP2005299490A publication Critical patent/JP2005299490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of swelling in corner parts of a vane in the final condition after processing nitriding. <P>SOLUTION: The vane is formed by previously finishing a vane material, and used in the condition wherein a white layer (a compound layer) of the most surface layer formed by nitriding is left as it is. Since swelling is generated by nitriding each of corners of the vane, each of corners of the vane is chamfered by barrelling before nitriding. With this method, swelling in each of corners can be reduced even in the case of nitriding thereafter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、業務用および家庭用の冷凍空調装置に使用される冷媒圧縮機の製造方法に関するものである。   The present invention relates to a method for manufacturing a refrigerant compressor used in commercial and household refrigeration air conditioners.

従来の冷媒圧縮機としては、表面に窒化処理を施したベーンは窒化による影響でベーンの各面の角部の盛り上がりがあるため、最終仕上げ加工が行われている。特にベーン母材にイオンプレーティング処理を施したもの、窒化処理の後イオンプレーティング処理を施すものについては、ベーンの各角の盛り上がりが問題となっている。
特開平10−047275号公報
As a conventional refrigerant compressor, a vane whose surface has been subjected to nitriding treatment is subjected to final finishing since the corners of each surface of the vane rise due to nitriding. In particular, in the case where the vane base material is subjected to ion plating treatment, and in the case where the ion plating treatment is performed after nitriding treatment, the rise of each corner of the vane is a problem.
Japanese Patent Laid-Open No. 10-047275

しかしながら、特にベーン母材にイオンプレーティング処理を施したもの、窒化処理の後イオンプレーティング処理を施すものについては、ベーンの各角の盛り上がりが問題となっている。各角の盛り上がりについては、窒化処理のみを施して使用するベーンでの同様の現象となり、圧縮機メカ部品に対する攻撃性が増大するものであるため、窒化処理後の最終状態でベーンの角部に盛り上りがないようにすることが必要となる。   However, especially when the vane base material is subjected to ion plating and when the vane material is subjected to ion plating after nitriding, the rise of each corner of the vane is a problem. As for the rise of each corner, the same phenomenon occurs in the vane that is used by applying only nitriding treatment, and the aggressiveness against the mechanical parts of the compressor is increased, so in the corner of the vane in the final state after nitriding treatment It is necessary to prevent the excitement.

本発明は、あらかじめベーン材を仕上げ加工し、窒化処理により形成された最表面の白層(化合物層)は残した状態で使用に供するベーンであるが、そのままでは前述のベーンの各角の窒化処理による盛り上がりが発生するため、窒化処理前にベーンの各角をバレル処理により面取りするものであり、その後窒化処理を施しても各角の盛り上がりは低減され前記課題を解決することが可能となる。前記ベーン各角の面取りバレル処理を窒化後に行う場合、ベーン表面に窒化による白層(化合物層)が存在するため、角部のカケが発生する確率が増大することになる。   The present invention is a vane for use in a state in which a vane material is finished in advance and the outermost white layer (compound layer) formed by nitriding is left, but as it is, nitriding of each corner of the vane is performed as it is. Since bulge occurs due to the treatment, each corner of the vane is chamfered by barrel treatment before nitriding, and even if nitridation is performed thereafter, the bulge of each corner is reduced and the above-described problem can be solved. . When the chamfering barrel treatment of each corner of the vane is performed after nitriding, the white layer (compound layer) due to nitriding exists on the vane surface, and therefore, the probability of occurrence of corner chipping increases.

本発明のベーンは、後工程の窒化によるベーン角部の盛り上りがないよう窒化前に予めバレル処理によってベーンの各角に面取りの大きさを規定しているため、窒化処理による各角の盛り上がりを押さえることができ、ローラ外周面、シリンダ溝面、軸受け端面とのメカ部材の信頼性が向上する。   In the vane of the present invention, the chamfering size is defined for each corner of the vane by barrel treatment in advance before nitriding so that there is no bulge of the vane corner due to nitriding in the subsequent process. This improves the reliability of the mechanical members such as the roller outer peripheral surface, the cylinder groove surface, and the bearing end surface.

第1の発明は、窒化処理による各角の盛り上がりを低減するため、窒化前にベーン各角のRの大きさを0.10から0.3とすることで、窒化による各角の窒化層の盛り上がりが最小とすることが可能となりメカ信頼性を向上することができる。   In the first invention, in order to reduce the bulge of each corner due to nitriding treatment, the size of R at each corner of the vane is changed from 0.10 to 0.3 before nitriding. The swell can be minimized, and the mechanical reliability can be improved.

第2の発明は、ベーンの各角に設定する面取りをバレル工法によるものとするものである。従来、バレルは最終窒化処理後に実施していたが、本発明ではベーンの角部の盛り上りを最小限にするために、図面で示される必要な角Rを形成する方法として窒化前に面取りを形成するために実施される。   In the second invention, chamfering to be set at each corner of the vane is made by the barrel method. Conventionally, the barrel is performed after the final nitriding treatment. In the present invention, in order to minimize the bulge of the corner of the vane, chamfering is performed before nitriding as a method of forming the necessary corner R shown in the drawing. Implemented to form.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
従来の冷媒圧縮機として代表的な例はロータリ圧縮機であり、図1は、本発明の実施の形態における冷媒圧縮機の機構部の縦断面図、図2はその圧縮機構の要部を示す横断面図である。
(Embodiment 1)
A typical example of a conventional refrigerant compressor is a rotary compressor. FIG. 1 is a longitudinal sectional view of a mechanism part of a refrigerant compressor in an embodiment of the present invention, and FIG. 2 shows a main part of the compression mechanism. It is a cross-sectional view.

図1および図2において1は密閉容器であり、電動機部2と圧縮機構部3が配置されている。電動機部2は回転子2aと固定子2bから構成され、回転子2aには主軸受9と副軸受10により回転自在に支持されたシャフト8が圧入等の方法により固定されている。圧縮機部3は吸入孔5および径方向のシリンダ溝23を有するシリンダ20と、外周面をシリンダ20の内周面に摺動しながら偏芯回転するローラ7と、ローラ7の内周面に摺動自在に挿入されたシャフト8の偏芯部と、シリンダ溝23に往復摺動自在に収納されてスプリング24による押圧力と背圧(吐出圧)により先端部がローラ7に押し付けられてシリンダ内部空間を吸入室25と圧縮室26に分割するベーン21と、シリンダ両端面を密閉する主軸受9および副軸受10とから構成されている。   In FIG. 1 and FIG. 2, 1 is a sealed container, and the electric motor part 2 and the compression mechanism part 3 are arranged. The electric motor unit 2 includes a rotor 2a and a stator 2b, and a shaft 8 rotatably supported by a main bearing 9 and a sub bearing 10 is fixed to the rotor 2a by a method such as press fitting. The compressor unit 3 includes a cylinder 20 having a suction hole 5 and a radial cylinder groove 23, a roller 7 that rotates eccentrically while sliding an outer peripheral surface on the inner peripheral surface of the cylinder 20, and an inner peripheral surface of the roller 7. The eccentric portion of the shaft 8 slidably inserted and the cylinder groove 23 are reciprocally slidably accommodated, and the tip portion is pressed against the roller 7 by the pressing force and back pressure (discharge pressure) by the spring 24. A vane 21 that divides the internal space into a suction chamber 25 and a compression chamber 26, and a main bearing 9 and a sub-bearing 10 that seal both ends of the cylinder are configured.

次に、本構成によるロータリ圧縮機の動作を説明する。電動機部2に外部から通電することにより回転子が回転してシャフト8が回転駆動される。シャフト8が回転すると偏芯部に摺動自在に取り付けられたローラ7がシリンダ内周面に摺接しながら遊星運動(図2で反時計方向回転)を行う。その結果、HFCなどの冷媒ガスが吸入管4から吸入孔5を介して吸入室25に吸い込まれ、同時に圧縮室26で圧力を上げられた冷媒ガスが吐出切り欠き22から吐出孔6を通して密閉容器1内に吐出される。   Next, the operation of the rotary compressor according to this configuration will be described. When the motor unit 2 is energized from the outside, the rotor rotates and the shaft 8 is rotationally driven. When the shaft 8 rotates, the roller 7 slidably attached to the eccentric portion performs a planetary motion (counterclockwise rotation in FIG. 2) while slidingly contacting the cylinder inner peripheral surface. As a result, refrigerant gas such as HFC is sucked into the suction chamber 25 from the suction pipe 4 through the suction hole 5, and at the same time, the refrigerant gas whose pressure is increased in the compression chamber 26 passes through the discharge hole 6 through the discharge hole 6 and is sealed. 1 is discharged.

なお、図1では見やすくするために吐出孔6の位置を吸入孔から離れた位置に描いたが、実際には図2に示すようにベーン21を挟んで吸入孔5の近くに配置されている。   In FIG. 1, the position of the discharge hole 6 is depicted at a position away from the suction hole for the sake of clarity, but in reality, it is disposed near the suction hole 5 with the vane 21 interposed therebetween as shown in FIG. 2. .

この時、吸入室25と圧縮室26とを仕切るベーン21はスプリング24とベーン背部にかかる圧力によりローラ7の外周面に押し付けられており、先端部がローラ7の外周面と、側面部がシリンダ溝23の内壁面と摺動することになる。ベーン21とローラ7およびシリンダ溝23の潤滑は定常運転状態では密閉容器底部に貯留されている潤滑油12を使って行われるが、始動時には摺動部に十分な潤滑油が存在しておらず、吸入された冷媒ガスに僅かながら含まれている潤滑油12(潤滑油は僅かではあるが冷媒ガスと共に圧縮機から吐出され、冷凍サイクルを循環した後、再び吸入管4から圧縮機に戻ってくる)が使われることになる。   At this time, the vane 21 that divides the suction chamber 25 and the compression chamber 26 is pressed against the outer peripheral surface of the roller 7 by the pressure applied to the spring 24 and the back of the vane, and the tip portion is the outer peripheral surface of the roller 7 and the side portion is the cylinder. It will slide with the inner wall surface of the groove 23. Lubrication of the vane 21, the roller 7, and the cylinder groove 23 is performed using the lubricating oil 12 stored in the bottom of the hermetic container in a steady operation state, but there is not enough lubricating oil in the sliding portion at the start. The lubricating oil 12 slightly contained in the sucked refrigerant gas (the lubricating oil is slightly discharged from the compressor together with the refrigerant gas, circulates through the refrigeration cycle, and then returns to the compressor from the suction pipe 4 again. Come) will be used.

ベーン21は、一般にハイス系焼結品あるいは高速度鋼材が使用されているが、前述のように、密閉型ロータリ圧縮機の始動時における摺動条件は潤滑油が十分に供給されない厳しいものであり、特にベーンとシリンダ溝の間は往復運動となるため油膜が形成されにくいため更に厳しい摺動条件であるということがいえる。また、近年環境対策のために採用されているHFC冷媒はそれ自身に潤滑性が乏しいので、HFC冷媒を使用したロータリ圧縮機の摺動条件は特に厳しいものであるといえる。   The vane 21 is generally made of a high-speed sintered product or a high-speed steel material. However, as described above, the sliding conditions at the start of the hermetic rotary compressor are severe, so that the lubricating oil is not sufficiently supplied. In particular, it can be said that the sliding condition is more severe because the oil film is difficult to be formed because of reciprocal motion between the vane and the cylinder groove. In addition, since the HFC refrigerant adopted for environmental measures in recent years has poor lubricity itself, it can be said that the sliding condition of the rotary compressor using the HFC refrigerant is particularly severe.

従来の冷媒圧縮機においては、窒化処理前にベーン角部に微小な面取りを設けるか、比較的深く窒化処理をして最終仕上げ加工後、仕上げのバレル処理を施すものであった。特に窒化処理前に角部に面取り選りを設けないと、図4に示すように窒化後の各角は盛り上がり形状となる。本発明は図3に示すように予めベーンの各角に設定する面取りを窒化前の段階でバレル処理によって実施するものである。窒化による各角の盛り上がりの影響をなくすために、窒化前に設定する面取りの大きさを図5に示すようにR0.1以上とすることで、窒化の後仕上げ加工しないで使用する今回の窒化ベーンでの角部の盛り上がりの問題が解決できる。ベーンの各面の角部の盛り上がりまたはダレは±1.5μmまで許容されているため、図6に示すように窒化処理前のバレルによる面取りの大きさと窒化処理後の各角のRの大きさの関係より、窒化前の面取りの大きさを95%信頼限界を考慮して
R0.1〜0.3の範囲に設定すれば、窒化完成状態での角Rの大きさが制御できることが判明した。当然バレルメディアの大きさ、バレル処理時間、投入ワークの量によって条件は設定されるのは当然である。
In the conventional refrigerant compressor, a minute chamfer is provided at the corner of the vane before the nitriding treatment, or a relatively deep nitriding treatment is performed, and a final barrel processing is performed after a final finishing process. In particular, if chamfering is not provided at the corners before nitriding, each corner after nitriding has a raised shape as shown in FIG. In the present invention, as shown in FIG. 3, the chamfering previously set at each corner of the vane is performed by barrel processing at a stage before nitriding. In order to eliminate the influence of bulging of each corner due to nitriding, the chamfering size set before nitriding is set to R0.1 or more as shown in FIG. It can solve the problem of corner bulge in vanes. Since the bulge or sagging of the corners of each face of the vane is allowed to ± 1.5 μm, as shown in FIG. 6, the size of the chamfer by the barrel before nitriding and the size of R at each corner after nitriding From this relationship, it has been found that if the chamfering size before nitriding is set in the range of R0.1 to 0.3 in consideration of the 95% reliability limit, the size of the angle R in the completed nitriding state can be controlled. . Naturally, the conditions are naturally set according to the size of the barrel media, the barrel processing time, and the amount of input workpieces.

本発明のベーンは、HFC冷媒条件下での過酷な運転状況でも、ベーン先端とローラ外周およびシリンダ溝間の摩耗が問題ないベーンが供給できるようになり、しかも従来のHFC冷媒条件での圧縮機のベーン材として主として使用しているPVDベーンと比較して大幅なコストダウンが可能となり、コストダウンと信頼性の向上を図ることができるため、前述の圧縮機メカ部品間の摩耗に対する課題が解決できる。   The vane of the present invention can supply a vane having no problem with wear between the tip of the vane, the outer periphery of the roller and the cylinder groove even under severe operating conditions under the HFC refrigerant condition, and the compressor under the conventional HFC refrigerant condition Compared to PVD vanes that are mainly used as vane materials, the cost can be greatly reduced, and the cost and reliability can be improved. it can.

本発明の実施の形態におけるロータリ圧縮機を示す縦断面図The longitudinal cross-sectional view which shows the rotary compressor in embodiment of this invention 本発明の実施の形態における冷媒圧縮機の要部を示す横断面図The cross-sectional view which shows the principal part of the refrigerant compressor in embodiment of this invention 本発明のベーンの製造工程を示すブロック図The block diagram which shows the manufacturing process of the vane of this invention 従来のベーンの窒化処理後の角形状を示す図The figure which shows the square shape after the nitriding treatment of the conventional vane 本発明のベーンの窒化処理前と窒化処理後の角形状を示す図The figure which shows the square shape before and after nitriding of the vane of this invention 窒化処理前のバレル面取りの大きさと窒化処理後の各角のRの大きさの関係を示す図The figure which shows the relationship between the magnitude | size of the barrel chamfering before nitriding, and the magnitude | size of R of each corner after nitriding

符号の説明Explanation of symbols

1 密閉容器
2 電動機部
3 圧縮機部
4 吸入管
5 吸入孔
6 吐出孔
7 ローラ
8 シャフト
9 主軸受け
10 副軸受け
11 締め付けボルト
12 冷凍機油
20 シリンダ
21 ベーン
22 吐出切欠き
23 シリンダ溝
24 スプリング
25 吸入室
26 圧縮室
31 角部盛り上り
32 窒化層
33 角部面取り
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Electric motor part 3 Compressor part 4 Suction pipe 5 Suction hole 6 Discharge hole 7 Roller 8 Shaft 9 Main bearing 10 Sub bearing 11 Tightening bolt 12 Refrigerating machine oil 20 Cylinder 21 Vane 22 Discharge notch
23 Cylinder groove 24 Spring 25 Suction chamber 26 Compression chamber 31 Swelling corner 32 Nitriding layer 33 Chamfering corner

Claims (2)

シリンダと、シャフトにより駆動されてシリンダ内で偏心回転するローラと、前記シリンダに径方向に形成した溝に挿入されて前記ローラと先端が摺接するベーンとを備えた冷媒圧縮機の製造方法であって、ベーンは予め角部にR0.1〜0.3の面取りを施された後窒化処理を施され、その後研磨、研削加工されないで使用されることを特徴とする冷媒圧縮機の製造方法。 A method of manufacturing a refrigerant compressor comprising a cylinder, a roller driven by a shaft and rotating eccentrically in the cylinder, and a vane inserted into a groove formed in a radial direction in the cylinder and having a sliding contact with the roller. The vane is preliminarily chamfered with R0.1 to 0.3 at its corners and then subjected to nitriding treatment, and thereafter used without being polished or ground. ベーン各角の面取りをバレル処理によって行うことを特徴とする請求項1記載の冷媒圧縮機の製造方法。
2. The method of manufacturing a refrigerant compressor according to claim 1, wherein chamfering of each corner of the vane is performed by barrel processing.
JP2004116400A 2004-04-12 2004-04-12 Manufacturing method of refrigerant compressor Pending JP2005299490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116400A JP2005299490A (en) 2004-04-12 2004-04-12 Manufacturing method of refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116400A JP2005299490A (en) 2004-04-12 2004-04-12 Manufacturing method of refrigerant compressor

Publications (1)

Publication Number Publication Date
JP2005299490A true JP2005299490A (en) 2005-10-27

Family

ID=35331349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116400A Pending JP2005299490A (en) 2004-04-12 2004-04-12 Manufacturing method of refrigerant compressor

Country Status (1)

Country Link
JP (1) JP2005299490A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172570B1 (en) 2008-11-20 2012-08-08 히타치 어플라이언스 가부시키가이샤 Rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172570B1 (en) 2008-11-20 2012-08-08 히타치 어플라이언스 가부시키가이샤 Rotary compressor

Similar Documents

Publication Publication Date Title
JP4739103B2 (en) Scroll type fluid machinery
JP2005299653A (en) Rolling piston and rotary compressor gas leakage preventing device equipped therewith
JP3724495B1 (en) Rotary fluid machine
WO2017061014A1 (en) Rotary compressor
JP5991958B2 (en) Rotary compressor
JP2009235969A (en) Rotary compressor and refrigerating cycle apparatus
JP2009024664A (en) Scroll fluid machine
JP4813135B2 (en) Rotary compressor
JP2005299490A (en) Manufacturing method of refrigerant compressor
US11486398B2 (en) Rotary compressor with selective oil communication
JP2008014284A (en) Manufacturing method for sliding member, and refrigerant compressor
JP2005163572A (en) Method for manufacturing vane and coolant compressor
JP2012041894A (en) Rotary compressor
JP4407253B2 (en) Scroll compressor
JP2009108762A (en) Rotary fluid machine
JP2009062929A (en) Rotary compressor and refrigerating cycle device
JP2016011650A (en) Scroll type fluid machinery
JP2005048687A (en) Vane for refrigerant compressors, method of manufacturing the same and refrigerant compressor
JP2008297977A (en) Scroll type fluid machine
WO2018138840A1 (en) Rotary compressor
JP2000170677A (en) Rotary compressor
JP2006077630A (en) Refrigerant compressor and method for manufacturing refrigerant compressor
JP5270993B2 (en) Scroll type fluid machinery
JP2006063942A (en) Rotary compressor
JP3870683B2 (en) Manufacturing method of shaft