JP2005288283A - Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus - Google Patents

Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus Download PDF

Info

Publication number
JP2005288283A
JP2005288283A JP2004105623A JP2004105623A JP2005288283A JP 2005288283 A JP2005288283 A JP 2005288283A JP 2004105623 A JP2004105623 A JP 2004105623A JP 2004105623 A JP2004105623 A JP 2004105623A JP 2005288283 A JP2005288283 A JP 2005288283A
Authority
JP
Japan
Prior art keywords
volatile vapor
condensing
vacuum
vacuum pump
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004105623A
Other languages
Japanese (ja)
Inventor
Toshiro Tomishige
敏郎 富重
Shiro Kamibeppu
史郎 上別府
Taisuke Sekimoto
泰介 関本
Kinichi Shibata
欣一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Energy and Industrial Technology Development Organization
Wave Engineering Corp
Original Assignee
New Energy and Industrial Technology Development Organization
Wave Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Energy and Industrial Technology Development Organization, Wave Engineering Corp filed Critical New Energy and Industrial Technology Development Organization
Priority to JP2004105623A priority Critical patent/JP2005288283A/en
Publication of JP2005288283A publication Critical patent/JP2005288283A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condensing apparatus of volatilized vapor having a vacuum pump keeping vacuum in a system generating volatilized vapor in vacuum, and a condensing means for recovering volatilized vapor by condensing it in a vacuum atmosphere. <P>SOLUTION: This condensing apparatus of volatilized vapor is provided, in a system generating volatilized vapor in vacuum, with the vacuum pump keeping vacuum and a first condensing means recovering the volatilized vapor by condensing it, and a second condensing means at the outlet of the vacuum pump. The second condensing means is provided so as to operate in an atmospheric pressure. Water of room temperature is used as cooling water of the second condensing means. A dry vacuum pump is used as the vacuum pump. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと発生した揮発蒸気を真空下で凝縮する凝縮手段とを備えた揮発蒸気の凝縮装置とその装置において凝縮されなかった揮発蒸気を回収する方法とに関する。 The present invention relates to a volatile vapor condensing apparatus comprising a vacuum pump for generating volatile vapor in a vacuum, a vacuum pump for maintaining the vacuum, and a condensing means for condensing the generated volatile vapor under vacuum, and the apparatus is not condensed. And a method for recovering volatile vapor.

従来、主に化学工業分野において発生する揮発蒸気、例えばアルコール含水蒸気の凝縮装置では、真空ポンプの前、即ち真空系内に凝縮手段を配置して揮発蒸気を凝縮させる構成が一般であった。   2. Description of the Related Art Conventionally, a condensing apparatus for volatile vapor generated mainly in the chemical industry, for example, alcohol-containing steam, generally has a configuration in which condensing means is disposed before a vacuum pump, that is, in a vacuum system to condense volatile vapor.

しかし、このような従来の装置では、飽和蒸気圧の関係から揮発蒸気の凝縮温度が低くなるため、凝縮手段に供給される冷媒は、比較的低温の特殊な冷媒(例えばチラー)を用いる必要があり、しかも大量に必要とするため、コストが嵩むという問題があった。
又、揮発蒸気中に比較的高温で凝固する例えば水のような物質が含まれたりすると、冷媒温度が低すぎるために凝縮手段の槽内や配管内で凝固してしまうという問題があった。水等の物質が凝縮手段の内部に凝固してしまうと、蒸気の流通が阻害され真空状態が維持できなくなるため凝縮装置を一旦停止させ、温度が自然に上昇するのを待ち、凝固を自然解凍によって除去せざるを得ず、凝固の解凍に長時間を要し、生産性向上の重大な障害となっていた。
However, in such a conventional apparatus, since the condensation temperature of the volatile vapor is lowered due to the saturation vapor pressure, it is necessary to use a relatively low temperature special refrigerant (for example, a chiller) as the refrigerant supplied to the condensing means. In addition, since a large amount is required, there is a problem that costs increase.
In addition, when a substance such as water that solidifies at a relatively high temperature is contained in the volatile vapor, the refrigerant temperature is too low, causing solidification in the tank of the condensing means or in the piping. If water or other substances solidify inside the condensing means, the flow of steam is hindered and the vacuum state cannot be maintained, so the condensing device is temporarily stopped, waiting for the temperature to rise naturally, and solidification is naturally thawed. Therefore, it took a long time to thaw the coagulation, which was a serious obstacle to improving productivity.

又、従来のように、真空ポンプと当該真空ポンプの前に配置された凝縮手段とを備えた構成の装置では、凝縮手段によって凝縮されなかった揮発蒸気が有する熱(潜熱等)及び/又は揮発蒸気に含有される製品成分について効率的な回収方法が確立されていない。   In addition, in a conventional apparatus having a vacuum pump and a condensing means arranged in front of the vacuum pump, heat (latent heat, etc.) and / or volatilization of volatile vapor not condensed by the condensing means is provided. An efficient recovery method has not been established for product components contained in steam.

例えば、真空ポンプ出口でのアルコール濃度は約33wt%であるが、スチームエジェクタの駆動蒸気としては少なくとも約100kg/h程度必要であるため、スチームエジェクタ吐出側では約7wt%程度以下となってしまい、アルコールの回収(製品化)としては好ましくなかった。 For example, although the alcohol concentration at the outlet of the vacuum pump is about 33 wt%, the driving steam for the steam ejector requires at least about 100 kg / h, so the steam ejector discharge side has about 7 wt% or less. It was not preferable for alcohol recovery (commercialization).

本発明は、真空で揮発蒸気が発生する系に、真空を維持させる真空ポンプと揮発蒸気を凝縮する第1の凝縮手段(凝縮装置)とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に第2の凝縮手段を配設して二段分縮としたり、第1の凝縮手段により凝縮されなかった揮発蒸気を、全体装置(即ち当該第1の凝縮手段や後述の製品化手段等を含む装置の全体)の熱給配システムの熱源として回収したり、回収した前記揮発蒸気を、更に第2の凝縮手段や減圧塔等の製品化手段によって、凝縮されなかった揮発蒸気中の目的物を更に回収するための装置及びその方法の提供を目的とするもので、次の特徴を持つ。 The present invention relates to a condensing apparatus for volatile vapor comprising a vacuum pump for maintaining a vacuum and a first condensing device (condensing apparatus) for condensing the volatile vapor in a system in which volatile vapor is generated in a vacuum. The second condensing means is disposed on the outlet side to reduce the pressure into two stages, or the volatile vapor that has not been condensed by the first condensing means is removed from the entire apparatus (that is, the first condensing means and the commercializing means described later). Or the like, the recovered volatile vapor in the volatile vapor not condensed by the second condensing means or the commercialization means such as the decompression tower. An object of the present invention is to provide an apparatus and a method for further recovering an object, and has the following characteristics.

即ち、本発明の揮発蒸気の凝縮装置は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に第2の凝縮手段を設けたことを特徴とする。   That is, the condensing apparatus for volatile vapor according to the present invention is a volatile vapor condensing device comprising a vacuum system for generating volatile vapor in a vacuum and a vacuum pump for maintaining the vacuum and a first condensing means for condensing and recovering the volatile vapor. In the condensing device, the second condensing means is provided on the outlet side of the vacuum pump.

又、本発明の揮発蒸気の凝縮装置は、真空で揮発蒸気を発生する真空系を有する揮発蒸気の凝縮装置において、第1の凝縮手段と第2の凝縮手段との二段で前記揮発蒸気を分縮するために、前記真空系の真空を維持させる真空ポンプの入口側に第1の凝縮手段を配設すると共に前記真空ポンプの出口側に第2の凝縮手段を設けたことを特徴とする。   The volatile vapor condensing device of the present invention is a volatile vapor condensing device having a vacuum system for generating volatile vapor in a vacuum, wherein the volatile vapor is two-staged by a first condensing means and a second condensing means. In order to reduce the pressure, a first condensing means is provided on the inlet side of the vacuum pump that maintains the vacuum of the vacuum system, and a second condensing means is provided on the outlet side of the vacuum pump. .

又、本発明の揮発蒸気の凝縮装置は、真空ポンプと第2の凝縮手段との間に前記真空ポンプからの揮発蒸気を回収する揮発蒸気の回収流路分岐手段を設けたことを特徴とする。 The volatile vapor condensing apparatus of the present invention is characterized in that a volatile vapor recovery flow path branching means for recovering volatile vapor from the vacuum pump is provided between the vacuum pump and the second condensing means. .

又、本発明の揮発蒸気の凝縮装置は、揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムの熱源として送り込む揮発蒸気供給手段を設けたことを特徴とする。 Further, the volatile vapor condensing apparatus of the present invention comprises volatile vapor supply means for sending the volatile vapor recovered by the volatile vapor recovery flow path branching means as a heat source of the heat distribution system of the entire apparatus including the volatile vapor condensing apparatus. It is provided.

又、本発明の揮発蒸気の凝縮装置は、揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段を設けたことを特徴とする。 Further, the volatile vapor condensing apparatus of the present invention is characterized in that a commercialization processing means for commercializing the volatile vapor recovered by the volatile vapor recovery flow path branching means is provided.

又、本発明の揮発蒸気の凝縮装置は、揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段と前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに熱源として送り込む揮発蒸気供給手段とを設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を前記製品化処理手段と前記揮発蒸気供給手段との何れか又は双方に供給する揮発蒸気分配手段を設けたことを特徴とする。 The volatile vapor condensing apparatus according to the present invention includes a commercialization processing means for commercializing the volatile vapor recovered by the volatile vapor recovery flow path branching means and the volatile vapor recovered by the volatile vapor recovery flow path branching means. Volatile vapor supply means for sending the volatile vapor as a heat source to a heat distribution system of the entire apparatus including the volatile vapor condensation device, and the volatile vapor recovered by the recovery flow path branching means for the volatile vapor Volatile vapor distribution means for supplying either or both of the volatile vapor supply means and the volatile vapor supply means is provided.

又、本発明の揮発蒸気の凝縮装置は、第2の凝縮手段が大気圧下で作動するよう設けたことを特徴とする。   The volatile vapor condensing apparatus of the present invention is characterized in that the second condensing means is provided to operate under atmospheric pressure.

又、本発明の揮発蒸気の凝縮装置は、第2の凝縮手段の冷却液が常温の水であることを特徴とする。   The volatile vapor condensing apparatus of the present invention is characterized in that the cooling liquid of the second condensing means is water at room temperature.

又、本発明の揮発蒸気の凝縮装置は、真空ポンプがドライ真空ポンプであることを特徴とする。 In the volatile vapor condensing apparatus of the present invention, the vacuum pump is a dry vacuum pump.

又、本発明の揮発蒸気の凝縮装置における揮発蒸気の回収方法は、真空で揮発蒸気が発生する真空系に真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に第2の凝縮手段を設けて、前記第1の凝縮手段にて凝縮処理されなかった揮発蒸気を前記真空ポンプを介して取り込み更に凝縮処理して回収することを特徴とする。   The volatile vapor recovery method in the volatile vapor condensing apparatus of the present invention includes a vacuum pump that maintains a vacuum in a vacuum system that generates volatile vapor in a vacuum, and a first condensing means that condenses and recovers the volatile vapor. In the volatile vapor condensing apparatus, a second condensing unit is provided on the outlet side of the vacuum pump, and the volatile vapor not condensed by the first condensing unit is taken in through the vacuum pump and further condensed. It is characterized by processing and collecting.

又、本発明の揮発蒸気の凝縮装置における揮発蒸気の回収方法は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えると共に、前記真空ポンプの出口側に第2の凝縮手段を設けた揮発蒸気の凝縮装置において、前記真空系の圧力が所定の圧力より低下すると第1の復圧用圧力制御弁により外気を取り入れ、真空系Aの圧力が所定の圧力より上昇すると第2の復圧用圧力制御弁により真空ポンプへの流量を増加させて、真空系の圧力を一定に維持させながら凝縮処理して回収することを特徴とする。     The volatile vapor recovery method in the volatile vapor condensing apparatus of the present invention includes a vacuum system for generating volatile vapor in a vacuum, a vacuum pump for maintaining the vacuum, and a first condensing means for condensing and recovering the volatile vapor. A volatile vapor condensing device provided with a second condensing means on the outlet side of the vacuum pump, and when the pressure in the vacuum system falls below a predetermined pressure, outside air is taken in by the first pressure-reducing pressure control valve. When the pressure in the vacuum system A rises above a predetermined pressure, the flow rate to the vacuum pump is increased by the second pressure-reducing pressure control valve, and the condensation is recovered while maintaining the vacuum system pressure constant. Features.

又、本発明の揮発蒸気の凝縮装置は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに熱源として送り込む揮発蒸気供給手段を設けたことを特徴とする。 Further, the volatile vapor condensing apparatus of the present invention is a volatile vapor condensing device provided with a vacuum pump for maintaining the vacuum and a first condensing means for condensing and recovering the volatile vapor in a vacuum system in which the volatile vapor is generated in a vacuum. In the condensing device, a volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovery channel branching means collects the volatile vapor. Volatile vapor supply means for sending the volatile vapor as a heat source to the heat distribution system of the entire apparatus including the volatile vapor condensing device is provided.

又、本発明の揮発蒸気の凝縮装置は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段を設けたことを特徴とする。     Further, the volatile vapor condensing apparatus of the present invention is a volatile vapor condensing device provided with a vacuum pump for maintaining the vacuum and a first condensing means for condensing and recovering the volatile vapor in a vacuum system in which the volatile vapor is generated in a vacuum. In the condensing device, a volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovery channel branching means collects the volatile vapor. The present invention is characterized by providing a commercialization processing means for commercializing the volatile vapor.

又、本発明の揮発蒸気の凝縮装置は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに熱源として送り込む揮発蒸気供給手段と前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段とを設けたことを特徴とする。   Further, the volatile vapor condensing apparatus of the present invention is a volatile vapor condensing device provided with a vacuum pump for maintaining the vacuum and a first condensing means for condensing and recovering the volatile vapor in a vacuum system in which the volatile vapor is generated in a vacuum. In the condensing device, a volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovery channel branching means collects the volatile vapor. Volatile vapor supply means for sending the volatile vapor as a heat source to the heat distribution system of the entire apparatus including the volatile vapor condensing device, and a commercialization processing means for commercializing the volatile vapor recovered by the recovery flow path branching means for the volatile vapor And is provided.

又、本発明の揮発蒸気の凝縮装置は、揮発蒸気の回収流路分岐手段により回収された揮発蒸気の一部又は全部を製品化処理手段と揮発蒸気供給手段との何れか又は双方に供給する揮発蒸気分配手段を設けたことを特徴とする。   The volatile vapor condensing apparatus of the present invention supplies a part or all of the volatile vapor recovered by the volatile vapor recovery flow path branching means to either or both of the commercialization processing means and the volatile vapor supply means. Volatile vapor distribution means is provided.

又、本発明の揮発蒸気の凝縮装置における揮発蒸気の回収方法は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設けて、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気の一部又は全部を揮発蒸気の凝縮装置を含む装置全体の熱給配システムの熱源として利用することを特徴とする。     The volatile vapor recovery method in the volatile vapor condensing apparatus of the present invention includes a vacuum system for generating volatile vapor in a vacuum, a vacuum pump for maintaining the vacuum, and a first condensing means for condensing and recovering the volatile vapor. In the volatile vapor condensing apparatus, the volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor is recovered. A part or all of the volatile vapor recovered by the flow path branching means is used as a heat source of a heat distribution system of the entire apparatus including a volatile vapor condensing device.

又、本発明の揮発蒸気の凝縮装置における揮発蒸気の回収方法は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設けて、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化処理手段により製品化することを特徴とする。   The volatile vapor recovery method in the volatile vapor condensing apparatus of the present invention includes a vacuum system for generating volatile vapor in a vacuum, a vacuum pump for maintaining the vacuum, and a first condensing means for condensing and recovering the volatile vapor. In the volatile vapor condensing apparatus, the volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor is recovered. The volatile vapor recovered by the flow path branching unit is commercialized by the commercialization processing unit.

又、本発明の揮発蒸気の凝縮装置における揮発蒸気の回収方法は、真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設けて、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに送り込む揮発蒸気供給手段により熱源として利用したり、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化処理手段により製品化したりすることを特徴とする。   The volatile vapor recovery method in the volatile vapor condensing apparatus of the present invention includes a vacuum system for generating volatile vapor in a vacuum, a vacuum pump for maintaining the vacuum, and a first condensing means for condensing and recovering the volatile vapor. In the volatile vapor condensing apparatus, the volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor is recovered. The volatile vapor recovered by the flow path branching means is used as a heat source by the volatile vapor supply means that sends the volatile vapor to the heat distribution system of the entire apparatus including the volatile vapor condensing device, or is recovered by the recovery flow path branching means of the volatile vapor. The volatile vapor is commercialized by a commercialization processing means.

本発明によれば、大気圧下で作動するよう配設された第2の凝縮手段が、真空下で作動する第1の凝縮手段によって凝縮処理(第一段凝縮処理)されなかった揮発蒸気を取り込んで、更に凝縮処理(第二段凝縮処理)するので、従来のように第1の凝縮手段だけによって凝縮処理する場合に比べて、第1の凝縮手段の処理能力を低目に設定することができる。 According to the present invention, the second condensing means arranged to operate under atmospheric pressure can remove volatile vapor that has not been condensed (first-stage condensing process) by the first condensing means operating under vacuum. Since it is taken in and further condensed (second stage condensation), the processing capacity of the first condensing means should be set lower than in the conventional case where the condensing process is performed only by the first condensing means. Can do.

又、従来の、真空系を有する揮発蒸気の凝縮装置では揮発蒸気が、通常、全回収又は全排水となっていたが、本発明によれば、二段の凝縮手段を有する分縮作用によって製品成分多い留分と製品成分の少ない留分とに分離でき、いわゆる分縮処理ができるため、装置全体として製品成分(凝縮液)の回収率を上昇させることができると共に、製品高濃度留分と製品低濃度留分を各々その濃度成分及びその他の不純物の割合を勘案して装置の最適位置に導入できるため、結果的に品質の向上及び省エネルギー化を図ることができる。   Further, in the conventional volatile vapor condensing apparatus having a vacuum system, the volatile vapor is usually totally recovered or drained, but according to the present invention, the product is produced by the partial reduction action having the two-stage condensing means. Since it can be separated into fractions with a large amount of components and fractions with a small amount of product components, so-called fractionalization can be performed, the recovery rate of product components (condensate) as a whole can be increased, Since the low concentration fraction of the product can be introduced into the optimum position of the apparatus in consideration of the concentration component and the ratio of other impurities, the quality can be improved and energy can be saved as a result.

又、本発明によれば、圧力制御手段によって真空系の圧力を一定に維持することができる。 According to the present invention, the pressure of the vacuum system can be kept constant by the pressure control means.

又、本発明によれば、第1の凝縮装置(コンデンサー)を小型化することができると共に、チラーを製造するための冷凍装置をも小型化することができる。 Further, according to the present invention, the first condensing device (condenser) can be reduced in size, and the refrigeration device for producing the chiller can also be reduced in size.

又、本発明によれば、比較的高温のチラーを用いることができるため、一般産業用の冷凍装置を利用することができる。 Further, according to the present invention, since a relatively high temperature chiller can be used, a general industrial refrigeration apparatus can be used.

又、本発明によれば、真空配管内の凍結防止のために必要だった、複雑なチラーの温度制御装置が不要になる。 Further, according to the present invention, a complicated chiller temperature control device, which is necessary for preventing freezing in the vacuum pipe, is not required.

又、本発明によれば、従来技術では有効な回収方法が確立されていない凝縮されなかった揮発蒸気を、全体装置の熱供給システムの熱源として利用することができるので、省エネルギー化を実現でき、製品コストを下げることができる。   In addition, according to the present invention, the volatile vapor that has not been condensed with an effective recovery method that has not been established in the prior art can be used as a heat source of the heat supply system of the entire apparatus, so energy saving can be realized, Product cost can be reduced.

又、本発明によれば、凝縮装置で凝縮されなかった揮発蒸気中の目的物を、更に第2の凝縮手段や減圧塔等のような製品化手段によって、製品として回収することができるので、製品回収率を著しく高めることができ、製品コストを下げることができる。 In addition, according to the present invention, the object in the volatile vapor that has not been condensed by the condensing device can be further recovered as a product by a productizing means such as a second condensing means or a vacuum tower. Product recovery can be significantly increased and product costs can be reduced.

本発明の揮発蒸気の凝縮装置及びその装置における揮発蒸気の回収方法は、あらゆる揮発蒸気の凝縮装置に適用できるものであるが、アルコール蒸気回収の凝縮装置に適用した形態を実施例として以下説明する。 The volatile vapor condensing apparatus and the volatile vapor recovery method in the apparatus of the present invention can be applied to any volatile vapor condensing apparatus, but the embodiment applied to the alcohol vapor recovering condensing apparatus will be described below as an example. .

本発明の実施例1は、真空で揮発蒸気が発生する系に、真空を維持させる真空ポンプと揮発蒸気を凝縮する第1の凝縮手段(凝縮装置)とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に第2の凝縮手段を配設して二段分縮とした例である。 Embodiment 1 of the present invention is a volatile vapor condensing apparatus comprising a vacuum pump for maintaining a vacuum and a first condensing means (condensing apparatus) for condensing the volatile vapor in a system in which volatile vapor is generated in a vacuum. This is an example in which the second condensing means is disposed on the outlet side of the vacuum pump to reduce the pressure to two stages.

先ず、本発明の揮発蒸気の凝縮装置及び凝縮方法を図1に基づいて説明する。図1は実施例1の凝縮装置及び制御システムのフロー図である。
図中において二点鎖線で囲む領域Aが真空系即ち真空で揮発蒸気が発生する系であり、この真空系A内には、真空系A内に導入された揮発蒸気を真空下で凝縮して回収する第1の凝縮手段10が前記真空系Aの真空を維持する真空ポンプ11の入口側に配設されている。この真空ポンプとしては高真空下で作動するドライ真空ポンプが好適である。
第1の凝縮手段10で凝縮された凝縮液(濃縮液ともいう)は、当該凝縮手段10に付設された受液槽12に一旦回収され、取出ポンプ13を介して系外の製品化手段へその全部又は一部が導入されることとなる。
First, the condensing apparatus and condensing method of the volatile vapor of this invention are demonstrated based on FIG. FIG. 1 is a flowchart of the condensing device and the control system of the first embodiment.
In the figure, a region A surrounded by a two-dot chain line is a vacuum system, that is, a system in which volatile vapor is generated in vacuum. In this vacuum system A, volatile vapor introduced into the vacuum system A is condensed under vacuum. The first condensing means 10 to be recovered is disposed on the inlet side of the vacuum pump 11 that maintains the vacuum of the vacuum system A. As this vacuum pump, a dry vacuum pump operating under high vacuum is suitable.
The condensate condensed by the first condensing means 10 (also referred to as a concentrated liquid) is once recovered in a liquid receiving tank 12 attached to the condensing means 10 and is supplied to a product-producing means outside the system via a take-out pump 13. All or part of it will be introduced.

真空ポンプ11の出口側、即ち、揮発蒸気を発生させる真空系A外にて、大気圧下で作動するよう第2の凝縮手段20が配設されている。この第2の凝縮手段20は、第1の凝縮手段10によって一旦凝縮処理(第一段凝縮処理)されても凝縮されなかった揮発蒸気を、真空ポンプ11を介して取り込み、更に凝縮処理(第二段凝縮処理)して揮発蒸気中の目的物(エタノール)を回収する。
第2の凝縮手段20で凝縮された凝縮液(第二段凝縮液)は、当該凝縮手段20に付設された受液槽22に一旦回収された後、最終取出ポンプ23を介して、本装置外に取り出され、製品化手段へその全部又は一部が導入されることとなる。
A second condensing means 20 is arranged to operate under atmospheric pressure on the outlet side of the vacuum pump 11, that is, outside the vacuum system A that generates volatile vapor. The second condensing means 20 takes in the volatile vapor that has not been condensed once the condensing process (first stage condensing process) by the first condensing means 10 through the vacuum pump 11, and further performs the condensing process (first The target product (ethanol) in the volatile vapor is recovered by a two-stage condensation process.
The condensate condensed by the second condensing means 20 (second-stage condensate) is once recovered in the liquid receiving tank 22 attached to the condensing means 20 and then passed through the final take-out pump 23 to this apparatus. It will be taken out and all or part of it will be introduced into the productization means.

この実施例では、第1の凝縮手段10の受液槽12に回収された凝縮液(第一段凝縮液)は、取出ポンプ13を介して、第2の凝縮手段20の受液槽22に送出されているため、第一段凝縮液と共に最終取出ポンプ23を介して取り出され、製品化手段へその全部又は一部が導入されることとなる。   In this embodiment, the condensate (first stage condensate) collected in the liquid receiving tank 12 of the first condensing means 10 is transferred to the liquid receiving tank 22 of the second condensing means 20 via the take-out pump 13. Since it is being sent out, it is taken out via the final take-out pump 23 together with the first stage condensate, and all or part of it is introduced into the commercialization means.

第1の凝縮手段10に冷媒供給手段を介して供給される冷媒としては真空下において用いられるチラーが好適であるが、第2の凝縮手段20については、揮発蒸気の凝縮をほぼ大気圧で行うことができるので、凝縮温度が比較的高く、冷媒液として常温或いは常温付近の水を使用することができる。 As the refrigerant supplied to the first condensing means 10 via the refrigerant supplying means, a chiller used under vacuum is suitable, but for the second condensing means 20, the volatile vapor is condensed at substantially atmospheric pressure. Therefore, the condensation temperature is relatively high, and water at or near room temperature can be used as the refrigerant liquid.

次に、真空系Aを一定の圧力に保つ圧力制御手段を説明する。
圧力制御手段30は、真空系Aの圧力を測定する圧力検出器31と、真空系Aへの外気の流入を制御する第1の復圧用圧力制御弁32と、真空ポンプ11への流量を制御する第2の復圧用圧力制御弁33とを備えている。
図1において、第1の復圧用圧力制御弁32は第1の凝縮手段10と真空ポンプ11との間の揮発蒸気流路34の途中に接続された外気導入流路35に介在し、第2の復圧用圧力制御弁33は前記揮発蒸気流路34と外気導入流路35との接続部と真空ポンプ11との間の揮発蒸気流路34の途中に介在している。
Next, pressure control means for maintaining the vacuum system A at a constant pressure will be described.
The pressure control means 30 controls the pressure detector 31 that measures the pressure of the vacuum system A, the first return pressure control valve 32 that controls the flow of outside air into the vacuum system A, and the flow rate to the vacuum pump 11. The second return pressure control valve 33 is provided.
In FIG. 1, the first pressure-reducing pressure control valve 32 is interposed in an outside air introduction passage 35 connected in the middle of the volatile vapor passage 34 between the first condensing means 10 and the vacuum pump 11. The return pressure control valve 33 is interposed in the middle of the volatile vapor channel 34 between the connection between the volatile vapor channel 34 and the outside air introduction channel 35 and the vacuum pump 11.

この圧力制御手段30は、圧力検出器31で真空系Aの圧力を測定し、真空系Aの圧力が所定の圧力より低下した場合には第1の復圧用圧力制御弁32を用いて外気を取り入れ、真空系Aの圧力が所定の圧力より上昇した場合には第2の復圧用圧力制御弁33を用いて真空ポンプ11への流量を増加させることにより、真空系Aの圧力を一定に維持させている。 This pressure control means 30 measures the pressure of the vacuum system A with the pressure detector 31 and, when the pressure of the vacuum system A drops below a predetermined pressure, uses the first return pressure control valve 32 to remove the outside air. When the pressure of the vacuum system A rises above a predetermined pressure, the flow rate to the vacuum pump 11 is increased by using the second pressure-reducing pressure control valve 33 to keep the pressure of the vacuum system A constant. I am letting.

実施例2は、上記実施例1において、第1の凝縮手段10により凝縮されなかった揮発蒸気を、製品化手段の熱給配システムの熱源として回収する装置や方法、及び減圧塔のような製品化手段によって製品化する装置や方法の例である。以下、これを図2及び図3に基づいて説明する。図2はこの実施例2の制御システムのフロー図、図3は蒸留工程図である。
尚、図2及び図3中において図1と同じ符号は同じ内容であるのでその説明を省略する。又、図2中において点線で示す蒸気供給管路45の部分は間接加熱を行う管路である。
Example 2 is an apparatus and method for recovering the volatile vapor that has not been condensed by the first condensing means 10 in Example 1 as a heat source of the heat distribution system of the productizing means, and a product such as a decompression tower. It is an example of the apparatus and method which commercialize by a production | generation means. Hereinafter, this will be described with reference to FIGS. FIG. 2 is a flowchart of the control system of the second embodiment, and FIG. 3 is a distillation process diagram.
In FIG. 2 and FIG. 3, the same reference numerals as those in FIG. Further, the portion of the steam supply line 45 indicated by a dotted line in FIG. 2 is a line for performing indirect heating.

先ず、図3において製品化手段を簡単に説明する。
製品化手段としては、第1及び第2の凝縮手段10、20の外に図示されていない濃縮塔A2や図2に図示されている第1抽出塔D、精留塔B、精製塔Fや不純物処理塔G、第2抽出塔D2、減圧塔V等がある。
First, the product production means will be briefly described with reference to FIG.
As the commercialization means, the first and second condensing means 10 and 20, the concentration tower A2 not shown, the first extraction tower D, the rectification tower B, the purification tower F shown in FIG. There are an impurity treatment tower G, a second extraction tower D2, a decompression tower V, and the like.

図示されていない濃縮塔A2は、もろみ濃縮装置から留出した低濃度アルコールを共沸組成近くまでの濃縮して後述の抽出塔Dへ送入すると共に、当該塔頂付近から低沸点不純物を、又、当該塔央部から高沸点不純物を除去する。 The concentration tower A2 (not shown) concentrates the low-concentration alcohol distilled from the mash concentration apparatus to near the azeotropic composition and sends it to the extraction tower D described later, and low-boiling impurities from the vicinity of the top of the tower. Further, high boiling point impurities are removed from the central portion of the column.

濃縮塔A2で濃縮されたアルコール、原料の粗留アルコールを温水で希釈し、抽出蒸留を行うことによりメタノール以外の不純物を当該塔頂部から分離すると共に、希薄アルコール(アルコール分13〜15%)を塔底部から次の蒸留工程の精留塔Bへ送入する。   The alcohol concentrated in the concentration tower A2 and the crude crude alcohol as a raw material are diluted with warm water and subjected to extractive distillation to separate impurities other than methanol from the top of the tower and dilute alcohol (alcohol content: 13 to 15%). It sends into the rectification tower B of the next distillation process from a tower bottom part.

精留塔Bでは、抽出塔Dで希釈されたアルコールを再び共沸組成近くまで濃縮し、当該塔央部から高沸点不純物を除去しながら塔頂から次の蒸留工程の精製塔Fへ送入する。   In the rectification column B, the alcohol diluted in the extraction column D is concentrated again to near the azeotropic composition, and sent to the purification column F in the next distillation step from the top of the column while removing high boiling impurities from the center of the column. To do.

精製塔Fでは、特に分離が困難なメタノールについて、アルコール濃度が高いと比揮発度が高くなることを利用し、当該塔底から製品としてのアルコールを留出させ、当該塔頂からメタノールを除去する。   In the purification column F, particularly for methanol that is difficult to separate, the alcohol as a product is distilled from the bottom of the column and the methanol is removed from the top of the column by utilizing the fact that the relative volatility increases when the alcohol concentration is high. .

不純物処理塔Gでは、精留塔B及び精製塔Fの塔頂部の留出液を更にメタノールを濃縮・分離し、メタノールを塔頂に集積すると共に、当該塔底から回収されたアルコールを後述の第2抽出塔Dに送入する。こうして回収されるアルコールはその品質をチェックの上一部が製品化される。   In the impurity treatment tower G, methanol is further concentrated and separated from the distillate at the top of the rectification tower B and the purification tower F, and methanol is collected at the top of the tower, and alcohol recovered from the bottom of the tower is described later. It feeds into the 2nd extraction tower D. The alcohol recovered in this way is partly commercialized after checking its quality.

第2抽出塔D2では、第1抽出塔Dと同様に、温水を加えることによる抽出効果を利用して、当該塔頂部に不純物を濃縮させて不順アルコールとして系外に除去する。   In the second extraction column D2, as in the first extraction column D, using the extraction effect by adding warm water, impurities are concentrated at the top of the column and removed out of the system as irregular alcohol.

減圧塔Vでは、濃縮塔A2、第1抽出塔D、精留塔Bの中間部からカットされたノルマルプロピルアルコール等の高沸点不純物を当該塔央部で濃縮・分離する。この減圧塔Vの圧力はアルコール水の共沸が外れる70mmHg付近で操作される。   In the vacuum column V, high-boiling impurities such as normal propyl alcohol cut from the middle part of the concentration column A2, the first extraction column D, and the rectification column B are concentrated and separated at the center of the column. The pressure in the decompression tower V is operated in the vicinity of 70 mmHg from which the azeotropy of alcohol water is removed.

脱水塔Cでは、当該脱水塔Cに供給された含水アルコールの水分を、脱水剤(例えばシクロヘキサン)を用いて3成分共沸化合物として系外に除去することによって、含水アルコールを無水アルコールとして、当該塔底部から留出させる。   In the dehydration tower C, the water-containing alcohol supplied to the dehydration tower C is removed from the system as a three-component azeotrope using a dehydrating agent (for example, cyclohexane). Distill from the bottom of the tower.

図2及び図3において、図中の符号41は第1の凝縮手段10で凝縮されなかった揮発蒸気(以下、単に揮発蒸気ともいう)の一部又は全部を回収するための回収流路分岐手段である。この回収流路分岐手段41は、真空ポンプ11の出口側、この実施例では真空ポンプ11と第2の凝縮手段20との間の揮発蒸気の回収流路42の途中に配設されており、真空ポンプ11から送り出される揮発蒸気を回収する。回収流路分岐手段41としては適当な切換弁を用いればよい。 2 and 3, reference numeral 41 in the drawing denotes a recovery flow path branching unit for recovering a part or all of the volatile vapor (hereinafter also simply referred to as volatile vapor) that has not been condensed by the first condensing unit 10. It is. This recovery flow path branching means 41 is arranged on the outlet side of the vacuum pump 11, in this embodiment, in the middle of the volatile vapor recovery flow path 42 between the vacuum pump 11 and the second condensing means 20, Volatile vapor sent from the vacuum pump 11 is recovered. An appropriate switching valve may be used as the recovery flow path branching means 41.

次に、回収流路分岐手段41によって回収された揮発蒸気を抽出塔44に供給する例(以下、抽出塔供給手段ともいう)を説明する。
回収流路分岐手段41によって回収された揮発蒸気は、揮発蒸気の凝縮装(この実施例では第1及び第2の凝縮手段10、20)を含む揮発蒸気を製品化するに必要な装置の全体即ち全体装置の熱給配システム40の熱源として揮発蒸気供給手段43に送り込まれる。揮発蒸気供給手段43としてこの実施例ではスチームエジェクタ(以下、エジェクタともいう)を用いている。
このエジェクタは、7〜8気圧程度の水蒸気(第1流体)を発生させる熱給配システム40のボイラと製品化手段としての抽出塔44(図3における抽出塔Dや抽出塔D2)との間に配設され、第1流体としての前記水蒸気に第2流体としての揮発蒸気を吸引させる。こうしてボイラからの水蒸気と共に揮発蒸気が熱源として抽出塔44の底部の加熱部から供給される。
Next, an example in which the volatile vapor recovered by the recovery flow path branching means 41 is supplied to the extraction tower 44 (hereinafter also referred to as extraction tower supply means) will be described.
The volatile vapor recovered by the recovery flow path branching means 41 is the entire apparatus necessary for commercializing the volatile vapor including the volatile vapor condensing device (first and second condensing means 10 and 20 in this embodiment). That is, it is sent to the volatile vapor supply means 43 as a heat source of the heat distribution system 40 of the entire apparatus. In this embodiment, a steam ejector (hereinafter also referred to as an ejector) is used as the volatile vapor supply means 43.
This ejector is provided between the boiler of the heat distribution system 40 that generates water vapor (first fluid) of about 7 to 8 atm and the extraction tower 44 (the extraction tower D and the extraction tower D2 in FIG. 3) as a productizing means. The volatile vapor as the second fluid is sucked into the water vapor as the first fluid. Thus, volatile vapor is supplied from the heating section at the bottom of the extraction tower 44 together with the water vapor from the boiler as a heat source.

抽出塔44(D、D2)は、塔内に水蒸気が直接導入されるいわゆる直接加熱構造となっているため、割合として低率の揮発蒸気を含んだ水蒸気が直接塔底部に導入されても、蒸留運転上に支障が無い。
こうして抽出塔44(D、D2)に直接送り込まれた揮発蒸気に含まれる微量のエタノールを当該抽出塔44(D、D2)から結果的に濃縮エタノール液として回収することもできる。
これにより、エタノール(製品)の回収率が一段と向上し、大幅なコストダウンを実現させる。即ち、この例によれば、直接加熱される製品化手段に、凝縮されなかった揮発蒸気を熱源として供給することにより、その潜熱を有効に活用できるため省エネルギー化と共に製品回収率をも向上させることができるのである。
Since the extraction tower 44 (D, D2) has a so-called direct heating structure in which water vapor is directly introduced into the tower, even if water vapor containing a low rate of volatile vapor is introduced directly into the tower bottom, There is no problem in distillation operation.
In this way, a trace amount of ethanol contained in the volatile vapor sent directly to the extraction tower 44 (D, D2) can also be recovered from the extraction tower 44 (D, D2) as a concentrated ethanol solution.
As a result, the recovery rate of ethanol (product) is further improved and a significant cost reduction is realized. In other words, according to this example, by supplying volatile vapor that has not been condensed as a heat source to the productization means that is directly heated, the latent heat can be used effectively, so energy saving and product recovery can be improved. Can do it.

次に、上述の例と異なり、回収流路分岐手段41によって回収された揮発蒸気を、直接、減圧塔Vに供給する例(以下、減圧塔供給手段ともいう)を説明する。
図2に示すようにこの減圧塔供給手段では、エジェクタ43及び抽出塔44(D、D2)を経ずして、揮発蒸気を減圧塔Vに直接供給する。この場合、供給される揮発蒸気は、当該揮発蒸気に含まれるエタノール濃度に相応する濃度の当該減圧塔Vの棚段に送り込むことが望ましい。
こうして減圧塔Vに供給された揮発蒸気は、当該減圧塔Vにおいて、凝縮されなかった揮発蒸気中から結果的に製品としてのエタノールが回収されるので、製品化回収率が向上することとなる。
Next, unlike the above example, an example in which the volatile vapor recovered by the recovery flow path branching means 41 is directly supplied to the decompression tower V (hereinafter also referred to as decompression tower supply means) will be described.
As shown in FIG. 2, this decompression tower supply means directly supplies the volatile vapor to the decompression tower V without passing through the ejector 43 and the extraction tower 44 (D, D2). In this case, it is desirable that the supplied volatile vapor is fed into the shelf of the decompression tower V having a concentration corresponding to the ethanol concentration contained in the volatile vapor.
The volatile vapor thus supplied to the decompression tower V results in an improvement in the product recovery rate because ethanol as a product is recovered from the volatile vapor that has not been condensed in the decompression tower V.

この減圧塔供給手段を用いるか上述の抽出塔供給手段を用いるか、或いは双方を用いるかは、運転状況に応じて適宜選択する。
図2に示す実施例2では、回収流路分岐手段41によって回収された揮発蒸気を熱源及び当該揮発蒸気中の目的物たるエタノールを製品として回収(製品化)する製品化処理手段としての抽出塔D、D2へ供給する流路と、全体装置の熱給配システム40の流路に乗せて、熱源及び製品化のために利用すべく熱給配システム40の揮発蒸気供給手段43(エジェクタ)へと供給する流路との分岐点に、この揮発蒸気分配手段46を設けている。
この揮発蒸気分配手段46によって、凝縮されなかった揮発蒸気を何れか又は双方の流路に適当に分配する。
従って、何れか一方の流路のみが設けられて用いられている全体装置の場合には揮発蒸気分配手段46は必要でない。
Whether to use this decompression tower supply means, the above-mentioned extraction tower supply means, or both, is appropriately selected according to the operating conditions.
In the second embodiment shown in FIG. 2, an extraction tower as a commercialization processing means for recovering (productizing) the volatile vapor recovered by the recovery flow path branching means 41 as a heat source and ethanol as a target product in the volatile vapor. D and D2 are mounted on the flow path of the heat distribution system 40 of the entire apparatus and the heat distribution system 40 to the volatile vapor supply means 43 (ejector) of the heat distribution system 40 to be used for commercialization. The volatile vapor distribution means 46 is provided at a branch point between the flow path and the supply flow path.
The volatile vapor distribution means 46 appropriately distributes the volatile vapor that has not been condensed to one or both of the flow paths.
Accordingly, the volatile vapor distribution means 46 is not necessary in the case of the entire apparatus in which only one of the flow paths is provided.

この実施例2によれば、回収流路分岐手段41によって回収された揮発蒸気の一部又は全部を、上述のように全体装置の熱源として再利用できると共に、所要の製品化処理手段によって当該揮発蒸気中の目的物(エタノール)を更に製品として回収できるので、全体装置としての省エネルギー化と目的物たるエタノール成分の製品化回収率の向上によって大幅なコストダウンを図ることができる。 According to the second embodiment, a part or all of the volatile vapor recovered by the recovery flow path branching means 41 can be reused as a heat source for the entire apparatus as described above, and the volatileization can be performed by a required product processing means. Since the target product (ethanol) in the steam can be further recovered as a product, the cost can be greatly reduced by saving energy as an entire device and improving the product recovery rate of the ethanol component as the target product.

更に、図2及び図3に示す実施例2では、第1の凝縮手段10で凝縮されなかった揮発蒸気は、装置全体の立ち上げを実施している間、熱給配システム40のエジェクタ43の駆動状態も不安定であるため、ここに送り込むことは熱給配システム40に対し外乱要素を与える要因となり得るため、装置全体の立ち上げを実施している間は、凝縮液を直接導入した方が安定的に立ち上げることが可能となる。 Furthermore, in the second embodiment shown in FIGS. 2 and 3, the volatile vapor that has not been condensed by the first condensing means 10 is discharged from the ejector 43 of the heat distribution system 40 while the entire apparatus is being started up. Since the driving state is also unstable, sending it here can cause a disturbance factor to the heat distribution system 40, so the person who introduced the condensate directly while starting up the entire system Can be launched stably.

これは、装置全体の立ち上げをしている間、全体装置の熱給配システムに設置されているエジェクタ43の駆動源である蒸気の量も装置全体が安定するまでその量が変動するため、エジェクタ43で回収される第1の凝縮手段10で凝縮されなかった揮発時容器の量も変動をきたし、結果的に装置全体を不安定な状態に陥れる恐れがあるためである。
従って、この実施例2における目的物たるエタノール製品の回収効率や省エネルギー効果としては、定常状態になるまでの間は、第1の凝縮手段10で凝縮されなかった揮発蒸気を全体装置の熱給配システムの熱源として揮発蒸気供給手段43のエジェクタを介して抽出塔供給手段に送り込むように、回収流路分岐手段41の切換弁を操作するとよい。
This is because the amount of steam that is the drive source of the ejector 43 installed in the heat distribution system of the entire apparatus changes until the entire apparatus is stabilized while the entire apparatus is being started up. This is because the amount of the container at the time of volatilization that has not been condensed by the first condensing means 10 collected by the ejector 43 also fluctuates, and as a result, the entire apparatus may fall into an unstable state.
Therefore, the recovery efficiency and energy saving effect of the ethanol product as the object in Example 2 are as follows. The switching valve of the recovery flow path branching means 41 may be operated so as to be sent to the extraction tower supply means via the ejector of the volatile vapor supply means 43 as a heat source of the system.

実施例3は、上記実施例2(図2)において、第2の凝縮手段20以下の構成を無くし、真空ポンプ11から取り出される凝縮されなかった揮発蒸気を、抽出塔供給手段及び又は減圧塔供給手段に送り込む構造としたものである。この構造は図2において容易に理解されるものであるから図示を省略する。尚、この構成では回収流路分岐手段41は無用となり、揮発蒸気は揮発蒸気分配手段46に直接送り込まれる。
全体装置をこのような構造とした場合におけるよる作用効果は、抽出塔供給手段及び減圧塔供給手段において記述した通りである。
The third embodiment eliminates the configuration below the second condensing means 20 in the second embodiment (FIG. 2), and converts the uncondensed volatile vapor extracted from the vacuum pump 11 into an extraction tower supply means and / or a decompression tower supply. It is structured to feed into the means. Since this structure is easily understood in FIG. 2, the illustration is omitted. In this configuration, the recovery flow path branching means 41 is unnecessary, and the volatile vapor is directly sent to the volatile vapor distribution means 46.
The operational effects of the overall apparatus having such a structure are as described in the extraction tower supply means and the decompression tower supply means.

本発明の揮発蒸気の凝縮装置を、アルコール蒸気回収凝縮装置に適用した実施例で説明したが、これに限らず、従来の化学工業で発生する揮発蒸気の凝縮装置の代替として、コスト削減や安定運転が可能となるため広く適用できる。 The volatile vapor condensing device of the present invention has been described in the embodiment applied to the alcohol vapor recovery condensing device. However, the present invention is not limited to this, and as an alternative to the conventional volatile vapor condensing device generated in the chemical industry, cost reduction and stability can be achieved. Since it becomes possible to drive, it is widely applicable.

実施例1の制御システムのフロー図である。It is a flowchart of the control system of Example 1. 実施例2の制御システムのフロー図である。It is a flowchart of the control system of Example 2. 蒸留工程図である。It is a distillation process figure.

符号の説明Explanation of symbols

10 第1の凝縮手段、
11 真空ポンプ、
12 受液槽(第1の凝縮手段)、
13 取出ポンプ、
20 第2の凝縮手段、
22 受液槽(第2の凝縮手段)、
23 取出ポンプ、
30 圧力調整装置
31 圧力検出装置
32 第1の復圧用圧力制御弁
33 第2の復圧用圧力制御弁
34 揮発蒸気流路
35 外気導入流路
40 ボイラ
41 回収流路分岐手段
43 揮発蒸気供給手段(エジェクタ)
46 揮発蒸気分配手段
10 first condensing means,
11 Vacuum pump,
12 liquid receiving tank (first condensing means),
13 Extraction pump,
20 second condensing means,
22 liquid receiving tank (second condensing means),
23 Extraction pump,
DESCRIPTION OF SYMBOLS 30 Pressure regulator 31 Pressure detection device 32 1st pressure-reducing pressure control valve 33 2nd pressure-reducing pressure control valve 34 Volatile vapor flow path 35 Outside air introduction flow path 40 Boiler 41 Recovery flow path branch means 43 Volatile vapor supply means ( Ejector)
46 Volatile vapor distribution means

Claims (18)

真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に第2の凝縮手段を設けたことを特徴とする揮発蒸気の凝縮装置。
A volatile vapor condensing apparatus comprising a vacuum system for generating volatile vapor in a vacuum, a vacuum pump for maintaining the vacuum, and first condensing means for condensing and recovering the volatile vapor, wherein the first is disposed on the outlet side of the vacuum pump. A condensing apparatus for volatile vapor, comprising two condensing means.
真空で揮発蒸気を発生する真空系を有する揮発蒸気の凝縮装置において、第1の凝縮手段と第2の凝縮手段との二段で前記揮発蒸気を分縮するために、前記真空系の真空を維持させる真空ポンプの入口側に第1の凝縮手段を配設すると共に前記真空ポンプの出口側に第2の凝縮手段を設けたことを特徴とする揮発蒸気の凝縮装置。
In a volatile vapor condensing apparatus having a vacuum system for generating volatile vapor in a vacuum, in order to depressurize the volatile vapor in two stages of a first condensing means and a second condensing means, the vacuum in the vacuum system is reduced. A volatile vapor condensing apparatus, wherein a first condensing means is disposed on the inlet side of the vacuum pump to be maintained and a second condensing means is provided on the outlet side of the vacuum pump.
真空ポンプと第2の凝縮手段との間に前記真空ポンプからの揮発蒸気を回収する揮発蒸気の回収流路分岐手段を設けたことを特徴とする請求項1又は請求項2の揮発蒸気の凝縮装置。
The volatile vapor condensing unit according to claim 1 or 2, further comprising a volatile vapor recovery flow path branching unit for recovering the volatile vapor from the vacuum pump between the vacuum pump and the second condensing unit. apparatus.
揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムの熱源として送り込む揮発蒸気供給手段を設けたことを特徴とする請求項3の揮発蒸気の凝縮装置。
The volatile vapor supply means for sending the volatile vapor recovered by the volatile vapor recovery flow path branching means as a heat source of the heat distribution system of the entire apparatus including the volatile vapor condensing device is provided. Steam condensing device.
揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段を設けたことを特徴とする請求項3揮発蒸気の凝縮装置。
4. A volatile vapor condensing apparatus according to claim 3, further comprising a commercialization processing means for commercializing the volatile vapor recovered by the recovery flow path branching means.
揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段と前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに熱源として送り込む揮発蒸気供給手段とを設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を前記製品化処理手段と前記揮発蒸気供給手段との何れか又は双方に供給する揮発蒸気分配手段を設けたことを特徴とする請求項3の揮発蒸気の凝縮装置。

The heat of the entire apparatus including the commercialization processing means for commercializing the volatile vapor recovered by the volatile vapor recovery flow path branching means and the volatile vapor recovered by the volatile vapor recovery flow path branching means. Volatile vapor supply means to be sent as a heat source to the distribution system is provided, and the volatile vapor recovered by the recovery flow path branching means for supplying the volatile vapor is supplied to one or both of the commercialization processing means and the volatile vapor supply means 4. The volatile vapor condensing device according to claim 3, further comprising a volatile vapor distribution means for performing the above operation.

第2の凝縮手段は大気圧下で作動するよう設けたことを特徴とする請求項1乃至請求項5の何れかに記載の揮発蒸気の凝縮装置。   The volatile vapor condensing device according to any one of claims 1 to 5, wherein the second condensing means is provided to operate under atmospheric pressure. 第2の凝縮手段の冷却液は常温の水であることを特徴とする請求項1乃至請求項6の何れかに記載の揮発蒸気の凝縮装置。   The volatile vapor condensing apparatus according to any one of claims 1 to 6, wherein the cooling liquid of the second condensing means is water at room temperature. 真空ポンプはドライ真空ポンプであることを特徴とする請求項1乃至請求項7の何れかに記載の揮発蒸気の凝縮装置。
The volatile vapor condensing device according to any one of claims 1 to 7, wherein the vacuum pump is a dry vacuum pump.
真空で揮発蒸気が発生する真空系に真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、
前記真空ポンプの出口側に第2の凝縮手段を設けて、前記第1の凝縮手段にて凝縮処理されなかった揮発蒸気を前記真空ポンプを介して取り込み更に凝縮処理して回収することを特徴とする揮発蒸気の凝縮装置における揮発蒸気の回収方法。
In a volatile vapor condensing apparatus comprising a vacuum pump for maintaining a vacuum in a vacuum system in which volatile vapor is generated in vacuum and a first condensing means for condensing and recovering the volatile vapor,
A second condensing means is provided on the outlet side of the vacuum pump, and volatile vapor that has not been condensed by the first condensing means is taken in via the vacuum pump, further condensed and recovered. A method for recovering volatile vapor in a volatile vapor condensing device.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えると共に、前記真空ポンプの出口側に第2の凝縮手段を設けた揮発蒸気の凝縮装置において、
前記真空系の圧力が所定の圧力より低下すると第1の復圧用圧力制御弁により外気を取り入れ、真空系Aの圧力が所定の圧力より上昇すると第2の復圧用圧力制御弁により真空ポンプへの流量を増加させて、真空系の圧力を一定に維持させながら凝縮処理して回収することを特徴とする揮発蒸気の凝縮装置における揮発蒸気の回収方法。
A vacuum system that generates volatile vapor in a vacuum includes a vacuum pump that maintains the vacuum and a first condensing unit that condenses and recovers the volatile vapor, and a second condensing unit is provided on the outlet side of the vacuum pump. In the volatile vapor condensing device,
When the pressure in the vacuum system drops below a predetermined pressure, outside air is taken in by the first pressure-reducing pressure control valve, and when the pressure in the vacuum system A rises above the predetermined pressure, the second pressure-reducing pressure control valve controls the vacuum pump. A method for recovering volatile vapor in a volatile vapor condensing apparatus, characterized by increasing the flow rate and condensing and recovering while maintaining a constant vacuum system pressure.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、
前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに熱源として送り込む揮発蒸気供給手段を設けたことを特徴とする揮発蒸気の凝縮装置。
In a volatile vapor condensing apparatus comprising: a vacuum pump that generates volatile vapor in a vacuum; and a vacuum pump that maintains the vacuum and a first condensing unit that condenses and recovers the volatile vapor.
Volatile vapor recovery flow path branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovered by the volatile vapor recovery flow path branching means is provided. A volatile vapor condensing apparatus comprising a volatile vapor supplying means for supplying a heat source to a heat distribution system of the entire apparatus including a volatile vapor condensing apparatus.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、
前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段を設けたことを特徴とする揮発蒸気の凝縮装置。
In a volatile vapor condensing apparatus comprising: a vacuum pump that generates volatile vapor in a vacuum; and a vacuum pump that maintains the vacuum and a first condensing unit that condenses and recovers the volatile vapor.
Volatile vapor recovery flow path branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovered by the volatile vapor recovery flow path branching means is provided. A volatile vapor condensing apparatus, characterized in that a commercializing means for commercialization is provided.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、
前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設け、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに熱源として送り込む揮発蒸気供給手段と前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化する製品化処理手段とを設けたことを特徴とする揮発蒸気の凝縮装置。
In a volatile vapor condensing apparatus comprising: a vacuum pump that generates volatile vapor in a vacuum; and a vacuum pump that maintains the vacuum and a first condensing unit that condenses and recovers the volatile vapor.
Volatile vapor recovery flow path branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovered by the volatile vapor recovery flow path branching means is provided. Volatile vapor supply means for supplying heat as a heat source to a heat distribution system of the entire apparatus including a condensing device for volatile vapor, and productization processing means for commercializing the volatile vapor recovered by the recovery flow path branching means for the volatile vapor are provided. A volatile vapor condensing device characterized in that.
揮発蒸気の回収流路分岐手段により回収された揮発蒸気の一部又は全部を製品化処理手段と揮発蒸気供給手段との何れか又は双方に供給する揮発蒸気分配手段を設けたことを特徴とする請求項13に記載の揮発蒸気の凝縮装置。
Volatile vapor distribution means for supplying a part or all of the volatile vapor recovered by the volatile vapor recovery flow path branching means to one or both of the productization processing means and the volatile vapor supply means is provided. The volatile vapor condensing apparatus according to claim 13.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、
前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設けて、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気の一部又は全部を揮発蒸気の凝縮装置を含む装置全体の熱給配システムの熱源として利用することを特徴とする揮発蒸気の凝縮装置における揮発蒸気の回収方法。
In a volatile vapor condensing apparatus comprising: a vacuum pump that generates volatile vapor in a vacuum; and a vacuum pump that maintains the vacuum and a first condensing unit that condenses and recovers the volatile vapor.
Volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovered by the volatile vapor recovery channel branching means A method for recovering volatile vapor in a volatile vapor condensing device, wherein a part or all of the above is used as a heat source of a heat distribution system of the entire apparatus including the volatile vapor condensing device.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設けて、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化処理手段により製品化することを特徴とする揮発蒸気の凝縮装置における揮発蒸気の回収方法。
In a volatile vapor condensing apparatus comprising a vacuum pump that generates volatile vapor in a vacuum, and a first condensing device that condenses and recovers the volatile vapor, the volatile vapor condensing apparatus includes: Volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided, and the volatile vapor recovered by the volatile vapor recovery channel branching means is commercialized by the commercialization processing means. A method for recovering volatile vapor in a volatile vapor condensing apparatus.
真空で揮発蒸気が発生する真空系に、真空を維持させる真空ポンプと揮発蒸気を凝縮して回収する第1の凝縮手段とを備えた揮発蒸気の凝縮装置において、
前記真空ポンプの出口側に、当該真空ポンプからの揮発蒸気の一部又は全部を回収する揮発蒸気の回収流路分岐手段を設けて、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を揮発蒸気の凝縮装置を含む装置全体の熱給配システムに送り込む揮発蒸気供給手段により熱源として利用したり、前記揮発蒸気の回収流路分岐手段により回収された揮発蒸気を製品化処理手段により製品化したりすることを特徴とする揮発蒸気の凝縮装置における揮発蒸気の回収方法。


In a volatile vapor condensing apparatus comprising: a vacuum pump that generates volatile vapor in a vacuum; and a vacuum pump that maintains the vacuum and a first condensing unit that condenses and recovers the volatile vapor.
Volatile vapor recovery channel branching means for recovering part or all of the volatile vapor from the vacuum pump is provided on the outlet side of the vacuum pump, and the volatile vapor recovered by the volatile vapor recovery channel branching means Is used as a heat source by the volatile vapor supply means that sends it to the heat distribution system of the entire apparatus including the volatile vapor condensing device, or the volatile vapor recovered by the recovery flow path branching means of the volatile vapor is converted into a product by the commercialization processing means. A method for recovering volatile vapor in a volatile vapor condensing device.


JP2004105623A 2004-03-31 2004-03-31 Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus Ceased JP2005288283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105623A JP2005288283A (en) 2004-03-31 2004-03-31 Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105623A JP2005288283A (en) 2004-03-31 2004-03-31 Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus

Publications (1)

Publication Number Publication Date
JP2005288283A true JP2005288283A (en) 2005-10-20

Family

ID=35321840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105623A Ceased JP2005288283A (en) 2004-03-31 2004-03-31 Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus

Country Status (1)

Country Link
JP (1) JP2005288283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172873A (en) * 2019-04-09 2020-10-22 伏虎金属工業株式会社 Fluid conveyance system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346413U (en) * 1989-09-12 1991-04-30
JPH06502584A (en) * 1990-11-15 1994-03-24 ポール・コーポレーション Fluid purification equipment and method for removing chlorofluorocarbons from contaminated fluids
JPH0863304A (en) * 1994-08-19 1996-03-08 Toshiba Corp Printer controller
JPH08266803A (en) * 1995-04-03 1996-10-15 Nippon Soda Co Ltd Vacuum concentrator using diaphragm vacuum pump
JPH1128301A (en) * 1997-07-10 1999-02-02 Nippon Refine Kk Apparatus and method for separating and recovering volatile component
JPH11128603A (en) * 1997-08-29 1999-05-18 Knf Neuberger Gmbh Rotary evaporator
JP2000084303A (en) * 1998-09-10 2000-03-28 Gl Sciences Inc Organic solvent recovery device
JP2002143601A (en) * 2000-11-13 2002-05-21 Gl Sciences Inc Method and apparatus for concentrating solvent

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346413U (en) * 1989-09-12 1991-04-30
JPH06502584A (en) * 1990-11-15 1994-03-24 ポール・コーポレーション Fluid purification equipment and method for removing chlorofluorocarbons from contaminated fluids
JPH0863304A (en) * 1994-08-19 1996-03-08 Toshiba Corp Printer controller
JPH08266803A (en) * 1995-04-03 1996-10-15 Nippon Soda Co Ltd Vacuum concentrator using diaphragm vacuum pump
JPH1128301A (en) * 1997-07-10 1999-02-02 Nippon Refine Kk Apparatus and method for separating and recovering volatile component
JPH11128603A (en) * 1997-08-29 1999-05-18 Knf Neuberger Gmbh Rotary evaporator
JP2000084303A (en) * 1998-09-10 2000-03-28 Gl Sciences Inc Organic solvent recovery device
JP2002143601A (en) * 2000-11-13 2002-05-21 Gl Sciences Inc Method and apparatus for concentrating solvent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020172873A (en) * 2019-04-09 2020-10-22 伏虎金属工業株式会社 Fluid conveyance system
JP7291935B2 (en) 2019-04-09 2023-06-16 伏虎金属工業株式会社 Fluid transfer system

Similar Documents

Publication Publication Date Title
KR101532988B1 (en) Method for dewatering a mixture comprising ethanol and water
JP5471221B2 (en) NMP distillation equipment
JP5369765B2 (en) Method for purifying fermentation alcohol
WO2009123223A1 (en) Purification treatment method for fermented alcohol
EP1888194B1 (en) New stripper configuration for the production of ethylene oxide
KR101584529B1 (en) Solution treatment device
JP6822969B2 (en) Acetic acid production method and equipment
JP2011050860A (en) Anhydrization method of hydrated organic substance
US10022648B2 (en) System for separating and concentrating a liquid component from a liquid multi-component mixture, comprising a heat pump
RU2399617C2 (en) Ethylene oxide synthesis device and method
CN107073353B (en) Improvements relating to ethylene oxide recovery
US6280578B1 (en) Operation process of a pumping-ejection stand for distilling liquid products
US4219389A (en) Separation of acrylic acid from solutions thereof in tri-n-butyl phosphate
TWI682807B (en) Method and apparatus for treating offgases in an acetic acid production unit
JPH07227517A (en) Separation of liquid mixture
CN107987038B (en) Epoxidation process material separation system and epoxidation process material separation method
JP2005288283A (en) Condensing apparatus of volatilized vapor and recovering method of volatilized vapor in the apparatus
JPS61254177A (en) Extraction of ethanol from ethanol-containing liquid
JP2018115155A (en) Method of producing acrylic acid
JP6666755B2 (en) Liquid mixture separation method
JPH0510964B2 (en)
JP2642909B2 (en) Production method of purified ethanol
JPH1015334A (en) Refining of carbon dioxide gas and device therefor
CN216986356U (en) Lightness removing device for pharmaceutical-grade beta-mercaptopropionic acid double-coproduction production
CN217220224U (en) MTO-grade methanol purification device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20110426