JP2005289368A - Control device for automobile and control method - Google Patents

Control device for automobile and control method Download PDF

Info

Publication number
JP2005289368A
JP2005289368A JP2005126317A JP2005126317A JP2005289368A JP 2005289368 A JP2005289368 A JP 2005289368A JP 2005126317 A JP2005126317 A JP 2005126317A JP 2005126317 A JP2005126317 A JP 2005126317A JP 2005289368 A JP2005289368 A JP 2005289368A
Authority
JP
Japan
Prior art keywords
deceleration
target
vehicle
driver
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005126317A
Other languages
Japanese (ja)
Inventor
Toshimichi Minowa
利通 箕輪
Koji Kuroda
浩司 黒田
Satoshi Kuragaki
智 倉垣
Kenichiro Kurata
謙一郎 倉田
Tatsuya Ochi
辰哉 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005126317A priority Critical patent/JP2005289368A/en
Publication of JP2005289368A publication Critical patent/JP2005289368A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device and a method making drivability and safety compatible by realizing target acceleration/deceleration required by a driver under safe traveling environment and changing target acceleration/deceleration so as to make safe traveling preferential when encountered to dangerous traveling environment. <P>SOLUTION: Driver target deceleration Gt is operated in response to required deceleration inputted from an acceleration/deceleration detection means of a driver and vehicle speed V is inputted from a vehicle speed detection means. Target speed Vt2 is set based on a distance D2 to a front corner of the vehicle, radius R of curvature of the corner, road surface friction coefficient μ and vehicle gravity center position information k20 and setting target deceleration Fd2/W is determined based on the vehicle speed V and the target speed Vt2. When the driver target deceleration Gt is larger than the setting target deceleration Fd2/W, the automobile is controlled so as to become the setting target deceleration Fd2/W. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車の制御方法に係り、特に走行環境等の情報に応じてエンジンパワートレインを効率良く制御し運転者が要求する加減速度を実現する装置及び方法に関する。   The present invention relates to an automobile control method, and more particularly to an apparatus and method for efficiently controlling an engine power train according to information such as a driving environment and realizing acceleration / deceleration required by a driver.

従来のこの種の制御方法は、運転者が要求する目標加減速度と実車両の加減速度が一致するようにエンジンのトルク調整手段,変速機の変速比調整手段及び制動力調整手段の少なくとも1つを制御する方法が知られている(例えば特許文献1)。   In this type of conventional control method, at least one of engine torque adjustment means, transmission gear ratio adjustment means, and braking force adjustment means is set so that the target acceleration / deceleration requested by the driver matches the acceleration / deceleration of the actual vehicle. There is known a method for controlling the above (for example, Patent Document 1).

特開平4−345541号公報JP-A-4-345541

上記従来技術のように、運転者が要求する目標加減速度のみを実現するシステムでは、例えば、運転者が前方の走行状況認識を誤った場合あるいは走行状況把握が遅れた場合等、衝突あるいは暴走といった交通事故発生が抑制できなかった。また、道路勾配及びコーナの事前把握が困難であるため、変速比制御による勾配及びコーナ進入前での余裕駆動力の確保が困難であった。   In the system that realizes only the target acceleration / deceleration requested by the driver as in the above-described conventional technology, for example, when the driver misrecognizes the driving situation ahead or when the driving situation is delayed, such as collision or runaway The occurrence of traffic accidents could not be suppressed. In addition, since it is difficult to grasp the road gradient and the corner in advance, it is difficult to ensure the gradient by the gear ratio control and the marginal driving force before entering the corner.

本発明の目的は、安全な走行環境では運転者が要求する目標加減速度を実現し、もし、危険な走行環境に遭遇した場合は、安全走行を優先するように目標加減速度を変更して運転性及び安全性を両立する制御装置及び方法を提供することにある。   The object of the present invention is to achieve the target acceleration / deceleration required by the driver in a safe driving environment, and if a dangerous driving environment is encountered, change the target acceleration / deceleration to give priority to safe driving. It is an object of the present invention to provide a control device and method that achieve both safety and safety.

運転者の加減速度検出手段から入力した要求減速度に応じて運転者目標減速度を演算し、車速検出手段から車速を入力し、車両の前方コーナまでの距離、前記コーナの曲率半径、路面摩擦係数、車両重心位置情報に基づき目標速度を設定し、車速と目標速度に基づき設定目標減速度を求め、設定目標減速度よりも運転者目標減速度が大きい場合は、設定目標減速度になるように自動車を制御する。   The driver's target deceleration is calculated according to the requested deceleration input from the driver's acceleration / deceleration detection means, the vehicle speed is input from the vehicle speed detection means, the distance to the front corner of the vehicle, the radius of curvature of the corner, the road surface friction The target speed is set based on the coefficient and the vehicle center of gravity position information, and the set target deceleration is obtained based on the vehicle speed and the target speed. If the driver target deceleration is greater than the set target deceleration, the target target deceleration is set. To control the car.

本発明によれば、安全環境走行時の運転者要求加減速度が実現でき、更に、危険環境走行時の安全優先制御が実行されるため、燃料経済性,運転性及び安全性の並立が図れる。   According to the present invention, the driver requested acceleration / deceleration at the time of traveling in a safe environment can be realized, and furthermore, the safety priority control at the time of traveling in a hazardous environment is executed, so that fuel economy, drivability and safety can be paralleled.

以下、本発明の実施例を図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明一実施例のブロック図である。加減速度検出手段1における加速度検出はプラス側アクセルペダル踏み込み量、減速度検出はマイナス側アクセルペダル踏み込み量及びブレーキペダル踏力により実行される。車速検出手段2は、変速機出力軸あるいはホイール回転軸に取り付けられた回転センサの信号を用いて車両の車速に換算する。目標加減速度演算手段3は、前記加減速度検出手段1及び車速検出手段2の検出結果に基づいて、運転者が要求する車両の加減速度を設定する。道路環境検出手段4は、前方の道路状況、例えば道路の曲率半径,道路勾配,前方車両及び前方障害物,路面摩擦係数等をカメラ,レーダ,ナビゲーション地図情報及び道路に設置されたインフラ設備等により検出し、更に、走行環境に応じたドライバ操作の信号、例えば雨滴センサ信号,ヘッドライト信号及びシートベルト信号等を検出する。危険走行判別手段5は、前記道路環境検出手段4及び車速検出手段2の検出結果に基づいて、自車の走行が数秒後(車速に応じて変化)危険な走行環境に陥るか否かを判断する。目標値変更手段6は、前記危険走行判別手段5で判別された結果、危険と判断された場合に目標加減速度を変更する。目標制駆動トルク演算手段7は、該道路環境検出手段4,目標加減速度演算手段3,車速検出手段2及び目標値変更手段6で得られた結果に基づいて、ホイールに伝達される目標の制駆動トルクを演算する。これに基づいて、以下の操作手段の制御操作量が演算される。制御操作量演算手段8は、前記車速,車速に応じた余裕駆動トルク,道路勾配,目標加減速度及び目標制駆動トルクを用いて、燃費,運転性(ドライバ意図)及び安全性を考慮して制御操作量が演算される。操作手段9は、エンジンのトルク操作手段,前記変速機の変速比操作手段及び制動力操作手段から成り、前記演算及び検出された結果に応じて動作する。   FIG. 1 is a block diagram of an embodiment of the present invention. The acceleration detection in the acceleration / deceleration detecting means 1 is executed by the depression amount of the plus accelerator pedal, and the deceleration detection is executed by the depression amount of the minus accelerator pedal and the depression force of the brake pedal. The vehicle speed detection means 2 converts the vehicle speed of the vehicle using a signal from a rotation sensor attached to the transmission output shaft or the wheel rotation shaft. The target acceleration / deceleration calculation means 3 sets the vehicle acceleration / deceleration requested by the driver based on the detection results of the acceleration / deceleration detection means 1 and the vehicle speed detection means 2. The road environment detection means 4 uses a camera, radar, navigation map information, infrastructure equipment installed on the road, etc., to detect the road conditions ahead, for example, the radius of curvature of the road, road gradient, forward vehicles and obstacles, road surface friction coefficient, etc. Further, a driver operation signal corresponding to the driving environment, for example, a raindrop sensor signal, a headlight signal, a seat belt signal, and the like is detected. Based on the detection results of the road environment detecting means 4 and the vehicle speed detecting means 2, the dangerous driving determining means 5 determines whether or not the own vehicle is in a dangerous driving environment after several seconds (changes depending on the vehicle speed). To do. The target value changing means 6 changes the target acceleration / deceleration when it is determined as dangerous as a result of the determination by the dangerous traveling determination means 5. The target braking / driving torque calculating means 7 controls the target transmitted to the wheel based on the results obtained by the road environment detecting means 4, the target acceleration / deceleration calculating means 3, the vehicle speed detecting means 2 and the target value changing means 6. Calculate drive torque. Based on this, the control operation amount of the following operation means is calculated. The control operation amount calculation means 8 performs control in consideration of fuel consumption, drivability (driver intention), and safety using the vehicle speed, a margin driving torque corresponding to the vehicle speed, a road gradient, a target acceleration / deceleration, and a target braking / driving torque. The operation amount is calculated. The operating means 9 comprises an engine torque operating means, a transmission gear ratio operating means and a braking force operating means, and operates in accordance with the calculation and the detected result.

図2〜図7は一実施例の具体的制御フローチャートである。図2は上記危険走行判別手段5の制御フローである。また、このフローにより種々の走行環境も同時に演算される。まず、処理10でFM中心周波数f0,周波数偏移幅ΔF,三角波繰り返し周波数fm,増加ビート周波数fb1,減少ビート周波数fb2,カメラ画像,ヘッドライトスイッチLs,雨滴センサ信号Ws,シートベルトスイッチBs,車速V,前方路面摩擦係数μを読み込む。ここで、f0,ΔF,fmは通常FM−CW方式レーダ{CW(Continuous
Wave) レーダの送信信号にFM(Frequency Modulation)変調を加えたもの}の機種別で一義的に決まるので、それぞれメモリに予め機種別のデータを記憶して置けば良い。しかし、この方式では、レーダ変更の際に、データ及び制御ソフトを変更する必要があり、開発工数が増加してしまう。そこで、レーダ自体をインテリジェント化し、これらの信号
(f0,ΔF,fm)を出力させ、上記のように読み込む構成にする方が良い。処理11では、FM−CW方式レーダにより前方物体と自車との距離D1を処理11に記述した式を用いて求める。また、電波伝搬速度Cは、3×108m/sec であり、予めメモリに記憶されている。処理12では、前方物体と自車との相対速度Vrを処理12に記載した式を用いて演算される。処理11及び12の演算式は一般的に知られている技術である。処理13から処理19では、天候及び昼夜に応じたカメラ画像の処理方法を示す。つまり、天候及び昼夜に応じて取り込まれた道路画像の輝度が異なる。よって、輝度に応じた道路検出を実行し、より正確な道路形状を把握する必要がある。処理13では、ヘッドライトスイッチLsがONかどうかを判断する。ON、つまりLs=1の場合は、夜と判断し処理14へ進む。処理14では、雨滴センサ信号Wsが定数k1以上かどうかを判断する。このk1は、カメラにより検出された路面の輝度が雨滴に応じて異なる状態を示す定数であり、予め実走行マッチングにより求めメモリに記憶しておく。よって、Wsがk1以上の場合は、処理15に進み、雨天,夜間走行と判断し雨天・夜間の輝度検出処理を施し路面画像処理を実行する。処理14でNOの場合は、晴天,夜間走行と判断し晴天・夜間の輝度検出処理を施し路面画像処理を実行する。処理13でNOの場合は、処理17に進み、処理14と同様の処理を実行する。処理17でYESの場合は、雨天,昼間走行と判断し雨天・昼間の輝度検出処理を施し路面画像処理を実行する。処理17でNOの場合は、晴天,昼間走行と判断し晴天・昼間の輝度検出処理を施し路面画像処理を実行する。ここで適用した輝度検出による道路状態検出は、一般的に知られている技術である。処理20では、図9及び図10のように処理15,16,18,19で処理された前方道路の座標系を検出する。図9は実際の道路曲率座標系、図10は図9を画像で示した道路曲率座標系である。この座標系を用いて、処理22及び23を実行する(後述)。処理22を実行する前に、まず、処理21で前方の道路勾配Sを検出する。このSは、図11及び図12に示すように検出した道路左右端の波線形状の認識により検出される。例えば、道路形状を表す複数個のパターンがニューロコンピュータ等に記憶されており、検出された道路形状と比較して前方道路環境が判断される。図11は下り坂道路形状、図12は上り坂道路形状を検出した例である。また、図13は前方の道路勾配検出手法であり、カメラ画像の平坦路形状を基準として道路左右線の角度γを検出し道路勾配Sに換算する。ここで、勾配以外にコーナを認識した場合は処理22,23で処理される。処理22では、図10に示す座標系、式(1)及び式(2)を用いてコーナまでの距離D2を求める。
2 to 7 are specific control flowcharts of the embodiment. FIG. 2 is a control flow of the dangerous traveling determination means 5. In addition, various traveling environments are calculated simultaneously by this flow. First, in process 10, FM center frequency f0, frequency deviation width ΔF, triangular wave repetition frequency fm, increasing beat frequency fb1, decreasing beat frequency fb2, camera image, headlight switch Ls, raindrop sensor signal Ws, seat belt switch Bs, vehicle speed. Read V, front road friction coefficient μ. Here, f0, ΔF, and fm are ordinary FM-CW radars {CW (Continuous
(Wave) Radar transmission signal plus FM (Frequency Modulation) modulation} is uniquely determined depending on the type of equipment, so that the data of each type may be stored in the memory in advance. However, in this method, it is necessary to change data and control software when changing the radar, and the development man-hours increase. Therefore, it is better to make the radar itself intelligent, output these signals (f0, ΔF, fm), and read them as described above. In the process 11, the distance D1 between the object ahead and the own vehicle is obtained by the FM-CW radar using the formula described in the process 11. The radio wave propagation speed C is 3 × 10 8 m / sec, and is stored in advance in the memory. In process 12, the relative speed Vr between the front object and the host vehicle is calculated using the formula described in process 12. The arithmetic expressions of the processes 11 and 12 are generally known techniques. Processing 13 to processing 19 show a camera image processing method according to the weather and day and night. That is, the brightness of the captured road image varies depending on the weather and day and night. Therefore, it is necessary to perform road detection according to the luminance and grasp a more accurate road shape. In process 13, it is determined whether or not the headlight switch Ls is ON. If it is ON, that is, if Ls = 1, it is determined that it is night and the process proceeds to processing 14. In process 14, it is determined whether or not the raindrop sensor signal Ws is equal to or greater than a constant k1. This k1 is a constant indicating a state in which the brightness of the road surface detected by the camera varies depending on the raindrop, and is obtained in advance by actual traveling matching and stored in the memory. Therefore, if Ws is greater than or equal to k1, the process proceeds to process 15 where it is determined that the vehicle is raining or traveling at night, and a rainy / nighttime luminance detection process is performed to execute road surface image processing. In the case of NO in the process 14, it is determined that the vehicle is traveling in clear sky or at night, the brightness detection process in clear sky / night is performed, and road surface image processing is executed. If NO in process 13, the process proceeds to process 17 and the same process as process 14 is executed. In the case of YES in the process 17, it is determined that the vehicle is running in the rain or daytime, the brightness detection process is performed in the rainy daytime, and the road surface image process is executed. In the case of NO in the process 17, it is determined that the vehicle travels on a sunny day and daytime, and a brightness detection process is performed on a sunny day / daytime to execute road surface image processing. The road state detection based on the luminance detection applied here is a generally known technique. In the process 20, the coordinate system of the front road processed by the processes 15, 16, 18, and 19 as shown in FIGS. 9 and 10 is detected. 9 is an actual road curvature coordinate system, and FIG. 10 is a road curvature coordinate system showing FIG. 9 as an image. Processing 22 and 23 are executed using this coordinate system (described later). Before executing the process 22, first, the road gradient S ahead is detected in the process 21. This S is detected by recognizing the wavy line shape at the left and right ends of the road detected as shown in FIGS. For example, a plurality of patterns representing the road shape are stored in a neurocomputer or the like, and the forward road environment is determined by comparison with the detected road shape. FIG. 11 shows an example of detecting a downhill road shape, and FIG. 12 shows an example of detecting an uphill road shape. FIG. 13 shows a forward road gradient detection method, in which the angle γ of the road left-right line is detected on the basis of the flat road shape of the camera image and converted into the road gradient S. Here, when a corner other than the gradient is recognized, it is processed in processes 22 and 23. In process 22, distance D2 to a corner is calculated | required using the coordinate system shown in FIG. 10, Formula (1), and Formula (2).

y(n+1)/x(n+1)<{(y(1)/x(1)+・・・+y(k)/x(k))/k}
…(1)
D2=y(n) …(2)
式(1)の右辺では、座標系で表された直線道路の横軸x(n)に対する縦軸y(n)の比をn=kまで加算し、この加算された値を総数kで除算することにより平均化した直線の変化状態を得る。そこで、次の比y(n+1)/x(n+1)が右辺より小さくなったかどうかを判断し、小さくなった場合は、n+1の1つ手前、つまりy(n)をD2に代入しコーナ入り口までの距離を求める。処理23では、図10に示す座標系、式(3)及び式(4)を用いてコーナの曲率半径Rを求める。
y (n + 1) / x (n + 1) <{(y (1) / x (1) +... + y (k) / x (k)) / k}
... (1)
D2 = y (n) (2)
On the right side of equation (1), the ratio of the vertical axis y (n) to the horizontal axis x (n) of the straight road expressed in the coordinate system is added up to n = k, and this added value is divided by the total number k. By doing so, the averaged straight line change state is obtained. Therefore, it is determined whether or not the next ratio y (n + 1) / x (n + 1) is smaller than the right side. If it is smaller, the value immediately before n + 1, that is, y (n) is substituted for D2 and reaches the corner entrance. Find the distance. In the process 23, the curvature radius R of a corner is calculated | required using the coordinate system shown in FIG. 10, Formula (3), and Formula (4).

m(n)=l(n) …(3)
R=l(n) …(4)
式(3)では、コーナ道路の横軸l(n)が縦軸m(n)が一致したかどうかを判断する。一致した値が曲率半径であり、式(4)のようにRにl(n)あるいはm(n)を代入し求める。この時の横軸と縦軸の距離換算は、カメラ画像と実際の距離との補正値を予めメモリに記憶しておき対処する。以上のようなコーナの認識は、現在の走行状態、つまり上り,下り及び平坦路の全てにおいてカメラも車体と同様に変化するため道路勾配の変化によらず、同じ手法で実施することができる。次に、処理24では、前方に走行を妨げるような車両あるいは物体があるかどうかを判断する。k2は、FM−CW方式レーダよる前方物体との距離計測可能範囲内の定数である。つまり、処理24でYESの場合は、今後の走行が前方物体からの制限を受けたものとなり、NOの場合は、前方のコーナに制限を受けた走行になることを判断する。処理24でYESの場合は処理25に進み、前方物体との相対速度Vrとインフラ情報等により得られた路面摩擦係数μの関数f2と自車速度Vを用いて目標の自車速度Vt1を求める。そして、処理26で、物体衝突防止目標減速度
Fd1を処理26に記載された式を用いて演算する。この式は、式(5),(6),(7)及び(8)を用いて算出される。
m (n) = l (n) (3)
R = l (n) (4)
In Expression (3), it is determined whether the horizontal axis l (n) of the corner road matches the vertical axis m (n). The coincident value is the radius of curvature, and is obtained by substituting l (n) or m (n) for R as in equation (4). The distance conversion between the horizontal axis and the vertical axis at this time is dealt with by storing in advance a correction value between the camera image and the actual distance. The corner recognition as described above can be performed in the same manner regardless of the change in road gradient because the camera changes in the same manner as the vehicle body in the current running state, that is, in all of up, down and flat roads. Next, in process 24, it is determined whether or not there is a vehicle or an object that hinders traveling ahead. k2 is a constant within a distance measurable range with a front object by FM-CW radar. In other words, if the result of processing 24 is YES, it is determined that future travel is limited by the front object, and if NO, it is determined that the travel is limited by the front corner. If YES in process 24, the process proceeds to process 25, and the target vehicle speed Vt1 is obtained using the function f2 of the road surface friction coefficient μ obtained from the relative speed Vr with the front object and the infrastructure information and the vehicle speed V. . Then, in process 26, the object collision prevention target deceleration Fd1 is calculated using the formula described in process 26. This equation is calculated using equations (5), (6), (7) and (8).

T1=W・V2/2+Ir・(V/r)2/2 …(5)
T2=W・Vt12/2+Ir・(Vt1/r)2/2 …(6)
U(1−2)=T1−T2=(1/2)・{W+(Ir/r2)}・(V2−Vt12)
…(7)
Fd1=U(1−2)/D1 …(8)
まず、この処理での考えは、安全走行確保のため現在の自車速度Vを将来の目標自車速度Vt1に変化するということである。初速Vにおいて、自車両の持つ運動エネルギー
T1は式(5)、また、目標自車速度Vt1における自車両の持つ運動エネルギーT2は式(6)でそれぞれ表される。ここで、W:車両重量,Ir:車輪の慣性モーメント,r:車輪半径である。初速から目標速度にいたるまでに損失運動エネルギー(T1−T2)は、外部からの仕事U(1−2)に等しい(式(7))。よって、現地点での現在車速Vから目標速度Vt1を必要とする地点までの距離をD1とすると、この距離D1の間を走行中に、式(8)で与えられる減速力Fd1を加え続ける必要がある。このようにして、
Fd1が求まる。処理24でNOの場合は処理27に進み、処理23で求められたRに対する目標速度Vt2を検索する。このVt2は、Rが大きくなるほど大きくなる。つまり、Rが大きいほど目標とする速度は大きくても良いということである。また、安全性確保のため、上記インフラ情報等で得られたμが小さいほどVt2を小さくする必要がある。処理28では、処理26と同様の処理を実行し、コーナ暴走防止の目標減速力Fd2を演算する。処理26,28の後はそれぞれ図3の処理29,34に進む。処理29では、シートベルトスイッチBsが入ったかどうかを判断する。ここでは、現在の自車速度の持続により危険な状況に遭遇するのを回避するための車両減速状態をシートベルト着用の有無により変化させることを目的としている。処理29でYESの場合、つまりシートベルトを着用している場合は処理30に進み、目標の減速度Fd1/W(力/重量)がk3以上かどうかを判断する。このk3は、シートベルト着用時においてドライバが違和感なく、安全な減速度定数である。処理30でYESの場合は、処理31に進み、このままの速度ではドライバが不快に思い、且つ危険な減速になりますよという警告のための危険走行フラグ(前方物体あり)FlgCarに1を代入する。このフラグ信号を用いて、後述図4〜図7の制御を実行する。また、処理30でNOの場合は処理33に進み、FlgCarに0を代入する。処理29でNOの場合は処理32に進み、シートベルト着用なしの場合でも違和感なく、安全な減速度が得られるかどうかを判断する。処理32でYESの場合は処理31に進み、NOの場合は処理33に進む。k4は、シートベルト非着用時においてドライバが違和感なく、安全な減速度定数である。また、処理34から38でも上記と同様の処理がなされ、コーナ進入前から進入時にドライバが不快に思い、且つ危険な減速になると判断された場合は、FlgCorに1が代入される。また、処理27の道路曲率半径Rに対する目標速度Vt2の設定は、式(9)により求めることができる。
T1 = W · V2 / 2 + Ir · (V / r) 2/2 (5)
T2 = W · Vt12 / 2 + Ir · (Vt1 / r) 2/2 (6)
U (1-2) = T1-T2 = (1/2). {W + (Ir / r2)}. (V2-Vt12)
... (7)
Fd1 = U (1-2) / D1 (8)
First, the idea in this process is that the current host vehicle speed V is changed to the future target host vehicle speed Vt1 in order to ensure safe driving. At the initial speed V, the kinetic energy T1 possessed by the host vehicle is expressed by equation (5), and the kinetic energy T2 possessed by the host vehicle at the target host vehicle speed Vt1 is expressed by equation (6). Here, W: vehicle weight, Ir: moment of inertia of wheel, r: wheel radius. From the initial speed to the target speed, the lost kinetic energy (T1-T2) is equal to the work U (1-2) from the outside (formula (7)). Therefore, when the distance from the current vehicle speed V at the local point to the point requiring the target speed Vt1 is D1, it is necessary to continue to apply the deceleration force Fd1 given by the equation (8) while traveling between the distance D1. There is. In this way
Fd1 is obtained. In the case of NO in process 24, the process proceeds to process 27, and the target speed Vt2 for R obtained in process 23 is searched. This Vt2 increases as R increases. That is, the larger the R, the higher the target speed. In order to ensure safety, it is necessary to reduce Vt2 as μ obtained from the infrastructure information or the like is smaller. In the process 28, a process similar to the process 26 is executed to calculate a target deceleration force Fd2 for preventing corner runaway. After processes 26 and 28, the process proceeds to processes 29 and 34 in FIG. In process 29, it is determined whether or not the seat belt switch Bs is turned on. Here, an object is to change the vehicle deceleration state for avoiding encountering a dangerous situation due to the current vehicle speed being maintained depending on whether or not the seat belt is worn. If YES in process 29, that is, if the user is wearing a seat belt, the process proceeds to process 30 to determine whether the target deceleration Fd1 / W (force / weight) is equal to or greater than k3. This k3 is a safe deceleration constant that is comfortable for the driver when wearing the seat belt. In the case of YES in process 30, the process proceeds to process 31, and 1 is assigned to FlgCar for a dangerous driving flag (with front object) for warning that the driver feels uncomfortable at this speed and that the vehicle will be in a dangerous deceleration. . Control of FIGS. 4 to 7 described later is executed using this flag signal. If NO in process 30, the process proceeds to process 33, and 0 is substituted into FlgCar. If NO in step 29, the process proceeds to step 32, and it is determined whether a safe deceleration can be obtained without feeling uncomfortable even when the seat belt is not worn. If YES in process 32, the process proceeds to process 31, and if NO, the process proceeds to process 33. k4 is a safe deceleration constant that is comfortable for the driver when the seat belt is not worn. Further, in the processes 34 to 38, the same process as described above is performed, and if it is determined that the driver feels uncomfortable and enters a dangerous deceleration before entering the corner, 1 is assigned to FlgCor. Further, the setting of the target speed Vt2 with respect to the road curvature radius R in the process 27 can be obtained by Expression (9).

Vt2=k20・√μ・R・g …(9)
g :重力加速度
k20:車両重心補正定数
μに関しては、例えば、0.8が乾燥アスファルト、0.5がウェットアスファルト、
0.3 が雪路となり、それぞれμ毎の目標速度、つまりコーナ走行限界速度をメモリに記憶しておく必要がある。また、随時式(9)を用いて演算することも可能である。また、これらの値は、重心位置が異なる車両の種類によっても異なるため、車種別定数分を考慮する必要がある。例えば、重心位置が高く不安定なワンボックスカー等は、k20が小さくなる。
Vt2 = k20 · √μ · R · g (9)
g: Gravity acceleration k20: For vehicle center of gravity correction constant μ, for example, 0.8 is dry asphalt, 0.5 is wet asphalt,
0.3 is a snowy road, and it is necessary to store the target speed for each μ, that is, the corner travel limit speed, in the memory. It is also possible to calculate using the equation (9) as needed. In addition, these values vary depending on the types of vehicles having different positions of the center of gravity, and therefore, it is necessary to consider the vehicle type constant. For example, an unstable one-box car having a high center of gravity position has a small k20.

図4〜図7は上記走行環境に基づいたパワートレイン制御の制御フローチャートである。処理40では、アクセルペダル踏み込み量α,ブレーキ踏力β,車速V,上記で求められた前方道路勾配S,前方物体との距離D1,危険走行フラグFlgCar,FlgCor,前方路面摩擦係数μ,目標減速力Fd1,Fd2及びエンジン回転数Neを読み込む。処理41では、図8のように設定されたα,βから成る目標加減速度Gtを検索する。図8は目標加減速度テーブルの概略である。実線が加速時、つまり前回のアクセルペダル踏み込み量(一周期前の読み込み値)に対し今回の読み込み値が大きくなった場合、破線が減速時、つまり前回のアクセルペダル踏み込み量(一周期前の読み込み値)に対し今回の読み込み値が小さくなった場合ある。また、これらの値は車速の大小に応じて図8のように設定される。更に、車速一定制御(オートクルーズコントロール)にしたい場合は、一点鎖線のようにアクセルペダル踏み込み量の小さい領域で目標加速度を0にする。これにより、加速後の現在車速維持が可能になる。以上の場合は、加速時と減速時で2枚のテーブルを有することになる。また、メモリ容量削減の点から1枚のテーブルで実現することも可能である。但し、ドライバが一定加減速度を要求しているにもかかわらず、アクセルペダル踏み込み量が車体変動等で微小に変動しトルク変動が生じる場合がある。それ故、新たなヒステリシス手段の付加が必要となる。次に、処理42では、前方に車両等の物体が存在し、今後ドライバが不快感を生じる走行環境に成り得るかどうか判断する危険走行フラグFlgCarが1になったかどうかを判断する。NOの場合は、処理43に進み前方がコーナで、今後ドライバが不快感を生じる走行環境に成り得るかどうか判断する危険走行フラグFlgCorが1になったかどうかを判断する。処理43でNOの場合は処理44に進み、処理41で求めたドライバが要求する目標加減速度Gtを用いて、目標制駆動トルクTotを処理44に記載した式(10)を用いて演算する。   4 to 7 are control flowcharts of the powertrain control based on the traveling environment. In the process 40, the accelerator pedal depression amount α, the brake depression force β, the vehicle speed V, the forward road gradient S obtained as described above, the distance D1 with the front object, the dangerous traveling flags FlgCar, FlgCor, the front road surface friction coefficient μ, the target deceleration force. Fd1, Fd2 and engine speed Ne are read. In the process 41, a target acceleration / deceleration Gt composed of α and β set as shown in FIG. 8 is searched. FIG. 8 is an outline of the target acceleration / deceleration table. When the solid line is accelerating, that is, when the current reading value is larger than the previous accelerator pedal depression amount (reading value before one cycle), the broken line is when decelerating, that is, the previous accelerator pedal depression amount (reading one cycle before) The current read value is smaller than (value). Also, these values are set as shown in FIG. 8 according to the vehicle speed. Furthermore, when it is desired to perform a constant vehicle speed control (auto cruise control), the target acceleration is set to 0 in a region where the amount of depression of the accelerator pedal is small, as indicated by a one-dot chain line. This makes it possible to maintain the current vehicle speed after acceleration. In the above case, two tables are provided for acceleration and deceleration. It is also possible to realize with one table from the viewpoint of reducing the memory capacity. However, even though the driver requests a constant acceleration / deceleration, the accelerator pedal depression amount may fluctuate slightly due to vehicle body fluctuations and the like, resulting in torque fluctuations. Therefore, it is necessary to add a new hysteresis means. Next, in the process 42, it is determined whether or not the dangerous traveling flag FlgCar for determining whether or not there is an object such as a vehicle ahead and the driver may experience discomfort in the future becomes 1. In the case of NO, the process proceeds to processing 43, and it is determined whether or not the danger traveling flag FlgCor that determines whether or not the front is a corner and the driving environment in which the driver may feel uncomfortable in the future has become 1. If NO in process 43, the process proceeds to process 44, and the target braking / driving torque Tot is calculated using equation (10) described in process 44 using the target acceleration / deceleration Gt requested by the driver obtained in process 41.

Tot=r・(W+Wr)・Gt/g+μr・W+μ1・A・V2+W・sinS
…(10)
r:車輪半径、W:車両重量、Wr:回転相当重量、g:重力加速度
μr:転がり抵抗係数、μ1:空気抵抗係数、A:前面投影面積
右辺第一項が車両が加速に要する加速トルク、第二項が転がり抵抗、第三項が空気抵抗、第四項が勾配抵抗である。ここで、Gt,V及びSが前述のフローで求まり、それ以外の変数はその車両毎に決まる定数を予め設定しておく。処理43でYESの場合は、前方にコーナがあり減速が必要と判断され処理45に進む。処理45では、処理41でドライバが要求した目標加減速度Gtが現在の走行環境(安全性の面)から判断された目標減速度Fd2/W以下になっているかどうかを判断する。YESの場合は、ドライバが自分で今後危険走行になるという正しい判断していると判断し処理44に進む。NOの場合は、正しい判断ができていないため処理46で目標加減速度を走行環境(安全性の面)から判断された目標減速度Fd2/Wに書換え処理44に進む。処理42でYESと判断された場合は、処理47に進み、現在の車速Vが例えば15km/h以下かどうかを判断する。これは、渋滞時あるいは車庫入れ等の低車速の場合は、目標加減速度制御は実行せず前方物体との距離制御にすべきだからである。よって、処理47でNOの場合は処理48に進み、目標加減速度制御を実行する。YESの場合は、処理49に進み、目標距離制御を実行する。処理48及び50では、処理45,46と同様の処理を行い、処理44に進む。処理49では、前方物体との距離D1が限界値k8以下かどうかを判断する。このk8は、例えば1m程度であり前方物体と衝突するぎりぎりの距離である。処理49でYES、つまりぶつかる寸前の場合は処理51に進み、目標車速Vtを0にする。そして、処理52で目標ブレーキ力Bpに低車速で停止可能な定数k10を入力する。処理49でNOの場合は処理53に進み、αが0より大きいかどうかを判断する。
Tot = r · (W + Wr) · Gt / g + μr · W + μ1 · A · V2 + W · sinS
(10)
r: wheel radius, W: vehicle weight, Wr: rotation equivalent weight, g: gravity acceleration μr: rolling resistance coefficient, μ1: air resistance coefficient, A: front projection area The first term on the right side is the acceleration torque required for the vehicle to accelerate, The second term is rolling resistance, the third term is air resistance, and the fourth term is gradient resistance. Here, Gt, V, and S are obtained by the above-described flow, and constants determined for each vehicle are set in advance for other variables. If YES in process 43, it is determined that there is a corner ahead and deceleration is required, and the process proceeds to process 45. In process 45, it is determined whether or not the target acceleration / deceleration Gt requested by the driver in process 41 is equal to or less than the target deceleration Fd2 / W determined from the current driving environment (in terms of safety). In the case of YES, it is determined that the driver has made a correct determination that he / she will be in danger driving in the future, and the process proceeds to processing 44. In the case of NO, since the correct determination has not been made, the process proceeds to the rewrite process 44 where the target acceleration / deceleration is set to the target deceleration Fd2 / W determined from the driving environment (safety aspect) in process 46. If YES is determined in process 42, the process proceeds to process 47 to determine whether the current vehicle speed V is, for example, 15 km / h or less. This is because the target acceleration / deceleration control should not be executed in the case of a low vehicle speed such as in a traffic jam or in a garage, and the distance control with the front object should be performed. Therefore, if NO in process 47, the process proceeds to process 48, and target acceleration / deceleration control is executed. In the case of YES, it progresses to the process 49 and performs target distance control. In processing 48 and 50, processing similar to processing 45 and 46 is performed, and the processing proceeds to processing 44. In process 49, it is determined whether or not the distance D1 to the front object is equal to or less than the limit value k8. This k8 is about 1 m, for example, and is the last distance that collides with a front object. If YES in process 49, that is, if it is just before the collision, the process proceeds to process 51, and the target vehicle speed Vt is set to zero. In step 52, a constant k10 that can be stopped at a low vehicle speed is input to the target brake force Bp. If NO in process 49, the process proceeds to process 53 to determine whether α is greater than 0.

YESの場合は、処理54に進み、目標加減速度Gtに一定値k9を入力する。この
k9は、前方に物体が存在する低車速で安全第一となる目標加速度値である。これにより、例えば、ドライバが誤ってアクセルペダルを踏み込んでも一定加速度で走行するため、安全走行が確保できる。また、ここでは一定加速度を設定しているが、この値k9を最大値としてこれ以上の場合は目標加減速度Gtに合わせても良い。そして、処理55に進み、処理44と同様に目標制駆動トルクTotを演算する。そして、処理56で現在の変速比(15km/h以下のため1速),トルクコンバータ回転比eから求まるトルク比t(e)及びTotを用いた処理54記載の式により目標エンジントルクTetを演算する。処理57では、後の処理(目標スロットル開度,目標ブレーキ力を算出)で用いる目標エンジン回転数Netを検出したエンジン回転数Neを入力し求める。処理52及び57の後は、図7の処理58に進み、横軸目標エンジン回転数Netに対する目標エンジントルク
Tetのテーブルを検索し、目標スロットル開度θ,目標変速比i,目標ブレーキ力Bpを求める。処理52からの場合は、白丸の目標ブレーキ力Bpを検索し、目標スロットル開度θ=0,目標変速比i=1速を求める。そして、処理59に進み、i,θ及びBpを出力する。処理57からの場合は、黒丸の目標スロットル開度θを検索し、目標ブレーキ力Bp=0,目標変速比i=1速を求める。そして、処理59に進む。処理44の後は処理60に進み、図2で求めた前方の道路勾配Sがk5より大きいかどうかを判断する。このk5は、上り勾配時の定数であり、走行負荷がある程度大きい場合に高車速側変速を実行してもドライバが違和感を生じない燃費低減用変速点制御が可能になる。
In the case of YES, it progresses to the process 54, and the fixed value k9 is input into the target acceleration / deceleration Gt. This k9 is a target acceleration value that is safety first at a low vehicle speed where an object is present ahead. Thus, for example, even if the driver accidentally depresses the accelerator pedal, the vehicle travels at a constant acceleration, so that safe traveling can be ensured. Although a constant acceleration is set here, this value k9 may be set as the maximum value, and in the case where the value is more than this, it may be adjusted to the target acceleration / deceleration Gt. Then, the process proceeds to process 55, and the target braking / driving torque Tot is calculated in the same manner as in process 44. Then, in process 56, the target engine torque Tet is calculated from the current gear ratio (first speed because it is 15 km / h or less), the torque ratio t (e) obtained from the torque converter rotation ratio e, and the formula in process 54 using Tot. To do. In the process 57, the engine speed Ne obtained by detecting the target engine speed Net used in the subsequent processes (calculating the target throttle opening degree and the target brake force) is input and obtained. After the processes 52 and 57, the process proceeds to process 58 in FIG. 7, and a table of the target engine torque Tet with respect to the horizontal axis target engine speed Net is retrieved, and the target throttle opening θ, target gear ratio i, and target brake force Bp are obtained. Ask. In the case of the processing 52, the target braking force Bp with a white circle is searched to obtain the target throttle opening θ = 0 and the target gear ratio i = 1. Then, the process proceeds to process 59, and i, θ, and Bp are output. In the case of the processing 57, the target throttle opening θ of the black circle is searched, and the target brake force Bp = 0 and the target gear ratio i = 1 speed are obtained. Then, the process proceeds to process 59. After the process 44, the process proceeds to the process 60, and it is determined whether or not the forward road gradient S obtained in FIG. 2 is larger than k5. This k5 is a constant at the time of ascending slope, and it is possible to perform shift point control for reducing fuel consumption that does not cause the driver to feel uncomfortable even if the high vehicle speed side shift is executed when the traveling load is large to some extent.

処理60でYESの場合は、燃費変速が実行され図7処理61に進み、変速比毎のトルクコンバータ出力軸トルク、いわゆるタービントルクTt(n)が演算される。Tt(n)のnの数は、車両に取り付けられた変速機に依存され、4速変速機の場合はn=4、無段変速機の場合は制御可能な数に絞り、例えばn=20等に設定する。このTt(n)は上記
Totをn個存在する変速比gr(n)で除算することにより得られる。処理62では、変速比毎のトルクコンバータ出力軸回転数、いわゆるタービン回転数Nt(n)が演算される。このNt(n)は上記Vとn個存在する変速比で乗算することにより得られる。処理63では、変速比毎の逆ポンプ容量係数cn(n)を処理61及び62で得られたTt(n)及びNt(n)を用いて演算する。処理64では、変速比毎の速度比e(n)を検索する。ここで、cn(n)とe(n)の関係は、式(11),(12)及び(13)を用いて求めることができる。
If YES in process 60, the fuel efficiency shift is executed, and the process proceeds to process 61 in FIG. 7, where a torque converter output shaft torque for each gear ratio, so-called turbine torque Tt (n) is calculated. The number n of Tt (n) depends on the transmission mounted on the vehicle, and is reduced to n = 4 in the case of a 4-speed transmission, and to a controllable number in the case of a continuously variable transmission, for example, n = 20 Etc. This Tt (n) is obtained by dividing the above Tot by n existing transmission ratios gr (n). In the process 62, the torque converter output shaft rotational speed for each gear ratio, so-called turbine rotational speed Nt (n) is calculated. This Nt (n) is obtained by multiplying V by n existing gear ratios. In process 63, the reverse pump capacity coefficient cn (n) for each gear ratio is calculated using Tt (n) and Nt (n) obtained in processes 61 and 62. In process 64, the speed ratio e (n) for each speed ratio is searched. Here, the relationship between cn (n) and e (n) can be obtained using equations (11), (12), and (13).

e=Nt/Ne …(11)
Tt=t・c・Ne2 …(12)
cn(n)=(t・c/e2)=Tt/Nt2 …(13)
e:トルクコンバータ入出力軸回転比
Nt:トルクコンバータ出力軸回転数
Ne:エンジン回転数
Tt:トルクコンバータ出力軸トルク
t:トルクコンバータトルク比(eの関数)
c:トルクコンバータポンプ容量係数(eの関数)
処理65では、変速比毎のトルク比t(n)を速度比e(n)の関数として求める。処理
66では、処理61及び65で得られたTt(n),t(n)を用いて目標エンジントルク
Tetを演算する。処理67では、処理62及び64で得られたNt(n),e(n)を用いて目標エンジン回転数Netを演算する。そして、処理68では、処理66及び67で得られた変速比毎の値を用いて燃料消費量が最も小さい変速比iを求める。この場合は、n=4(4速変速機)として示した。ここでの燃費比較は、トルクコンバータの滑りにより変速機出力軸の馬力が変化してしまうため、トルクコンバータ効率とエンジン効率を同時に検出できる燃料消費量のテーブルを用いた。処理69では、処理68と同一軸で設定される目標スロットル開度θテーブルを検索し、処理68で得られた変速比iと同じ位置のθを求める。
e = Nt / Ne (11)
Tt = t · c · Ne2 (12)
cn (n) = (t · c / e2) = Tt / Nt2 (13)
e: Torque converter input / output shaft rotation ratio Nt: Torque converter output shaft rotation speed Ne: Engine rotation speed Tt: Torque converter output shaft torque t: Torque converter torque ratio (function of e)
c: Torque converter pump capacity coefficient (function of e)
In process 65, the torque ratio t (n) for each gear ratio is obtained as a function of the speed ratio e (n). In process 66, the target engine torque Tet is calculated using Tt (n) and t (n) obtained in processes 61 and 65. In process 67, the target engine speed Net is calculated using Nt (n) and e (n) obtained in processes 62 and 64. Then, in process 68, the speed ratio i with the smallest fuel consumption is obtained using the value for each speed ratio obtained in processes 66 and 67. In this case, n = 4 (four-speed transmission) is shown. The fuel consumption comparison here uses a fuel consumption table that can detect the torque converter efficiency and the engine efficiency at the same time because the horsepower of the transmission output shaft changes due to slipping of the torque converter. In a process 69, a target throttle opening degree θ table set on the same axis as that in the process 68 is searched to obtain θ at the same position as the speed ratio i obtained in the process 68.

次に、処理60でNOの場合は処理70に進み、前方の道路勾配Sが−k6より小さいかどうかを判断する。この−k6は、下り勾配時の定数であり、この値より小さい勾配の場合はドライバが減速を要求している時に限り燃料カットを実行し燃費低減を図る。ドライバが減速を要求しているか否かは、処理71で判断する。そのため、目標加減速度Gtが減速度定数k7以下かどうかを判定する。ここで、YESの場合は図5の処理72に進み、変速比毎の目標エンジントルクTetをTot及びgr(n)を用いて演算する。ここで、トルクコンバータ特性を考慮していない理由は、減速の場合ほぼトルクコンバータ滑りが0となりトルクコンバータの入出力軸回転比が1になるためである。処理73では、処理72と同様に上記車速Vとgr(n)を用いて目標エンジン回転数Netを演算する。そして、減速制御の場合、減速後の加速でドライバが要求する加速感を瞬時に得る必要がある。そこで、減速時の目標余裕駆動トルクTstの設定が必要となり、処理74で求める。Tstは、車速Vに応じて設定されており、ドライバの好みに応じて変えることもできる。例えば、Vが小さい場合は、変速比をロー側にすることができるためTstも大きくなる。次に、処理75では変速比毎の余裕エンジントルクTes(n)をTetとNetからなるテーブルより求める。処理76では、現在の走行状態で変速比を変えた場合の余裕駆動トルクTs(n)を処理75で得られたTes(n)とgr(n)を用いて演算する。処理77では、処理74と76で得られた結果を比較し、Tstより大きく且つTstに最も近いTs(n)が位置する目標変速比i,目標スロットル開度θ,目標ブレーキ力Bpを求める。そして、図7の処理59に進む。   Next, in the case of NO in process 60, the process proceeds to process 70, and it is determined whether or not the road gradient S ahead is smaller than -k6. This -k6 is a constant at the time of descending slope. When the slope is smaller than this value, the fuel cut is executed only when the driver requests deceleration, and the fuel consumption is reduced. It is determined in process 71 whether or not the driver requests deceleration. Therefore, it is determined whether the target acceleration / deceleration Gt is equal to or less than the deceleration constant k7. Here, in the case of YES, the process proceeds to the process 72 of FIG. 5, and the target engine torque Tet for each gear ratio is calculated using Tot and gr (n). Here, the reason why the torque converter characteristics are not taken into account is that the torque converter slip is almost 0 in the case of deceleration, and the input / output shaft rotation ratio of the torque converter is 1. In the process 73, similarly to the process 72, the target engine speed Net is calculated using the vehicle speed V and gr (n). In the case of deceleration control, it is necessary to instantaneously obtain the feeling of acceleration requested by the driver by acceleration after deceleration. Therefore, it is necessary to set the target margin driving torque Tst at the time of deceleration, which is obtained in processing 74. Tst is set according to the vehicle speed V, and can be changed according to the driver's preference. For example, when V is small, since the gear ratio can be set to the low side, Tst also increases. Next, in process 75, a surplus engine torque Tes (n) for each gear ratio is obtained from a table composed of Tet and Net. In process 76, the margin drive torque Ts (n) when the gear ratio is changed in the current running state is calculated using Tes (n) and gr (n) obtained in process 75. In the process 77, the results obtained in the processes 74 and 76 are compared, and the target speed ratio i, the target throttle opening θ, and the target brake force Bp at which Ts (n) that is larger than Tst and closest to Tst is located are obtained. And it progresses to the process 59 of FIG.

処理70及び71でNOとなった場合は、ほぼコーナを含む平坦路走行及び下り坂加速時のルーチンとなる。処理78では、処理74と同様にドライバが要求する目標余裕駆動トルクTstを検索する。次に、図6の処理79では上記Totが0より小さいかどうかを判断する。小さい場合は、減速と判断し、処理80に進む。処理80からは減速時制御のため、処理80,81,82,83,84はそれぞれ前記処理72,73,75,76,77と同様の処理を実行し図7の処理59に進む。処理79でTotが0以上、つまりNOと判断された場合は加速要求のため、トルクコンバータ特性を考慮した目標エンジントルクTet及びエンジン回転数Netの計算となる。処理85,86,87,88,
89,90,91はそれぞれ前記処理61,62,63,64,65,66,67と同様の処理を実行し処理82に進む。
If NO in processes 70 and 71, the routine is for running on a flat road that substantially includes corners and for accelerating downhill. In the process 78, as in the process 74, the target margin drive torque Tst requested by the driver is searched. Next, in process 79 of FIG. 6, it is determined whether or not the above Tot is smaller than zero. If it is smaller, it is determined that the vehicle is decelerating and the process proceeds to step 80. Since the process 80 is controlled during deceleration, the processes 80, 81, 82, 83, and 84 execute the same processes as the processes 72, 73, 75, 76, and 77, respectively, and the process proceeds to the process 59 in FIG. If it is determined in process 79 that Tot is equal to or greater than 0, that is, NO, an acceleration request is made, and the target engine torque Tet and engine speed Net are calculated in consideration of torque converter characteristics. Process 85, 86, 87, 88,
89, 90, 91 execute the same processing as the processing 61, 62, 63, 64, 65, 66, 67, respectively, and proceeds to processing 82.

図14に本発明のシステム構成図を示す。車体92には、エンジン93及び変速機94が搭載されており、エンジンパワートレイン制御ユニット95からの信号によりスロットル開度(空気流量),燃料量,点火時期,ブレーキ圧及び変速比等が制御される。燃料制御には、現在主流の吸気ポート噴射方式,制御性の良い筒内噴射方式等が用いられる。また、車体92には、外界状況を検出するためのテレビカメラ96やインフラ情報検出のためのアンテナ97が搭載されている。テレビカメラ96の画像は走行環境判別ユニット
98に入力され、画像処理して道路勾配,コーナ曲率半径,信号機情報及び道路標識等を認識する。FM−CW方式等のレーダ102が車体92の前方に設置され前方車両あるいは物体との車間距離及び相対速度を検出する。また、上記アンテナ97はインフラ情報端末器99と接続しており、インフラ情報により、前方の路面状況(ウェット,ドライ,雪路,砂の有無等)が検出され、走行環境判別ユニット98で路面摩擦係数μ等を演算する。また、CD−ROM100等に記憶された地図情報でも走行環境が判別でき、前方の道路状況(勾配,コーナ曲率半径等)の検出ができる。走行環境判別ユニット98からは、走行環境に相当する信号,走行環境の危険度,路面摩擦係数μ等が出力され、上記エンジンパワートレイン制御ユニット95に入力される。この信号を基に、走行環境に対応したスロットル開度θ,燃料量,点火時期,変速比i及びブレーキ圧制御用アクチュエータ
103によるブレーキ力Bp等が制御される。また、上記エンジンパワートレイン制御ユニット95には、アクセルペダル踏み込み量α,ブレーキ踏力β,車速V,エンジン回転数Ne,雨滴センサ信号Ws,シートベルトスイッチBs,ヘッドライトスイッチLs等が入力され、図2〜図7で示した制御に用いられる。また、カメラには加速度センサ、カメラ下部には振動抑制制御用のアクチュエータ101が設置され、上記加速度センサの信号をフィードバック制御しカメラ揺れによる検出精度悪化を防止する。
FIG. 14 shows a system configuration diagram of the present invention. An engine 93 and a transmission 94 are mounted on the vehicle body 92, and throttle opening (air flow), fuel amount, ignition timing, brake pressure, gear ratio, and the like are controlled by signals from the engine powertrain control unit 95. The For the fuel control, the mainstream intake port injection method, the in-cylinder injection method with good controllability, and the like are used. In addition, the vehicle body 92 is equipped with a television camera 96 for detecting the external environment and an antenna 97 for detecting infrastructure information. The image of the television camera 96 is input to the traveling environment discrimination unit 98, and image processing is performed to recognize road gradient, corner radius of curvature, traffic signal information, road signs, and the like. An FM-CW radar or the like 102 is installed in front of the vehicle body 92 and detects the inter-vehicle distance and relative speed with respect to the preceding vehicle or object. The antenna 97 is connected to the infrastructure information terminal 99, and the road surface condition (wet, dry, snowy road, presence / absence of sand, etc.) is detected based on the infrastructure information, and the road environment friction unit 98 detects the road surface friction. Calculate the coefficient μ and the like. Further, the driving environment can be determined from the map information stored in the CD-ROM 100 or the like, and the road conditions ahead (slope, corner radius of curvature, etc.) can be detected. From the traveling environment discrimination unit 98, a signal corresponding to the traveling environment, a risk level of the traveling environment, a road surface friction coefficient μ, and the like are output and input to the engine powertrain control unit 95. Based on this signal, the throttle opening θ, the fuel amount, the ignition timing, the gear ratio i, the brake force Bp by the brake pressure control actuator 103, and the like corresponding to the driving environment are controlled. The engine powertrain control unit 95 is input with an accelerator pedal depression amount α, a brake depression force β, a vehicle speed V, an engine speed Ne, a raindrop sensor signal Ws, a seat belt switch Bs, a headlight switch Ls, and the like. 2 to 7 are used for the control shown in FIG. In addition, an acceleration sensor is installed in the camera, and an actuator 101 for vibration suppression control is installed in the lower part of the camera. The acceleration sensor signal is feedback-controlled to prevent deterioration in detection accuracy due to camera shake.

図15はカメラ振動抑制の制御フローチャートである。処理110で車体あるいはカメラに取り付けられた上下加速度センサの信号Gsを読み込む。処理111では、上記Gsの信号を積分し車体の変動速度Vtdを演算する。更に、処理112で上記Vtdの演算値を積分し車体の上下変動位置(ストローク)Stdを演算する。そして、処理113で上記Stdが一定のカメラ画像検出角度になる定数k15と等しいかどうかを判断する。等しい場合は、処理114に進みカメラ角度制御用アクチュエータを駆動する制御信号
As(n)に前回の駆動信号As(n−1)を代入し処理115に進む。処理115では、今回の駆動信号As(n)を前回の駆動信号As(n−1)に代入してリターンされる。処理
113でNO、つまり等しくないと判断された場合は、処理116に進み上記Stdと定数k15の偏差ΔSを求め処理117に進む。処理117では、前回の駆動信号As (n−1) にΔSのPID制御値を加えた値を上記As(n)に代入して処理115に進む。これにより、カメラの変動による道路勾配,道路曲率半径等の検出誤差が抑制でき精度良いパワートレイン制御が実現できる。また、上記加速度センサは、コスト削減の点から車体振動抑制のためのサスペンション制御用のセンサを用いることも可能である。
FIG. 15 is a control flowchart of camera vibration suppression. In process 110, a signal Gs of the vertical acceleration sensor attached to the vehicle body or the camera is read. In process 111, the Gs signal is integrated to calculate the vehicle body fluctuation speed Vtd. Further, in the process 112, the calculated value of Vtd is integrated to calculate the vertical variation position (stroke) Std of the vehicle body. In step 113, it is determined whether or not Std is equal to a constant k15 that is a constant camera image detection angle. If equal, the process proceeds to process 114 and the previous drive signal As (n−1) is substituted into the control signal As (n) for driving the camera angle control actuator, and the process proceeds to process 115. In step 115, the current drive signal As (n) is substituted into the previous drive signal As (n-1) and the process returns. If NO in process 113, that is, if it is determined that they are not equal, the process proceeds to process 116, the difference ΔS between Std and the constant k15 is obtained, and the process proceeds to process 117. In process 117, the value obtained by adding the PID control value of ΔS to the previous drive signal As (n−1) is substituted into As (n), and the process proceeds to process 115. As a result, detection errors such as road gradients and road curvature radii due to camera fluctuations can be suppressed, and accurate powertrain control can be realized. The acceleration sensor can also be a suspension control sensor for suppressing vehicle body vibration from the viewpoint of cost reduction.

本発明一実施例のブロック図。The block diagram of one Example of this invention. 一実施例の具体的制御フローチャート。The specific control flowchart of one Example. 一実施例の具体的制御フローチャート。The specific control flowchart of one Example. 一実施例の具体的制御フローチャート。The specific control flowchart of one Example. 一実施例の具体的制御フローチャート。The specific control flowchart of one Example. 一実施例の具体的制御フローチャート。The specific control flowchart of one Example. 一実施例の具体的制御フローチャート。The specific control flowchart of one Example. 目標加減速度テーブルの概略。Outline of target acceleration / deceleration table. 実際の道路曲率座標系。Actual road curvature coordinate system. 画像で示した道路曲率座標系。Road curvature coordinate system shown in the image. 下り坂道路形状の検出例。Example of downhill road shape detection. 上り坂道路形状の検出例。An example of detecting an uphill road shape. 前方の道路勾配検出手法。A road gradient detection method ahead. 本発明のシステム構成図。The system block diagram of this invention. カメラ振動抑制の制御フローチャートである。It is a control flowchart of camera vibration suppression.

符号の説明Explanation of symbols

1…加減速度検出手段、2…車速検出手段、3…目標加減速度演算手段、4…道路環境検出手段、5…危険走行判別手段、6…目標値変更手段、7…目標制駆動トルク演算手段、8…制御操作量演算手段、9…操作手段。

DESCRIPTION OF SYMBOLS 1 ... Acceleration / deceleration detection means, 2 ... Vehicle speed detection means, 3 ... Target acceleration / deceleration calculation means, 4 ... Road environment detection means, 5 ... Dangerous travel discrimination means, 6 ... Target value change means, 7 ... Target braking / driving torque calculation means 8, control operation amount calculation means, 9 ... operation means.

Claims (2)

運転者の加減速度検出手段から入力した要求減速度に応じて運転者目標減速度を演算する運転者目標加減速度演算手段と、
車速検出手段から車速を入力する手段と、
車両の前方コーナまでの距離,前記コーナの曲率半径,路面摩擦係数,車両重心位置情報に基づき目標速度を設定する目標速度設定手段と、
前記車速と前記目標速度に基づき設定目標減速度を求める設定目標減速度演算手段と、
前記設定目標減速度よりも前記運転者目標減速度が大きい場合は、前記設定目標減速度になるように自動車を制御する制御手段と、を有する自動車の制御装置。
A driver target acceleration / deceleration calculating means for calculating a driver target deceleration according to the requested deceleration input from the driver's acceleration / deceleration detecting means;
Means for inputting the vehicle speed from the vehicle speed detection means;
Target speed setting means for setting a target speed based on the distance to the front corner of the vehicle, the radius of curvature of the corner, the friction coefficient of the road surface, and the vehicle gravity center position information;
Set target deceleration calculating means for obtaining a set target deceleration based on the vehicle speed and the target speed;
And a control unit configured to control the vehicle so as to achieve the set target deceleration when the driver target deceleration is greater than the set target deceleration.
運転者の加減速度検出手段から入力した要求減速度に応じて運転者目標減速度を演算し、
車速検出手段から車速を入力し、
車両の前方コーナまでの距離、前記コーナの曲率半径,路面摩擦係数,車両重心位置情報に基づき目標速度を設定し、
前記車速と前記目標速度に基づき設定目標減速度を求め、
前記設定目標減速度よりも前記運転者目標減速度が大きい場合は、前記設定目標減速度になるように自動車を制御する自動車の制御方法。
The driver target deceleration is calculated according to the requested deceleration input from the driver acceleration / deceleration detection means,
Enter the vehicle speed from the vehicle speed detection means,
Set the target speed based on the distance to the front corner of the vehicle, the radius of curvature of the corner, the friction coefficient of the road surface, and the vehicle center of gravity position information.
Based on the vehicle speed and the target speed, a set target deceleration is obtained,
An automobile control method for controlling an automobile so as to be the set target deceleration when the driver target deceleration is larger than the set target deceleration.
JP2005126317A 2005-04-25 2005-04-25 Control device for automobile and control method Pending JP2005289368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126317A JP2005289368A (en) 2005-04-25 2005-04-25 Control device for automobile and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126317A JP2005289368A (en) 2005-04-25 2005-04-25 Control device for automobile and control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001237242A Division JP2002130000A (en) 2001-08-06 2001-08-06 Device for and method of controlling automobile

Publications (1)

Publication Number Publication Date
JP2005289368A true JP2005289368A (en) 2005-10-20

Family

ID=35322778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126317A Pending JP2005289368A (en) 2005-04-25 2005-04-25 Control device for automobile and control method

Country Status (1)

Country Link
JP (1) JP2005289368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035222A (en) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd Vehicular traveling control device, and vehicular traveling control method
JP2017043171A (en) * 2015-08-25 2017-03-02 トヨタ自動車株式会社 Vehicular speed control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035222A (en) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd Vehicular traveling control device, and vehicular traveling control method
JP2017043171A (en) * 2015-08-25 2017-03-02 トヨタ自動車株式会社 Vehicular speed control apparatus

Similar Documents

Publication Publication Date Title
US5902345A (en) Method and apparatus for controller power train of motor vehicle
US11226620B2 (en) Automated driving systems and control logic with enhanced longitudinal control for transitional surface friction conditions
CN101462494B (en) System for providing fuel-efficient driving information for vehicles
JP4858039B2 (en) Vehicle control device
US8078383B2 (en) Speed control system for vehicles
US7433772B2 (en) Target speed control system for a vehicle
US10875534B2 (en) Vehicle control device
US10994768B2 (en) Control device for vehicle
US7280895B2 (en) Vehicular kinetic control system
JP6633663B2 (en) Vehicle travel control device
JP6776968B2 (en) Driving control device, vehicle and driving control method
WO2016152750A1 (en) Cruise control device and cruise control method
JP6630753B2 (en) Driving mode recognition device
JP2019121063A (en) Traveling control device for automatic driving vehicle
JP2019119303A (en) Travel control device for automatic drive vehicle
JP5302095B2 (en) Vehicle fuel consumption rate improvement support device
US10974723B2 (en) Drive force control system for vehicle
CN113022565A (en) Vehicle control device
KR20180104872A (en) Transmission apparatus and method for cruise control system responsive to driving condition
JP2008081118A (en) Apparatus and method for controlling automobile
JP6253646B2 (en) Vehicle control device
JP6986499B2 (en) Vehicle control device
JP2005289368A (en) Control device for automobile and control method
JP2002130000A (en) Device for and method of controlling automobile
JP3896757B2 (en) Vehicle control method and vehicle control apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703