JP2005288398A - Surface treatment method - Google Patents

Surface treatment method Download PDF

Info

Publication number
JP2005288398A
JP2005288398A JP2004110679A JP2004110679A JP2005288398A JP 2005288398 A JP2005288398 A JP 2005288398A JP 2004110679 A JP2004110679 A JP 2004110679A JP 2004110679 A JP2004110679 A JP 2004110679A JP 2005288398 A JP2005288398 A JP 2005288398A
Authority
JP
Japan
Prior art keywords
plasma
electrode
cylindrical electrode
cylindrical
arc discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004110679A
Other languages
Japanese (ja)
Inventor
Takeshi Nagasawa
武 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004110679A priority Critical patent/JP2005288398A/en
Publication of JP2005288398A publication Critical patent/JP2005288398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Plasma Technology (AREA)
  • Cleaning In General (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method for performing cleaning treatment or sterilizing treatment of a treating object using plasma. <P>SOLUTION: This surface treatment method is constituted such that a plasma generator 10 is put in open air, gases of air, oxygen, and the like are introduced into a cylindrical electrode 12 of the plasma generator 10, electric power is supplied to a central electrode 20 disposed at the center of the cylindrical electrode 12 and to the cylindrical electrode 12, so that the plasma generated in the neighborhood of the central electrode 20 by localized arc generates a plasma stream which does not reach the cylindrical electrode 12, and the cleaning treatment or sterilizing treatment of the treating object is performed by exposing it to this plasma stream. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は表面処理方法に係り、特にプラズマを用いて被処理物表面の洗浄や殺菌を行う表面処理方法に関する。   The present invention relates to a surface treatment method, and more particularly to a surface treatment method for cleaning and sterilizing the surface of an object to be processed using plasma.

プラズマは、食品が包装される容器等の被処理物の洗浄や殺菌等に利用されている。そして、このような技術を開示したものとして特許文献1が挙げられる。特許文献1に開示された装置は、大気圧中において低温プラズマを生成する大気圧低温プラズマ発生手段を有し、当該発生手段の放電電極に高周波電力を供給して殺菌性物質を含む混合ガスからプラズマ活性種を生成し、このプラズマ活性種が容器内面に吹き付けられて、容器が殺菌されるものである。
特開2001−54556号公報
Plasma is used for cleaning and sterilizing an object to be processed such as a container in which food is packaged. Patent Document 1 is cited as one that discloses such a technique. The apparatus disclosed in Patent Document 1 has atmospheric pressure low temperature plasma generation means for generating low temperature plasma in atmospheric pressure, and supplies high frequency power to a discharge electrode of the generation means from a mixed gas containing a bactericidal substance. Plasma active species are generated, the plasma active species are sprayed on the inner surface of the container, and the container is sterilized.
JP 2001-54556 A

ところで、高電圧放電を利用してプラズマを生成する場合、大気中で放電させると、人体に悪影響を及ぼすオゾンを発生する問題点がある。また大気中でアーク放電させるためには電極間に大電流を印加しなければならず、極めて多くの電力消費と大型の設備が必要となり、装置を維持管理するコストが高くなる問題点がある。さらに電極間に大電流を印加してプラズマを生成すると熱が発生するので、プラズマのエネルギーが損失する問題点がある。   By the way, when plasma is generated using high-voltage discharge, there is a problem that ozone is adversely affected if discharged in the atmosphere. Further, in order to perform arc discharge in the atmosphere, a large current must be applied between the electrodes, so that a large amount of power consumption and large-scale equipment are required, and there is a problem that the cost for maintaining and managing the apparatus becomes high. Furthermore, if plasma is generated by applying a large current between the electrodes, heat is generated, which causes a problem of loss of plasma energy.

また特許文献1に開示された大気圧低温プラズマ発生手段では、アーク放電への移行を防ぐために外側電極の放電領域側に誘電体を有するものがより好ましいとされているので、アーク放電を利用してプラズマを生成することを前提とした装置ではない。   In addition, in the atmospheric pressure low temperature plasma generation means disclosed in Patent Document 1, it is preferable that a dielectric is provided on the discharge region side of the outer electrode in order to prevent transition to arc discharge. Therefore, it is not an apparatus premised on generating plasma.

本発明は、上記問題点を解決するためになされたもので、プラズマを用いて被処理物の洗浄処理や殺菌処理を行う表面処理方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a surface treatment method for performing a cleaning process and a sterilization process on an object to be processed using plasma.

上記目的を達成するために、本発明に係る表面処理方法は、円筒電極内に気体を導入し、前記円筒電極の中心部に配置した中心電極の周囲に、局所的アークにより生成したプラズマが前記円筒電極に達しないプラズマ流を生成して、被処理物に照射することを特徴としている。   In order to achieve the above object, in the surface treatment method according to the present invention, a gas is introduced into a cylindrical electrode, and plasma generated by a local arc is generated around the central electrode arranged at the center of the cylindrical electrode. A plasma flow that does not reach the cylindrical electrode is generated and irradiated to the object to be processed.

プラズマ生成装置に円筒電極と中心電極とを設け、これらの電極に供給される電力(電流)を調整すると、中心電極に電界を集中させることができる。これにより装置が大気中に置かれたとしても、中心電極の近傍において局所的にアーク放電させることができる。そして装置に供給されたガス流によって、生成されたプラズマを装置から噴出させることができる。
したがって食品容器等の被処理物が、プラズマ生成装置から噴出されるプラズマに曝されることによって、被処理物の表面に付いた汚染物の洗浄や除菌を行うことができる。
When a cylindrical electrode and a center electrode are provided in the plasma generator and the electric power (current) supplied to these electrodes is adjusted, the electric field can be concentrated on the center electrode. As a result, even when the apparatus is placed in the atmosphere, arc discharge can be locally performed in the vicinity of the center electrode. The generated plasma can be ejected from the apparatus by the gas flow supplied to the apparatus.
Accordingly, the object to be processed such as a food container is exposed to the plasma ejected from the plasma generating apparatus, whereby the contaminants attached to the surface of the object to be processed can be cleaned and sterilized.

以下に、本発明に係る表面処理方法の好ましい実施の形態について説明する。まず表面処理に用いられるプラズマ生成装置の好ましい実施の形態について説明する。図1にプラズマ生成装置の概略断面図を示す。プラズマ生成装置10は円筒電極12を有し、この円筒電極12の一方の開口12a側に絶縁されたケーシング14が設けられている。このケーシング14は絶縁パイプ等を用いればよく、この絶縁パイプの円筒電極12と反対側の端部を絶縁パイプと同一材料で封止すればよい。この絶縁パイプには、例えば石英等のガラスやアクリル材等を用いればよい。   The preferred embodiments of the surface treatment method according to the present invention will be described below. First, a preferred embodiment of a plasma generation apparatus used for surface treatment will be described. FIG. 1 shows a schematic cross-sectional view of a plasma generating apparatus. The plasma generating apparatus 10 has a cylindrical electrode 12, and an insulated casing 14 is provided on one opening 12 a side of the cylindrical electrode 12. The casing 14 may be an insulating pipe or the like, and the end of the insulating pipe opposite to the cylindrical electrode 12 may be sealed with the same material as the insulating pipe. For this insulating pipe, for example, glass such as quartz or acrylic material may be used.

またケーシング14にはガス供給部16が設けられ、このガス供給部16からプラズマを生成するためのガス、例えば空気や酸素等が円筒電極12の内部に供給される。そして空気が供給される場合、ガス供給部16は流量調整手段(不図示)を備えたポンプ18を有し、このポンプ18により円筒電極12の内部に空気が供給される。また酸素が供給される場合、ガス供給部16は酸素を封入した高圧ボンベと、この高圧ボンベとケーシング14とを接続する供給管と、この供給管に設けられた酸素の流量調整手段とを有し、この流量調整手段により所定の流量に調整された酸素が円筒電極12の内部に供給される。なお図1に示したガス供給部16は、空気が供給される場合の形態を示している。   The casing 14 is provided with a gas supply unit 16, and a gas for generating plasma, such as air or oxygen, is supplied into the cylindrical electrode 12 from the gas supply unit 16. When air is supplied, the gas supply unit 16 includes a pump 18 having a flow rate adjusting unit (not shown), and the pump 18 supplies air into the cylindrical electrode 12. When oxygen is supplied, the gas supply unit 16 includes a high-pressure cylinder filled with oxygen, a supply pipe connecting the high-pressure cylinder and the casing 14, and oxygen flow rate adjusting means provided in the supply pipe. The oxygen adjusted to a predetermined flow rate by the flow rate adjusting means is supplied into the cylindrical electrode 12. In addition, the gas supply part 16 shown in FIG. 1 has shown the form in case air is supplied.

前記円筒電極12の内部、例えば円筒電極12の中心軸付近に中心電極20が設けられている。この中心電極20は円筒電極12に比べて略点状となればよい。すなわち中心電極20は円筒電極12の長さに比べて短く、また円筒電極12の内径に比べて小さいものであり、形状は円板、球形、立方体、直方体、円筒(円柱)形等であればよい。このような中心電極20は金属棒22の一端と接続され、この金属棒22の他端側はケーシング14の側面を貫通して設けられている。すなわち金属棒22はケーシング14の側面で支持され、前記一端に設けられた中心電極20が円筒電極12の略中心軸上に保持されている。そして金属棒22の側面には、金属棒22の他端側を除いて絶縁管24が設けられ、円筒電極12とケーシング14との内部において金属棒22は絶縁されている。また電力を供給するための電源26が円筒電極12と金属棒22とに接続され、中心電極20は金属棒22を介して電源26に接続されている。この電源26には、例えば定電流電源や高周波電源を用いればよく、高周波電源の場合はマッチングボックスが電源26と電極との間に接続される。   A central electrode 20 is provided inside the cylindrical electrode 12, for example, near the central axis of the cylindrical electrode 12. The center electrode 20 may be substantially point-shaped as compared with the cylindrical electrode 12. That is, the center electrode 20 is shorter than the length of the cylindrical electrode 12 and smaller than the inner diameter of the cylindrical electrode 12, and the shape is a disc, a sphere, a cube, a rectangular parallelepiped, a cylinder (column), or the like. Good. Such a center electrode 20 is connected to one end of a metal rod 22, and the other end of the metal rod 22 is provided so as to penetrate the side surface of the casing 14. That is, the metal rod 22 is supported on the side surface of the casing 14, and the center electrode 20 provided at the one end is held on the substantially central axis of the cylindrical electrode 12. An insulating tube 24 is provided on the side surface of the metal rod 22 except for the other end side of the metal rod 22, and the metal rod 22 is insulated inside the cylindrical electrode 12 and the casing 14. A power source 26 for supplying power is connected to the cylindrical electrode 12 and the metal rod 22, and the center electrode 20 is connected to the power source 26 via the metal rod 22. For example, a constant current power source or a high frequency power source may be used as the power source 26. In the case of a high frequency power source, a matching box is connected between the power source 26 and the electrode.

そして円筒電極12には、装置10内に供給されたガスを円筒電極12内で螺旋状に回転させるツバ28が設けられている。このツバ28は、円筒電極12の内側面において、中心電極20よりもガス流の上流側に設けられている。このツバ28によってガス自身が円筒電極12内で螺旋状に回転する。またツバ28を設けないで、ガス供給部16からのガスをケーシング14内に斜めに注入させることで、ガスをケーシング14の壁に沿うように螺旋状に回転させることができる。これらの作用によって、噴出するプラズマを空間的に均一化できる。   The cylindrical electrode 12 is provided with a flange 28 that rotates the gas supplied into the apparatus 10 in a spiral manner within the cylindrical electrode 12. The flange 28 is provided on the inner surface of the cylindrical electrode 12 on the upstream side of the gas flow with respect to the center electrode 20. The gas itself rotates spirally in the cylindrical electrode 12 by the flange 28. Further, without providing the flange 28, the gas can be rotated spirally along the wall of the casing 14 by injecting the gas from the gas supply unit 16 into the casing 14 obliquely. By these actions, the ejected plasma can be made spatially uniform.

次に、プラズマ生成装置10の作用について説明する。なお、ここでは供給されるガスとして空気を用いた形態について説明するが、酸素を用いる場合も、以下に説明する作用と同様になる。まず所定流量の空気がガス供給部16のポンプ18を用いてケーシング14の内部に供給され、供給された空気は円筒電極12の他方の開口12b側に向かって流れる。空気は円筒電極12内に入ると、螺旋状に回転しながら流れる。そして電力を円筒電極12と中心電極20とに電源26から供給して、電界を円筒電極12と中心電極20との間に発生させる。この電界は中心電極20の近傍において強く、円筒電極12の近傍において弱くなるように、電気力線密度が調整される。すなわち円筒電極12を用いるので円筒効果が生じるとともに、中心電極20を用いるので針効果が生じて、強電界が中心電極20の近傍に発生される。そして、この強電界によってアーク放電が円筒電極12と中心電極20との間、すなわち中心電極20の近傍に、局所的に得られるようになる。なお局所的なアーク放電の容量は放電電流によって調整される。   Next, the operation of the plasma generation apparatus 10 will be described. In addition, although the form using air as a gas supplied here is demonstrated, it becomes the same as the effect | action demonstrated below also when using oxygen. First, a predetermined flow rate of air is supplied into the casing 14 using the pump 18 of the gas supply unit 16, and the supplied air flows toward the other opening 12 b side of the cylindrical electrode 12. When the air enters the cylindrical electrode 12, it flows while rotating in a spiral. Then, electric power is supplied to the cylindrical electrode 12 and the center electrode 20 from the power source 26, and an electric field is generated between the cylindrical electrode 12 and the center electrode 20. The electric field line density is adjusted so that this electric field is strong near the center electrode 20 and weak near the cylindrical electrode 12. That is, since the cylindrical electrode 12 is used, a cylindrical effect is generated, and since the central electrode 20 is used, a needle effect is generated, and a strong electric field is generated in the vicinity of the central electrode 20. The strong electric field allows an arc discharge to be locally obtained between the cylindrical electrode 12 and the center electrode 20, that is, in the vicinity of the center electrode 20. The local arc discharge capacity is adjusted by the discharge current.

この局所的に得られるアーク放電について、さらに詳しく説明すると次のようになる。なお、この説明では簡単化のために、同軸上に円筒電極と棒電極とを設けた形態で説明するが、この形態と同様に本実施の形態も説明できる。図2にアーク放電を説明するための図を示す。円筒電極30の中心軸から棒電極32の外周までの距離をaとし、前記軸から円筒電極30の内周までの距離をbとし、生成されたプラズマの前記軸から外周までの距離(アーク放電領域の半径)をcとする。また前記軸から棒電極32と円筒電極30との間における任意の点Rまでの距離をrとする。そして棒電極32と円筒電極30と間の電位差をVとすると、点Rにおける電界Eは数式1により表される。

Figure 2005288398
そして棒電極32の近傍は円筒効果によって高電界となり、アーク放電状態となる。したがって見掛け上、棒電極32の半径aが増大したようになっている。また前記アーク放電領域の半径cは放電電圧と放電電流とによって決まるので、r=c=bとなると、棒電極32と円筒電極30とが短絡したアーク放電となり、電極30,32間に大電流が流れる。これに対し、高圧の定電圧を棒電極32と円筒電極30とに印加して、円筒効果により棒電極32近傍を高電界にするとともに、放電電流を制御すると、棒電極32近傍に制限的なアーク放電領域が形成される。すなわち棒電極32と円筒電極30とを短絡させないでアーク放電させている。したがって、本実施の形態に係るプラズマ生成装置10は、円筒電極12により円筒効果を生じるとともに、中心電極20により針効果を生じるので、電界を中心電極20に集中させることが可能となって、放電電流をより小電流にすることが可能となり、アーク放電プラズマをより小電力で生成可能となる。 The arc discharge obtained locally will be described in more detail as follows. In this description, for the sake of simplification, a description will be given in a form in which a cylindrical electrode and a bar electrode are provided on the same axis, but this embodiment can also be described in the same manner as this form. FIG. 2 is a diagram for explaining arc discharge. The distance from the central axis of the cylindrical electrode 30 to the outer periphery of the rod electrode 32 is a, the distance from the axis to the inner periphery of the cylindrical electrode 30 is b, and the distance from the axis to the outer periphery of the generated plasma (arc discharge) Let the radius of the region be c. The distance from the axis to an arbitrary point R between the rod electrode 32 and the cylindrical electrode 30 is r. When the potential difference between the rod electrode 32 and the cylindrical electrode 30 is V, the electric field E at the point R is expressed by Equation 1.
Figure 2005288398
The vicinity of the rod electrode 32 becomes a high electric field due to the cylindrical effect, resulting in an arc discharge state. Therefore, apparently, the radius a of the rod electrode 32 is increased. Further, the radius c of the arc discharge region is determined by the discharge voltage and the discharge current. Therefore, when r = c = b, arc discharge in which the rod electrode 32 and the cylindrical electrode 30 are short-circuited, and a large current is generated between the electrodes 30 and 32. Flows. On the other hand, when a high constant voltage is applied to the rod electrode 32 and the cylindrical electrode 30 to make the vicinity of the rod electrode 32 a high electric field by the cylindrical effect and the discharge current is controlled, the vicinity of the rod electrode 32 is limited. An arc discharge region is formed. That is, arc discharge is performed without short-circuiting the rod electrode 32 and the cylindrical electrode 30. Therefore, since the plasma generation apparatus 10 according to the present embodiment generates the cylindrical effect by the cylindrical electrode 12 and the needle effect by the center electrode 20, the electric field can be concentrated on the central electrode 20, and the discharge can be performed. The electric current can be made smaller, and the arc discharge plasma can be generated with smaller electric power.

そしてアーク放電領域のプラズマは、装置10の内部に供給された空気の流れによって円筒電極12の他方の開口12b側から噴出され、小電力の大容量プラズマトーチ(プラズマ流)が形成される。このプラズマトーチは、空気の流量によって、円筒電極12の内側面に達することがない。プラズマの噴出される距離は、供給される空気の流量によって調整されるので、流量を小さくすると噴出距離は短くなり、流量を大きくすると噴出距離が長くなる。またプラズマの生成量は円筒電極12と中心電極20との間の放電電流によって制御されるので、放電電流を小さくすると生成量は少なくなり、放電電流を大きくすると生成量は多くなる。   Then, the plasma in the arc discharge region is ejected from the other opening 12b side of the cylindrical electrode 12 by the flow of air supplied into the apparatus 10, and a low-power large-capacity plasma torch (plasma flow) is formed. The plasma torch does not reach the inner surface of the cylindrical electrode 12 due to the air flow rate. Since the plasma ejection distance is adjusted by the flow rate of the supplied air, the ejection distance is shortened when the flow rate is reduced, and the ejection distance is lengthened when the flow rate is increased. Further, since the amount of plasma generated is controlled by the discharge current between the cylindrical electrode 12 and the center electrode 20, the amount of generation decreases when the discharge current is reduced, and the amount of generation increases when the discharge current is increased.

そして、このようなプラズマ生成装置10を大気中におき、電源26に小電力のインバータネオトランス(9kVA、28mA)を用い、円筒電極12を内径8mm、長さ20mmとし、中心電極20を直径3mm、厚さ2mmの円板状とすると、放電の電圧−電流特性は図3に示すようになる。プラズマ生成装置10は電流制限を行って、アーク放電へ移行する領域、すなわち放電電流が28mAにおいて局所的なアーク放電を得ている。局所的なアーク放電は、放電電圧が2.6〜3kVでありアーク放電(数十V)に比べて高いが、放電電流が28mAでありアーク放電(10A以上)に比べて低いという特徴を有する。そして前述の条件のとき、プラズマ生成装置10から噴出されたプラズマトーチは、直径10mm、長さ約10mmであった。なおプラズマトーチの長さは、装置10の内部に供給されるガス流量によって調整することができる。   Then, such a plasma generator 10 is placed in the atmosphere, a low-power inverter neo-transformer (9 kVA, 28 mA) is used as the power source 26, the cylindrical electrode 12 has an inner diameter of 8 mm, a length of 20 mm, and the center electrode 20 has a diameter of 3 mm. When the disk shape is 2 mm thick, the voltage-current characteristics of the discharge are as shown in FIG. The plasma generation device 10 performs current limiting, and obtains a local arc discharge in a region where the discharge proceeds to the arc discharge, that is, in a discharge current of 28 mA. The local arc discharge has a feature that the discharge voltage is 2.6 to 3 kV, which is higher than the arc discharge (several tens of volts), but the discharge current is 28 mA, which is lower than the arc discharge (10 A or more). . Under the above-described conditions, the plasma torch ejected from the plasma generation apparatus 10 had a diameter of 10 mm and a length of about 10 mm. Note that the length of the plasma torch can be adjusted by the flow rate of gas supplied into the apparatus 10.

次に、このようなプラズマ生成装置10を用いた表面処理方法について説明する。プラズマ生成装置10を用いて被処理物、例えば食品が包装される容器の洗浄や殺菌を行うには、プラズマ生成装置10から噴出されるプラズマに前記容器が曝されるようにすればよい。すなわち、例えばプラズマ生成装置10を下方に向けてプラズマを下方に噴出させるようにし、容器をプラズマ生成装置10の下方においてプラズマに曝される距離を保って水平方向に移動させればよい。すると容器はプラズマ生成装置10の下方を通過するときにプラズマに曝されて、プラズマにより容器表面を洗浄および除菌することができる。そして洗浄面積が広い場合は、プラズマ生成装置10を複数並べて配設し、全体としてプラズマが噴出される面積を広くすればよい。図4にプラズマ生成装置10を複数並べて配設したときの説明図を示す。図4は円筒電極12の他方の開口側12b、すなわちプラズマが噴出される側から見たものである。そしてプラズマ生成装置10はリング状に複数並べて配設されてもよく(図4(a)参照)、密接させて配設されてもよい(図4(b)参照)。なお1つのプラズマ生成装置10で使用される電力は極めて小さいので、プラズマ生成装置10を複数設けたとしても、電力の消費量は小さくて済む。   Next, a surface treatment method using such a plasma generation apparatus 10 will be described. In order to clean or sterilize a container in which an object to be processed, such as food, is packaged using the plasma generator 10, the container may be exposed to plasma ejected from the plasma generator 10. That is, for example, the plasma generation apparatus 10 may be directed downward and the plasma may be ejected downward, and the container may be moved in the horizontal direction while maintaining a distance exposed to the plasma below the plasma generation apparatus 10. Then, the container is exposed to the plasma when passing under the plasma generating apparatus 10, and the container surface can be cleaned and sterilized by the plasma. If the cleaning area is large, a plurality of plasma generators 10 may be arranged side by side to increase the area from which plasma is ejected as a whole. FIG. 4 shows an explanatory diagram when a plurality of plasma generation apparatuses 10 are arranged side by side. FIG. 4 is a view from the other opening side 12b of the cylindrical electrode 12, that is, the side from which plasma is ejected. A plurality of plasma generation apparatuses 10 may be arranged side by side in a ring shape (see FIG. 4A) or in close contact (see FIG. 4B). In addition, since the electric power used by one plasma production | generation apparatus 10 is very small, even if the plasma production | generation apparatus 10 is provided with two or more, the electric power consumption may be small.

このように表面処理方法は、プラズマ生成装置10を用いて被処理物の洗浄や殺菌、例えば食品容器等の洗浄や殺菌を行うことができる。したがって被処理物の表面に印字やシールを貼付する前段階等において、被処理物の表面をプラズマに曝すと、被処理物に付いた汚染物を除去することができ、接着の効力を増加できる。同様に、食品容器をプラズマに曝すと、食品容器の表面に付いた雑菌等を殺菌することができる。そしてプラズマは低温なので、高温に弱い精密機器の洗浄にも用いることができる。さらにプラズマ生成装置10は大気中でプラズマを生成できるので、大気中で被処理物の洗浄や殺菌を行うことができる。   Thus, the surface treatment method can perform cleaning and sterilization of an object to be processed, for example, cleaning and sterilization of food containers and the like, using the plasma generation apparatus 10. Therefore, if the surface of the object to be processed is exposed to plasma in the stage before the printing or sticking is applied to the surface of the object to be processed, contaminants attached to the object to be processed can be removed and the effectiveness of adhesion can be increased. . Similarly, if the food container is exposed to plasma, germs and the like attached to the surface of the food container can be sterilized. And since the plasma is low temperature, it can be used to clean precision instruments that are sensitive to high temperatures. Furthermore, since the plasma generation apparatus 10 can generate plasma in the atmosphere, the object to be processed can be cleaned and sterilized in the atmosphere.

また表面処理方法は、プラズマ生成装置10を大気中で稼動できるので、容易に洗浄や殺菌を行うことができる。さらに表面処理方法は、真空装置等を必要としないので、真空中でプラズマを生成して洗浄や殺菌を行う場合に比べて低コストで洗浄や殺菌を行うことができる。なおアーク放電ではオゾンの発生は少ないので、オゾン除去を考慮する必要がなく、プラズマを生成するガスに空気等を用いることができる。   Moreover, since the plasma generating apparatus 10 can operate | move in air | atmosphere, the surface treatment method can perform cleaning and sterilization easily. Furthermore, since the surface treatment method does not require a vacuum apparatus or the like, cleaning and sterilization can be performed at a lower cost compared to the case where cleaning and sterilization are performed by generating plasma in a vacuum. In addition, since there is little generation | occurrence | production of ozone in arc discharge, it is not necessary to consider ozone removal, and air etc. can be used for the gas which produces | generates plasma.

またプラズマ生成装置10は円筒電極12と中心電極20とを用いるとともに、放電電流を制限したので、電極間全体でアーク放電せず、中心電極20近傍において局所的にアーク放電させることができる。すなわちプラズマ生成装置10は中心電極20近傍に電界を集中することができるので、大気中(大気圧中)においても局所的にアーク放電させることができる。そして局所的にアーク放電させるので、放電を生じさせる電力は極めて小さくて済み、装置10を低コストで稼動できる。また電極の破損を防ぐこともできる。なおプラズマ生成装置10を真空中に入れれば、真空中においてもプラズマを生成できる。   In addition, since the plasma generating apparatus 10 uses the cylindrical electrode 12 and the center electrode 20 and limits the discharge current, it is possible to perform arc discharge locally in the vicinity of the center electrode 20 without arc discharge between the electrodes. That is, since the plasma generating apparatus 10 can concentrate the electric field in the vicinity of the center electrode 20, it is possible to cause arc discharge locally even in the atmosphere (at atmospheric pressure). Since the arc discharge is locally performed, the electric power causing the discharge is very small, and the apparatus 10 can be operated at a low cost. In addition, the electrode can be prevented from being damaged. If the plasma generator 10 is placed in a vacuum, plasma can be generated even in a vacuum.

また円筒電極12内にツバ28を設けることにより、円筒電極12の径方向において均一なプラズマを生成できる。さらにプラズマ生成装置10は、部品を複雑に組み合わせる必要が無く、簡単な構造のため軽量化でき、さらに低価格で作製できる。   Further, by providing the flange 28 in the cylindrical electrode 12, uniform plasma can be generated in the radial direction of the cylindrical electrode 12. Furthermore, the plasma generating apparatus 10 does not need to combine parts in a complicated manner, can be reduced in weight because of its simple structure, and can be manufactured at a lower cost.

なおプラズマ生成装置10に水素、窒素、酸素、塩素またはアルゴン等のガスを供給すれば、これらのプラズマを生成することができる。そしてプラズマ生成装置10は、これらのガスを用いて薄膜の成膜、スパッタリング、エッチング等に利用できる。   In addition, if gas, such as hydrogen, nitrogen, oxygen, chlorine, or argon, is supplied to the plasma generator 10, these plasmas can be generated. The plasma generation apparatus 10 can be used for thin film deposition, sputtering, etching, and the like using these gases.

プラズマ生成装置の概略断面図である。It is a schematic sectional drawing of a plasma production apparatus. アーク放電を説明するための図である。It is a figure for demonstrating arc discharge. 放電の電圧−電流特性である。It is the voltage-current characteristic of discharge. プラズマ生成装置を複数並べて配設したときの説明図である。It is explanatory drawing when a plurality of plasma generation devices are arranged side by side.

符号の説明Explanation of symbols

10………プラズマ生成装置、12………円筒電極、14………ケーシング、16………ガス供給部、20………中心電極、26………電源、28………ツバ。

DESCRIPTION OF SYMBOLS 10 ......... Plasma production | generation apparatus, 12 ......... Cylinder electrode, 14 ......... casing, 16 ......... gas supply part, 20 ......... center electrode, 26 ..... power supply, 28 ....... brim.

Claims (1)

円筒電極内に気体を導入し、前記円筒電極の中心部に配置した中心電極の周囲に、局所的アークにより生成したプラズマが前記円筒電極に達しないプラズマ流を生成して、被処理物に照射することを特徴とする表面処理方法。
A gas is introduced into the cylindrical electrode, and a plasma flow is generated around the central electrode arranged at the center of the cylindrical electrode so that the plasma generated by the local arc does not reach the cylindrical electrode. A surface treatment method comprising:
JP2004110679A 2004-04-05 2004-04-05 Surface treatment method Pending JP2005288398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110679A JP2005288398A (en) 2004-04-05 2004-04-05 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110679A JP2005288398A (en) 2004-04-05 2004-04-05 Surface treatment method

Publications (1)

Publication Number Publication Date
JP2005288398A true JP2005288398A (en) 2005-10-20

Family

ID=35321952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110679A Pending JP2005288398A (en) 2004-04-05 2004-04-05 Surface treatment method

Country Status (1)

Country Link
JP (1) JP2005288398A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152226A (en) * 2005-12-05 2007-06-21 Utsunomiya Univ Pipe inside cleaning device using plasma
JP2007207475A (en) * 2006-01-31 2007-08-16 Ibaraki Univ Portable type atmospheric pressure plasma generating device
JP2009519799A (en) * 2005-12-20 2009-05-21 プラズマトリート ゲゼルシャフト ミット ベシュレンクテル ハフツング Article disinfection method and apparatus
JP2011000224A (en) * 2009-06-17 2011-01-06 National Institute Of Advanced Industrial Science & Technology Plasma irradiation device
CN106658931A (en) * 2016-10-19 2017-05-10 南京航空航天大学 Portable atmospheric pressure normal temperature plasma jet generating device
JP2019126748A (en) * 2018-01-22 2019-08-01 株式会社デンソー Plasma cleaner and plasma cleaning method
WO2024009422A1 (en) * 2022-07-06 2024-01-11 株式会社Fuji Plasma head and plasma generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382666A (en) * 1986-09-26 1988-04-13 三菱重工業株式会社 Sterilizing apparatus by high voltage pulse
JPS63215374A (en) * 1987-02-19 1988-09-07 ユニベルシテ・レーヌ・デスカルト Plasma knife type device and cutting or remedy method by said device
JPH0538582A (en) * 1991-08-02 1993-02-19 Masao Miki Arc plasma heating device
JP2000109979A (en) * 1998-10-05 2000-04-18 Tokujiro Okui Surface treatment method by dc arc discharge plasma
JP2001054556A (en) * 1999-08-18 2001-02-27 Shikoku Kakoki Co Ltd Atmospheric pressure low-temperature plasma sterilization method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382666A (en) * 1986-09-26 1988-04-13 三菱重工業株式会社 Sterilizing apparatus by high voltage pulse
JPS63215374A (en) * 1987-02-19 1988-09-07 ユニベルシテ・レーヌ・デスカルト Plasma knife type device and cutting or remedy method by said device
JPH0538582A (en) * 1991-08-02 1993-02-19 Masao Miki Arc plasma heating device
JP2000109979A (en) * 1998-10-05 2000-04-18 Tokujiro Okui Surface treatment method by dc arc discharge plasma
JP2001054556A (en) * 1999-08-18 2001-02-27 Shikoku Kakoki Co Ltd Atmospheric pressure low-temperature plasma sterilization method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007152226A (en) * 2005-12-05 2007-06-21 Utsunomiya Univ Pipe inside cleaning device using plasma
JP2009519799A (en) * 2005-12-20 2009-05-21 プラズマトリート ゲゼルシャフト ミット ベシュレンクテル ハフツング Article disinfection method and apparatus
JP2007207475A (en) * 2006-01-31 2007-08-16 Ibaraki Univ Portable type atmospheric pressure plasma generating device
JP2011000224A (en) * 2009-06-17 2011-01-06 National Institute Of Advanced Industrial Science & Technology Plasma irradiation device
CN106658931A (en) * 2016-10-19 2017-05-10 南京航空航天大学 Portable atmospheric pressure normal temperature plasma jet generating device
JP2019126748A (en) * 2018-01-22 2019-08-01 株式会社デンソー Plasma cleaner and plasma cleaning method
JP7024435B2 (en) 2018-01-22 2022-02-24 株式会社デンソー Plasma cleaning equipment and plasma cleaning method
WO2024009422A1 (en) * 2022-07-06 2024-01-11 株式会社Fuji Plasma head and plasma generation device

Similar Documents

Publication Publication Date Title
JP5663819B2 (en) Plasma source and medical device including the plasma source
US7719200B2 (en) Plasma generator
CN104013985B (en) Portable micro-plasma sterilizer
US7777151B2 (en) Portable plasma sterilizer
US20070116891A1 (en) Plasma brush apparatus and method
EP3476809B1 (en) Autonomous bubble generating plasma unit for water treatment
JP2009519799A (en) Article disinfection method and apparatus
US8294369B1 (en) Low temperature plasma generator having an elongate discharge tube
JP2003210556A (en) Pipe sterilizer with plasma
CN103945627A (en) Handheld large-area low-temperature plasma generator
JP2011000224A (en) Plasma irradiation device
KR102006304B1 (en) Spraying Apparatus Using Plasma
Georgescu et al. Atomic oxygen maximization in high-voltage pulsed cold atmospheric plasma jets
KR101320291B1 (en) Handpiece-type plasma apparatus for local sterilization and disinfection
JP2006278191A (en) Plasma jet generating electrode
JP2005288398A (en) Surface treatment method
CN102065626A (en) Atmospheric pressure non-thermal plasma brush generator and array combination thereof
JP2006269095A (en) Plasma generation device
Kang et al. Atmospheric-pressure cold plasma jet for medical applications
JP2008218369A (en) Surface treatment device
KR20110006017A (en) Sterilization apparatus and method of microbes by air plasma from porous dielectric material inserted in electrodes
JP2005166457A (en) Plasma discharge device
KR101479261B1 (en) Water Feeder and Plasma Water Treatment Apparatus using the Same
JP2013214377A (en) Atmospheric pressure plasma generator
Laroussi et al. Cold atmospheric pressure plasma sources for cancer applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081031