JP2005298751A5 - - Google Patents

Download PDF

Info

Publication number
JP2005298751A5
JP2005298751A5 JP2004119975A JP2004119975A JP2005298751A5 JP 2005298751 A5 JP2005298751 A5 JP 2005298751A5 JP 2004119975 A JP2004119975 A JP 2004119975A JP 2004119975 A JP2004119975 A JP 2004119975A JP 2005298751 A5 JP2005298751 A5 JP 2005298751A5
Authority
JP
Japan
Prior art keywords
layered silicate
ion
ion exchange
formula
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004119975A
Other languages
Japanese (ja)
Other versions
JP2005298751A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004119975A priority Critical patent/JP2005298751A/en
Priority claimed from JP2004119975A external-priority patent/JP2005298751A/en
Publication of JP2005298751A publication Critical patent/JP2005298751A/en
Publication of JP2005298751A5 publication Critical patent/JP2005298751A5/ja
Pending legal-status Critical Current

Links

Description

本発明は蛍光X線測定によって測定されるカルシウム含有率が元素比率として0.5%以下であり、かつ下記式(1)

Figure 2005298751
(式中、R、R、R及びRは、それぞれ独立に、炭素数1〜30の炭化水素基またはヘテロ原子を含む炭化水素基、Mは窒素原子またはリン原子である。また任意のR、R、R及びRは環を形成していても良い。)
で表される有機オニウムイオンにより層状珪酸塩のイオン交換能対比60〜100%交換されている層状珪酸塩を灰分量として0.1〜20重量%含有することを特徴とするポリエステル組成物である。 In the present invention, the calcium content measured by fluorescent X-ray measurement is 0.5% or less as an element ratio, and the following formula (1)
Figure 2005298751
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently a hydrocarbon group having 1 to 30 carbon atoms or a hydrocarbon group containing a hetero atom, and M is a nitrogen atom or a phosphorus atom. Arbitrary R 1 , R 2 , R 3 and R 4 may form a ring.)
Is a polyester composition characterized in that the layered silicate is ion exchange capacity compared exchange 60% to 100% of the layered silicate with an organic onium ion represented containing 0.1 to 20 wt% as ash content in .

さらに本発明は上記記載のポリエステル組成物からなるポリエステルフィルムである。ここでポリエステルフィルムの断面方向からのX線回折における層状珪酸塩の層間の散乱ピーク強度について下記式(I)

Figure 2005298751
(φはフィルムの面内方向に対する方位角であり、Ic(φ)は方位角φにおける散乱強度)
を満足することが好ましい。 Furthermore, this invention is a polyester film which consists of a polyester composition as described above. Here, the scattering peak intensity between the layers of the layered silicate in the X-ray diffraction from the cross-sectional direction of the polyester film is expressed by the following formula (I)
Figure 2005298751
(Φ is the azimuth angle with respect to the in-plane direction of the film, and Ic (φ) is the scattering intensity at the azimuth angle φ)
Is preferably satisfied.

本発明におけるポリエステル組成物は、層状珪酸塩の分散性が高く、弾性、靭性等に優れ、種々の成形体、特にフィルムとして使用場合には表面平滑性の高いものを得ることができるため、磁気用途、包装用途、保護フィルム等各種工業用途に使用可能である。 Since the polyester composition in the present invention has high dispersibility of the layered silicate, is excellent in elasticity, toughness, etc., and can be used as various molded products, particularly when used as a film, it has high surface smoothness. It can be used for various industrial applications such as applications, packaging applications, and protective films.

カルシウムイオンを除去する方法としては、1)水溶性アンモニウムで処理し、完全に層間に含まれるイオン交換性陽イオンを交換し、然る後に式(1)で表せるオニウムイオンで処理することである。もう一つは2)水溶性アンモニウムで処理し、完全に層間に含まれるイオン交換性陽イオンを交換し、次に塩化ナトリウム、塩化カリウムなどのアルカリ金属塩で処理し層間にアルカリ金属を担持させる。その然る後に(1)で表せるオニウムイオンで処理することである。このようにして層状珪酸塩の層間に存在するカルシウムを完全に除去することができる。カルシウムイオンが完全に除去されているかは蛍光X線分析によって確認することができる。 As a method for removing calcium ions, 1) was treated with aqueous ammonium, completely replace the ion-exchangeable cations contained between the layers is to treat with onium ion represented by the formula (1) thereafter . The other is 2) treatment with water-soluble ammonium to completely exchange ion-exchangeable cations contained between layers, and then treatment with alkali metal salts such as sodium chloride and potassium chloride to carry alkali metals between the layers. . Is that treatment with onium ion represented by the formula (1) in its Thereafter. In this way, calcium existing between the layers of the layered silicate can be completely removed. Or calcium ions are completely removed can be confirmed by X-ray fluorescence analysis.

以下にヘテロ原子を含む置換基を有する炭化水素基の例を列挙する。(ここで下記式中、aおよびbは1以上29以下の整数であり、置換基中での炭素数が30以下になる整数である。) Examples of hydrocarbon groups having a substituent containing a hetero atom are listed below. (Here, in the following formula, a and b are integers of 1 to 29, and the number of carbon atoms in the substituent is 30 or less .)

上述した有機オニウムイオンは、単独でも組み合わせて用いることができる。有機オニウムイオンとしては、膨潤性層状珪酸塩の耐熱性の点からホスフォニウム、イミダゾリウム構造を有するものが好ましい。さらに好ましい有機オニウムとして、具体的には、テトラブチルホスホニウム、テトラオクチルホスホニウム、トリブチルドデシルホスホニウム、トリブチルヘキサデシルホスフォニウムなどのアルキルホスホニウムやN−メチルイミダゾリニウム、N−エチルイミダゾリニウム、N−ヘキシルイミダゾリニウム、N−オクチルイミダゾリニウム、N−ドデシルイミダゾリニウム、N−ヘキサデシルイミダゾリニウム等のアルキル置換イミダゾリウム、そして、アルキル基の一部がイミド置換炭化水素基で置換された以下のオニウムを例示することができる。 Organic onium ions described above can be used alone or in combination. As the organic onium ion, those having a phosphonium or imidazolium structure are preferable from the viewpoint of heat resistance of the swellable layered silicate. More preferable organic oniums include, specifically, alkylphosphoniums such as tetrabutylphosphonium, tetraoctylphosphonium, tributyldodecylphosphonium, tributylhexadecylphosphonium, N-methylimidazolinium, N-ethylimidazolinium, N- Alkyl-substituted imidazoliums such as hexylimidazolinium, N-octylimidazolinium, N-dodecylimidazolinium, N-hexadecylimidazolinium, etc., and a part of the alkyl group was substituted with an imide-substituted hydrocarbon group The following oniums can be exemplified.

本発明で使用する層状珪酸塩は、こうした有機オニウムイオンにより、層状珪酸塩の陽イオン交換能に対して60〜100%イオン交換されている。層状珪酸塩の陽イオン交換能は、従来公知の方法で測定可能であるが、本発明で使用される層状珪酸塩のイオン交換能としては、先述の層状珪酸塩の内、0.2〜3ミリグラム当量/g程度のものが好適に使用可能である。陽イオン交換能が、0.2ミリグラム当量/g以上であるほうが、有機オニウムイオンの導入率が高くなるために分散性の点で有利である。逆に3ミリグラム当量/g以下のものの方が、有機オニウムイオンの導入が容易となるために本発明の層状珪酸塩を製造する上で好ましい。陽イオン交換能としては、0.8〜1.5ミリグラム当量/gであることがさらに好ましい。本発明の層状珪酸塩は、こうした陽イオン交換能のうち、50〜100%が上述の有機オニウムによりイオン交換されているものである。こうした陽イオンの交換率は、下記式(2)によって算出することができる。
カチオン交換率(%)={Wf/(1−Wf)}/(Morg/Msi)×100
(2)
(Wfは20℃/minの昇温速度で120℃から800℃まで測定した層状珪酸塩の示差熱天秤による重量減少率、Morgは該オニウムイオンの分子量、Msiは層状珪酸塩の陽イオン部分における1電荷あたりの分子量を表す。層状珪酸塩の陽イオン部分における1電荷あたりの分子量は、層状珪酸塩の陽イオン交換容量(単位:グラム当量/g)の逆数で算出される値である。)
The layered silicate used in the present invention is ion-exchanged by 60 to 100% with respect to the cation exchange capacity of the layered silicate by such organic onium ions . The cation exchange capacity of the layered silicate can be measured by a conventionally known method. As the ion exchange capacity of the layered silicate used in the present invention, 0.2 to 3 of the above-mentioned layered silicates. Those of the order of milligram equivalent / g can be suitably used. A cation exchange capacity of 0.2 milligram equivalent / g or more is advantageous in terms of dispersibility because the introduction rate of organic onium ions is increased. On the contrary, the one having 3 milligram equivalent / g or less is preferable in producing the layered silicate of the present invention because the introduction of organic onium ions is facilitated. The cation exchange capacity is more preferably 0.8 to 1.5 milligram equivalent / g. In the layered silicate of the present invention, 50 to 100% of such cation exchange capacity is ion-exchanged with the above-described organic onium. Such a cation exchange rate can be calculated by the following equation (2).
Cation exchange rate (%) = {Wf / (1-Wf)} / (Morg / Msi) × 100
(2)
(Wf is the weight loss rate by differential thermal balance of layered silicate measured from 120 ° C to 800 ° C at a rate of temperature increase of 20 ° C / min, M org is the molecular weight of the onium ion, and M si is the cation of the layered silicate. This represents the molecular weight per charge in the portion, and the molecular weight per charge in the cation portion of the layered silicate is a value calculated by the reciprocal of the cation exchange capacity (unit: gram equivalent / g) of the layered silicate. .)

本発明で使用する層状珪酸塩は、窒素雰囲気下、20℃/minの昇温速度で示差熱天秤によって測定した5重量%重量減少時の温度が、310℃以上であることが好ましい。5重量%重量減少時の温度が310℃より低いと、ポリエステル樹脂と溶融混合する際の分解が大きく層状珪酸塩の再凝集が起ったり、分解ガスが発生するなど樹脂特性を低下させるため好ましくない。こうした点から5重量%重量減少時の温度は、高いほど好ましいが,本発明の層状珪酸塩では、良好な分散性を与えるオニウムの構造を勘案すると、好ましくは330℃以上、より好ましくは340℃以上、さらに好ましくは350℃以上である。 The layered silicate used in the present invention preferably has a temperature at a weight reduction of 5% by weight measured by a differential thermal balance at a temperature increase rate of 20 ° C./min in a nitrogen atmosphere of 310 ° C. or higher. When the temperature at the time of 5% by weight reduction is lower than 310 ° C., it is preferable because decomposition during melt-mixing with the polyester resin is large and re-aggregation of the lamellar silicate occurs or decomposition gas is generated, thereby reducing the resin characteristics. Absent. In view of these points, the temperature at the time of 5% by weight reduction is preferably as high as possible. However, the layered silicate of the present invention is preferably 330 ° C. or higher, more preferably 340 ° C., taking into account the onium structure that gives good dispersibility. As mentioned above, More preferably, it is 350 degreeC or more.

Figure 2005298751
を水300重量部で溶解させた溶液を加え、さらに80℃で3時間攪拌した。混合物から固体を濾別し、メタノールで3回、水で3回洗浄したのち、凍結乾燥することによりカチオン交換された層状珪酸塩を得た。イオン交換率は84%であった。このようにして得られたものを固形分が20重量%の水分散液から凍結乾燥することにより、比表面積は6.5m/gのイオン交換された層状珪酸塩を得た。さらに蛍光X線測定によってカルシウムが除去されているのを確認したところ、カルシウムは元素比率として0.1%未満であった。次にポリ(エチレン−2,6―ナフタレンジカルボキシレート)(還元粘度が0.78、以下PENと略す)のペレット、得られた層状珪酸塩を同方向型ニ軸押し出し機(Werner社ZSK−25)を用いて押し出し温度280℃、吐出量10kg/hr、スクリュー回転速度280rpmの条件下で混練し、ポリエステル組成物を得た。この時に得られた樹脂組成物の結果を下記の表1に示す。また透過型電子顕微鏡で樹脂組成物を観察した。層状珪酸塩は、粗大な凝集なく、良好に分散していることが分かる。ここでTEM/EDS測定を行った所、カルシウムは測定されなかった。
Figure 2005298751
Was added with 300 parts by weight of water, and the mixture was further stirred at 80 ° C. for 3 hours. The solid was separated from the mixture by filtration, washed 3 times with methanol and 3 times with water, and then freeze-dried to obtain a cation-exchanged layered silicate. The ion exchange rate was 84%. The product thus obtained was freeze-dried from an aqueous dispersion having a solid content of 20% by weight to obtain an ion-exchanged layered silicate having a specific surface area of 6.5 m 2 / g. Furthermore, when it was confirmed that calcium was removed by fluorescent X-ray measurement, the elemental ratio of calcium was less than 0.1%. Next, pellets of poly (ethylene-2,6-naphthalenedicarboxylate) (reduced viscosity is 0.78, hereinafter abbreviated as PEN) and the obtained layered silicate are converted into a co-directional biaxial extruder (Werner ZSK-). 25) was used for kneading under conditions of an extrusion temperature of 280 ° C., a discharge rate of 10 kg / hr, and a screw rotation speed of 280 rpm to obtain a polyester composition. The results of the resin composition obtained at this time are shown in Table 1 below. The resin composition was observed with a transmission electron microscope . It can be seen that the layered silicate is well dispersed without coarse aggregation. Here, when TEM / EDS measurement was performed, calcium was not measured.

[比較例1]
フラスコにクニピアF100重量部、水3000重量部を入れ、80℃で加熱攪拌した。ここに日本化学製PX416B83重量部を水300重量部で溶解させた溶液を加え、さらに80℃で3時間攪拌した。混合物から固体を濾別し、メタノールで3回、水で3回洗浄したのち、固形分率が約20%の分散液の凍結乾燥を行った。比表面積を測定したところ5.3m/gであった。さらに蛍光X線測定によってカルシウム量を測定したところ、カルシウム元素比率は0.6(%)であった。次にポリ(エチレンナフタレート)(還元粘度が0.78)のペレット、得られた層状珪酸塩を同方向型ニ軸押し出し機(Werner社ZSK−25)を用いて押し出し温度280℃、吐出量10kg/hr、スクリュー回転速度280rpmの条件下で混練し、ポリエステル組成物を得た。この時に得られた樹脂組成物の結果を下記の表1に示す。層状珪酸塩の分散状況は高かったものの、粗大な珪酸塩が確認された。TEM/EDSにより、厚い層状珪酸塩の元素構成を測定したところ、カルシウム元素を多く含み、リンはほとんど検出されなかった。
[Comparative Example 1]
The flask was charged with 100 parts by weight of Kunipia F and 3000 parts by weight of water, and heated and stirred at 80 ° C. A solution prepared by dissolving 83 parts by weight of PX416B manufactured by Nippon Chemical Co., Ltd. with 300 parts by weight of water was added, and the mixture was further stirred at 80 ° C. for 3 hours. The solid was separated from the mixture by filtration, washed 3 times with methanol and 3 times with water, and then lyophilized the dispersion having a solid content of about 20%. It was 5.3 m < 2 > / g when the specific surface area was measured. Further, when the amount of calcium was measured by fluorescent X-ray measurement, the calcium element ratio was 0.6 (%). Next, pellets of poly (ethylene naphthalate) (reduced viscosity is 0.78) and the obtained layered silicate were extruded at a temperature of 280 ° C. and a discharge amount using a co-directional biaxial extruder (Werner ZSK-25). The polyester composition was obtained by kneading under conditions of 10 kg / hr and screw rotation speed of 280 rpm. The results of the resin composition obtained at this time are shown in Table 1 below. Although the state of dispersion of the layered silicate was high, coarse silicate was confirmed. When the elemental composition of the thick layered silicate was measured by TEM / EDS, it contained a large amount of calcium element and almost no phosphorus was detected.

Figure 2005298751
Figure 2005298751

Claims (7)

蛍光X線測定によって測定されるカルシウム含有率が元素比率として0.5%以下であり、かつ下記式(1)
Figure 2005298751
(式中、R、R、R及びRは、それぞれ独立に、炭素数1〜30の炭化水素基またはヘテロ原子を含む炭化水素基、Mは窒素原子またはリン原子である。また任意のR、R、R及びRは環を形成していても良い。)
で表される有機オニウムイオンにより層状珪酸塩のイオン交換能対比60〜100%交換されている層状珪酸塩を灰分量として0.1〜20重量%含有することを特徴とするポリエステル組成物。
The calcium content measured by fluorescent X-ray measurement is 0.5% or less as an element ratio, and the following formula (1)
Figure 2005298751
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently a hydrocarbon group having 1 to 30 carbon atoms or a hydrocarbon group containing a hetero atom, and M is a nitrogen atom or a phosphorus atom. Arbitrary R 1 , R 2 , R 3 and R 4 may form a ring.)
Polyester composition by an organic onium ion phyllosilicate being ion exchange capacity compared exchange 60% to 100% of the layered silicate, characterized in that it contains 0.1 to 20 wt% ash content, expressed in.
有機オニウムイオンがホスフォニウムイオン、またはイミダゾリウムイオンである請求項1のポリエステル組成物。   The polyester composition according to claim 1, wherein the organic onium ion is a phosphonium ion or an imidazolium ion. 請求項1記載のポリエステル組成物からなるポリエステルフィルム。   A polyester film comprising the polyester composition according to claim 1. ポリエステルフィルムの断面方向からのX線回折における層状珪酸塩の層間の散乱ピーク強度について下記式(I)
Figure 2005298751
(式(I)中でfcは配向係数、φはフィルムの面内方向に対する方位角であり、Ic(φ)は方位角φにおける散乱強度)
を満足する請求項3に記載のポリエステルフィルム。
Regarding the scattering peak intensity between the layers of the layered silicate in the X-ray diffraction from the cross-sectional direction of the polyester film, the following formula (I)
Figure 2005298751
(In the formula (I), fc is the orientation coefficient, φ is the azimuth angle with respect to the in-plane direction of the film, and Ic (φ) is the scattering intensity at the azimuth angle φ)
The polyester film according to claim 3 satisfying
ポリエステルがポリ(エチレンテレフタレート)、またはポリ(エチレン−2,6−ナフタレンジカルボキシレート)である請求項4に記載のポリエステルフィルム。   The polyester film according to claim 4, wherein the polyester is poly (ethylene terephthalate) or poly (ethylene-2,6-naphthalenedicarboxylate). 層状珪酸塩のイオン交換能対比1.0〜10.0当量の水溶性アンモニウムでイオン交換反応を行った後、層状珪酸塩のイオン交換能対比1.0〜10.0当量の下記式(1)
Figure 2005298751
(式中、R、R、R及びRは、それぞれ独立に、炭素数1〜30の炭化水素基またはヘテロ原子を含む炭化水素基、Mは窒素原子またはリン原子である。また任意のR、R、R及びRは環を形成していても良い。)
で表せる有機オニウムイオンを含有する塩でイオン交換反応する工程からなることを特徴とする層状珪酸塩の製造方法。
After performing an ion exchange reaction with 1.0 to 10.0 equivalents of water-soluble ammonium for the layered silicate ion exchange capacity, 1.0 to 10.0 equivalents of the following formula (1) )
Figure 2005298751
(In the formula, R 1 , R 2 , R 3 and R 4 are each independently a hydrocarbon group having 1 to 30 carbon atoms or a hydrocarbon group containing a hetero atom, and M is a nitrogen atom or a phosphorus atom. Arbitrary R 1 , R 2 , R 3 and R 4 may form a ring.)
A process for producing a layered silicate comprising an ion exchange reaction with a salt containing an organic onium ion represented by formula (1).
水溶性アンモニウムでイオン交換反応を行った後、有機オニウムイオンを含有する塩でイオン交換反応する工程の前に、層状珪酸塩のイオン交換能対比1.0〜10.0当量のアルカリ金属塩でイオン交換反応を行うことを特徴とする請求項6に記載の層状珪酸塩の製造方法。 After performing an ion exchange reaction with water-soluble ammonium and before an ion exchange reaction with a salt containing an organic onium ion, an alkali metal salt with an ion exchange capacity of 1.0 to 10.0 equivalents of layered silicate is used. production process of the layered silicate according to claim 6, characterized in that the ion exchange reaction.
JP2004119975A 2004-04-15 2004-04-15 Polyester resin composition and polyester film Pending JP2005298751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119975A JP2005298751A (en) 2004-04-15 2004-04-15 Polyester resin composition and polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119975A JP2005298751A (en) 2004-04-15 2004-04-15 Polyester resin composition and polyester film

Publications (2)

Publication Number Publication Date
JP2005298751A JP2005298751A (en) 2005-10-27
JP2005298751A5 true JP2005298751A5 (en) 2007-05-31

Family

ID=35330682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119975A Pending JP2005298751A (en) 2004-04-15 2004-04-15 Polyester resin composition and polyester film

Country Status (1)

Country Link
JP (1) JP2005298751A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314523A (en) * 2004-04-28 2005-11-10 Sumitomo Chemical Co Ltd Composition, composition solution and molded product
US8568867B2 (en) 2006-06-26 2013-10-29 Sabic Innovative Plastics Ip B.V. Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof
US7928155B2 (en) 2006-06-26 2011-04-19 Sabic Innovative Plastics Ip B.V. Compositions and methods for polymer composites
US7915332B2 (en) 2006-06-26 2011-03-29 Sabic Innovative Plastics Ip B.V. Compositions and methods for polymer composites
US8545975B2 (en) 2006-06-26 2013-10-01 Sabic Innovative Plastics Ip B.V. Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof
US20080015330A1 (en) * 2006-06-26 2008-01-17 Chan Kwok P Compositions and methods for polymer composites
US9161440B2 (en) 2006-06-26 2015-10-13 Sabic Global Technologies B.V. Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof
US20100056693A1 (en) 2008-09-03 2010-03-04 Sreepadaraj Karanam Process for Synthesis of Imidazolium and Benzimidazolium Surfactants and their use in Clays and Nanocomposites
WO2013036766A1 (en) * 2011-09-09 2013-03-14 University Of Georgia Research Foundation, Inc. Small molecule naphthoquinone- and phthalimide-based lipocations as anti-parasitic agents

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336787B2 (en) * 1995-01-23 2002-10-21 三菱化学株式会社 Polyethylene terephthalate resin composition
JPH1095915A (en) * 1996-09-24 1998-04-14 Asahi Chem Ind Co Ltd Crystalline polyamide resin composite material
JPH11171532A (en) * 1997-12-05 1999-06-29 Unitika Ltd Sheet silicate having low alkali metal content and its production
JP2001261947A (en) * 2000-03-14 2001-09-26 Toray Ind Inc Polyester resin composition
JP2003012899A (en) * 2001-07-02 2003-01-15 Teijin Chem Ltd Resin composition
TWI282804B (en) * 2002-09-11 2007-06-21 Teijin Ltd Thermoplastic film, thermoplastic resin composition, and phyllosilicate
JPWO2005085349A1 (en) * 2004-03-05 2008-01-24 帝人株式会社 Polyester resin composition

Similar Documents

Publication Publication Date Title
Huang et al. Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties
Yu et al. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer
Hou et al. A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites
JP5731302B2 (en) Refractory material
Alateyah et al. Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review
CN1308232C (en) Preparation method of transition metal carbide material
Yuan et al. Preparation and characterization of flame-retardant aluminum hypophosphite/poly (vinyl alcohol) composite
Chiang et al. Novel epoxy/expandable graphite halogen-free flame retardant composites− preparation, characterization, and properties
JP2005298751A5 (en)
Goda et al. Two-dimensional nanomaterials as smart flame retardants for polyurethane
Xu et al. Intumescent flame retardant of polypropylene system with enhanced thermal properties and flame retardancy based on α-zirconium phosphate composite particles
JP6519876B2 (en) Method of manufacturing hexagonal boron nitride, and method of manufacturing heat dissipation sheet
EP0940430A1 (en) Polyamide composite material
JP2003238819A (en) Heat-resistant filler
JP3902626B2 (en) Thermoplastic film, thermoplastic resin composition and layered silicate
JP5129448B2 (en) Organized layered silicate, method for producing the same, and resin composition
JPH11171532A (en) Sheet silicate having low alkali metal content and its production
JP4976671B2 (en) Dispersion containing organoclay complex and thickener using organoclay complex
Zulfiqar et al. Preparation and properties of aramid/layered silicate nanocomposites by solution intercalation technique
Han et al. Enhancing flame retardancy, anti‐impact, and corrosive resistance of TPU nanocomposites using surface decoration of α‐ZrP
Corobea et al. Polymer-nanoclay hybrids obtained by emulsion polymerization of vinyl acetate in the presence of an organically modified montmorillonite
KR100788498B1 (en) Polyester reactive organo clay and polyester nano-complex thereof
Sinha Ray et al. Polymer Nanocomposites for Fire Retardant Applications
Liu et al. Flame retardant properties of polymer/layered double hydroxide N nanocomposites
Mansoori et al. Novel polyamide/layered silicate nanocomposites with improved mechanical properties: Thermal and mechanical investigation