JP2005288996A - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
JP2005288996A
JP2005288996A JP2004111093A JP2004111093A JP2005288996A JP 2005288996 A JP2005288996 A JP 2005288996A JP 2004111093 A JP2004111093 A JP 2004111093A JP 2004111093 A JP2004111093 A JP 2004111093A JP 2005288996 A JP2005288996 A JP 2005288996A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
film
laminated film
temperature
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004111093A
Other languages
Japanese (ja)
Other versions
JP4661073B2 (en
Inventor
Tomoe Makiyama
知枝 槇山
Shunichi Osada
俊一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004111093A priority Critical patent/JP4661073B2/en
Publication of JP2005288996A publication Critical patent/JP2005288996A/en
Application granted granted Critical
Publication of JP4661073B2 publication Critical patent/JP4661073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film having a high rigidity which has not conventionally been achieved, being excellent in dimensional stability under a high temperature, and in addition, being excellent in transparency after heating, and a molding workability in a wide temperature range as well. <P>SOLUTION: This laminated film has fifty layers or more which are formed of layers made of a thermoplastic resin A and layers made of a thermoplastic resin B. In the laminated film, an α softening temperature in a dynamic viscoelasticity measurement is observed in a range from (the α softening temperature of the thermoplastic resin B+10)°C to (the α softening temperature of the thermoplastic resin A-10)°C, and also, two or more melting points exist. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、積層フィルムに関するものである。   The present invention relates to a laminated film.

熱可塑性樹脂フィルムは、包装材料をはじめ、ラベル・グラフィック・OHP・離型・インクリボン・電気絶縁・感熱孔版・スタンピングなどの種々の工業材料や、オーディオ・ビデオ・データストレージなどの磁気材料などとして幅広く利用されている。これら種々の用途において、一般的には高剛性でかつ高温下での寸法安定性にすぐれた材料が必要とされている。   Thermoplastic resin films are used as packaging materials, various industrial materials such as labels, graphics, OHP, mold release, ink ribbons, electrical insulation, heat sensitive stencils, stamping, and magnetic materials such as audio, video, and data storage. Widely used. In these various applications, a material having high rigidity and excellent dimensional stability at high temperatures is generally required.

これらの用途においては、一般に、フィルムは支持体として用いられており、フィルムに印刷、蒸着、スパッタ、メッキ、ラミネート、コーティング、成形加工などの種々の加工が高温下にて施されるため、その処理工程おいて高剛性であることが、支持体であるフィルムの腰が強くなりハンドリングがよくなるという点から重要であるとともに、寸法安定性が高いことは加工時の変形を抑制できるため精度良く加工を施せるために重要である。この中で特に、高温下での寸法安定性にも優れ、成形加工性や表面加工特性にも優れたフィルム(例えば特許文献1参照)が存在する。   In these applications, the film is generally used as a support, and various processes such as printing, vapor deposition, sputtering, plating, laminating, coating, and molding are applied to the film at a high temperature. High rigidity in the processing process is important from the viewpoint that the support film becomes firm and handling is good, and that high dimensional stability can suppress deformation during processing, so it can be processed accurately. It is important to apply. Among them, there is a film (see, for example, Patent Document 1) that is particularly excellent in dimensional stability at high temperatures and excellent in molding processability and surface processing characteristics.

一方、熱可塑性樹脂を多層に積層したフィルムとしては、種々提案されており、例えば、耐引裂性に優れた多層に積層したフィルムをガラス表面に貼りつけることにより、ガラスの破損および飛散を大幅に防止できるもの(特許文献2、)、屈折率の異なる樹脂層を交互に多層に積層することより、選択的に特定の波長を反射するフィルム(特許文献3)等が存在する。   On the other hand, various films have been proposed as multilayered thermoplastic resins. For example, by attaching a multilayered film excellent in tear resistance to the glass surface, glass breakage and scattering are greatly reduced. There are films that can be prevented (Patent Document 2), films that selectively reflect a specific wavelength by alternately laminating resin layers having different refractive indexes (Patent Document 3), and the like.

しかし、これらのフィルムは高温下での寸法安定性が不十分であったり、成形加工性についても満足すべきものではなかった。
特開2003-11217号公報(第2頁) 特開平6-190995号公報(第2頁) 特表平9-506837号公報(第2頁)
However, these films have insufficient dimensional stability at high temperatures and are not satisfactory in terms of moldability.
JP2003-11217A (2nd page) Japanese Patent Laid-Open No. 6-190995 (page 2) Japanese National Publication No. 9-506837 (2nd page)

本発明は上記した背景技術の問題点に鑑み、高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムを提供することを課題とするものである。   In view of the problems of the background art described above, the present invention provides a film having high rigidity, excellent dimensional stability at high temperatures, and excellent transparency after heating and moldability in a wide temperature range. It is an object to do.

上記課題を解決するため、本発明の積層フィルムは以下の構成からなる。すなわち、熱可塑性樹脂Aからなる層と、熱可塑性樹脂Bからなる層によって形成される50層以上の積層フィルムであって、動的粘弾性測定におけるα緩和温度が、(熱可塑性樹脂Bのα緩和温度+10)℃〜(熱可塑性樹脂Aのα緩和温度−10)℃の間に観察され、かつ融点が2つ以上存在することを特徴とする。   In order to solve the above problems, the laminated film of the present invention has the following constitution. That is, it is a laminated film of 50 layers or more formed by a layer made of thermoplastic resin A and a layer made of thermoplastic resin B, and the α relaxation temperature in dynamic viscoelasticity measurement is (α of thermoplastic resin B It is observed between relaxation temperature + 10) ° C. to (α relaxation temperature of thermoplastic resin A−10) ° C., and has two or more melting points.

本発明の積層フィルムは、熱可塑性樹脂Aからなる層と、熱可塑性樹脂Bからなる層によって形成される50層以上の積層フィルムであって、動的粘弾性測定における積層フィルムのα緩和の温度が、(熱可塑性樹脂Bのα緩和温度+10)℃〜(熱可塑性樹脂Aのα緩和温度−10)℃の間に少なくとも観察され、かつ融点が2つ以上存在することを特徴とする積層フィルムであるため、高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムを得ることができる。   The laminated film of the present invention is a laminated film of 50 layers or more formed by a layer made of thermoplastic resin A and a layer made of thermoplastic resin B, and the α relaxation temperature of the laminated film in dynamic viscoelasticity measurement. Is observed at least between (α relaxation temperature of thermoplastic resin B + 10) ° C. to (α relaxation temperature of thermoplastic resin A−10) ° C., and has two or more melting points. Therefore, it is possible to obtain a film having high rigidity and excellent dimensional stability at high temperatures, and further excellent transparency after heating and molding processability in a wide temperature range.

また積層フィルムの熱膨張係数が110ppm以下とすることにより、高温下での寸法安定性に優れ、高温下での高精度な成形が可能となるものである。   Further, when the thermal expansion coefficient of the laminated film is 110 ppm or less, the dimensional stability at high temperature is excellent, and high-precision molding at high temperature is possible.

さらに、加熱試験後のヘイズ上昇値が15%以下とすることにより、加熱後の透明性に優れ、成形体とした場合光沢のある外観の優れたものとなるものである。   Furthermore, by setting the haze increase value after the heating test to 15% or less, the transparency after heating is excellent, and when it is formed into a molded body, the glossy appearance is excellent.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の積層フィルムは、熱可塑性樹脂Aからなる層と、熱可塑性樹脂Bからなる層によって形成される50層以上の積層フィルムである。より好ましくは、厚みが30nm未満である層を50層以上含んでおり、さらに好ましくは厚みが30nm未満である層を500層以上含んでおり、最も好ましくは厚みが30nm未満である層を1000層以上含んでいることである。層が50層より少ない場合には、フィルム中に占める微細構造制御が達成された部位の割合が極端に低下するため、高温下での寸法安定性および成型加工性の効果が十分ではなくなる。   The laminated film of the present invention is a laminated film of 50 layers or more formed by a layer made of thermoplastic resin A and a layer made of thermoplastic resin B. More preferably, it includes 50 or more layers having a thickness of less than 30 nm, more preferably 500 or more layers having a thickness of less than 30 nm, and most preferably 1000 layers having a thickness of less than 30 nm. It is to include the above. When the number of layers is less than 50, the ratio of the portion where the fine structure control in the film is achieved is extremely reduced, and the effects of dimensional stability and moldability at high temperatures are not sufficient.

また、ここで層厚みが30nm未満の場合、サイズ効果による層間の相互作用のために従来の方法では達することができなかった結晶部および非晶部の微細構造制御が達成され、熱可塑性樹脂の特徴を損なうことなく、高温下での寸法安定性を飛躍的に向上するため好ましい。より好ましくは、15nm未満である。15nm未満の場合、さらに高温下での寸法安定性が向上するものである。また、厚みが30nm未満の層が500層以上の場合には高温下での寸法安定性と成形性がさらに向上する。また、厚みが30nm未満の層が1000層以上の場合には、高温下での寸法安定性と成型加工性がさらに向上する。上限値は特に限定されないが、50000層以下であることが好ましい。また、本発明の効果を阻害しない範囲で、他の層、例えば熱可塑性樹脂Cを有していても良い。例えば、熱可塑性樹脂A、熱可塑性樹脂B、熱可塑性樹脂Cの3種からなる場合には、A(BCA)n、A(BCBA)n、A(BABCBA)nなどの規則的順列で積層されることがより好ましい。ここでnは繰り返しの単位数であり、例えばA(BCA)nにおいてn=3の場合、厚み方向にABCABCABCAの順列で積層されているものを表す。また、2種類の熱可塑性樹脂からなる場合、それらが交互に積層された構造を有することがより好ましい。   Further, when the layer thickness is less than 30 nm, the fine structure control of the crystal part and the amorphous part, which could not be achieved by the conventional method due to the interaction between layers due to the size effect, is achieved, and the thermoplastic resin This is preferable because the dimensional stability at high temperatures is dramatically improved without impairing the characteristics. More preferably, it is less than 15 nm. When the thickness is less than 15 nm, the dimensional stability at a higher temperature is further improved. Further, when the number of layers having a thickness of less than 30 nm is 500 or more, the dimensional stability and moldability at a high temperature are further improved. Further, when the number of layers having a thickness of less than 30 nm is 1000 or more, the dimensional stability and molding processability at a high temperature are further improved. Although an upper limit is not specifically limited, It is preferable that it is 50000 layers or less. Moreover, you may have another layer, for example, the thermoplastic resin C, in the range which does not inhibit the effect of this invention. For example, in the case of three types of thermoplastic resin A, thermoplastic resin B, and thermoplastic resin C, they are laminated in a regular permutation such as A (BCA) n, A (BCBA) n, A (BABCBA) n. More preferably. Here, n is the number of repeating units. For example, in the case of A (BCA) n where n = 3, this indicates that the layers are stacked in a permutation of ABCABCABCA in the thickness direction. Moreover, when it consists of two types of thermoplastic resins, it is more preferable to have the structure where they were laminated alternately.

ここで、本発明における熱可塑性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン樹脂、ナイロン6、ナイロン66などのポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチルサクシネート、ポリエチレン−2,6−ナフタレートなどのポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、アクリル樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂などを用いることができる。この中で、強度・耐熱性・透明性の観点から、特にポリエステルであることがより好ましい。   Here, examples of the thermoplastic resin in the present invention include polyolefin resins such as polyethylene, polypropylene and polymethylpentene, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate and polybutyl succinate. Polyester resin such as polyethylene-2,6-naphthalate, polycarbonate resin, polyarylate resin, polyacetal resin, polyphenylene sulfide resin, acrylic resin, polyglycolic acid resin, polylactic acid resin, and the like can be used. Among these, polyester is particularly preferable from the viewpoint of strength, heat resistance, and transparency.

本発明における熱可塑性樹脂として好ましいポリエステルとは、ジカルボン酸成分とジオール成分との重縮合体でのことを言う。ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸、シクロヘキサンジカルボン酸などが挙げられ、またこれらのエステル誘導体も含まれる。グリコール成分としては、エチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタジオール、ジエチレングリコール、ポリアルキレングリコール、2,2−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン、1,4−シクロヘキサンジメタノールなどが挙げられる。特に、ポリエステル樹脂の中でも、ポリエチレン−2,6−ナフタレートやポリエチレンテレフタレートが好ましく、特にポリエチレンテレフタレートがさらに好ましい。またこれらの熱可塑性樹脂としてはホモ樹脂であってもよく、共重合または2種類以上のブレンドであってもよい。また、各層中には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤などが添加されていてもよい。   The polyester preferable as the thermoplastic resin in the present invention refers to a polycondensate of a dicarboxylic acid component and a diol component. Examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, Examples thereof include 4′-diphenylsulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexane dicarboxylic acid, and the like, and ester derivatives thereof are also included. Examples of the glycol component include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, polyalkylene glycol, 2 , 2-bis (4′-β-hydroxyethoxyphenyl) propane, 1,4-cyclohexanedimethanol and the like. In particular, among polyester resins, polyethylene-2,6-naphthalate and polyethylene terephthalate are preferable, and polyethylene terephthalate is more preferable. Further, these thermoplastic resins may be homo resins, copolymerized or blends of two or more. In each layer, various additives such as an antioxidant, an antistatic agent, a crystal nucleating agent, inorganic particles, organic particles, a thinning agent, a heat stabilizer, a lubricant, an infrared absorber, and an ultraviolet absorber are included. It may be added.

本発明の積層フィルムは、動的粘弾性測定における積層フィルムのα緩和温度が、(熱可塑性樹脂Bのα緩和温度+10)℃〜(熱可塑性樹脂Aのα緩和温度−10)℃の間に観察され、かつ融点が2つ以上存在することが必要である。α緩和温度がこのような範囲となるためには、厚みが30nm未満で熱可塑性樹脂Aと熱可塑性樹脂Bからなる層が50層以上積層されていることが好ましい。ここで、α緩和温度の高い方を熱可塑性樹脂Aと定める。本発明の積層フィルムは、本来動的粘弾性測定において異なるα緩和温度をもつ熱可塑性樹脂Aと熱可塑性樹脂Bを積層しているにもかかわらず、非常に微細な層構造となるため、積層フィルム自体のα緩和温度は、(熱可塑性樹脂Bのα緩和温度+10)℃〜(熱可塑性樹脂Aのα緩和温度−10)℃の間に単一の樹脂であるかのように一つ観察されるものである。これに対し、DSCによる融点測定においては、熱可塑性樹脂Aと熱可塑性樹脂B個々の融点のピークが存在し、それぞれの樹脂の熱的性質が損なわれないことが必要である。このような場合に結晶部および非晶部の微細構造制御が達成され、各熱可塑性樹脂の特徴を損なうことなく、高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や広い温度範囲での成形加工性にも優れたフィルムを得ることができる。ここで、本発明におけるα緩和とは、動的粘弾性測定において、フィルム非晶部の比較的長い分子鎖の運動に起因するものであり、延伸フィルムのガラス転移温度に相当するものである(村上謙吉著 レオロジー基礎論 第132頁参照)。本発明積層フィルムのα緩和温度はより好ましくは(熱可塑性樹脂Bのα緩和温度+12)℃〜(熱可塑性樹脂Aのα緩和温度−12)℃である。この場合上述の効果のうち加熱後の透明性がさらに向上するため好ましい。α緩和温度をこのような温度範囲にするためには積層フィルム内での熱可塑性樹脂Aの重量比率を20wt%〜80wt%にすることが好ましい。またさらに好ましくは(熱可塑性樹脂Bのα緩和温度+15)℃〜(熱可塑性樹脂Aのα緩和温度−15)℃である。この場合上述の効果のうち高温下での寸法安定性と加熱後の透明性がさらに向上するため、より好ましい。α緩和温度をこのような温度範囲にするためには積層フィルム内での熱可塑性樹脂Aの重量比率を35wt%〜65wt%にすることが好ましい。熱可塑性樹脂Aの重量比率が20wt%未満の場合、一方の結晶制御が十分でなく、高温下での寸法安定性の効果が低減する場合がある。また80wt%より大きい場合も同様である。   In the laminated film of the present invention, the α relaxation temperature of the laminated film in dynamic viscoelasticity measurement is between (α relaxation temperature of thermoplastic resin B + 10) ° C. to (α relaxation temperature of thermoplastic resin A−10) ° C. It must be observed and there must be at least two melting points. In order for the α relaxation temperature to be in such a range, it is preferable that 50 or more layers of thermoplastic resin A and thermoplastic resin B are laminated with a thickness of less than 30 nm. Here, the higher α relaxation temperature is defined as the thermoplastic resin A. The laminated film of the present invention has a very fine layer structure even though the thermoplastic resin A and the thermoplastic resin B, which originally have different α relaxation temperatures in the dynamic viscoelasticity measurement, are laminated. The α relaxation temperature of the film itself is observed as if it was a single resin between (α relaxation temperature of thermoplastic resin B + 10) ° C. to (α relaxation temperature of thermoplastic resin A−10) ° C. It is what is done. On the other hand, in the melting point measurement by DSC, it is necessary that the melting point peaks of the thermoplastic resin A and the thermoplastic resin B exist and the thermal properties of the respective resins are not impaired. In such a case, fine structure control of the crystal part and the amorphous part is achieved, without impairing the characteristics of each thermoplastic resin, high rigidity and excellent dimensional stability at high temperature, and transparency after heating In addition, it is possible to obtain a film excellent in moldability in a wide temperature range. Here, the α relaxation in the present invention is caused by the motion of a relatively long molecular chain in the film amorphous part in the dynamic viscoelasticity measurement, and corresponds to the glass transition temperature of the stretched film ( Murakami Kenkichi, Rheology Basics, page 132). The α relaxation temperature of the laminated film of the present invention is more preferably (α relaxation temperature of thermoplastic resin B + 12) ° C. to (α relaxation temperature of thermoplastic resin A−12) ° C. In this case, among the above effects, the transparency after heating is further improved, which is preferable. In order to set the α relaxation temperature in such a temperature range, the weight ratio of the thermoplastic resin A in the laminated film is preferably 20 wt% to 80 wt%. More preferably, it is (α relaxation temperature of thermoplastic resin B + 15) ° C. to (α relaxation temperature of thermoplastic resin A−15) ° C. In this case, among the above effects, the dimensional stability at high temperature and the transparency after heating are further improved, which is more preferable. In order to set the α relaxation temperature in such a temperature range, the weight ratio of the thermoplastic resin A in the laminated film is preferably 35 wt% to 65 wt%. When the weight ratio of the thermoplastic resin A is less than 20 wt%, one crystal control is not sufficient, and the effect of dimensional stability at high temperature may be reduced. The same applies to the case where it is greater than 80 wt%.

本発明に用いる熱可塑性樹脂は特に限定されるものではないが、熱可塑性樹脂Aの融点が熱可塑性樹脂Bの融点より5℃以上高いことが好ましい。このような樹脂を用いると、30nm未満の層が50層以上である場合、両樹脂の結晶からなるラメラの周期構造が層内に形成されるため、高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や広い温度範囲での成形加工性にも優れたフィルムが得られるため好ましい。融点に5℃以上差がある2種類の熱可塑性樹脂は特に限定されるものではないが、熱可塑性樹脂Aをポリエチレンテレフタレートとした場合には、熱可塑性樹脂Bには次のような樹脂が好ましく用いられる。例えばポリブチレンテレフタレートやポリプロピレンテレフタレートなどのポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン樹脂、ナイロン6やナイロン66などのポリアミド樹脂、またポリエチレンテレフタレートにイソフタル酸、アジピン酸、セバシン酸、ダイマー酸、シクロヘキサンジカルボン酸などを共重合したものが挙げられるが、これに限るものではない。   The thermoplastic resin used in the present invention is not particularly limited, but the melting point of the thermoplastic resin A is preferably higher by 5 ° C. or more than the melting point of the thermoplastic resin B. When such a resin is used, when the number of layers less than 30 nm is 50 or more, a lamellar periodic structure composed of crystals of both resins is formed in the layer, so that the rigidity is high and the dimensional stability under high temperature is high. In addition, it is preferable because a film excellent in transparency after heating and excellent in moldability in a wide temperature range can be obtained. The two types of thermoplastic resins having a difference of 5 ° C. or more in the melting point are not particularly limited, but when the thermoplastic resin A is polyethylene terephthalate, the following resins are preferable for the thermoplastic resin B: Used. For example, polyester resins such as polybutylene terephthalate and polypropylene terephthalate, polyolefin resins such as polyethylene, polypropylene and polymethylpentene, polyamide resins such as nylon 6 and nylon 66, polyethylene terephthalate, isophthalic acid, adipic acid, sebacic acid, dimer acid, Although what copolymerized cyclohexane dicarboxylic acid etc. is mentioned, it is not restricted to this.

また、熱可塑性樹脂Aおよび熱可塑性樹脂Bに起因するα緩和以外に、第3の熱可塑性樹脂や各種添加剤に起因するα緩和および/または融点のピークが観察されてもよいものである。   Further, in addition to the α relaxation caused by the thermoplastic resin A and the thermoplastic resin B, α relaxation and / or melting point peaks caused by the third thermoplastic resin and various additives may be observed.

本発明の積層フィルムは、雰囲気温度を50℃から65℃まで変化させたときの長手方向および/または幅方向の熱膨張係数が110ppm以下であることが好ましい。より好ましくは100ppm以下である。110ppm以下の膨張の場合、加工時等に問題なく使用することができる。さらに延伸倍率を高めフィルムの配向を高めることで100ppm以下とすることができ、この場合ではさらに膨張の影響が少なく寸法安定性が向上するため好ましい。熱膨張係数の下限は特に定めるものではなく、低いほど好ましい。特に限定されないが、一般的には90ppm程度である。また熱膨張係数が110ppmより高いと、高温下での寸法安定性が低下し、たるみが発生したり皺が入りやすくなるため好ましくない。   The laminated film of the present invention preferably has a thermal expansion coefficient of 110 ppm or less in the longitudinal direction and / or the width direction when the atmospheric temperature is changed from 50 ° C. to 65 ° C. More preferably, it is 100 ppm or less. In the case of expansion of 110 ppm or less, it can be used without problems during processing. Further, by increasing the draw ratio and increasing the orientation of the film, it can be reduced to 100 ppm or less. In this case, the influence of expansion is further reduced and the dimensional stability is improved, which is preferable. The lower limit of the thermal expansion coefficient is not particularly defined, and the lower the better. Although not particularly limited, it is generally about 90 ppm. On the other hand, if the thermal expansion coefficient is higher than 110 ppm, the dimensional stability at a high temperature is lowered, and sagging or wrinkles easily occurs.

本発明の積層フィルムは210℃の雰囲気中で30分加熱試験を実施した後のヘイズ上昇値が15%以下であることが好ましい。ここでいうヘイズの上昇値とは、加熱後のヘイズ(%)と加熱前のヘイズ(%)の差である。より好ましくは10%以下、さらに好ましくは5%以下、最も好ましくは2%以下である。熱可塑性樹脂Aと熱可塑性樹脂Bを50層以上積層することにより、ヘイズ上昇値を15%以下にすることができ、この場合光線の透過性の観点から問題ない範囲であり、成形体等に用いるのに適している。さらにフィルム製膜時の熱処理温度を熱可塑性樹脂Bの融点Tm以下(ここで融点は熱可塑性樹脂A>熱可塑性樹脂Bとする)にすることにより、ヘイズ上昇値を10%以下にすることができ、この場合透過光の散乱がより少なり、成形体としたとき外観が白く濁って見えることがないため好ましい。ここで融点Tmとは、DSCにて試料を一定速度で昇温したとき、融解による吸熱が最も大きくなる温度のことである。また、積層精度を30%以下にすることにより、ヘイズ上昇値を5%以下にすることができ、この場合透過光の散乱がさらに少なく、透明性に優れたフィルムを得ることができ、成形体とした場合、光沢のあるものとなるため好ましい。積層精度を30%以下にするためには、製膜時に異なる種類の熱可塑性樹脂を積層させるユニットとして200層〜2000層のスリットを有し、かつそのスリットの加工精度が±10μm以下であるフィードブロックとを用いることが好ましく、加えて積層数を増加させるために用いるスタティックミキサーは、その流路長Lが次に示す式に当てはまるものであることが好ましい。すなわちL≧Q/(40√A)である(ここでL:スタティックミキサーの流路長[m]、Q:ポリマー押出量[t/h]、A:総流路断面積[m2]である)。またさらに製膜時の熱可塑性樹脂BのTm以下とし、なおかつ上述のような、フィードブロックおよびスタティックミキサーを用いた場合には、ヘイズ上昇値を2%以下にすることができ、この場合透過光の散乱が非常に少なく、透明性に非常に優れたフィルムを得ることができ、成形体とした場合さらに光沢感のあるものとなるため好ましい。ヘイズ上昇値の下限は特に定めるものではなく、上昇値が低いほど散乱が少なくなるため好ましい。 The laminated film of the present invention preferably has a haze increase value of 15% or less after a 30-minute heating test in an atmosphere at 210 ° C. The increase value of haze here is a difference between haze (%) after heating and haze (%) before heating. More preferably, it is 10% or less, more preferably 5% or less, and most preferably 2% or less. By laminating 50 or more layers of the thermoplastic resin A and the thermoplastic resin B, the haze increase value can be reduced to 15% or less. In this case, there is no problem from the viewpoint of light transmittance, and the molded body or the like can be used. Suitable for use. Furthermore, by setting the heat treatment temperature during film formation to the melting point Tm or less of the thermoplastic resin B (where the melting point is thermoplastic resin A> thermoplastic resin B), the haze increase value can be 10% or less. In this case, the scattered light is less scattered, and it is preferable because the molded article does not appear white and cloudy. Here, the melting point Tm is a temperature at which the endotherm due to melting is maximized when the sample is heated at a constant rate by DSC. Further, by setting the lamination accuracy to 30% or less, the haze increase value can be made 5% or less. In this case, it is possible to obtain a film having less transparency of transmitted light and excellent transparency. Is preferable because it is glossy. In order to reduce the lamination accuracy to 30% or less, a feed having 200 to 2000 slits as a unit for laminating different types of thermoplastic resins during film formation, and the processing accuracy of the slits is ± 10 μm or less. In addition, it is preferable to use a block, and it is preferable that the static mixer used for increasing the number of stacked layers has a flow path length L that satisfies the following formula. That is, L ≧ Q / (40√A) (where, L: static mixer channel length [m], Q: polymer extrusion rate [t / h], A: total channel cross-sectional area [m 2 ]) is there). Further, when Tm or less of the thermoplastic resin B at the time of film formation is used, and the above-described feed block and static mixer are used, the haze increase value can be 2% or less. The film has a very low scattering and can be obtained with a very excellent transparency, and when it is formed into a molded product, it is preferable because it has a more glossy appearance. The lower limit of the haze increase value is not particularly defined, and the lower the increase value, the better the scattering.

本発明の積層フィルムは小角X線散乱測定において、end方向および/あるいはedge方向において、スポット状の散乱が観察されることが好ましい。本発明において、スポット状の散乱とは、ラメラ構造の厚みが大きいということを指している。このような構造とするためには、厚みが30nm未満の層を50層以上とすることが好ましく、またさらに長手方向と幅方向の物性の差が少なくなるように、延伸倍率を調整することがより好ましい。このような場合、隣り合う層との相互作用が強まり、高温下での寸法安定性と成形性を向上させるため好ましい。   In the laminated film of the present invention, it is preferable that spot-like scattering is observed in the end direction and / or the edge direction in the small-angle X-ray scattering measurement. In the present invention, spot-like scattering means that the thickness of the lamellar structure is large. In order to obtain such a structure, it is preferable that the thickness of the layer having a thickness of less than 30 nm is 50 or more, and the stretching ratio can be adjusted so that the difference in physical properties between the longitudinal direction and the width direction is reduced. More preferred. In such a case, the interaction with adjacent layers is strengthened, which is preferable because the dimensional stability and moldability at high temperatures are improved.

本発明の積層フィルムは熱可塑性樹脂Aもしくは熱可塑性樹脂BのΔTmが60℃以下であることが好ましい。ここでいうΔTmとはDSCにて求まる、融点Tmと降温結晶化温度Tmcの差である。降温結晶化温度Tmcとは、融点以上まで昇温して熱履歴を取り去った試料を一定速度で降温した時に、結晶化による放熱が最も大きくなる温度のことである。熱可塑性樹脂Aもしくは熱可塑性樹脂BのΔTmが60℃以下で、30nm未満の層が50層以上含まれる場合であれば、層内で両樹脂の結晶からなるラメラの周期構造が形成されるために適切な結晶化速度となり、高温下での寸法安定性と成形性が向上するため好ましい。   In the laminated film of the present invention, ΔTm of the thermoplastic resin A or the thermoplastic resin B is preferably 60 ° C. or less. Here, ΔTm is the difference between the melting point Tm and the cooling crystallization temperature Tmc, as determined by DSC. The temperature-falling crystallization temperature Tmc is a temperature at which the heat release due to crystallization becomes maximum when the temperature of a sample that has been raised to the melting point or higher and removed the thermal history is lowered at a constant rate. If ΔTm of thermoplastic resin A or thermoplastic resin B is 60 ° C. or lower and 50 or more layers of less than 30 nm are included, a lamellar periodic structure composed of crystals of both resins is formed in the layer. Therefore, it is preferable because the crystallization speed is suitable and the dimensional stability and moldability at high temperature are improved.

本発明の積層フィルムは、その厚みが1μm以上600μm以下であることが好ましい。厚みが1μmより小さい場合、皺が入りやすいなど取り扱い性が悪くなるため好ましくなく、さらに積層数が1000層以上の場合には1層あたりの厚みが小さくなりすぎるため好ましくない。また600μmより大きい場合製膜が困難であったり、層の数が多くなりすぎるため生産効率が悪くなったり、厚みが大きすぎるため加工時等に取り扱い性が悪いため好ましくない。   The laminated film of the present invention preferably has a thickness of 1 μm or more and 600 μm or less. When the thickness is smaller than 1 μm, the handling property is deteriorated because it is easy to cause wrinkles, and when the number of laminated layers is 1000 layers or more, the thickness per layer becomes too small. On the other hand, when it is larger than 600 μm, it is not preferable because film formation is difficult, the number of layers becomes too large, the production efficiency is deteriorated, and the thickness is too large, so that the handleability is poor at the time of processing.

本発明の積層フィルムは二軸延伸フィルムであることが好ましい。二軸延伸されたフィルムは、高剛性でかつ高温下での寸法安定性に優れるためである。   The laminated film of the present invention is preferably a biaxially stretched film. This is because the biaxially stretched film has high rigidity and excellent dimensional stability at high temperatures.

本発明の積層フィルムは長手方向と幅方向の物性の差が小さく、縦横にバランス化されていることが好ましい。具体的には長手方向の破断伸度(%)と幅方向の破断伸度(%)の値の差が50%以内である。このような構造にすることにより、高温下での寸法安定性や広い温度範囲での成形加工性が向上するだけでなく、加熱後の透明性も優れたフィルムを得ることができるため好ましい。縦横にバランス化された構造を持つためには、未延伸フィルムの幅方向の厚みにおいて、フィルムエッジ部分の厚みがフィルム中心部分の厚みの2.5倍以内であることが好ましい。未延伸フィルムがこのような厚みである場合、ニ軸延伸後の幅方向の厚みムラが少なく、製膜性が良好となるため好ましい。また延伸前に施す予熱工程の時間は20秒以内であることが好ましい。予熱時間が20秒より長いとフィルムの結晶化が進み、延伸性が悪くなるため好ましくない。さらに縦延伸および横延伸時の予熱工程で予熱温度と延伸温度は、熱可塑性樹脂Aのガラス転移温度と熱可塑性樹脂Bのガラス転移温度の間の温度とすることが好ましく、延伸倍率は、2.8倍〜3.5倍の間とすることが好ましい。このような延伸条件で製膜した場合、熱可塑性樹脂Aおよび熱可塑性樹脂B両方の樹脂の結晶化が制御されるため、加熱後の透明性が優れたフィルムになるとともに、長手方向・幅方向の配向が同程度となり縦横にバランス化されるため、高温下での寸法安定性や広い温度範囲での成形加工性が向上するものである。一方従来の積層フィルムではこのような温度条件で延伸すると、破れが多発するなどの問題があった。本発明の構成とすることにより、このような温度条件で延伸が可能となったものである。   The laminated film of the present invention has a small difference in physical properties between the longitudinal direction and the width direction, and is preferably balanced vertically and horizontally. Specifically, the difference between the breaking elongation (%) in the longitudinal direction and the breaking elongation (%) in the width direction is within 50%. Such a structure is preferable because not only the dimensional stability at high temperature and the molding processability in a wide temperature range can be improved, but also a film having excellent transparency after heating can be obtained. In order to have a vertically and horizontally balanced structure, it is preferable that the thickness of the film edge portion is within 2.5 times the thickness of the center portion of the film in the thickness in the width direction of the unstretched film. It is preferable that the unstretched film has such a thickness because the thickness unevenness in the width direction after biaxial stretching is small and the film forming property is improved. Moreover, it is preferable that the time of the preheating process performed before extending | stretching is less than 20 second. When the preheating time is longer than 20 seconds, the crystallization of the film proceeds and the stretchability is deteriorated, which is not preferable. Further, in the preheating step during longitudinal stretching and transverse stretching, the preheating temperature and the stretching temperature are preferably set between the glass transition temperature of the thermoplastic resin A and the glass transition temperature of the thermoplastic resin B, and the stretching ratio is 2 It is preferably between 8 times and 3.5 times. When the film is formed under such stretching conditions, since the crystallization of both the thermoplastic resin A and the thermoplastic resin B is controlled, it becomes a film having excellent transparency after heating, and in the longitudinal direction / width direction. Therefore, the dimensional stability at a high temperature and the molding processability in a wide temperature range are improved. On the other hand, when the conventional laminated film is stretched under such temperature conditions, there are problems such as frequent tearing. By adopting the configuration of the present invention, stretching can be performed under such temperature conditions.

本発明の積層構造としては、少なくとも熱可塑性樹脂Aを主成分とする層と熱可塑性樹脂Bを主成分とする層とを厚み方向に規則的に積層した構造を有していることが好ましい。すなわち、本発明において、積層フィルム中の熱可塑性樹脂Aを主成分とする層と熱可塑性樹脂Bを主成分とする層との厚み方向における配置の序列がランダムな状態ではないことが好ましく、熱可塑性樹脂Aを主成分とする層と熱可塑性樹脂Bを主成分とする層以外の第3の層以上についてはその配置の序列については特に限定されるものではない。 本発明の積層フィルムにおいては、熱機械試験機を用い、本発明の測定条件にて測定した際、少なくとも長手方向の180℃における変形率が−1%以上3%以下であることが好ましい。より好ましくは、−0.3%以上1.5%以下である。すなわち、このようなフィルムは高温下での寸法安定性に優れたフィルムと言えるものであり、従来は制御することが困難であった長手方向の寸法安定性が大幅に向上したものである。一方、変形率が−1.0%未満の場合、収縮が大きく、成形加工の際に高度な寸法安定性を要求される場合には使用が困難となる。また、変形率が3より大きい場合には、膨張量が大きいために、同様に使用が困難となる。また、さらに好ましくは長手方向および幅方向の180℃における変形率が−1%以上3%以下であることが好ましい。   The laminated structure of the present invention preferably has a structure in which at least a layer mainly composed of the thermoplastic resin A and a layer mainly composed of the thermoplastic resin B are regularly laminated in the thickness direction. That is, in the present invention, it is preferable that the arrangement order in the thickness direction of the layer mainly composed of the thermoplastic resin A and the layer mainly composed of the thermoplastic resin B in the laminated film is not in a random state. The order of arrangement of the third and higher layers other than the layer mainly composed of the plastic resin A and the layer mainly composed of the thermoplastic resin B is not particularly limited. In the laminated film of the present invention, when measured under the measurement conditions of the present invention using a thermomechanical tester, it is preferable that at least the deformation rate at 180 ° C. in the longitudinal direction is −1% or more and 3% or less. More preferably, it is -0.3% or more and 1.5% or less. That is, such a film can be said to be a film excellent in dimensional stability at high temperatures, and the dimensional stability in the longitudinal direction, which has conventionally been difficult to control, is greatly improved. On the other hand, when the deformation rate is less than −1.0%, the shrinkage is large, and it becomes difficult to use when a high degree of dimensional stability is required during molding. Further, when the deformation rate is larger than 3, the expansion amount is large, so that the use is similarly difficult. More preferably, the deformation rate at 180 ° C. in the longitudinal direction and the width direction is from −1% to 3%.

本発明の積層フィルムでは、長手方向と幅方向の少なくとも一方向の降伏点応力が100MPa以下であり、かつ破断伸度が180%以上であることがこのましい。このようなフィルムは、低応力で変形しかつ大変形にも追従できるため、成型加工性に優れたフィルムといえる。より好ましくは、少なくとも一方向の破断伸度が200%以上である。破断伸度が180%未満の場合、大変形を要求される成型加工ではフィルム切れが生じるため好ましくない。   In the laminated film of the present invention, it is preferable that the yield point stress in at least one of the longitudinal direction and the width direction is 100 MPa or less and the elongation at break is 180% or more. Such a film can be said to be a film excellent in molding processability because it deforms with low stress and can follow large deformation. More preferably, the elongation at break in at least one direction is 200% or more. When the elongation at break is less than 180%, the film breakage occurs in the molding process requiring large deformation, which is not preferable.

本発明の積層フィルムは、長手方向と幅方向の合計のヤング率が7GPa以上であることが好ましい。このようなフィルムは、剛性に優れており、加工工程でのハンドリング性に優れる。また、より好ましくは7.5GPa以上である。   The laminated film of the present invention preferably has a total Young's modulus of 7 GPa or more in the longitudinal direction and the width direction. Such a film is excellent in rigidity and excellent in handling properties in a processing step. More preferably, it is 7.5 GPa or more.

本発明の積層フィルムには、易滑層、易接着層、粘着層、反射防止膜、ハードコート層、近赤外線遮蔽層、電磁波遮蔽層、帯電防止層、導電層、防汚層、結露防止層などが内部や表層に形成されていてもよい。これらの層としては、特に限定されず各種の従来から知られている技術等を用いることができる。   The laminated film of the present invention includes an easy-slip layer, an easy-adhesion layer, an adhesive layer, an antireflection film, a hard coat layer, a near-infrared shielding layer, an electromagnetic wave shielding layer, an antistatic layer, a conductive layer, an antifouling layer, and a dew condensation prevention layer. Etc. may be formed inside or on the surface layer. These layers are not particularly limited, and various conventionally known techniques can be used.

次に、本発明の積層フィルムの好ましい製造方法を以下に説明する。
熱可塑性樹脂Aおよび熱可塑性樹脂Bをペレットなどの形態で用意する。ペレットは、必要に応じて、事前乾燥を熱風中あるいは真空下で行い、押出機に供給される。押出機内において、融点以上に加熱溶融された樹脂は、ギヤポンプ等で樹脂の押出量を均一化され、フィルタ等を介して異物や変性した樹脂をろ過される。さらに、樹脂はダイにて目的の形状に成形された後、吐出される。
Next, the preferable manufacturing method of the laminated | multilayer film of this invention is demonstrated below.
A thermoplastic resin A and a thermoplastic resin B are prepared in the form of pellets. If necessary, the pellets are pre-dried in hot air or under vacuum and supplied to an extruder. In the extruder, the resin melted by heating to the melting point or higher is made uniform in the amount of resin extruded by a gear pump or the like, and foreign matter or modified resin is filtered through a filter or the like. Further, the resin is formed into a desired shape with a die and then discharged.

多層フィルムを得るための方法としては、2台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂を、マルチマニホールドダイやフィールドブロックやスタティックミキサー等を用いて多層に積層する方法等を使用することができる。また、これらを任意に組み合わせても良い。ここで本発明の効果を効率よく得るためには、500層以上のフィードブロックを少なくとも用いることが好ましい。また、さらにこのフィードブロック部での圧力損失が3MPa以上10MPa以下であることがより好ましい。少なくとも500層以上のフィードブロックを用いると、積層精度が良好となるため好ましい。また、フィードブロック部での圧力損出が3MPa以上10MPa以下であると、さらに積層精度が高い積層フィルムを得られやすくなり好ましい。   As a method for obtaining a multilayer film, a method of laminating thermoplastic resins sent from different flow paths using two or more extruders in multiple layers using a multi-manifold die, a field block, a static mixer, etc. Can be used. Moreover, you may combine these arbitrarily. Here, in order to efficiently obtain the effect of the present invention, it is preferable to use at least a feed block having 500 layers or more. Furthermore, it is more preferable that the pressure loss in the feed block portion is 3 MPa or more and 10 MPa or less. It is preferable to use a feed block having at least 500 layers because stacking accuracy is improved. In addition, it is preferable that the pressure loss at the feed block portion is 3 MPa or more and 10 MPa or less because it is easy to obtain a laminated film with higher lamination accuracy.

ダイから吐出された多層に積層されたシートは、キャスティングドラム等の冷却体上に押し出され、冷却固化され、キャスティングフィルムが得られる。この際、ワイヤー状、テープ状、針状あるいはナイフ状等の電極を用いて、静電気力によりキャスティングドラム等の冷却体に密着させ急冷固化させる方法や、スリット状、スポット状の装置からエアーを吹き出してキャスティングドラム等の冷却体に密着させ急冷固化させる方法が好ましい。このようにして得られたキャスティングフィルムは、必要に応じて二軸延伸することが好ましい。二軸延伸とは、縦方向および横方向に延伸することをいう。二軸延伸されたフィルムは、高剛性でかつ高温下での寸法安定性に優れるため好ましい。延伸は、逐次二軸延伸しても良いし、同時に二方向に延伸してもよい。また、さらに縦および/または横方向に再延伸を行ってもよい。   The multi-layered sheets discharged from the die are extruded onto a cooling body such as a casting drum, and cooled and solidified to obtain a casting film. At this time, air is blown out from a slit-like or spot-like device by using a wire-like, tape-like, needle-like, or knife-like electrode to bring it into close contact with a cooling body such as a casting drum by electrostatic force and rapidly solidify it. Thus, a method in which the material is brought into close contact with a cooling body such as a casting drum and rapidly solidified is preferable. The casting film thus obtained is preferably biaxially stretched as necessary. Biaxial stretching refers to stretching in the longitudinal direction and the transverse direction. A biaxially stretched film is preferred because it is highly rigid and excellent in dimensional stability at high temperatures. Stretching may be performed sequentially biaxially or simultaneously in two directions. Further, re-stretching may be performed in the longitudinal and / or transverse direction.

ここで、縦方向への延伸とは、フィルムに長手方向の分子配向を与えるための延伸を言い、通常は、ロールの周速差により施される。この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階に行っても良い。延伸の倍率としては樹脂の種類により異なるが、通常、2〜15倍が好ましく、積層フィルムを構成する樹脂の過半量がポリエチレンテレフタレートを用いた場合には、2〜7倍が特に好ましく用いられる。さらに長手方向と幅方向の物性の差を小さくして、寸法安定性や成形性を向上させたい場合には、2.8倍〜3.5倍が好ましく用いられる。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度〜ガラス転移温度+100℃が好ましい。また長手方向と幅方向の物性の差を小さくして、寸法安定性や成形性を向上させたい場合には、熱可塑性樹脂Aのガラス転移温度と熱可塑性樹脂Bのガラス転移温度の間の温度で予熱・延伸することが好ましい。   Here, the stretching in the longitudinal direction refers to stretching for imparting molecular orientation in the longitudinal direction to the film, and is usually performed by a difference in peripheral speed between rolls. This stretching may be performed in one stage, or may be performed in multiple stages using a plurality of roll pairs. Although it changes with kinds of resin as a magnification of extending | stretching, 2 to 15 times is preferable normally, and when the majority of resin which comprises a laminated | multilayer film uses a polyethylene terephthalate, 2 to 7 times is used especially preferable. Furthermore, when it is desired to reduce the difference in physical properties between the longitudinal direction and the width direction to improve dimensional stability and formability, 2.8 to 3.5 times is preferably used. Moreover, as extending | stretching temperature, the glass transition temperature-glass transition temperature +100 degreeC of resin which comprises a laminated | multilayer film are preferable. Further, when it is desired to improve the dimensional stability and formability by reducing the difference between the physical properties in the longitudinal direction and the width direction, the temperature between the glass transition temperature of the thermoplastic resin A and the glass transition temperature of the thermoplastic resin B. It is preferable to preheat and stretch with.

このようにして得られた一軸延伸されたフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。   The uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.

また、横方向の延伸とは、フィルムに幅方向の配向を与えるための延伸を言い、通常は、テンターを用いて、フィルムの両端をクリップで把持しながら搬送して、幅方向に延伸する。延伸の倍率としては樹脂の種類により異なるが、通常、2〜15倍が好ましく、積層フィルムを構成する樹脂の過半量がポリエチレンテレフタレートを用いた場合には、2〜7倍が特に好ましく用いられる。さらに長手方向と幅方向の物性の差を小さくして、寸法安定性や成形性を向上させたい場合には、2.8倍〜3.5倍が好ましく用いられる。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度〜ガラス転移温度+120℃が好ましい。さらに長手方向と幅方向の物性の差を小さくして、寸法安定性や成形性を向上させたい場合には、熱可塑性樹脂Aのガラス転移温度と熱可塑性樹脂Bのガラス転移温度の間の温度で予熱・延伸することが好ましい。   The stretching in the transverse direction refers to stretching for imparting the orientation in the width direction to the film. Usually, the film is stretched in the width direction by using a tenter while conveying both ends of the film with clips. Although it changes with kinds of resin as a magnification of extending | stretching, 2 to 15 times is preferable normally, and when the majority of resin which comprises a laminated | multilayer film uses a polyethylene terephthalate, 2 to 7 times is used especially preferable. Furthermore, when it is desired to reduce the difference in physical properties between the longitudinal direction and the width direction to improve dimensional stability and formability, 2.8 to 3.5 times is preferably used. Moreover, as extending | stretching temperature, the glass transition temperature-glass transition temperature +120 degreeC of resin which comprises a laminated | multilayer film are preferable. Furthermore, when it is desired to improve the dimensional stability and moldability by reducing the difference in physical properties between the longitudinal direction and the width direction, the temperature between the glass transition temperature of the thermoplastic resin A and the glass transition temperature of the thermoplastic resin B. It is preferable to preheat and stretch with.

こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、テンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。より好ましくは熱可塑性樹脂Aの融点以下、熱可塑性樹脂Bの融点以上(ここでは熱可塑性樹脂Aの融点>熱可塑性樹脂Bの融点)である。このように熱可塑性樹脂Aの融点以下、熱可塑性樹脂Bの融点以上で熱処理された場合、前述の層内に周期構造が形成されるようになり、より高い寸法安定性と成形加工性が得られるようになるものである。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、熱処理から徐冷の際に弛緩処理などを併用してもよい。   The biaxially stretched film is preferably subjected to a heat treatment at a temperature not lower than the stretching temperature and not higher than the melting point in the tenter in order to impart flatness and dimensional stability. More preferably, it is below the melting point of the thermoplastic resin A and above the melting point of the thermoplastic resin B (here, the melting point of the thermoplastic resin A> the melting point of the thermoplastic resin B). Thus, when heat treatment is performed below the melting point of the thermoplastic resin A and above the melting point of the thermoplastic resin B, a periodic structure is formed in the aforementioned layer, and higher dimensional stability and moldability are obtained. It comes to be able to be. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up. Moreover, you may use a relaxation process etc. together in the case of annealing from heat processing as needed.

そして、このようにして得られた本発明の積層フィルムは、成形体として、各種成形加工などに好適に用いられる。加工方法は特に限定されないが、例えば表面加工、エンボス加工、サンドマット加工、絞り加工、真空成形、真空圧空成形、インモールドラミ、冷間延伸、インモールドスタンピング、インサート成形などの易成形性が求められる加工方法において、製品または支持体として用いられるとき、必要な形状に成形加工できるものである。また本発明の積層フィルムは転写箔の材料に好適である。転写箔はベースフィルム上に剥離層・インキ・接着層などが重なった構成であり、熱や圧力を用いて成形済み製品に絵柄を転写する際に用いられる。本発明の積層フィルムは広い温度範囲での成形加工性に優れるため、転写箔のベースフィルムとして用いて、複雑な形状の製品に絵柄を転写するのに好適である。さらに本発明の積層フィルムは携帯電話用のリチウムイオン電池等の外装材に好適である。リチウムイオン電池の外装材用途では深いしぼり比での成形が要求され、その構成としては未延伸ポリプロピレンフィルム、アルミ箔に加え、ナイロンフィルム、PETフィルムなどを貼り合わせたものとなっている。本発明の積層フィルムは従来に比べて深いしぼりや複雑な形状にも加工でき、さらに高剛性であり透明性が高く外観の点で優れ、耐薬品性にも優れる特徴を有している。よって本発明の積層フィルムを未延伸ポリプロピレンフィルム、アルミ箔と貼り合わせてリチウムイオン電池の外装材として好適に用いることができる。   And the laminated | multilayer film of this invention obtained by doing in this way are used suitably for various shaping | molding processes etc. as a molded object. The processing method is not particularly limited, but easy formability such as surface processing, embossing, sand mat processing, drawing processing, vacuum forming, vacuum / pressure forming, in-mold lamination, cold drawing, in-mold stamping, insert molding is required. In a processing method to be used, when used as a product or a support, it can be formed into a required shape. The laminated film of the present invention is suitable as a material for transfer foil. The transfer foil has a structure in which a release layer, an ink, an adhesive layer, and the like overlap on a base film, and is used when a pattern is transferred to a molded product using heat or pressure. Since the laminated film of the present invention is excellent in moldability in a wide temperature range, it can be used as a base film for a transfer foil and is suitable for transferring a pattern to a product having a complicated shape. Furthermore, the laminated film of the present invention is suitable for exterior materials such as lithium ion batteries for mobile phones. In the case of exterior materials for lithium ion batteries, molding with a deep squeezing ratio is required, and the configuration is a laminate of an unstretched polypropylene film, an aluminum foil, a nylon film, a PET film, and the like. The laminated film of the present invention can be processed into deep squeezing and complex shapes as compared with the conventional ones, and further has characteristics of high rigidity, high transparency, excellent appearance, and excellent chemical resistance. Therefore, the laminated film of the present invention can be suitably used as an exterior material of a lithium ion battery by laminating with an unstretched polypropylene film and an aluminum foil.

本発明に使用した物性値の評価法を記載する。
(物性値の評価法)
(1)積層数
フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、電子顕微鏡観察により求めた。すなわち、透過型電子顕微鏡HU−12型((株)日立製作所製)を用い、フィルムの断面を3000〜500000倍に拡大観察し、断面写真を撮影、層構成および層数を測定した。なお本測定では200000倍に拡大し、RuO4で染色して観察を行なった。
An evaluation method of physical property values used in the present invention will be described.
(Method for evaluating physical properties)
(1) Number of layers The layer structure of the film was determined by observation with an electron microscope for a sample obtained by cutting out a cross section using a microtome. That is, using a transmission electron microscope HU-12 type (manufactured by Hitachi, Ltd.), the cross section of the film was magnified to 3000 to 500,000 times, a cross-sectional photograph was taken, and the layer configuration and the number of layers were measured. In this measurement, the image was magnified 200000 times and stained with RuO4 for observation.

(2)動的粘弾性
動的粘弾性はセイコーインスツルメンツ(株)社製EXSTRA6000&DMS6100を用いて評価した。長手方向について、昇温速度2℃/minで−150℃から220℃まで昇温し、そのtanδからα緩和のピーク温度を読みとり、α緩和温度とした。周波数は1Hz、試料形状は長さ20mm、幅10mmとした。
(2) Dynamic Viscoelasticity Dynamic viscoelasticity was evaluated using EXSTRA6000 & DMS6100 manufactured by Seiko Instruments Inc. In the longitudinal direction, the temperature was increased from −150 ° C. to 220 ° C. at a rate of temperature increase of 2 ° C./min, and the α relaxation peak temperature was read from the tan δ to obtain the α relaxation temperature. The frequency was 1 Hz, the sample shape was 20 mm long and 10 mm wide.

(3)融点・降温結晶化温度
試料の融点は、示差熱量分析(DSC)を用い、JIS−K−7122(1987年)に従って測定・算出した。装置はセイコー電子工業(株)製”ロボットDSC−RDC220”、またデータ解析は”ディスクセッションSSC/5200”を用いて評価を行なった。サンプル質量は5mg、昇温および降温速度は20℃/minとした。
(3) Melting point / cooling crystallization temperature The melting point of the sample was measured and calculated according to JIS-K-7122 (1987) using differential calorimetry (DSC). Evaluation was performed using “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd., and “Disk Session SSC / 5200” for data analysis. The sample mass was 5 mg, and the temperature increase and decrease rate was 20 ° C./min.

(4)熱膨張係数
熱膨張係数は、熱機械試験機セイコーインスツルメンス(株)社製EXTAR6000&TMA/SS6000を用いて評価した。試料は長さ20mm、幅4mmとし、長手方向、幅方向それぞれについて、定荷重伸び量試験機のチャック間(距離L=150mm)にフィルムを把持した。昇温速度10℃/minで30℃から150℃まで昇温し、続いて降温速度10℃/minで150℃から30℃まで降温した。この降温過程での65℃から50℃までの変形量を平均傾きから求めた。測定中の荷重は367.5kPaに一定になるようにした。
(4) Thermal expansion coefficient The thermal expansion coefficient was evaluated using EXTAR6000 & TMA / SS6000 manufactured by Seiko Instruments Inc. The sample had a length of 20 mm and a width of 4 mm, and the film was held between the chucks of the constant load elongation tester (distance L = 150 mm) in each of the longitudinal direction and the width direction. The temperature was increased from 30 ° C. to 150 ° C. at a rate of temperature increase of 10 ° C./min, and then the temperature was decreased from 150 ° C. to 30 ° C. at a rate of temperature decrease of 10 ° C./min. The amount of deformation from 65 ° C. to 50 ° C. in the temperature lowering process was determined from the average slope. The load during measurement was made constant at 367.5 kPa.

(5)ヘイズ
23℃、相対湿度65%において、フィルムを2時間放置した後、スガ試験機(株)製全自動直読ヘイズコンピューター「HGM−2DP」を用いて、波長590nmにおけるヘイズを測定した。3回の測定値の平均値を該サンプルのヘイズとした。また加熱試験後のヘイズの上昇値を測定する方法としては、試料を収縮変形しないように金属製の枠に貼りつけ、210℃に設定したTABAI製ギアオーブンGHPS−222中で30分間加熱し取り出した。この加熱後の試料のヘイズを上述の方法で測定し、加熱試験後のヘイズ上昇値を求めた。
加熱後のヘイズ上昇値=加熱後のヘイズ(%)− 加熱前のヘイズ(%)
(6)小角X線散乱測定による結晶構造
理学電機(株)社製X線発生装置RU−200を用いて行った。X線源はCuKα線(Niフィルター使用)、出力50kV 200mA、スリット系0.5mmφ、カメラ半径405mm、露出時間60minとした。得られた結果を表2に示す。
(5) Haze The film was allowed to stand for 2 hours at 23 ° C. and a relative humidity of 65%, and then the haze at a wavelength of 590 nm was measured using a fully automatic direct reading haze computer “HGM-2DP” manufactured by Suga Test Instruments Co., Ltd. The average value of three measurements was taken as the haze of the sample. As a method of measuring the increase in haze after the heating test, the sample was attached to a metal frame so as not to be deformed by deformation, and heated for 30 minutes in a TABAI gear oven GHPS-222 set at 210 ° C. It was. The haze of the sample after heating was measured by the method described above, and the haze increase value after the heating test was determined.
Increase in haze after heating = haze after heating (%)-haze before heating (%)
(6) Crystal structure by small-angle X-ray scattering measurement This was performed using an X-ray generator RU-200 manufactured by Rigaku Corporation. The X-ray source was CuKα ray (using Ni filter), output 50 kV 200 mA, slit system 0.5 mmφ, camera radius 405 mm, and exposure time 60 min. The obtained results are shown in Table 2.

(7)寸法安定性
寸法安定性は、熱機械試験機セイコーインスツルメンス(株)社製EXTAR6000&TMA/SS6000を用いて評価した。試料は長さ20mm、幅4mmとし、長手方向、幅方向それぞれについて、定荷重伸び量試験機のチャック間(距離L=150mm)にフィルムを把持し、昇温速度10℃/minで30℃から150℃まで昇温した時の180℃における変形量を寸法安定性とした。測定中の荷重は367.5kPaに一定になるようにした。なお、変形量がマイナスの場合、収縮をあらわし、変形量がプラスの場合、伸びを示しているものである。また、n数は3回とし、その平均値を採用した。
(7) Dimensional stability Dimensional stability was evaluated using an EXTAR6000 & TMA / SS6000 manufactured by Seiko Instruments Inc. The sample has a length of 20 mm and a width of 4 mm. In each of the longitudinal direction and the width direction, the film is held between chucks of a constant load elongation tester (distance L = 150 mm), and the temperature rises from 30 ° C. at a rate of temperature increase of 10 ° C./min. The amount of deformation at 180 ° C. when the temperature was raised to 150 ° C. was defined as dimensional stability. The load during measurement was made constant at 367.5 kPa. In addition, when the deformation amount is negative, it indicates contraction, and when the deformation amount is positive, it indicates elongation. The number of n was 3 and the average value was adopted.

(8)、破断伸度、
破断伸度はインストロンタイプの引張試験機(オリエンテック(株)製フィルム強伸度自動測定装置“テンシロンAMF/RTA−100”)を用いて、25℃、65%RHの環境下にてJIS−K7127(1999年)に準拠して測定した。フィルム長手方向およびフィルム幅方向それぞれについて、幅10mmの試料フィルムを、試長間100mm、引張り速度200mm/分の条件で引張り、破断伸度を求めた。なお、n数は5回とし、その平均値を採用した。
(8), elongation at break,
The elongation at break was determined by using an Instron type tensile tester (Orientec Co., Ltd. film tensile strength automatic measuring device “Tensilon AMF / RTA-100”) in an environment of 25 ° C. and 65% RH. -Measured according to K7127 (1999). With respect to each of the film longitudinal direction and the film width direction, a sample film having a width of 10 mm was stretched under conditions of 100 mm between test lengths and a pulling speed of 200 mm / min, and the breaking elongation was determined. The number of n was 5 and the average value was adopted.

(9)固有粘度
オルトクロロフェノール中、25℃で測定した溶液粘度から、算出した。また、溶液粘度はオストワルド粘度計を用いて測定した。単位は[dl/g]で示した。なお、n数は3回とし、その平均値を採用した。
(9) Intrinsic viscosity Calculated from the solution viscosity measured at 25 ° C in orthochlorophenol. The solution viscosity was measured using an Ostwald viscometer. The unit is [dl / g]. In addition, n number was made into 3 times and the average value was employ | adopted.

(10)真空成形テスト
真空成形装置SANWA KOGYO PLAVAC TYPE FB−7を用いてテストした。193℃に加熱した試料に、深さ15mm、直径50mmの円柱状のカップを押し当て、さらにカップ内の空気を一瞬で抜き取って真空にした。このとき試料がカップの形状に追従して変形するものは、成形性が高いと判断し、○とした。また試料がカップに追従して変形するものの、角部分が十分に成形されないものを△とした。さらに試料がカップに追従せず、ほとんど変形しないものは成形性が低いと判断し、×とした。
(10) Vacuum forming test It tested using the vacuum forming apparatus SANWA KOGYO PLAVAC TYPE FB-7. A columnar cup having a depth of 15 mm and a diameter of 50 mm was pressed against the sample heated to 193 ° C., and the air in the cup was taken out instantaneously to make a vacuum. At this time, the sample that deformed following the shape of the cup was judged to have high moldability, and was evaluated as ◯. Moreover, although the sample was deformed following the cup, the case where the corner portion was not sufficiently formed was indicated as Δ. Further, samples that did not follow the cup and hardly deformed were judged to have low moldability and were evaluated as x.

(実施例1)
熱可塑性樹脂Aとして、融点Tm255℃、降温結晶化温度Tmc192℃、固有粘度0.65のポリエチレンテレフタレート(PET)である東レ社製F20Sを用いた。この樹脂は、比較例1と同様の延伸条件および熱処理条件でPET単体の二軸延伸フィルムとしたとき、動的粘弾性測定におけるα緩和温度が118℃に観察されるものである。また熱可塑性樹脂Bとして融点Tm223℃、降温結晶化温度Tmc168℃、固有粘度1.2のポリブチレンテレフタレート(PBT)である東レ社製トレコン1200Sを用いた。この樹脂は、実施例1と同様の延伸条件および熱処理条件でPBT単体の二軸延伸フィルムとしたとき、動的粘弾性測定におけるα緩和温度が49℃に観察されるものである。ただし本発明で用いたPBTは融点が223℃であるため熱処理条件を235℃とするとフィルムが融解する問題がある。このためPBTの両表面にPETの層を積層し、PET/PBT/PETという3層の構成にして製膜し、α緩和温度を測定した。これらの熱可塑性樹脂は、それぞれ乾燥した後、押出機に供給した。
(Example 1)
As the thermoplastic resin A, F20S manufactured by Toray Industries, Inc., which is polyethylene terephthalate (PET) having a melting point Tm of 255 ° C., a falling crystallization temperature Tmc of 192 ° C., and an intrinsic viscosity of 0.65, was used. When this resin is a biaxially stretched film of PET alone under the same stretching conditions and heat treatment conditions as in Comparative Example 1, the α relaxation temperature in the dynamic viscoelasticity measurement is observed at 118 ° C. As the thermoplastic resin B, Toraycon 1200S manufactured by Toray Industries, Inc., which is polybutylene terephthalate (PBT) having a melting point Tm of 223 ° C., a falling crystallization temperature Tmc of 168 ° C., and an intrinsic viscosity of 1.2 was used. When this resin is a biaxially stretched film of PBT alone under the same stretching conditions and heat treatment conditions as in Example 1, the α relaxation temperature in the dynamic viscoelasticity measurement is observed at 49 ° C. However, since the PBT used in the present invention has a melting point of 223 ° C., there is a problem that the film melts when the heat treatment condition is 235 ° C. For this reason, a PET layer was laminated on both surfaces of the PBT to form a three-layer structure of PET / PBT / PET, and the α relaxation temperature was measured. Each of these thermoplastic resins was dried and then supplied to an extruder.

熱可塑性樹脂AおよびBは、それぞれ、押出機にて280℃の溶融状態とし、ギヤポンプおよびフィルタを介した後、177層のフィードブロック(圧力損失1MPa)にて合流させた。合流した熱可塑性樹脂AおよびBは、スタティックミキサーに供給して、スクエア状の流路にて3回分割・結合され、PETが705層、PBTが704層からなる厚み方向に交互に積層された構造とし、両表層部分がPETとなった。ここで、積層厚み比(=重量比)がA/B=1になるよう、吐出量にて調整した。このようにして得られた計1409層からなる積層体をTダイに供給しシート状に成形した後、静電印加しながら、表面温度20℃に保たれたキャスティングドラム上で急冷固化した。この時キャスティングフィルムは幅方向の厚みにおいて、フィルムエッジ部分の厚みがフィルム中心部分の厚みの2.3倍となるようにした。
得られたキャストフィルムは、60℃に設定したロール群で10秒間予熱し、さらに70℃に設定したロール群で加熱し、縦方向に3倍延伸した。この一軸延伸フィルムをテンターに導き、70℃の熱風で予熱後、横方向に3.2倍延伸した。延伸したフィルムは、そのまま、テンター内で235℃の熱風にて熱処理を行い、つづいて5%の弛緩処理を施し、室温まで徐冷後、巻き取った。得られたフィルムの厚みは、12μmであった。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表1および表3に示す。
The thermoplastic resins A and B were each melted at 280 ° C. with an extruder, passed through a gear pump and a filter, and then merged in a 177-layer feed block (pressure loss 1 MPa). The joined thermoplastic resins A and B were supplied to a static mixer and divided and combined three times in a square flow path, and were alternately laminated in the thickness direction consisting of 705 layers of PET and 704 layers of PBT. The structure was such that both surface layers were PET. Here, the discharge thickness was adjusted so that the lamination thickness ratio (= weight ratio) was A / B = 1. The thus obtained laminate consisting of a total of 1409 layers was supplied to a T-die and formed into a sheet, and then rapidly cooled and solidified on a casting drum maintained at a surface temperature of 20 ° C. while applying an electrostatic force. At this time, in the thickness of the casting film in the width direction, the thickness of the film edge portion was set to 2.3 times the thickness of the film central portion.
The obtained cast film was preheated with a roll group set at 60 ° C. for 10 seconds, further heated with a roll group set at 70 ° C., and stretched 3 times in the longitudinal direction. The uniaxially stretched film was guided to a tenter, preheated with hot air at 70 ° C., and stretched 3.2 times in the transverse direction. The stretched film was directly heat-treated in a tenter with hot air at 235 ° C., subsequently subjected to a relaxation treatment of 5%, gradually cooled to room temperature, and wound up. The thickness of the obtained film was 12 μm. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Tables 1 and 3.

(実施例2)
スクエアー状流路のスタティックミキサーにて分割・結合される回数が2回であること以外は、実施例1と同様の装置・条件で、計705層からなる積層フィルムを得た。積層フィルムの厚みは12μmとした。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表1に示す。
(Example 2)
A laminated film consisting of a total of 705 layers was obtained under the same apparatus and conditions as in Example 1 except that the number of times of division and coupling by the static mixer of the square channel was two. The thickness of the laminated film was 12 μm. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 1.

(実施例3)
スクエア状流路のスタティックミキサーにて分割・結合される回数が1回であること以外は実施例1と同様の装置・条件で、計353層からなる積層フィルムを得た。積層フィルムの厚みは12μmとした。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表1に示す。
(Example 3)
A laminated film consisting of a total of 353 layers was obtained under the same apparatus and conditions as in Example 1 except that the number of times of division and coupling by the static mixer of the square channel was one. The thickness of the laminated film was 12 μm. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 1.

(実施例4)
実施例1と同様の装置・条件で、計1409層からなる積層フィルムを得た。但し、製膜速度を調整してフィルム厚みを25μmとした。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表1に示す。
Example 4
A laminated film consisting of a total of 1409 layers was obtained under the same apparatus and conditions as in Example 1. However, the film thickness was adjusted to 25 μm by adjusting the film forming speed. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 1.

(実施例5)
実施例1と同様の装置・条件で、計1409層からなる積層フィルムを得た。但し、製膜速度を調整してフィルム厚みを40μmとした得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表1に示す。
(Example 5)
A laminated film consisting of a total of 1409 layers was obtained under the same apparatus and conditions as in Example 1. However, the resulting film with a film thickness of 40 μm by adjusting the film forming speed is highly rigid and excellent in dimensional stability at high temperature. Furthermore, transparency after heating and moldability in a wide temperature range It was also an excellent film. The obtained results are shown in Table 1.

(実施例6)
実施例1と同様の装置・条件で、計1409層からなる積層フィルムを得た。但し、それぞれの熱可塑性樹脂の層厚みがA:B=3:1になるように調整した。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表1に示す。
(Example 6)
A laminated film consisting of a total of 1409 layers was obtained under the same apparatus and conditions as in Example 1. However, it adjusted so that the layer thickness of each thermoplastic resin might be set to A: B = 3: 1. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 1.

(実施例7)
実施例1と同様の装置・条件で、計1409層からなる積層フィルムを得た。但し、それぞれの熱可塑性樹脂の層厚みがA:B=2:3となるように調整した。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表2に示す。
(Example 7)
A laminated film consisting of a total of 1409 layers was obtained under the same apparatus and conditions as in Example 1. However, it adjusted so that the layer thickness of each thermoplastic resin might be set to A: B = 2: 3. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 2.

(実施例8)
実施例1と同様の装置・条件で、計1409層からなる積層フィルムを得た。但し延伸後に行う熱処理温度は210℃とした。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表2に示す。
(Example 8)
A laminated film consisting of a total of 1409 layers was obtained under the same apparatus and conditions as in Example 1. However, the heat treatment temperature performed after stretching was 210 ° C. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 2.

(実施例9)
705層でかつスリットの加工精度が±5μmのフィードブロック(圧力損失7MPa)を用い、またスタティックミキサーは、その流路長Lが次の式を満たすものを用い、}かつ分割・結合される回数が1回であること以外は実施例1と同様の装置・条件で、計1409層からなるフィルムを得た。ここでスクエアミキサーは0.7L=Q/40√A (L:スタティックミキサーの流路長[m]、Q:ポリマー
押出量[t/h]、A:総流路断面積[m2] ) を満たすものである。得られたフィルムは高剛性でかつ高温下での寸法安定性、広い温度範囲での成形加工性に優れ、また加熱後の透明性がさらに優れたフィルムであった。得られた結果を表2に示す。
Example 9
Use a feed block (pressure loss 7MPa) with 705 layers and slit machining accuracy of ± 5μm, and use a static mixer whose flow path length L satisfies the following formula. A film consisting of a total of 1409 layers was obtained under the same apparatus and conditions as in Example 1 except that the number of times was one. Here, the square mixer is 0.7L = Q / 40√A (L: static mixer channel length [m], Q: polymer extrusion amount [t / h], A: total channel cross-sectional area [m2]) To meet. The obtained film was highly rigid, excellent in dimensional stability at high temperatures, excellent in moldability in a wide temperature range, and further excellent in transparency after heating. The obtained results are shown in Table 2.

(実施例10)
実施例9と同様の装置・条件で計1409層からなる積層フィルムを得た。但し延伸後に行う熱処理温度は210℃とした。得られたフィルムは高剛性でかつ高温下での寸法安定性、広い温度範囲での成形加工性に優れ、また加熱後の透明性が非常に優れたフィルムであった。得られた結果を表2に示す。
(Example 10)
A laminated film consisting of a total of 1409 layers was obtained using the same apparatus and conditions as in Example 9. However, the heat treatment temperature performed after stretching was 210 ° C. The obtained film was highly rigid, excellent in dimensional stability at high temperatures, excellent in moldability in a wide temperature range, and very excellent in transparency after heating. The obtained results are shown in Table 2.

(実施例11)
熱可塑性樹脂Aとして融点Tm255℃、降温結晶化温度Tmc192℃、固有粘度0.65のPETである東レ社製F20Sを用い、熱可塑性樹脂Bとして融点Tmが229℃のDuPont社製ポリプロピレンテレフタレート(PPT)を用いたこと以外は実施例1と同様の装置・条件で、計1409層からなる積層フィルムを得た。なおここで用いたPPT樹脂は実施例1と同様の延伸条件および熱処理条件でPPT単体の二軸延伸フィルムとしたとき、動的粘弾性測定におけるα緩和温度が58℃に観察されるものである。ただし本発明で用いたPPTは融点が192℃であるため、熱処理温度を235℃とするとフィルムが融解する問題がある。このためPPTの両表面にPETの層を積層し、PET/PPT/PETという3層の構成にして製膜し、α緩和温度を測定した。得られたフィルムは高剛性でかつ高温下での寸法安定性に優れ、さらに加熱後の透明性や、広い温度範囲での成型加工性にも優れたフィルムであった。得られた結果を表2に示す。
(Example 11)
As the thermoplastic resin A, F20S manufactured by Toray, which is a PET having a melting point Tm of 255 ° C., a falling crystallization temperature Tmc of 192 ° C., and an intrinsic viscosity of 0.65, is used as the thermoplastic resin B. A laminated film consisting of a total of 1409 layers was obtained using the same apparatus and conditions as in Example 1, except that In addition, when the PPT resin used here is a biaxially stretched film of PPT alone under the same stretching conditions and heat treatment conditions as in Example 1, the α relaxation temperature in dynamic viscoelasticity measurement is observed at 58 ° C. . However, since the PPT used in the present invention has a melting point of 192 ° C., there is a problem that the film melts when the heat treatment temperature is 235 ° C. Therefore, a PET layer was laminated on both surfaces of PPT to form a three-layer structure of PET / PPT / PET, and the α relaxation temperature was measured. The obtained film was highly rigid and excellent in dimensional stability at high temperatures, and was also excellent in transparency after heating and moldability in a wide temperature range. The obtained results are shown in Table 2.

(比較例1)
熱可塑性樹脂Aとして、融点Tm255℃、降温結晶化温度Tmc192℃、固有粘度0.65のPETである東レ社製F20Sを用いた。この熱可塑性樹脂Aを乾燥した後、押出機に供給した。
熱可塑性樹脂Aは、押出機にて280℃の溶融状態とし、ギヤポンプおよびフィルタを介した後、Tダイに供給しシート状に成形した後、静電印加しながら、表面温度20℃に保たれたキャスティングドラム上で急冷固化した。
得られたキャストフィルムは、85℃に設定したロール群で予熱し、さらに90℃に設定したロール群で加熱し、縦方向に3.3倍延伸した。この一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、横方向に4.0倍延伸した。延伸したフィルムは、そのまま、テンター内で235℃の熱風にて熱処理を行い、つづいて5%の弛緩処理を施し、室温まで徐冷後、巻き取った。得られたフィルムの厚みは、15μmであった。本フィルムは、高温下での寸法安定性と成形加工性が不適であった。得られた結果を表2に示す。
(Comparative Example 1)
As the thermoplastic resin A, F20S manufactured by Toray Industries, Inc., which is a PET having a melting point Tm of 255 ° C., a falling crystallization temperature Tmc of 192 ° C., and an intrinsic viscosity of 0.65, was used. The thermoplastic resin A was dried and then supplied to an extruder.
The thermoplastic resin A is melted at 280 ° C. with an extruder, passed through a gear pump and a filter, supplied to a T-die and formed into a sheet shape, and kept at a surface temperature of 20 ° C. while applying electrostatic force. It was quickly cooled and solidified on a casting drum.
The obtained cast film was preheated with a roll group set at 85 ° C., further heated with a roll group set at 90 ° C., and stretched 3.3 times in the longitudinal direction. This uniaxially stretched film was guided to a tenter, preheated with hot air at 100 ° C., and then stretched 4.0 times in the transverse direction. The stretched film was directly heat-treated in a tenter with hot air at 235 ° C., subsequently subjected to a relaxation treatment of 5%, gradually cooled to room temperature, and wound up. The thickness of the obtained film was 15 μm. This film was unsuitable for dimensional stability and moldability at high temperatures. The obtained results are shown in Table 2.

(比較例2)
フィードブロック(圧力損失1MPa)が41層で、スタティックミキサーを用いないこと以外は実施例1と同様の装置・条件で、計41層からなる積層フィルムを得た。得られた積層フィルムは、高温下での寸法安定性や加熱後の透明性、さらに成形加工性が不十分であった。得られた結果を表2および表3に示す。
(Comparative Example 2)
A laminated film consisting of a total of 41 layers was obtained under the same apparatus and conditions as in Example 1 except that the feed block (pressure loss 1 MPa) was 41 layers and no static mixer was used. The obtained laminated film was insufficient in dimensional stability at high temperature, transparency after heating, and molding processability. The obtained results are shown in Tables 2 and 3.

Figure 2005288996
Figure 2005288996

Figure 2005288996
Figure 2005288996

Figure 2005288996
Figure 2005288996

本発明は、各種成形体や転写箔、リチウムイオン電池の外装材などに好適に用いられるものであるが、その応用範囲がこれに限られるものではない。   The present invention is suitably used for various molded articles, transfer foils, exterior materials for lithium ion batteries, and the like, but the application range is not limited thereto.

Claims (10)

熱可塑性樹脂Aからなる層と熱可塑性樹脂Bからなる層によって形成される50層以上の積層フィルムであって、動的粘弾性測定におけるα緩和温度が、(熱可塑性樹脂Bのα緩和温度+10)℃〜(熱可塑性樹脂Aのα緩和温度−10)℃の間に観察され、かつ融点が2つ以上存在することを特徴とする積層フィルム。 A laminated film of 50 or more layers formed by a layer made of thermoplastic resin A and a layer made of thermoplastic resin B, wherein the α relaxation temperature in dynamic viscoelasticity measurement is (α relaxation temperature of thermoplastic resin B + 10 A laminated film characterized by being observed between) ° C. and (α relaxation temperature of thermoplastic resin A−10) ° C. and having two or more melting points. 積層フィルムの熱膨張係数が110ppm以下であることを特徴とする請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the laminated film has a thermal expansion coefficient of 110 ppm or less. 加熱試験後のヘイズ上昇値が15%以下であることを特徴とする請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein a haze increase value after the heating test is 15% or less. 小角X線散乱測定において、end方向および/またはedge方向において、スポット状の散乱が観察されることを特徴とする請求項1〜3のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein spot-like scattering is observed in the end direction and / or the edge direction in the small-angle X-ray scattering measurement. 熱可塑性樹脂Aおよび/または熱可塑性樹脂Bの、融点と降温結晶化温度の差(ΔTm)が、60℃以下であることを特徴とする請求項1〜4のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein the difference (ΔTm) between the melting point and the cooling crystallization temperature of the thermoplastic resin A and / or the thermoplastic resin B is 60 ° C or less. 積層フィルムの厚みが1μm以上600μm以下であることを特徴とする請求項1〜5のいずれかに記載の積層フィルム。 The thickness of a laminated film is 1 micrometer or more and 600 micrometers or less, The laminated film in any one of Claims 1-5 characterized by the above-mentioned. 二軸延伸フィルムであることを特徴とする請求項1〜6のいずれかに記載の積層フィルム。 It is a biaxially stretched film, The laminated film in any one of Claims 1-6 characterized by the above-mentioned. 請求項1〜8のいずれかに記載の積層フィルムを含んでなる成形体。 The molded object which comprises the laminated | multilayer film in any one of Claims 1-8. 請求項1〜8のいずれかに記載の積層フィルムを含んでなる転写泊。 A transfer accommodation comprising the laminated film according to claim 1. 請求項1〜8のいずれかに記載の積層フィルムを含んでなるリチウムイオン電池外装材。
The lithium ion battery exterior material which comprises the laminated | multilayer film in any one of Claims 1-8.
JP2004111093A 2004-04-05 2004-04-05 Laminated film Expired - Lifetime JP4661073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111093A JP4661073B2 (en) 2004-04-05 2004-04-05 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111093A JP4661073B2 (en) 2004-04-05 2004-04-05 Laminated film

Publications (2)

Publication Number Publication Date
JP2005288996A true JP2005288996A (en) 2005-10-20
JP4661073B2 JP4661073B2 (en) 2011-03-30

Family

ID=35322473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111093A Expired - Lifetime JP4661073B2 (en) 2004-04-05 2004-04-05 Laminated film

Country Status (1)

Country Link
JP (1) JP4661073B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172864A (en) * 2008-01-24 2009-08-06 Teijin Dupont Films Japan Ltd Multilayered biaxially oriented polyester film for molding
JP2010005954A (en) * 2008-06-27 2010-01-14 Teijin Dupont Films Japan Ltd Multilayered biaxially oriented polyester film for molding
JP2012033394A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
JP2012033393A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
WO2012033133A1 (en) * 2010-09-08 2012-03-15 凸版印刷株式会社 Lithium ion battery outer cover material
JP2013101764A (en) * 2011-11-07 2013-05-23 Toppan Printing Co Ltd External facing material for secondary battery and secondary battery
JP2014049307A (en) * 2012-08-31 2014-03-17 Dainippon Printing Co Ltd Packaging material for battery
JP2014049308A (en) * 2012-08-31 2014-03-17 Dainippon Printing Co Ltd Packaging material for battery
WO2014050542A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Packaging material for battery
JP2014184562A (en) * 2013-03-21 2014-10-02 Sumitomo Bakelite Co Ltd Multilayer film and package
JP2014197559A (en) * 2014-07-15 2014-10-16 藤森工業株式会社 Laminate for battery exterior package
JP2014233950A (en) * 2013-06-05 2014-12-15 東レ株式会社 Biaxially-oriented polyester film
JP2015156403A (en) * 2015-06-04 2015-08-27 凸版印刷株式会社 Exterior material for lithium ion battery
JP2015181128A (en) * 2015-06-04 2015-10-15 凸版印刷株式会社 Exterior material for lithium ion battery
CN106133942A (en) * 2014-03-03 2016-11-16 大日本印刷株式会社 Battery use packing material
JPWO2016047567A1 (en) * 2014-09-22 2017-07-20 株式会社豊田自動織機 Power storage device
WO2017170333A1 (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Laminate for battery packages
KR20170139306A (en) * 2016-06-09 2017-12-19 주식회사 엘지화학 Electrode assembly for rechargeable battery
JP2020128085A (en) * 2020-03-30 2020-08-27 東洋紡株式会社 Thermoplastic resin sheet, and method for producing molded article obtained by heat molding the same
WO2022131360A1 (en) * 2020-12-18 2022-06-23 東洋紡株式会社 Biaxially stretched polyester film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206624A (en) * 1985-03-11 1986-09-12 Agency Of Ind Science & Technol Polyester film and manufacture thereof
JP2000340187A (en) * 1999-05-26 2000-12-08 Dainippon Printing Co Ltd Packaging material for polymer battery
JP2001055243A (en) * 1999-08-19 2001-02-27 Dainippon Printing Co Ltd Packaging bag
JP2002337225A (en) * 2001-05-17 2002-11-27 Toray Ind Inc Biaxially stretched polyester film for molding
JP2003026823A (en) * 2001-07-12 2003-01-29 Toray Ind Inc Biaxially oriented polyester film for lamination with metal plate
JP2003112355A (en) * 2001-10-04 2003-04-15 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayer film
WO2003070460A1 (en) * 2002-02-21 2003-08-28 Teijin Limited Multilayered polyester film and process for producing the same
WO2004024446A1 (en) * 2002-09-10 2004-03-25 Toray Industries, Inc. Biaxially oriented polyester film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206624A (en) * 1985-03-11 1986-09-12 Agency Of Ind Science & Technol Polyester film and manufacture thereof
JP2000340187A (en) * 1999-05-26 2000-12-08 Dainippon Printing Co Ltd Packaging material for polymer battery
JP2001055243A (en) * 1999-08-19 2001-02-27 Dainippon Printing Co Ltd Packaging bag
JP2002337225A (en) * 2001-05-17 2002-11-27 Toray Ind Inc Biaxially stretched polyester film for molding
JP2003026823A (en) * 2001-07-12 2003-01-29 Toray Ind Inc Biaxially oriented polyester film for lamination with metal plate
JP2003112355A (en) * 2001-10-04 2003-04-15 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayer film
WO2003070460A1 (en) * 2002-02-21 2003-08-28 Teijin Limited Multilayered polyester film and process for producing the same
WO2004024446A1 (en) * 2002-09-10 2004-03-25 Toray Industries, Inc. Biaxially oriented polyester film

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172864A (en) * 2008-01-24 2009-08-06 Teijin Dupont Films Japan Ltd Multilayered biaxially oriented polyester film for molding
JP2010005954A (en) * 2008-06-27 2010-01-14 Teijin Dupont Films Japan Ltd Multilayered biaxially oriented polyester film for molding
JP2012033394A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
JP2012033393A (en) * 2010-07-30 2012-02-16 Fujimori Kogyo Co Ltd Laminate for battery exterior package
US8920959B2 (en) 2010-09-08 2014-12-30 Toppan Printing Co., Ltd. Lithium ion battery outer cover material
WO2012033133A1 (en) * 2010-09-08 2012-03-15 凸版印刷株式会社 Lithium ion battery outer cover material
KR101832531B1 (en) 2010-09-08 2018-02-26 도판 인사츠 가부시키가이샤 Lithium ion battery outer cover material
JP5928336B2 (en) * 2010-09-08 2016-06-01 凸版印刷株式会社 Exterior materials for lithium-ion batteries
JP2013101764A (en) * 2011-11-07 2013-05-23 Toppan Printing Co Ltd External facing material for secondary battery and secondary battery
JP2014049307A (en) * 2012-08-31 2014-03-17 Dainippon Printing Co Ltd Packaging material for battery
JP2014049308A (en) * 2012-08-31 2014-03-17 Dainippon Printing Co Ltd Packaging material for battery
WO2014050542A1 (en) * 2012-09-28 2014-04-03 大日本印刷株式会社 Packaging material for battery
JP2014184562A (en) * 2013-03-21 2014-10-02 Sumitomo Bakelite Co Ltd Multilayer film and package
JP2014233950A (en) * 2013-06-05 2014-12-15 東レ株式会社 Biaxially-oriented polyester film
CN106133942A (en) * 2014-03-03 2016-11-16 大日本印刷株式会社 Battery use packing material
JP2014197559A (en) * 2014-07-15 2014-10-16 藤森工業株式会社 Laminate for battery exterior package
JPWO2016047567A1 (en) * 2014-09-22 2017-07-20 株式会社豊田自動織機 Power storage device
JP2015156403A (en) * 2015-06-04 2015-08-27 凸版印刷株式会社 Exterior material for lithium ion battery
JP2015181128A (en) * 2015-06-04 2015-10-15 凸版印刷株式会社 Exterior material for lithium ion battery
WO2017170333A1 (en) * 2016-03-30 2017-10-05 東洋紡株式会社 Laminate for battery packages
KR20170139306A (en) * 2016-06-09 2017-12-19 주식회사 엘지화학 Electrode assembly for rechargeable battery
KR102217441B1 (en) * 2016-06-09 2021-02-22 주식회사 엘지화학 Electrode assembly for rechargeable battery
JP2020128085A (en) * 2020-03-30 2020-08-27 東洋紡株式会社 Thermoplastic resin sheet, and method for producing molded article obtained by heat molding the same
WO2022131360A1 (en) * 2020-12-18 2022-06-23 東洋紡株式会社 Biaxially stretched polyester film
TWI828020B (en) * 2020-12-18 2024-01-01 日商東洋紡股份有限公司 Polyester film, label film, diffusion film for displays and lens film for displays

Also Published As

Publication number Publication date
JP4661073B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4661073B2 (en) Laminated film
JP5105459B2 (en) Laminated film and biaxially oriented polyester film
JP3971386B2 (en) Multilayer polyester film and method for producing the same
JP4573144B2 (en) Laminated polyester film for molding
WO2017170333A1 (en) Laminate for battery packages
JP4742566B2 (en) Biaxially stretched laminated film, laminated glass film and laminated glass
JP5363176B2 (en) Release film
JP2008030475A (en) Laminated polyester film for molding and its manufacturing process
JP5674227B2 (en) Polyester film for in-mold transfer
JP2023116512A (en) release film
JP4955480B2 (en) Biaxially stretched laminated polyester film for simultaneous decoration
JP5450941B2 (en) Biaxially stretched laminated polyester film for molding
JP2004130761A (en) Laminated film
JPH09300518A (en) Laminated film and its production
CN113056507B (en) Film for coating metal plate and resin-coated metal plate
JP5974328B2 (en) Biaxially oriented polyester film for in-mold transfer
JP5391666B2 (en) Biaxially stretched film
JP5331272B2 (en) Polyester film for in-mold transfer foil
JP6701790B2 (en) Polyester film
JP2024000615A (en) polyester film roll
JP2010253678A (en) Polyester film for in-mold transfer
JP2005171124A (en) Polyester film for use in insert molding
JP2005187562A (en) Polyester film for insert molding
JP2004351627A (en) Release film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R151 Written notification of patent or utility model registration

Ref document number: 4661073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3