JP2005291026A - 自己屈曲薄膜及び運動装置 - Google Patents

自己屈曲薄膜及び運動装置 Download PDF

Info

Publication number
JP2005291026A
JP2005291026A JP2004104308A JP2004104308A JP2005291026A JP 2005291026 A JP2005291026 A JP 2005291026A JP 2004104308 A JP2004104308 A JP 2004104308A JP 2004104308 A JP2004104308 A JP 2004104308A JP 2005291026 A JP2005291026 A JP 2005291026A
Authority
JP
Japan
Prior art keywords
light
bending
self
organic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004104308A
Other languages
English (en)
Inventor
Hiromichi Tani
浩路 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004104308A priority Critical patent/JP2005291026A/ja
Publication of JP2005291026A publication Critical patent/JP2005291026A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Micromachines (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 小型で、かつ、確実に推進可能な自己屈曲薄膜及び運動装置を提供する。
【解決手段】 アゾベンゼン化合物で構成された光屈曲膜11を、366nmの波長を有する光を出射する第1の有機EL素子LF1と、540nmの波長を有する光を出射する第2の有機EL素子LF2とで挟むように配置した自己屈曲薄膜1を構成した。そして、第1の有機EL素子LF1と第2の有機EL素子LF2とに交互に電気エネルギーを供給して、366nmの波長を有する光を、また540nmの波長を有する光を交互に光屈曲膜11へ照射するようにした。
【選択図】 図3

Description

本発明は、自己屈曲薄膜及び運動装置に関するものである。
近年、細菌などの鞭毛運動を模倣して自在に推進可能な運動装置としてのマイクロマシーンが注目されている。この種のマイクロマシーンにおいては、特に、生体内の、例えば血管内の血液といった低レイノルズ係数下の流体中を推進する医療用マイクロマシーンの開発が盛んに行われている。医療用マイクロマシーンは、たとえば、薬剤を搭載し、血管内を自己推進して目的の箇所に至ると、その搭載した薬剤を切り離して投与するといったものである。上記したマイクロマシーンにおいては、そのさらなる小型化のために、マイクロマシーンの駆動を制御するマイクロアクチュエータの開発が望まれている。
一方、近年、光などの特定波長の電磁波を受けることにより折れ曲がる高分子フィルムが開発されている(例えば、非特許文献1参照)。
Directed bending of a polymer film by light Miniaturizing a simple photomechanical system could expand its range of application. , NATURE, VIL425, 11 SEPTEMBER 2003
ところで、近年、上記非特許文献1に記載されている光駆動の高分子フィルムをマイクロマシーンの駆動機構に応用することが検討されつつある。しかしながら、上記非特許文献1に記載されている光駆動の高分子フィルムでは、特定波長の光源としてレーザが想定されており、そのレーザ光源が折れ曲がり部位から離れた所に配置することとなる。これにより、上記従来の光駆動の高分子フィルムでは、レーザ光源から折れ曲がり部の高分子フィルムまで長い光伝送路などが必要となる。したがって、上記従来の光駆動の高分子フィルムをマイクロマシーンに応用すると、駆動機構の性能、小型化及び軽量化などの点において、様々な制約条件が発生してしまう。
本発明は、上記事情に鑑みてなされたもので、その目的は、小型で、かつ、確実に推進可能な自己屈曲薄膜及び運動装置を提供することにある。
本発明の自己屈曲薄膜は、第1の波長の光を出射する膜形状の第1の光源体と、前記第1の波長と異なる第2の波長の光を出射する膜形状の第2の光源体と、前記第1の波長の光と前記第2の波長との光に対して曲げ方向が異なる光屈曲膜とを備えた。
これによれば、第1の波長の光と第2の波長の光を交互に光屈曲膜に照射することで、光屈曲膜を、第1の光源体側と第2の光源体側とに交互に屈曲させることができる。従って、このように構成された自己屈曲薄膜を、例えば、低レイノルズ数の流体中に配置し、その光屈曲膜を第1の光源側と第2の光源側とに交互に屈曲させることで、その自己屈曲薄膜を、前記流体中にて推進させることができる。
この自己屈曲薄膜において、前記第1の光源体または前記第2の光源体の少なくともいずれか一方に膜形状の太陽電池を備えていてもよい。
これによれば、たとえば、第1の光源体及び第2の光源体は、太陽電池にて生じた電力によって駆動させる。従って、外部からの電力を供給させることなく、自己屈曲薄膜を推
進させることができる。
この自己屈曲薄膜において、前記第1の波長または前記第2の波長の少なくともいずれか一方は、366nmであってもよい。
これによれば、たとえば、第2の波長が540nmである場合、前記光屈曲膜に540nmの波長の第2の光が照射されると屈曲し、366nmの第1の波長の光が照射されると平面状にまっすぐに伸びる光屈曲膜である場合、前記第1の光源体と前記第2の光源体とを交互に光らせることによって駆動させる。この結果、自己屈曲薄膜を推進させることができる。
この自己屈曲薄膜において、前記光屈曲膜は、アゾベンゼン化合物であってもよい。
これによれば、アゾベンゼン化合物で構成された光屈曲膜を用いたので、前記第1の波長の光と前記第2の波長との光に対して確実に曲げ方向が異なる光屈曲膜を実現する。
この自己屈曲薄膜において、前記第1の光源体及び前記第2の光源体は、有機EL素子であってもよい。
これによれば、各光源体を有機EL素子で構成することによって、各光源体を薄く形成することができる。
この自己屈曲薄膜において、前記光源体と前記光屈曲膜の間に偏光板が配置されていてもよい。
これによれば、光源体から出射された光の波長に光屈曲膜の曲げ制御などを阻害する波長の光が含まれている場合、その阻害する波長の光を遮断して所望の波長の光のみを透過させることにより、光源体が出射する光の波長の許容範囲を広くすることができ、光源体の製造を容易化することができる。
この自己屈曲薄膜において、前記光源体に電力を供給可能な蓄電手段を備えていてもよい。
これによれば、例えば、太陽電池から電気エネルギーが供給されなくなった場合においても、電気エネルギーを光源体に供給することができる。
本発明の運動装置は、上記記載の自己屈曲薄膜を複数個連続して並んで接続してなる。
これによれば、前記自己屈曲薄膜を複数個連続して並んで接続し、第1の光源体及び第2の光源体を制御することで、運動装置の小型化、軽量化を実現することができる。
以下、本発明の実施形態に係る自己屈曲薄膜及び運動装置について図面を参照して説明する。尚、以下に示す各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材ごとに縮尺を異ならせてある。
(第1実施形態)
図1は、本発明の第1実施形態に係る自己屈曲薄膜の全体斜視図である。図1に示すように、自己屈曲薄膜1は、図1中Z矢印方向の長さ(厚さ)がX,Y矢印方向への長さによりも短く、且つ、Y方向の長さがX方向の長さ(幅)より長い略帯状の形態を成している。自己屈曲薄膜1は、その略中央部分が屈曲する屈曲部分であり、図1に示すように、その屈曲部分を領域Cで表す。
図2は、図1に示した領域Cを含む自己屈曲薄膜1の一部を透視した拡大斜視図である。図2に示すように、自己屈曲薄膜1は、複数の膜(本実施形態では4つ)が積層してなる多層積層構造を成している。詳しくは、自己屈曲薄膜1は、光屈曲膜11、第1構造層12、第2構造層13及び太陽電池14で構成されている。
また、自己屈曲薄膜1は、その領域C内において、第1の波長の光を出射する第1の有機EL素子LF1と、該第1の波長とは異なった第2の波長の光を出射する第2の有機EL素子LF2とを備えている。第1及び第2の有機EL素子LF1,LF2は、ともに自己屈曲薄膜1の幅(X方向の長さ)とほぼ同程度の長さをもった膜形状の光源体である。そして、第1の有機EL素子LF1は、前記第1構造層12の一部に埋め込まれるようにして形成され支持固定されている。一方、第2の有機EL素子LF2は、前記第2構造層13の一部に埋め込まれるようにして形成され支持固定されている。
図3は、自己屈曲薄膜1の図2中a−a線での断面図である。図3に示すように、自己屈曲薄膜1を構成する前記各光屈曲膜11、第1構造層12、第2構造層13及び太陽電池14は、図3中Z矢印方向に沿って図3中下側から、第2構造層13、光屈曲膜11、第1構造層12、太陽電池14の順に積層されている。
光屈曲膜11は、互いに異なった波長の光が照射されると、その各波長の光に対して曲げ方向が異なって屈曲する高分子フィルムからなる膜である。本実施形態の光屈曲膜11は、アゾベンゼン化合物で構成されている。そして、366nm以外の、たとえば540nmの波長をもった光が照射されることにより、その照射された側を谷折り側として屈曲する特性を有する。また、光屈曲膜11は、366nmの波長をもった光が照射されることにより、平面状にまっすぐに伸びる特性を有する。さらに、光屈曲膜11は、光の照射がなくなると、その状態を維持する特性を有する。
第1及び第2の有機EL素子LF1,LF2は、それぞれ光屈曲膜11を挟むように配置されている。すなわち、第1の有機EL素子LF1と第2の有機EL素子LF2とで、光屈曲膜11を挟んでなる積層構造をなしている。第1及び第2の有機EL素子LF1,LF2から出射された各光は、それぞれ光屈曲膜11を照射する。
図3中Z矢印方向側の光屈曲膜11上には、第1構造層12が形成されている。第1構造層12は、その領域C内に第1の有機EL素子LF1を挟持するようにして支持固定している。また、図3中反Z矢印方向側の光屈曲膜11上には、第2構造層13が形成されている。第2構造層13は、その領域C内に第2の有機EL素子LF2を挟持するようにして支持固定している。
この第1及び第2構造層12,13を構成する材料はどのようなものでもよいが、光屈曲膜11の屈曲動作が阻害されることを回避すべく、柔軟性のある部材が好ましい。なお、第1及び第2構造層12,13は、自己屈曲薄膜1の主な屈曲部位とはならないので、第1及び第2の有機EL素子LF1,LF2及び太陽電池14ほどには柔軟性が必要とされない。
第1及び第2の有機EL素子LF1,LF2は、ともにその各発光層が有機材料で構成されている。これにより、第1及び第2の有機EL素子LF1,LF2自体を薄くすることができる。そして、第1の有機EL素子LF1は、第1の波長の光を出射するEL素子である。また、第2の有機EL素子LF2は、第1の波長とは異なった第2の波長の光を出射するEL素子である。本実施形態の第1の有機EL素子LF1は、第1の波長として366nmの波長の光を出射し、本実施形態の第2の有機EL素子LF2は、第2の波長として、たとえば540nmの波長の光を出射するEL素子である。
また、第1及び第2の有機EL素子LF1,LF2は、柔軟性を有して屈曲可能なものであることが好ましい。これは、光屈曲膜11の屈曲動作を有機EL素子LF1,LF2が阻害することを回避するためである。例えば、各有機EL素子LF1,LF2を極めて
薄く構成することにより、柔軟性を持たせることができる。また、各有機EL素子LF1,LF2を多数の微小なEL素子の集合物とすることによって柔軟性を持たせてもよい。
そして、光屈曲膜11が形成される側と反対側の前記第1の有機EL素子LF1上には、太陽電池14が形成されている。この太陽電池14は、本実施形態においては、第1構造層12全面に渡って形成されている。
太陽電池14は、膜状の太陽電池であって、シリコン太陽電池で構成されていても、ガリウム砒素(GaAs)といった化合物太陽電池で構成されていてもよい。太陽電池14は、図示しない電気回路を介して第1及び第2の有機EL素子LF1,LF2の各々に接続されている。そして、太陽電池14は、外部から照射された光の光エネルギーを電気エネルギーに変換し、その電気エネルギーを前記電気回路を介して各有機EL素子LF1,LF2へ供給する。尚、前記電気回路を構成する導電部材は、絶縁層などにより覆われていることが好ましい。
また、太陽電池14は、フレキシブルに屈曲するものすなわち柔軟性のある薄膜であることが好ましい。特に太陽電池14における自己屈曲薄膜1の屈曲部位、すなわち第1及び第2の有機EL素子LF1,LF2に接触する部位近辺は柔軟性があることが好ましい。これは、光屈曲膜11の屈曲動作を太陽電池14が阻害することを回避するためである。例えば、太陽電池14を複数に分割してその分割部位で柔軟性を持たせることとしてもよい。また、太陽電池14を非常に薄い膜とすることによって柔軟性を持たせてもよい。
次に、本実施形態の自己屈曲薄膜1における第1及び第2の有機EL素子LF1,LF2の周辺の詳細構成例について、図4及び図5を参照して説明する。
図4は、図3に示す自己屈曲薄膜1における第1の有機EL素子LF1の周辺領域R1及び第2の有機EL素子LF2の周辺領域R2を特定するための図である。図5(a)は、周辺領域R1での第1の有機EL素子LF1の構成を説明するための図であり、同図(b)は、周辺領域R2での第2の有機EL素子LF2の構成を説明するための図である。
図5(a)に示すように、第1の有機EL素子LF1は、透明基板15Aと、陽極16Aと、正孔注入層17Aと、発光層18Aと、陰極19Aとで構成され、それぞれ図5(a)中Z矢印方向に沿って光屈曲膜11側から透明基板15A→陽極16A→正孔注入層17A→発光層18A→陰極19Aの順に積層されている。また、第1の有機EL素子LF1の透明基板15Aと光屈曲膜11との間には、第1の偏光板20Aが配置されている。
透明基板15Aは、第1の偏光板20Aの上層に設けられている。透明基板15Aの材料としては、ガラス、石英、樹脂(プラスチック、プラスチックフィルム)といった光透過性を有する絶縁材料で構成され、特に安価なソーダガラス基板が好適に用いられる。
陽極16Aは、例えばインジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)といった光透過性を有する導電材料で構成されている。この陽極16Aは、正孔注入層17Aを介して発光層18Aへ正孔を注入する役割を果たす。
正孔注入層17Aは、例えばポリエチレンジオキシチオフェン等のポリチオフェン誘導体とポリスチレンスルホン酸等の混合物といった光透過性を有する導電材料で構成されている。この正孔注入層17Aは、陽極16Aから供給された正孔を受け、その正孔を発光層18Aへ注入すると共に、供給された正孔を正孔注入層17Aの内部において輸送する機能を有している。
発光層18Aは、特定の第1の波長の光を発光する層である。本実施形態の発光層18Aは、ポリシラン系の有機材料で構成され、366nmである第1の波長を有する光を出射する。そして、発光層18Aは、正孔注入層17Aを介して陽極16Aから供給された正孔が、また、陰極19Aから供給される自由電子(以下、単に「電子」という)が注入される。そして、注入された正孔と電子とが再結合されることにより、第1の波長(=366nm)に対応するエネルギーを有する光を出射する。
陰極19Aは、例えばアルミニウム(Al)膜又は銀(Ag)といった高反射率の金属膜で構成されている。即ち、陰極19Aは、電子を供給する電極としての機能の他に、発光層18Aから同陰極19A側に発光された光を反射させて透明基板15A側へ出射させることで光の取り出し効率を向上させる機能をも有している。尚、陰極19A上には、必要に応じてSiO,SiO,SiN等からなる酸化防止用の保護層を設けてもよい。また、陰極19Aと発光層18Aとの間には、電子注入/輸送層を設けてもよい。電子注入/輸送層は、電子を発光層18Aに注入する機能を有すると共に、電子を電子注入/輸送層内部において輸送する機能を有する。この電子注入/輸送層としては、例えばリチウムキノリノールやフッ化リチウム或いはバソフェンセシウム等を好適に用いることができる。また、仕事関数が4eV以下の金属、例えばMg、Ca、Ba、Sr、Li、Na、Rb、Cs、Yb、Smなども用いることができる。
このように構成された第1の有機EL素子LF1は柔軟性に富んでいることが好ましいので、透明基板15A、陽極16A、正孔注入層17A、発光層18A及び陰極19Aは、それぞれ柔軟性に富んでいることが好ましく、それぞれ極めて薄いことが好ましい。
第1の偏光板20Aは、同有機EL素子LF1の発光層18Aから出射される第1の波長(366nm)の光が、光屈曲膜11の曲げ制御などを阻害する波長の光を含んでいるときに、その阻害する波長の光を遮断して所望の第1の波長(366nm)の光のみを透過させるものである。これにより、第1の有機EL素子LF1が出射する光の波長の許容範囲を広くすることができ、第1の有機EL素子LF1の製造を容易化することができる。また、第1の偏光板20Aは、柔軟性に富んでいることが好ましく、極めて薄いことが好ましい。
そして、第1の有機EL素子LF1における陽極16Aは、前記した図示しない電気回路を介して太陽電池14の高電位側端子(プラス端子)に電気的に接続されている。この電気的接続は、第1構造層12にスルーホールなどを設けることで実現してもよい。また、この電気的接続を開/閉切り替えるスイッチを設けてもよい。尚、図5(a)においては、太陽電池14は、その電気的等価部材として符号14Aで示されている。
また、第1の有機EL素子LF1における陰極19Aは、太陽電池14の低電位側端子(マイナス端子)に形成されたキャパシタ膜Kを介して電気的に接続されている。このキャパシタ膜K、太陽電池14から出力された電気エネルギー(電荷)を充電する蓄電手段をなすものである。このキャパシタ膜Kは、太陽電池14をなす膜、第1の有機EL素子LF1又は第2の有機EL素子LF2に含まれていてもよい。また、キャパシタ膜Kは、太陽電池14をなす膜と第1の有機EL素子LF1との間に配置されていてもよい。そして、キャパシタ膜Kは、自己屈曲薄膜1が暗部に配置されて太陽電池14が電気エネルギーを発生しなくなったときでも、充電されている電気エネルギーを第1の有機EL素子LF1に供給することができる。尚、このキャパシタ膜Kを設けずに、太陽電池14の低電位側端子(マイナス端子)が直接陰極19Aに接続されるようにしてもよい。
このような構成において、第1の有機EL素子LF1は、太陽電池14から供給される電気エネルギーが供給され、その結果、前記発光層18Aから第1の波長(366nm)
の光が、透明基板15A側から出射され、第1の偏光板20Aを通って光屈曲膜11に到達する。
一方、図5(b)に示すように、第2の有機EL素子LF2は、透明基板15Bと、陽極16Bと、正孔注入層17Bと、発光層18Bと、陰極19Bとから構成され、それぞれ図5(b)中反Z矢印方向に沿って光屈曲膜11側から透明基板15B→陽極16B→正孔注入層17B→発光層18B→陰極19Bの順に積層されている。また、第2の有機EL素子LF2の透明基板15Bと光屈曲膜11との間には、第2の偏光板20Bが配置されている。
そして、第2の有機EL素子LF2の各透明基板15B、陽極16B、正孔注入層17B及び陰極19Bは、第1の有機EL素子LF1の各透明基板15A、陽極16A、正孔注入層17A及び陰極19Aと同一材料及び機能を有する。従って、第2の有機EL素子LF2の各透明基板15B、陽極16B、正孔注入層17B及び陰極19Bの詳細な説明は省略する。
第2の有機EL素子LF2の発光層18Bは、本実施形態においては、例えば、アントラセンやピレン、8−ヒドロキシキノリンアルミニウム、ビススチリルアントラセン誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ジスチリルベンゼン誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、チアジアゾロピリジン誘導体、またはこれら低分子材料に、ルブレン、キナクリドン誘導体、フェノキサゾン誘導体、DCM、DCJ、ペリノン、ペリレン誘導体、クマリン誘導体、ジアザインダセン誘導体等をドープした有機材料である。そして、この発光層18Bから出射される光の第2の波長は、たとえば、540nmである。
また、第2の有機EL素子LF2の第2の偏光板20Bは、第1の波長(366nm)の光とは異なった特定の第2の波長(たとえば、540nm)のみを透過させるものである。つまり、第2の偏光板20Bは、第2の有機EL素子LF2の発光層18Bから出射される第2の波長の光が、光屈曲膜11の曲げ制御などを阻害する波長の光を含んでいるときに、その阻害する波長の光を遮断して所望の第2の波長の光のみを透過させるものである。これにより、第2の有機EL素子LF2が出射する光の波長の許容範囲を広くすることができ、第2の有機EL素子LF2の製造を容易化することができる。また、第2の偏光板20Bは、柔軟性に富んでいることが好ましく、極めて薄いことが好ましい。
そして、第2の有機EL素子LF2における陽極16Bは、前記電気回路を介して太陽電池14の高電位側端子(プラス端子)に電気的に接続されている。つまり、前記第1の有機EL素子LF1の陽極16Aに接続され、太陽電池14からの電気エネルギーとしての電流を供給する前記電気回路は、この第2の有機EL素子LF2における陽極16Bにも接続されるように引き回されている。
また、第2の有機EL素子LF2における陰極19Bは、太陽電池14の低電位側端子(マイナス端子)に形成された前記キャパシタ膜Kを介して電気的に接続されている。そして、キャパシタ膜Kは、自己屈曲薄膜1が暗部に配置されて太陽電池14が電気エネルギーを発生しなくなったときでも、充電されている電気エネルギーを第2の有機EL素子LF2に供給することができる。尚、このキャパシタ膜Kを設けずに、太陽電池14の低電位側端子(マイナス端子)が直接陰極19Bに接続されるようにしてもよい。
このような構成において、第2の有機EL素子LF2は、太陽電池14から供給される電気エネルギーが供給され、その結果、前記発光層18Bから第1の波長(366nm)とは異なった第2の波長の光が、透明基板15B側から出射され、第2の偏光板20Bを
通って光屈曲膜11に到達する。
次に、本実施形態の自己屈曲薄膜1の動作例について、図6及び図7を参照して説明する。図6及び図7は、それぞれ本発明の自己屈曲薄膜1の動作例を示す模式側面図である。ここで、自己屈曲薄膜1は、太陽電池14又はキャパシタ膜Kから第1及び第2の有機EL素子LF1,LF2のそれぞれへの電流供給を個別に制御する制御手段(図示せず)を備えることとする。この制御手段は第1及び第2の有機EL素子LF1,LF2への電流供給のオン/オフ及びその電流量を制御できることが好ましい。この制御手段は、第1の有機EL素子LF1への電流供給を所定期間行った後に、第1の有機EL素子LF1への電流供給を終了して、その後、第2の有機EL素子LF2への電流供給を所定期間行う。
図6(a)に示すように、まず、初期状態として、自己屈曲薄膜1の第1及び第2の有機EL素子LF1,LF2に対して制御手段が電流を供給しない場合、すなわち各EL素子LF1,LF2がともに発光していない場合、自己屈曲薄膜1は曲がりのない平面形状になっている。
次いで、自己屈曲薄膜1に対して光が照射され、制御手段が第2の有機EL素子LF2のみに対して電流を供給すると、同第2の有機EL素子LF2が電流の供給を受けて第2の波長(540nm)の光を出射する。すると、その光が第2の偏光板20Bを介して光屈曲膜11に到達し、光屈曲膜11が第2の有機EL素子LF2側を谷折側、すなわち、第1の有機EL素子LF1側を山折側として屈曲する。これにより、図6(b)に示すように、自己屈曲薄膜1の略中央部が図6(b)中V字状に屈曲する。その後、第2の有機EL素子LF2に対する電流供給を停止して同EL素子LF2を消灯しても、光屈曲膜11の状態は変化しないので、自己屈曲薄膜1は図6(b)に示す状態を維持する(図6(c)参照)。
次いで、前記制御手段が第1の有機EL素子LF1に対してのみ電流を供給すると、同第1の有機EL素子LF1が電流の供給を受けて第1の波長(366nm)の光を出射する。すると、その光が第1の偏光板20Aを介して光屈曲膜11に到達し、光屈曲膜11が図7(a)に示すようなV字状に屈曲した状態から、図7(b)に示すような元の平面形状に戻るように徐々に屈曲していく。これにより、自己屈曲薄膜1の全体が図7(b)に示すように平面形状になっていく。
さらに、第1の有機EL素子LF1に対する電流供給を続けると、図7(c)に示すように、光屈曲膜11が、自己屈曲薄膜1は曲がりのない初期状態時の平面形状になる。
その後、第1の有機EL素子LF1に対する電流供給を停止して同第1の有機EL素子LF1を消灯しても、光屈曲膜11の状態は変化しないので、自己屈曲薄膜1は図7(c)に示す状態を維持する。
これらにより、制御手段は、第1及び第2の有機EL素子LF1,LF2のそれぞれに対する電流供給量を制御することにより、自己屈曲薄膜1の屈曲方向及び屈曲角度θなどを制御することができる。屈曲角度θは、第1及び第2の有機EL素子LF1,LF2に対する電流供給量に関係(例えば比例関係)させることができる。
また、本実施形態の自己屈曲薄膜1は、光屈曲膜11又は自己屈曲薄膜1自身の屈曲状態を検出する形状検出手段を備えることとしてもよい。そして、制御手段は形状検出手段の検出結果に基づいて第1及び第2の有機EL素子LF1,LF2のそれぞれに対する電流供給量を制御することとしてもよい。このようにすると、自己屈曲薄膜1の屈曲状態をフィードバック制御することができ、より精密に自己屈曲薄膜1の曲がり状態を制御する
ことができる。
上記したように、本実施形態によれば、以下の効果を有する。
(1)本実施形態によれば、アゾベンゼン化合物で構成された光屈曲膜11を、366nmの波長を有する光を出射する第1の有機EL素子LF1と、540nmの波長を有する光を出射する第2の有機EL素子LF2とで挟むように配置した自己屈曲薄膜1を構成した。そして、第1の有機EL素子LF1と第2の有機EL素子LF2とに交互に電気エネルギーを供給して、366nmの波長を有する光を、また540nmの波長を有する光を交互に光屈曲膜11へ照射するようにした。従って、366nmの波長を有する光が照射されているときは、その366nmの波長を有する光が照射されている側を谷折り側とする方向へ屈曲し、540nmの波長を有する光が照射されているときは平面状にまっすぐに伸びる自己屈曲薄膜1を実現することができる。
(2)本実施形態によれば、第1の有機EL素子LF1の上層に膜形状の太陽電池14を備えた。そして、第1の有機EL素子LF1及び第2の有機EL素子LF2の各陽極16A,16Bと陰極19A,19Bに太陽電池14を電気的に接続した。そして、太陽電池14にて発生された電気エネルギー(電流)を各有機EL素子LF1,LF2へ供給するようにした。従って、第1の有機EL素子LF1及び第2の有機EL素子LF2は、太陽電池14にて生じた電気エネルギー(電流)によって駆動させるので、外部からの電力を供給させることなく、自己屈曲薄膜1を、推進させることができる。
(3)本実施形態によれば、光屈曲膜11へ366nmの波長を有する光を照射する光源体を、その第1の発光層18Aがポリシラン系の有機材料で構成された第1の有機EL素子LF1で構成した。また、光屈曲膜11へ540nmの波長を有する光を照射する光源体を、その第2の発光層18Bがアントラセンやピレン等の有機材料で構成された第2の有機EL素子LF2で構成した。従って、各光源体を薄く形成することができる。
(4)本実施形態によれば、自己屈曲薄膜1に、太陽電池14から出力された電気エネルギー(電荷)を充電する蓄電手段してのキャパシタ膜Kを備えた。従って、自己屈曲薄膜1が暗部に配置されて太陽電池14が電気エネルギーを発生しなくなったときでも、充電されている電気エネルギーを第1及び第2の有機EL素子LF1,LF2に供給することができる。
(5)本実施形態によれば、透明基板15Aと光屈曲膜11との間に第1の有機EL素子LF1の発光層18Aから出射される第1の波長(366nm)の光が、光屈曲膜11の曲げ制御などを阻害する波長の光を含んでいるときに、その阻害する波長の光を遮断して所望の第1の波長(366nm)の光のみを透過させる第1の偏光板20Aを形成した。従って、第1の有機EL素子LF1が出射する光の波長の許容範囲を広くすることができ、第1の有機EL素子LF1の製造を容易化することができる。
また、同様に、透明基板15Bと光屈曲膜11との間に第2の有機EL素子LF2の発光層18Bから出射される第2の波長(540nm)の光が、光屈曲膜11の曲げ制御などを阻害する波長の光を含んでいるときに、その阻害する波長の光を遮断して所望の第2の波長(540nm)の光のみを透過させる第2の偏光板20Bを形成した。従って、第2の有機EL素子LF2が出射する光の波長の許容範囲を広くすることができ、第2の有機EL素子LF2の製造を容易化することができる。
(第2実施形態)
次に、上記第1実施形態の自己屈曲薄膜1を構成要素とした運動装置としてのマイクロマシーンの一例について、図8及び図9を参照して説明する。図8は、本発明の実施形態に係るマイクロマシーンを示す斜視図である。本実施形態のマイクロマシーン30は、マイクロマシーン30は、たとえば、低レイノルズ数の、すなわち、生体内の血管中の血液中といった流動体中などの液相中を推進できる装置である。
図8に示すように、マイクロマシーン30は、例えば、医薬剤を収納する収納部31と
マイクロマシーン30の駆動を制御する駆動部32とから構成されている。このような構成を成したマイクロマシーン30は、その駆動部32が上記第1実施形態の帯状の形態を
成した自己屈曲薄膜1を複数個連続して並んで接続してなる。
図9は、マイクロマシーン30の駆動部32の構成を説明するための模式拡大断面図である。図9に示すように、駆動部32は、8個の自己屈曲薄膜1の各々が隣接する自己屈曲薄膜1とその幅方向に連続して並んで接続されることで構成されている。そして、幅方向に連続して接続した8個の自己屈曲薄膜1の各々が、その帯状の形態を成した自己屈曲薄膜1の長手方向(幅方向と直角を成す方向)に複数個連続して並んで接続されている。このとき、所定の自己屈曲薄膜1の第1の有機EL素子LF1及び第2の有機EL素子LF2と、隣接する自己屈曲薄膜1の第1の有機EL素子LF1及び第2の有機EL素子LF2との配置を、例えば交互にする。
そして、各自己屈曲薄膜1が屈曲することにより、駆動部32が、例えば鞭打ち運動や細菌などの鞭毛運動を模倣した動きをする。このとき、駆動部32は、太陽電池14にて生じた電気エネルギー(電流)によって駆動されるので、外部からの電力を供給させる必要はない。
この結果、マイクロマシーン30の、例えば、その収納部31に駆動部32を駆動させるためのマイクロアクチュエータを駆動部32と別体として設ける必要は無いので、マイクロマシーン30自体を非常に小型で軽量にすることができる。また、各自己屈曲薄膜1の光屈曲膜11を制御する制御手段を、図9に示すように、各自己屈曲薄膜1を並んで接続することで形成される空間S内に配置した場合は、制御信号についての配線などが不要となり、さらに小型で軽量な運動装置とすることができる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能であり、実施形態で挙げた具体的な材料や層構成などはほんの一例に過ぎず、適宜変更が可能である。
本発明は、例えば、直線運動、回転運動、又は昆虫翅のような複雑な動きをする運動機構を前記実施形態の自己屈曲薄膜1のみで構成することもできる。したがって、ロータリモータ及びリニアモータを前記実施形態の自己屈曲薄膜1のみで構成することができる。また太陽電池14の受光面を常に太陽(光源)の方向に向ける装置も前記実施形態の自己屈曲薄膜1のみで、小型に且つ閉じた系で構成することができる。これは、例えば定期的に太陽電池14の向きを振り、そのときの最大出力の向きを太陽の方向として、その向きに受光面を向かせる制御をすればよい。また例えばロボットのアーム、船の舵、飛行機の昇降舵などを可動する運動機構を前記自己屈曲薄膜1のみで構成することができる。また、本発明の自己屈曲薄膜1は、通信に用いられる成層圏プラットホームとなる無人飛行機又は無人飛行船の推進・位置制御機構にも好適である。また、人工臓器における人工血管、人工弁、人工筋肉などを本発明の自己屈曲薄膜のみで構成することもできる。さらに、飛び出す絵本、動く玩具、形状可変なアクセサリなどに本発明の自己屈曲薄膜を適用することができる。
第1実施形態に係る自己屈曲薄膜の全体斜視図である。 第1実施形態に係る自己屈曲薄膜の一部を透過した拡大斜視図である。 自己屈曲薄膜の断面図である。 同上の自己屈曲薄膜におけるEL素子周辺領域を特定する模式断面図である。 (a)は、第1の有機EL素子の構成を説明するための図であり、(b)は、第2の有機EL素子の構成を説明するための図である。 (a),(b),(c)は、それぞれ同上の自己屈曲薄膜の動作例を示す模式側面図である。 同じく、(a),(b),(c)は、それぞれ同上の自己屈曲薄膜の動作例を示す模式側面図である。 本発明の実施形態に係る運動装置としてのマイクロマシーンの全体斜視図である。 マイクロマシーンの駆動部の構成を説明するための模式拡大断面図である。
符号の説明
LF1…第1の光源体としての第1の有機EL素子、LF2…第2の光源体としての第2の有機EL素子、1…自己屈曲薄膜、11…光屈曲膜、14…太陽電池、30…運動装置としてのマイクロマシーン。

Claims (8)

  1. 第1の波長の光を出射する膜形状の第1の光源体と、
    前記第1の波長と異なる第2の波長の光を出射する膜形状の第2の光源体と、
    前記第1の波長の光と前記第2の波長の光のそれぞれに対して曲げ方向が異なる光屈曲膜と
    を備えたことを特徴とする自己屈曲薄膜。
  2. 請求項1に記載の自己屈曲薄膜において、
    前記第1の光源体または前記第2の光源体の少なくともいずれか一方に膜形状の太陽電池を備えたことを特徴とする自己屈曲薄膜。
  3. 請求項1または2に記載の自己屈曲薄膜において、
    前記第1の波長または前記第2の波長の少なくともいずれか一方は、366nmであることを特徴とする自己屈曲薄膜。
  4. 請求項1乃至3のいずれか一つに記載の自己屈曲薄膜において、
    前記光屈曲膜は、アゾベンゼン化合物からなることを特徴とする自己屈曲薄膜。
  5. 請求項1乃至4のいずれか一つに記載の自己屈曲薄膜において、
    前記第1の光源体及び前記第2の光源体は、有機EL素子であることを特徴とする自己屈曲薄膜。
  6. 請求項1乃至5のいずれか一つに記載の自己屈曲薄膜において、
    前記光源体と前記光屈曲膜の間に偏光板が配置されていることを特徴とする自己屈曲薄膜。
  7. 請求項1乃至6のいずれか一つに記載の自己屈曲薄膜において、
    前記光源体に電力を供給可能な蓄電手段を備えていることを特徴とする自己屈曲薄膜。
  8. 請求項1乃至7のいずれか一つに記載の自己屈曲薄膜を複数個連続して並んで接続してなることを特徴とする運動装置。
JP2004104308A 2004-03-31 2004-03-31 自己屈曲薄膜及び運動装置 Withdrawn JP2005291026A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004104308A JP2005291026A (ja) 2004-03-31 2004-03-31 自己屈曲薄膜及び運動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104308A JP2005291026A (ja) 2004-03-31 2004-03-31 自己屈曲薄膜及び運動装置

Publications (1)

Publication Number Publication Date
JP2005291026A true JP2005291026A (ja) 2005-10-20

Family

ID=35324253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104308A Withdrawn JP2005291026A (ja) 2004-03-31 2004-03-31 自己屈曲薄膜及び運動装置

Country Status (1)

Country Link
JP (1) JP2005291026A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154096A (ja) * 2005-12-07 2007-06-21 Fujifilm Corp 光駆動型アクチュエータ、光駆動型アクチュエータの製造方法、縮合系ポリマー、およびフイルム
JP2007197609A (ja) * 2006-01-27 2007-08-09 Fujifilm Corp 光駆動型アクチュエータ及びその製造方法
JP2010060708A (ja) * 2008-09-02 2010-03-18 Konica Minolta Opto Inc アクチュエータ、および撮像装置
JP2012099777A (ja) * 2010-11-04 2012-05-24 Silicon Touch Technology Inc 発光装置
KR101366843B1 (ko) * 2012-11-13 2014-03-03 재단법인대구경북과학기술원 고개구율 태양전지 모듈 및 그 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154096A (ja) * 2005-12-07 2007-06-21 Fujifilm Corp 光駆動型アクチュエータ、光駆動型アクチュエータの製造方法、縮合系ポリマー、およびフイルム
JP2007197609A (ja) * 2006-01-27 2007-08-09 Fujifilm Corp 光駆動型アクチュエータ及びその製造方法
JP2010060708A (ja) * 2008-09-02 2010-03-18 Konica Minolta Opto Inc アクチュエータ、および撮像装置
JP2012099777A (ja) * 2010-11-04 2012-05-24 Silicon Touch Technology Inc 発光装置
KR101366843B1 (ko) * 2012-11-13 2014-03-03 재단법인대구경북과학기술원 고개구율 태양전지 모듈 및 그 제조방법

Similar Documents

Publication Publication Date Title
Ng et al. Locomotion of miniature soft robots
CN101563648B (zh) 电致变色设备和包括该电致变色设备的光动力治疗设备
Guo et al. Review of dielectric elastomer actuators and their applications in soft robots
CN100525858C (zh) 有疗效的发光装置
Berlinger et al. A modular dielectric elastomer actuator to drive miniature autonomous underwater vehicles
Duduta et al. Tunable multi-modal locomotion in soft dielectric elastomer robots
US8288776B2 (en) Hybrid electric device using piezoelectric polymer substrate
CN104813500B (zh) 透明oled光提取
US7791251B2 (en) Biomimetic electro-active paper actuators
Zhao et al. Stimuli-responsive polymers for soft robotics
Chang et al. A Versatile Ionomer‐Based Soft Actuator with Multi‐Stimulus Responses, Self‐Sustainable Locomotion, and Photoelectric Conversion
TW200816469A (en) Integrated device
Qi et al. A fast-moving electrostatic crawling insect
JP2005291026A (ja) 自己屈曲薄膜及び運動装置
JP2020053616A (ja) 太陽電池モジュール
Duduta et al. Electrically-latched compliant jumping mechanism based on a dielectric elastomer actuator
Qian et al. A visible and near‐infrared light‐fueled omnidirectional twist‐bend crawling robot
JP2011065829A (ja) 携帯型照明装置
JPWO2013146350A1 (ja) 発光装置および発光装置の製造方法
WO2015004811A1 (ja) 有機el素子及びそれを用いた有機el照明装置
JP2009292893A (ja) 接合方法および接合体
JP5692775B2 (ja) 有機エレクトロルミネッセンス素子及びこれを用いた照明器具
KR102191997B1 (ko) 디스플레이 장치의 열처리 장치 및 이를 이용한 열처리 방법
CN111699152A (zh) 致动器及其制备方法、操作方法、可移动装置
JP2005169549A (ja) 自己屈曲薄膜、運動機構及び運動装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605