JP2005288716A - Metal-ceramics joining member - Google Patents

Metal-ceramics joining member Download PDF

Info

Publication number
JP2005288716A
JP2005288716A JP2004102936A JP2004102936A JP2005288716A JP 2005288716 A JP2005288716 A JP 2005288716A JP 2004102936 A JP2004102936 A JP 2004102936A JP 2004102936 A JP2004102936 A JP 2004102936A JP 2005288716 A JP2005288716 A JP 2005288716A
Authority
JP
Japan
Prior art keywords
metal
aluminum
solder
plating
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004102936A
Other languages
Japanese (ja)
Other versions
JP4362600B2 (en
Inventor
Ken Iyoda
憲 伊與田
Hideyo Osanai
英世 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004102936A priority Critical patent/JP4362600B2/en
Publication of JP2005288716A publication Critical patent/JP2005288716A/en
Application granted granted Critical
Publication of JP4362600B2 publication Critical patent/JP4362600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-ceramics joining member of high reliability capable of preventing the occurrence of a solder crack or the damage of a chip even if a heat cycle is repeatedly applied. <P>SOLUTION: In the metal-ceramics joining member wherein a metal member comprising aluminum or an aluminum alloy is joined to a ceramics member, electrolytic nickel plating with a thickness of 1-15 μm, preferably 1.5-15 μm, further preferably 2-10 μm is applied to the whole surface or partial face of the metal member. A chip part or a radiation plate is soldered to the electrolytic nickel plating layer by solder not substantially containing lead. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウムまたはアルミニウム合金からなる金属部材がセラミックス部材に接合した金属−セラミックス接合部材に関し、特に、パワーモジュール用などの大電力素子搭載用の金属−セラミックス回路基板として使用される金属−セラミックス接合部材に関する。   The present invention relates to a metal-ceramic bonding member in which a metal member made of aluminum or an aluminum alloy is bonded to a ceramic member, and in particular, a metal-ceramic used as a metal-ceramic circuit board for mounting a large power element such as for a power module. The present invention relates to a joining member.

従来、アルミニウムフィンなどのアルミニウム部材の半田付けする面に、電気めっきまたは無電解めっきによって厚さ0.5〜20μmのニッケル含有めっきを施すことにより、熱放散能力および熱疲労特性を向上させるとともに、半田の接合強度を高めることが知られている(例えば、特許文献1参照)。   Conventionally, by applying nickel-containing plating with a thickness of 0.5 to 20 μm by electroplating or electroless plating on the surface to be soldered of an aluminum member such as an aluminum fin, the heat dissipation capability and thermal fatigue characteristics are improved, It is known to increase the bonding strength of solder (see, for example, Patent Document 1).

また、パワーモジュール用のアルミニウム−セラミックス接合基板では、セラミックス基板の一方の面にアルミニウム回路板が接合され、他方の面に放熱板が接合されている場合が多く、特に、アルミニウム回路板は複数のアイランド状に形成され、その上に電極を設置するために、アルミニウム回路板に安価な無電解ニッケル合金めっき、具体的には、数〜十数%のリン(P)やホウ素(B)を含有するNi−PやNi−Bなどのニッケル合金のめっきが施されている。   Moreover, in an aluminum-ceramic bonding substrate for a power module, an aluminum circuit board is often bonded to one surface of the ceramic substrate and a heat sink is bonded to the other surface. In order to install the electrodes on the island shape, the aluminum circuit board contains inexpensive electroless nickel alloy plating, specifically several to tens of percent phosphorus (P) and boron (B) Nickel alloys such as Ni-P and Ni-B are plated.

一方、近年、環境汚染の防止の観点から、電子材料の半田付けにおいてもPbフリー化が求められており、特に、Pbフリー半田(実質的に鉛を含まない半田)としてSnリッチの半田が使用され始めている   On the other hand, in recent years, from the viewpoint of preventing environmental pollution, there has been a demand for Pb-free soldering of electronic materials. In particular, Sn-rich solder is used as Pb-free solder (solder that does not substantially contain lead). Has begun to be

特開2002−324880号公報(段落番号0004−0006)JP 2002-324880 A (paragraph numbers 0004-0006)

しかし、従来の無電解Ni−Pめっきを施した上に、Pbフリー半田(Snリッチ半田)によりチップや放熱板を半田付けすると、ヒートサイクルが繰り返された場合などに、半田にクラックが発生したり、チップが破損する場合があり、金属−セラミックス回路基板の信頼性を損なう場合がある。   However, if the chip or heat sink is soldered with Pb-free solder (Sn rich solder) after applying the conventional electroless Ni-P plating, cracks will occur in the solder when the heat cycle is repeated. Or the chip may be damaged, and the reliability of the metal-ceramic circuit board may be impaired.

したがって、本発明は、このような従来の問題点に鑑み、ヒートサイクルが繰り返し加えられても半田クラックの発生やチップの破損を防止することができる、高信頼性の金属−セラミックス接合部材を提供することを目的とする。   Accordingly, the present invention provides a highly reliable metal-ceramic bonding member capable of preventing the occurrence of solder cracks and chip breakage even when heat cycles are repeatedly applied in view of such conventional problems. The purpose is to do.

本発明者らは、上記課題を解決するために鋭意研究した結果、アルミニウムまたはアルミニウム合金からなる金属部材の全面または一部の面に1.0μmより厚く且つ15.0μm以下の厚さの電気ニッケルめっきを施すことにより、金属−セラミックス接合部材にヒートサイクルが繰り返し加えられても半田クラックの発生やチップの破損を防止することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that the nickel or aluminum alloy is thicker than 1.0 μm and less than 15.0 μm thick on the entire surface or a part of the surface of the metal member made of aluminum or aluminum alloy. By performing plating, it was found that even if a heat cycle is repeatedly applied to the metal / ceramic bonding member, it is possible to prevent the occurrence of solder cracks and breakage of the chip, and the present invention has been completed.

すなわち、本発明による金属−セラミックス接合部材は、アルミニウムまたはアルミニウム合金からなる金属部材がセラミックス部材に接合した金属−セラミックス接合部材において、金属部材の全面または一部の面に1.0μmより厚く且つ15.0μm以下の厚さの電気ニッケルめっきが施されていることを特徴とする。この金属−セラミックス接合部材において、電気ニッケルめっきの厚さが1.5〜15.0μmであるのが好ましく、2.0〜10.0μmであるのがさらに好ましい。また、電気ニッケルめっき上に半田が付けられており、半田によりチップ部品または放熱板が半田付けされているのが好ましい。この半田は実質的に鉛を含まない半田であるのが好ましい。また、アルミニウム合金は、アルミニウム−シリコン系合金、アルミニウム−銅系合金、アルミニウム−マグネシウム系合金、アルミニウム−シリコン−ボロン系合金またはアルミニウム−マグネシウム−シリコン系合金であるのが好ましい。さらに、上記の金属−セラミックス接合部材は、金属部材が回路形状に形成されて、回路基板として使用することができる。   That is, the metal-ceramic bonding member according to the present invention is a metal-ceramic bonding member in which a metal member made of aluminum or an aluminum alloy is bonded to a ceramic member. Electro nickel plating having a thickness of 0.0 μm or less is applied. In this metal-ceramic bonding member, the thickness of the electronickel plating is preferably 1.5 to 15.0 μm, and more preferably 2.0 to 10.0 μm. Moreover, it is preferable that solder is applied on the electric nickel plating, and the chip component or the heat radiating plate is soldered by the solder. This solder is preferably a lead-free solder. The aluminum alloy is preferably an aluminum-silicon alloy, an aluminum-copper alloy, an aluminum-magnesium alloy, an aluminum-silicon-boron alloy, or an aluminum-magnesium-silicon alloy. Furthermore, the metal-ceramic bonding member can be used as a circuit board by forming the metal member in a circuit shape.

本発明によれば、金属−セラミックス接合部材にヒートサイクルが繰り返し加えられても、めっきの剥離を防止し、半田クラックの発生やチップの破損を防止することができる。   According to the present invention, even if a heat cycle is repeatedly applied to the metal / ceramic bonding member, it is possible to prevent the peeling of the plating and to prevent the occurrence of solder cracks and the breakage of the chip.

本発明による金属−セラミックス接合部材の実施の形態では、アルミニウムまたはアルミニウム合金からなる金属部材がセラミックス部材に接合した金属−セラミックス接合部材において、金属部材の全面または一部の面に1μmより厚く且つ15μm以下、好ましくは1.5〜15μm、さらに好ましくは2〜10μmの厚さの電気ニッケルめっきが施されている。電気ニッケルめっきの厚さが1μm以下であると、チップなどを半田付けした場合に、半田のSnがNiめっき層を拡散し、金属部材中のAlと反応して脆化層を形成し、めっきの剥離などの不具合を生じ、一方、電気ニッケルめっきの厚さが15μmより厚いと、めっきを施すコストが高くなり、また、Niめっき層はAlと比べて硬いので、チップなどを半田付けした場合に、ヒートサイクル後に半田クラックの発生やチップの破損のおそれがあるからである。   In the embodiment of the metal-ceramic bonding member according to the present invention, in the metal-ceramic bonding member in which a metal member made of aluminum or an aluminum alloy is bonded to the ceramic member, the entire or a part of the surface of the metal member is thicker than 1 μm and 15 μm. Hereinafter, electro nickel plating with a thickness of preferably 1.5 to 15 μm, more preferably 2 to 10 μm is applied. When the thickness of the electro nickel plating is 1 μm or less, when a chip or the like is soldered, the Sn of the solder diffuses in the Ni plating layer and reacts with Al in the metal member to form an embrittlement layer. On the other hand, if the thickness of the electro nickel plating is larger than 15 μm, the cost of plating increases, and the Ni plating layer is harder than Al, so when soldering a chip or the like In addition, solder cracks and chip damage may occur after the heat cycle.

金属部材は、アルミニウムまたはアルミニウム合金からなり、アルミニウム合金は、アルミニウム−シリコン系合金、アルミニウム−銅系合金、アルミニウム−マグネシウム系合金、アルミニウム−シリコン−ボロン系合金またはアルミニウム−マグネシウム−シリコン系合金であるのが好ましい。また、金属部材をセラミックス部材に接合したときや、接合部材にヒートサイクルが加わったときに、熱膨張差による応力が発生してセラミックス部材にクラックが発生するのを防止するため、金属部材がビッカース硬度Hv20〜40程度の比較的柔らかい部材であるのが好ましい。   The metal member is made of aluminum or an aluminum alloy, and the aluminum alloy is an aluminum-silicon alloy, an aluminum-copper alloy, an aluminum-magnesium alloy, an aluminum-silicon-boron alloy, or an aluminum-magnesium-silicon alloy. Is preferred. In addition, when a metal member is joined to a ceramic member or when a heat cycle is applied to the joined member, the metal member is made to prevent Vickers stress from being generated due to the difference in thermal expansion. A relatively soft member having a hardness of about Hv 20 to 40 is preferable.

セラミックス部材は、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素などを主成分とする部材であるのが好ましい。   The ceramic member is preferably a member mainly composed of alumina, aluminum nitride, silicon nitride, silicon carbide or the like.

金属部材とセラミックス部材との接合には、ろう材接合法、直接接合法または溶湯接合法のいずれの接合法を使用してもよいが、柔らかく硬度が低い金属部材を得るためには溶湯接合法を使用するのが好ましい。   For joining the metal member and the ceramic member, any of the brazing material joining method, the direct joining method or the molten metal joining method may be used, but in order to obtain a soft and low hardness metal member, the molten metal joining method is used. Is preferably used.

ニッケルめっきは、合金ではない電気ニッケルめっきであるのが好ましく、Pを含まないめっきであるのが好ましい。無電解Ni−Pめっきを使用すると、ヒートサイクル後に、Pがリッチな層が発生して、めっきの剥離の原因になるからである。また、電気ニッケルめっきの組成は、ニッケルを99.5%以上含む組成が好ましい。   The nickel plating is preferably an electro nickel plating which is not an alloy, and is preferably a plating containing no P. This is because, when electroless Ni—P plating is used, a P-rich layer is generated after the heat cycle, causing peeling of the plating. Moreover, the composition of electro nickel plating is preferably a composition containing 99.5% or more of nickel.

電気ニッケルめっき上にチップなどを半田付けするのに使用する半田は、通常のSn/Pb系の半田でもよいが、実質的に鉛を含まない半田(Pbフリー半田)を使用する場合に、本発明による効果が最も顕著に現れる。Pbフリー半田には、Sn/Ag系やSn/Ag/Cu系などの半田があり、いずれの半田も従来の半田より融点が高い。また、Pbフリー半田は、Snリッチの組成であり、このSnがニッケルめっき層を拡散し、さらに金属部材のAlと反応することによって脆化層を形成し、めっきの剥離の原因になり易く、また、ヒートサイクル後に半田クラックの発生やチップの破損の原因にもなると考えられる。このようなSnの拡散を防止するために、本発明による金属−セラミックス接合部材の実施の形態では、金属部材上に所定の厚さの電気ニッケルめっきを施している。   The solder used for soldering the chip or the like on the electro nickel plating may be an ordinary Sn / Pb solder, but this solder is used when a solder containing substantially no lead (Pb-free solder) is used. The effect of the invention is most noticeable. Pb-free solder includes Sn / Ag-based and Sn / Ag / Cu-based solders, and each solder has a higher melting point than conventional solder. Pb-free solder has a Sn-rich composition. This Sn diffuses in the nickel plating layer and further reacts with Al of the metal member to form an embrittlement layer, which easily causes peeling of the plating. It is also considered that it may cause solder cracks and chip damage after the heat cycle. In order to prevent such diffusion of Sn, in the embodiment of the metal / ceramic bonding member according to the present invention, electronickel plating having a predetermined thickness is applied on the metal member.

以下、添付図面を参照して、本発明による金属−セラミックス接合部材の実施例について詳細に説明する。   Hereinafter, embodiments of a metal-ceramic bonding member according to the present invention will be described in detail with reference to the accompanying drawings.

[実施例1]
図1〜図5に示すように、セラミックス基板10として100mm×100mm×0.635mmの大きさの窒化アルミニウム(AlN)基板を用意し(図1参照)、溶湯接合法により厚さ0.4mmの純アルミニウムからなる金属板12をAlN基板10に接合して研磨した(図2参照)後、アルカリ剥離タイプのレジスト(三井化学(株)製のMT−UV−5203P)14を回路パターン形状にスクリーン印刷して硬化させ(図3参照)、塩化鉄溶液により不要部分をエッチング除去して回路を形成し(図4参照)、3%NaOH溶液によりレジスト14を剥離して金属−セラミックス回路基板を作製した(図5参照)。
[Example 1]
As shown in FIGS. 1 to 5, an aluminum nitride (AlN) substrate having a size of 100 mm × 100 mm × 0.635 mm is prepared as a ceramic substrate 10 (see FIG. 1), and a thickness of 0.4 mm is obtained by a molten metal bonding method. A metal plate 12 made of pure aluminum is bonded to the AlN substrate 10 and polished (see FIG. 2), and then an alkali-peeling resist (MT-UV-5203P manufactured by Mitsui Chemicals, Inc.) 14 is screened into a circuit pattern shape. Print and cure (see FIG. 3), etch away unnecessary portions with iron chloride solution to form a circuit (see FIG. 4), and peel off resist 14 with 3% NaOH solution to produce a metal-ceramic circuit board (See FIG. 5).

このようにして作製した金属−セラミックス回路基板を、アルミニウム用の脱脂液(上村工業(株)製のUA−68を50g/L含む)に50℃で5分間浸漬して脱脂処理を行った後、アルミニウム用の化学研磨液(上村工業(株)製のAZ−102を50g/L含む)に57℃で3分間浸漬して化学研磨処理を行った。次に、この化学研磨処理後の基板を、0.5L/Lの硝酸を含む水溶液に室温で30秒間浸漬して酸洗して水洗した後、亜鉛置換液(上村工業(株)製のAZ−301−3Xを0.33L/L含む)に室温で30秒間浸漬して亜鉛置換処理を行って水洗した。さらに、この亜鉛置換処理後の基板を、0.5L/Lの硝酸を含む水溶液に室温で20秒間浸漬して酸洗して水洗した後、亜鉛置換液(上村工業(株)製のAZ−301−3Xを0.33L/L含む)に室温で20秒間浸漬して再び亜鉛置換処理を行って水洗した。   After the metal-ceramic circuit board thus fabricated is degreased by immersing it in a degreasing solution for aluminum (containing 50 g / L of UA-68 manufactured by Uemura Kogyo Co., Ltd.) at 50 ° C. for 5 minutes. Then, chemical polishing was performed by immersing in aluminum chemical polishing liquid (containing 50 g / L of AZ-102 manufactured by Uemura Kogyo Co., Ltd.) at 57 ° C. for 3 minutes. Next, the substrate after this chemical polishing treatment was immersed in an aqueous solution containing 0.5 L / L nitric acid for 30 seconds at room temperature, pickled and washed with water, and then a zinc replacement solution (AZ manufactured by Uemura Kogyo Co., Ltd.). -301-3X was contained in 0.33 L / L) for 30 seconds at room temperature, followed by zinc replacement treatment and water washing. Further, the substrate after the zinc substitution treatment was immersed in an aqueous solution containing 0.5 L / L nitric acid at room temperature for 20 seconds, pickled and washed with water, and then the zinc substitution solution (AZ- manufactured by Uemura Kogyo Co., Ltd.). 301-3X was contained in 0.33 L / L) for 20 seconds at room temperature, followed by zinc replacement treatment and washing with water.

その後、硫酸ニッケル(300g/L)と塩化ニッケル(45g/L)とホウ酸(30g/L)を含むめっき浴(ワット浴)中に、上記の前処理を行った基板を浸漬するとともに、アノードとしてNi板を浸漬し、浴温を50℃に保持し、電流密度を10A/dmに設定し、電解時間を1分間として、図6に示すように、アルミニウムからなる金属板12上に厚さ2μmの電気ニッケルめっき16を施した。 Thereafter, the pretreated substrate was immersed in a plating bath (Watt bath) containing nickel sulfate (300 g / L), nickel chloride (45 g / L), and boric acid (30 g / L). As shown in FIG. 6, the Ni plate is immersed, the bath temperature is maintained at 50 ° C., the current density is set to 10 A / dm 2 , and the electrolysis time is 1 minute. Electro nickel plating 16 having a thickness of 2 μm was applied.

このようにめっきを施した金属板12上にSnを含有する半田によりチップを半田付けした後、断面をEPMA(Electron Probe Micro Analyzer)で観察したところ、半田に含まれるSnがアルミニウムに拡散していなかった。また、上記の金属板12上にめっきを施した金属−セラミックス回路基板について、125℃×30分→室温×10分→−40℃×30分→室温×10分を1サイクルとするヒートサイクルを300回行ったところ、半田クラックの発生やチップの破損などの異常はなかった。   After soldering the chip with the solder containing Sn on the metal plate 12 thus plated, the cross section was observed with EPMA (Electron Probe Micro Analyzer), and Sn contained in the solder was diffused into the aluminum. There wasn't. Moreover, about the metal-ceramic circuit board which plated on the said metal plate 12, the heat cycle which makes 125 degreeC x 30 minutes-> room temperature x10 minutes->-40 degreeC x 30 minutes-room temperature x10 minutes 1 cycle is carried out. After 300 times, there was no abnormality such as generation of solder cracks or chip breakage.

[実施例2]
電解時間を2.5分間にして厚さ5μmの電気ニッケルめっきを施した以外は実施例1と同様の方法により、金属板上に電気ニッケルめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散していなかった。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックの発生やチップの破損などの異常はなかった。
[Example 2]
Electroless nickel plating was performed on the metal plate by the same method as in Example 1 except that the electrolysis time was 2.5 minutes and the nickel electroplating was performed with a thickness of 5 μm. When Sn was observed, Sn contained in the solder was not diffused into the aluminum. Further, when a heat cycle test similar to that of Example 1 was performed, there was no abnormality such as generation of solder cracks or chip breakage.

[比較例1]
電解時間を30秒間にして厚さ1μmの電気ニッケルめっきを施した以外は実施例1と同様の方法により、金属板上に電気ニッケルめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 1]
Electrolytic nickel plating was performed on the metal plate by the same method as in Example 1 except that electrolysis time was 30 seconds and electroplating was performed with a thickness of 1 μm. After the chip was soldered, the cross section was observed with EPMA. As a result, it was confirmed that Sn contained in the solder diffused into the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[実施例3]
実施例1の亜鉛置換法による前処理(活性化処理)に代えてパラジウム活性化法による前処理を行った以外は実施例1と同様の方法により、金属板上に厚さ2μmの電気ニッケルめっきを施した金属−セラミックス回路基板を作製した。この実施例の前処理では、アルミニウム用の脱脂液(上村工業(株)製のLCL−1Eを7.5重量%含む)に40℃で5分間浸漬して脱脂処理を行い、アルミニウム用の化学研磨液(上村工業(株)製のAD−101Fを10重量%含む)に70℃で5分間浸漬して化学研磨処理を行った後、10重量%のパラジウム活性化液(上村工業(株)製のAT−360)と1.5重量%の塩酸を含む水溶液に23℃で2分間浸漬してパラジウム活性化処理を行った。この実施例で作製した金属−セラミックス回路基板にSnを含有する半田によりチップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散していなかった。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックの発生やチップの破損などの異常はなかった。
[Example 3]
Electronickel plating with a thickness of 2 μm on the metal plate was performed in the same manner as in Example 1 except that the pretreatment by the palladium activation method was performed instead of the pretreatment (activation treatment) by the zinc substitution method of Example 1. The metal-ceramic circuit board which gave this was produced. In the pretreatment of this example, degreasing treatment was performed by immersing in an aluminum degreasing solution (containing 7.5% by weight of LCL-1E manufactured by Uemura Kogyo Co., Ltd.) at 40 ° C. for 5 minutes. A chemical polishing treatment was performed by immersing in an abrasive solution (containing 10% by weight of AD-101F manufactured by Uemura Kogyo Co., Ltd.) at 70 ° C. for 5 minutes, and then a 10% by weight palladium activation solution (Uemura Industrial Co., Ltd.). Palladium activation treatment was performed by immersing in an aqueous solution containing AT-360) and 1.5 wt% hydrochloric acid at 23 ° C. for 2 minutes. After the chip was soldered to the metal-ceramic circuit board fabricated in this example with solder containing Sn, the cross section was observed with EPMA. As a result, Sn contained in the solder was not diffused into the aluminum. Further, when a heat cycle test similar to that of Example 1 was performed, there was no abnormality such as generation of solder cracks or chip breakage.

[実施例4]
電解時間を2.5分間にして厚さ5μmの電気ニッケルめっきを施した以外は実施例3と同様の方法により、金属板上に電気ニッケルめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散していなかった。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックの発生やチップの破損などの異常はなかった。
[Example 4]
Except that electroless nickel plating with a thickness of 5 μm was performed with an electrolysis time of 2.5 minutes, electronickel plating was performed on the metal plate by the same method as in Example 3 and the chip was soldered. When Sn was observed, Sn contained in the solder was not diffused into the aluminum. Further, when a heat cycle test similar to that of Example 1 was performed, there was no abnormality such as generation of solder cracks or chip breakage.

[比較例2]
電解時間を30秒間にして厚さ1μmの電気ニッケルめっきを施した以外は実施例3と同様の方法により、金属板上に電気ニッケルめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 2]
Electrolytic nickel plating was performed on the metal plate by the same method as in Example 3 except that electrolytic nickel plating was performed for 30 seconds and the thickness was 1 μm. After the chip was soldered, the cross section was observed with EPMA. As a result, it was confirmed that Sn contained in the solder diffused into the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[比較例3]
実施例1の電気ニッケルめっきに代えて無電解Ni−Pめっきを施した以外は実施例1と同様の方法により、金属板上に厚さ1μmの無電解Ni−Pめっきを施した金属−セラミックス回路基板を作製した。この比較例の無電解Ni−Pめっきは、10重量%のSX−M(上村工業(株)製)と5.5重量%のSX−A(上村工業(株)製)を含むめっき浴中に、89℃で3分間浸漬することによって行った。この比較例で作製した金属−セラミックス回路基板にSnを含有する半田によりチップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 3]
A metal-ceramic obtained by electroless Ni-P plating having a thickness of 1 μm on a metal plate in the same manner as in Example 1 except that electroless Ni—P plating was applied instead of the electrolytic nickel plating of Example 1. A circuit board was produced. The electroless Ni—P plating of this comparative example is in a plating bath containing 10% by weight of SX-M (manufactured by Uemura Kogyo Co., Ltd.) and 5.5% by weight of SX-A (manufactured by Uemura Kogyo Co., Ltd.). And by immersing at 89 ° C. for 3 minutes. After the chip was soldered to the metal-ceramic circuit board produced in this comparative example with solder containing Sn, the cross section was observed with EPMA, and it was confirmed that Sn contained in the solder diffused into the aluminum. . Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[比較例4]
浸漬時間を6分間にして厚さ2μmの無電解Ni−Pめっきを施した以外は比較例3と同様の方法により、金属板上に無電解Ni−Pめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 4]
After applying electroless Ni-P plating on the metal plate and soldering the chip by the same method as in Comparative Example 3 except that the immersion time was 6 minutes and electroless Ni-P plating having a thickness of 2 μm was applied. When the cross section was observed with EPMA, it was confirmed that Sn contained in the solder was diffused in the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[比較例5]
浸漬時間を15分間にして厚さ5μmの無電解Ni−Pめっきを施した以外は比較例3と同様の方法により、金属板上に無電解Ni−Pめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 5]
After electroless Ni-P plating on the metal plate and soldering the chip by the same method as in Comparative Example 3 except that the immersion time was 15 minutes and electroless Ni-P plating having a thickness of 5 μm was applied. When the cross section was observed with EPMA, it was confirmed that Sn contained in the solder was diffused in the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[比較例6]
実施例3の電気ニッケルめっきに代えて比較例3の無電解Ni−Pめっきを行った以外は実施例3と同様の方法により、金属板上に厚さ1μmの無電解Ni−Pめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 6]
The electroless Ni-P plating having a thickness of 1 μm was applied on the metal plate in the same manner as in Example 3 except that the electroless Ni—P plating in Comparative Example 3 was performed instead of the electro nickel plating in Example 3. After soldering the chip, the cross section was observed with EPMA, and it was confirmed that Sn contained in the solder was diffused into the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[比較例7]
浸漬時間を6分間にして厚さ2μmの無電解Ni−Pめっきを施した以外は比較例6と同様の方法により、金属板上に無電解Ni−Pめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 7]
After applying electroless Ni-P plating on the metal plate and soldering the chip by the same method as in Comparative Example 6 except that the immersion time was 6 minutes and electroless Ni-P plating having a thickness of 2 μm was applied. When the cross section was observed with EPMA, it was confirmed that Sn contained in the solder was diffused in the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

[比較例8]
浸漬時間を15分間にして厚さ5μmの無電解Ni−Pめっきを施した以外は比較例6と同様の方法により、金属板上に無電解Ni−Pめっきを施し、チップを半田付けした後、断面をEPMAで観察したところ、半田に含まれるSnがアルミニウムに拡散しているのが確認された。また、実施例1と同様のヒートサイクル試験を行ったところ、半田クラックが発生し、チップが破損していた。
[Comparative Example 8]
After applying electroless Ni-P plating on the metal plate and soldering the chip by the same method as in Comparative Example 6 except that the immersion time was 15 minutes and electroless Ni-P plating having a thickness of 5 μm was applied. When the cross section was observed with EPMA, it was confirmed that Sn contained in the solder was diffused in the aluminum. Moreover, when the same heat cycle test as Example 1 was done, the solder crack occurred and the chip | tip was damaged.

これらの実施例1〜4および比較例1〜8の結果を表1に示す。   Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 8.

Figure 2005288716
Figure 2005288716

表1に示すように、アルミニウムからなる金属板上に1μmを超える厚さ、好ましくは2〜5μmの厚さの電気ニッケルめっきを施すことにより、Snを含有する半田によりチップを金属板に半田付けした後に、半田に含まれるSnがアルミニウムに拡散するのを防止することができるとともに、ヒートサイクル後の半田クラックの発生やチップの破損を防止することができる。   As shown in Table 1, by applying nickel electroplating with a thickness exceeding 1 μm, preferably 2-5 μm, onto a metal plate made of aluminum, the chip is soldered to the metal plate with solder containing Sn. Then, Sn contained in the solder can be prevented from diffusing into the aluminum, and solder cracks and chip damage after the heat cycle can be prevented.

本発明による金属−セラミックス接合部材の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the metal-ceramics joining member by this invention. 本発明による金属−セラミックス接合部材の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the metal-ceramics joining member by this invention. 本発明による金属−セラミックス接合部材の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the metal-ceramics joining member by this invention. 本発明による金属−セラミックス接合部材の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the metal-ceramics joining member by this invention. 本発明による金属−セラミックス接合部材の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the metal-ceramics joining member by this invention. 本発明による金属−セラミックス接合部材の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the metal-ceramics joining member by this invention.

符号の説明Explanation of symbols

10 セラミックス基板
12 金属板
14 レジスト
16 電気ニッケルめっき
10 Ceramic substrate 12 Metal plate 14 Resist 16 Electro nickel plating

Claims (8)

アルミニウムまたはアルミニウム合金からなる金属部材がセラミックス部材に接合した金属−セラミックス接合部材において、金属部材の全面または一部の面に1.0μmより厚く且つ15.0μm以下の厚さの電気ニッケルめっきが施されていることを特徴とする、金属−セラミックス接合部材。 In a metal-ceramic bonding member in which a metal member made of aluminum or an aluminum alloy is bonded to a ceramic member, electronickel plating with a thickness greater than 1.0 μm and less than 15.0 μm is applied to the entire surface or a part of the metal member. A metal-ceramic bonding member, characterized by being made. 前記電気ニッケルめっきの厚さが1.5〜15.0μmであることを特徴とする、請求項1に記載の金属−セラミックス接合部材。 2. The metal-ceramic bonding member according to claim 1, wherein a thickness of the electric nickel plating is 1.5 to 15.0 μm. 前記電気ニッケルめっきの厚さが2.0〜10.0μmであることを特徴とする、請求項1に記載の金属−セラミックス接合部材。 2. The metal-ceramic bonding member according to claim 1, wherein a thickness of the electric nickel plating is 2.0 to 10.0 μm. 前記電気ニッケルめっき上に半田が付けられていることを特徴とする、請求項1乃至3のいずれかに記載の金属−セラミックス接合部材。 The metal-ceramic bonding member according to any one of claims 1 to 3, wherein solder is applied on the electric nickel plating. 前記電気ニッケルめっき上に半田によりチップ部品または放熱板が半田付けされていることを特徴とする、請求項1乃至4のいずれかに記載の金属−セラミックス接合部材。 5. The metal / ceramic bonding member according to claim 1, wherein a chip component or a heat radiating plate is soldered onto the electric nickel plating by soldering. 前記半田が実質的に鉛を含まない半田であることを特徴とする、請求項4または5に記載の金属−セラミックス接合部材。 The metal / ceramic bonding member according to claim 4, wherein the solder is a solder that does not substantially contain lead. 前記アルミニウム合金が、アルミニウム−シリコン系合金、アルミニウム−銅系合金、アルミニウム−マグネシウム系合金、アルミニウム−シリコン−ボロン系合金またはアルミニウム−マグネシウム−シリコン系合金であることを特徴とする、請求項1乃至6のいずれかに記載の金属−セラミックス接合部材。 The aluminum alloy is an aluminum-silicon alloy, an aluminum-copper alloy, an aluminum-magnesium alloy, an aluminum-silicon-boron alloy, or an aluminum-magnesium-silicon alloy. 6. The metal-ceramic bonding member according to any one of 6 above. 前記金属部材が回路形状に形成されて、回路基板として使用されることを特徴とする、請求項1乃至7のいずれかに記載の金属−セラミックス接合部材。

The metal-ceramic bonding member according to claim 1, wherein the metal member is formed in a circuit shape and used as a circuit board.

JP2004102936A 2004-03-31 2004-03-31 Metal-ceramic bonding member Expired - Lifetime JP4362600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102936A JP4362600B2 (en) 2004-03-31 2004-03-31 Metal-ceramic bonding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102936A JP4362600B2 (en) 2004-03-31 2004-03-31 Metal-ceramic bonding member

Publications (2)

Publication Number Publication Date
JP2005288716A true JP2005288716A (en) 2005-10-20
JP4362600B2 JP4362600B2 (en) 2009-11-11

Family

ID=35322224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102936A Expired - Lifetime JP4362600B2 (en) 2004-03-31 2004-03-31 Metal-ceramic bonding member

Country Status (1)

Country Link
JP (1) JP4362600B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180399A (en) * 2005-12-28 2007-07-12 Dowa Holdings Co Ltd Metal-ceramics circuit board and manufacturing method thereof
JP2012244131A (en) * 2011-05-24 2012-12-10 Mitsubishi Materials Corp Substrate for power module and method of manufacturing the same
JP2014203880A (en) * 2013-04-02 2014-10-27 三菱マテリアル株式会社 Method for manufacturing substrate for power module
JP2019141879A (en) * 2018-02-21 2019-08-29 Dowaメタルテック株式会社 Aluminum-ceramic bonded substrate and method for manufacturing same
JP7358123B2 (en) 2019-09-03 2023-10-10 Dowaメタルテック株式会社 Metal-ceramic circuit board and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180399A (en) * 2005-12-28 2007-07-12 Dowa Holdings Co Ltd Metal-ceramics circuit board and manufacturing method thereof
JP2012244131A (en) * 2011-05-24 2012-12-10 Mitsubishi Materials Corp Substrate for power module and method of manufacturing the same
JP2014203880A (en) * 2013-04-02 2014-10-27 三菱マテリアル株式会社 Method for manufacturing substrate for power module
JP2019141879A (en) * 2018-02-21 2019-08-29 Dowaメタルテック株式会社 Aluminum-ceramic bonded substrate and method for manufacturing same
JP7062464B2 (en) 2018-02-21 2022-05-06 Dowaメタルテック株式会社 Aluminum-ceramic bonded substrate and its manufacturing method
JP7358123B2 (en) 2019-09-03 2023-10-10 Dowaメタルテック株式会社 Metal-ceramic circuit board and its manufacturing method

Also Published As

Publication number Publication date
JP4362600B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP7117747B2 (en) Electronic component manufacturing method
JP3916586B2 (en) Lead frame plating method
JP4362600B2 (en) Metal-ceramic bonding member
JP2009235579A (en) Lead frame
JP3795354B2 (en) Method for producing metal / ceramic bonding substrate
JP4160518B2 (en) Metal-ceramic bonding member and manufacturing method thereof
JP6753721B2 (en) Metal-ceramic circuit board and its manufacturing method
JP5069485B2 (en) Metal base circuit board
JP6031784B2 (en) Power module substrate and manufacturing method thereof
JP5766318B2 (en) Lead frame
JP2000077593A (en) Lead frame for semiconductor
Chiou et al. Metallurgical reactions at the interface of Sn/Pb solder and electroless copper-plated AlN substrate
JP2014123760A5 (en)
JP2000087291A (en) Base sheet for electronic apparatus made of aluminum base composite material and its production
JP6386310B2 (en) Pretreatment method for plating Al-Cu joint
JP4302095B2 (en) Method for manufacturing metal-ceramic bonding substrate
JP4756169B2 (en) Ceramic circuit board and manufacturing method thereof
JP4704313B2 (en) Lead frame plating method
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JP2007009334A5 (en)
JP6273971B2 (en) Manufacturing method of power module substrate with heat sink
JP2000087293A (en) Base sheet for electronic apparatus made of nickel plating aluminum base composite material and its production
JPH11354699A (en) Semiconductor heat sink and its manufacture
JP5508329B2 (en) Lead frame
KR101976627B1 (en) Heat radiating substrate for high power LED

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4362600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250