JP2005286351A - Manufacturing method of light-emitting device - Google Patents

Manufacturing method of light-emitting device Download PDF

Info

Publication number
JP2005286351A
JP2005286351A JP2005165042A JP2005165042A JP2005286351A JP 2005286351 A JP2005286351 A JP 2005286351A JP 2005165042 A JP2005165042 A JP 2005165042A JP 2005165042 A JP2005165042 A JP 2005165042A JP 2005286351 A JP2005286351 A JP 2005286351A
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting device
manufacturing
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005165042A
Other languages
Japanese (ja)
Other versions
JP4886221B2 (en
Inventor
Kenji Terajima
賢二 寺島
Nobuyuki Sudo
伸行 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Development and Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electronic Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP2005165042A priority Critical patent/JP4886221B2/en
Publication of JP2005286351A publication Critical patent/JP2005286351A/en
Application granted granted Critical
Publication of JP4886221B2 publication Critical patent/JP4886221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the light-emitting characteristics, manufacturability or the like of a light-emitting device employing La<SB>2</SB>O<SB>2</SB>S:Eu, Sm phosphor (red light emitting phosphor). <P>SOLUTION: In manufacturing the light-emitting device including a light source 11 for radiating ultraviolet rays, and a light-emitting part 16 containing a red light-emitting phosphor, a blue light-emitting phosphor and a green light-emitting phosphor and having a phosphor for a light-emitting device excited by the ultraviolet rays from the light source 11 to emit visible light, a sulfated lanthanum phosphor activated by trivalent europium and samarium is used as the red light-emitting phosphor, and also a moistureproof layer made of a metal oxide is formed on a particle surface of the sulphated lanthanum phosphor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device.

発光ダイオード(LED)を用いたLEDランプは、携帯機器、PC周辺機器、OA機器、各種スイッチ、バックライト用光源、表示板等の各種表示装置に用いられている。LEDチップは半導体素子であるために、長寿命でかつ信頼性が高く、光源として用いた場合にその交換作業が軽減されることから、種々の用途への応用が試みられている。   LED lamps using light emitting diodes (LEDs) are used in various display devices such as portable devices, PC peripheral devices, OA devices, various switches, light sources for backlights, and display boards. Since the LED chip is a semiconductor element, it has a long life and high reliability, and its replacement work is reduced when used as a light source. Therefore, application to various uses has been attempted.

LEDランプを種々の用途に適用する場合、特に1個のLEDランプで白色発光を得ることが重要となる。そこで、LEDチップの表面に青色、緑色および赤色発光蛍光体を塗布したり、あるいはLEDを構成する樹脂中に各色発光の蛍光体粉末を含有させることによって、1個のLEDランプから白色発光を取り出すことが試みられている。また、最近では色彩感覚が豊かになり、各種表示装置にも微妙な色合い(色再現性)が要求されるようになってきたことから、1個のLEDランプから白色発光のみならず、任意の中間色の発光を取り出すことが試みられている。   When the LED lamp is applied to various uses, it is particularly important to obtain white light emission with one LED lamp. Therefore, white light is extracted from one LED lamp by applying blue, green and red light emitting phosphors on the surface of the LED chip, or by incorporating phosphor powders of each color light emission into the resin constituting the LED. It has been tried. Recently, the color sense has become richer, and various display devices have been required to have subtle shades (color reproducibility). Attempts have been made to extract light emission of a neutral color.

上記したようなLEDランプにおいては、光源として波長370nm前後の長波長紫外線を放射するLEDチップ(例えば発光層としてGaN系化合物半導体層を有するLEDチップ)が用いられている。このため、LEDランプに用いられる蛍光体には長波長の紫外線をよく吸収し、かつ効率よく可視光を発光するものが求められている。   In the LED lamp as described above, an LED chip that emits long-wavelength ultraviolet light having a wavelength of around 370 nm (for example, an LED chip having a GaN-based compound semiconductor layer as a light emitting layer) is used as a light source. For this reason, phosphors used in LED lamps are required to absorb long-wavelength ultraviolet rays and emit visible light efficiently.

ところで、長波長紫外線で励起される各色発光の蛍光体のうち、赤色発光蛍光体は他の発光色(青色や緑色)の蛍光体に比べて、波長370nm前後の長波長紫外線の吸収が弱いことが問題となっていた。このような点に対して、特許文献1には3価のユーロピウム(Eu)およびサマリウム(Sm)で付活された酸硫化ランタン(La22S:Eu,Sm)蛍光体が、波長370nm前後の長波長紫外線を効率的に吸収し、これによりピーク波長が625nm付近の赤色発光が効率よく得られることが記載されている。
特開平11-246857号公報
By the way, among the phosphors of each color that are excited by long-wavelength ultraviolet light, the red-light-emitting phosphors have less absorption of long-wavelength ultraviolet light with a wavelength of around 370 nm than phosphors of other emission colors (blue and green). Was a problem. In contrast, Patent Document 1 discloses a lanthanum oxysulfide (La 2 O 2 S: Eu, Sm) phosphor activated by trivalent europium (Eu) and samarium (Sm) having a wavelength of 370 nm. It is described that long-wavelength ultraviolet rays before and after are efficiently absorbed, whereby red light emission having a peak wavelength of around 625 nm can be efficiently obtained.
Japanese Patent Laid-Open No. 11-246857

上述したように、3価のEuおよびSmで付活された酸硫化ランタン(La22S:Eu,Sm)蛍光体は、波長370nm前後の長波長紫外線を効率的に吸収し、ピーク波長が625nm付近の赤色光を効率よく発光することから、LEDランプ等に用いられる赤色発光蛍光体として期待されている。 As described above, the lanthanum oxysulfide (La 2 O 2 S: Eu, Sm) phosphor activated by trivalent Eu and Sm efficiently absorbs long-wavelength ultraviolet light having a wavelength of around 370 nm and has a peak wavelength. Efficiently emits red light around 625 nm, and is expected as a red light-emitting phosphor used in LED lamps and the like.

しかしながら、上記したLa22S:Eu,Sm蛍光体は若干の吸湿性を有することから、例えば長期間保管した際に蛍光体粒子が凝集しやすいという問題を有している。赤色発光の蛍光体粒子が凝集すると、例えば白色光のLEDランプを作製する際に、樹脂中に赤色発光の蛍光体粉末を均一に分散させることができず、これによりLEDランプからの発光にムラが生じてしまう。すなわち、LEDランプから発光される白色光の色温度にバラツキが生じてしまい、これがLEDランプの品質を低下させる要因となっている。 However, since the above La 2 O 2 S: Eu, Sm phosphor has a slight hygroscopicity, there is a problem that phosphor particles tend to aggregate when stored for a long period of time, for example. If the red-emitting phosphor particles aggregate, for example, when producing a white LED lamp, the red-emitting phosphor powder cannot be uniformly dispersed in the resin, resulting in uneven emission from the LED lamp. Will occur. That is, variation occurs in the color temperature of white light emitted from the LED lamp, which is a factor that deteriorates the quality of the LED lamp.

本発明は、例えば長波長紫外線で励起した際に赤色光が効率よく得られるLa22S:Eu,Sm蛍光体の特徴を活かした上で、保管時の吸湿等による凝集を防ぎ、例えば良好な分散性を長期間にわたって保持させることによって、発光特性や製造性等を改善した発光装置の製造方法を提供することを目的としている。 The present invention makes use of the characteristics of La 2 O 2 S: Eu, Sm phosphor that can efficiently obtain red light when excited with, for example, long wavelength ultraviolet rays, and prevents aggregation due to moisture absorption during storage, for example, An object of the present invention is to provide a method for manufacturing a light emitting device in which light emission characteristics, manufacturability and the like are improved by maintaining good dispersibility over a long period of time.

本発明の発光装置の製造方法は、紫外線を放射する光源と、赤色発光蛍光体と青色発光蛍光体と緑色発光蛍光体とを含み、かつ前記光源からの紫外線により励起されて可視光を発光させる発光装置用蛍光体を有する発光部とを具備する発光装置を製造するにあたり、前記赤色発光蛍光体として3価のユーロピウムおよびサマリウムで付活された酸硫化ランタン蛍光体を用いると共に、前記酸硫化ランタン蛍光体の粒子表面に金属酸化物からなる防湿層を形成することを特徴としている。   The method for manufacturing a light emitting device of the present invention includes a light source that emits ultraviolet light, a red light emitting phosphor, a blue light emitting phosphor, and a green light emitting phosphor, and is excited by the ultraviolet light from the light source to emit visible light. In manufacturing a light emitting device including a light emitting unit having a phosphor for a light emitting device, a lanthanum oxysulfide phosphor activated with trivalent europium and samarium is used as the red light emitting phosphor, and the lanthanum oxysulfide is used. A moisture-proof layer made of a metal oxide is formed on the surface of phosphor particles.

本発明によれば、例えば長波長紫外線で励起した際の赤色光の発光効率に優れるというLa22S:Eu,Sm蛍光体の特徴を活かした上で、保管時の吸湿等による凝集を防ぐことができ、良好な分散性を長期間にわたって保持することが可能となる。従って、そのような赤色発光蛍光体を用いることによって、例えば長波長紫外線を励起源とする発光装置の特性並びに品質の向上を図ることが可能となる。 According to the present invention, for example, the La 2 O 2 S: Eu, Sm phosphor, which is excellent in red light emission efficiency when excited with long-wavelength ultraviolet light, is used for aggregation due to moisture absorption during storage. Therefore, it is possible to maintain good dispersibility for a long period of time. Therefore, by using such a red light-emitting phosphor, it is possible to improve the characteristics and quality of a light-emitting device that uses, for example, long-wavelength ultraviolet light as an excitation source.

以下、本発明を実施するための形態について説明する。図1は本発明に用いられる赤色発光蛍光体の一実施形態の構成を模式的に示す断面図である。同図に示す赤色発光蛍光体1は、3価のユーロピウム(Eu)およびサマリウム(Sm)で付活された酸硫化ランタン(La22S)蛍光体からなる蛍光体粒子2を有している。 Hereinafter, modes for carrying out the present invention will be described. FIG. 1 is a cross-sectional view schematically showing a configuration of an embodiment of a red light emitting phosphor used in the present invention. The red light-emitting phosphor 1 shown in the figure has phosphor particles 2 made of lanthanum oxysulfide (La 2 O 2 S) phosphor activated with trivalent europium (Eu) and samarium (Sm). Yes.

蛍光体粒子2を構成する酸硫化ランタン蛍光体は、例えば
一般式:(La1-x-yEuxSmy22S …(1)
(式中、xおよびyはそれぞれ0.01≦x≦0.15、0.0001≦y≦0.03を満足する数である)
で実質的に表される組成を有するものである。
Oxysulfide lanthanum phosphors of the phosphor particles 2, for example, the general formula: (La 1-xy Eu x Sm y) 2 O 2 S ... (1)
(Wherein x and y are numbers satisfying 0.01 ≦ x ≦ 0.15 and 0.0001 ≦ y ≦ 0.03, respectively)
And having a composition substantially represented by:

ここで、3価のユーロピウム(Eu)は、蛍光体母体としての酸硫化ランタンの発光効率を高める付活剤であり、上記(1)式のxの値として0.01〜0.15の範囲で含有させることが好ましい。Euの含有量を示すxの値が0.01未満であると、発光効率の改善効果が少なく、十分な輝度を得ることができないおそれがある。一方、xの値が0.15を超えると濃度消光等により輝度が低下する。xの値は0.03〜0.08の範囲とすることがさらに好ましい。   Here, trivalent europium (Eu) is an activator that enhances the luminous efficiency of lanthanum oxysulfide as a phosphor matrix, and is contained in the range of 0.01 to 0.15 as the value of x in the above formula (1). Is preferred. If the value of x indicating the Eu content is less than 0.01, the effect of improving the light emission efficiency is small, and sufficient luminance may not be obtained. On the other hand, when the value of x exceeds 0.15, the luminance decreases due to concentration quenching or the like. More preferably, the value of x is in the range of 0.03 to 0.08.

サマリウム(Sm)は付活剤として機能する他に、酸硫化ランタンを母体とする蛍光体の励起スペクトルを長波長側にシフトさせる作用を有する。これによって、例えば波長350〜390nmの長波長紫外線の吸収効率が改善され、そのような長波長紫外線で励起した際の発光効率を向上させることができる。Smは(1)式のyの値として0.0001〜0.03の範囲で含有させることが好ましい。yの値が0.0001未満であると、励起スペクトル波長を長波長側にシフトさせる効果が十分に得られないおそれがある。一方、yの値が0.03を超えると蛍光体の発光効率を逆に阻害することになる。yの値は0.001〜0.01の範囲とすることがさらに好ましい。   In addition to functioning as an activator, samarium (Sm) has the effect of shifting the excitation spectrum of a phosphor based on lanthanum oxysulfide to the longer wavelength side. Thereby, for example, the absorption efficiency of long-wavelength ultraviolet light having a wavelength of 350 to 390 nm is improved, and the light emission efficiency when excited with such long-wavelength ultraviolet light can be improved. Sm is preferably contained in the range of 0.0001 to 0.03 as the value of y in the formula (1). If the value of y is less than 0.0001, the effect of shifting the excitation spectrum wavelength to the long wavelength side may not be sufficiently obtained. On the other hand, if the value of y exceeds 0.03, the luminous efficiency of the phosphor is adversely affected. The value of y is more preferably in the range of 0.001 to 0.01.

また、蛍光体母体としての酸硫化ランタンにおいて、ランタン(La)の一部はイットリウム(Y)およびガドリニウム(Gd)から選ばれる少なくとも1種の元素、具体的にはY、Gd、Y+Gdのいずれかにより置換してもよい。YやGdは蛍光体中に固溶することにより、赤色領域における発光エネルギーを高める効果を示す。ただし、YやGdによるLaの置換量が多すぎると、結晶の歪みが無視できなくなり、逆に発光強度が低下するため、YやGdによる置換量はLaの30モル%以下とすることが好ましい。より好ましい置換量は5〜20モル%の範囲である。   In the lanthanum oxysulfide as the phosphor matrix, a part of the lanthanum (La) is at least one element selected from yttrium (Y) and gadolinium (Gd), specifically any one of Y, Gd, and Y + Gd. May be substituted. Y and Gd exhibit the effect of increasing the emission energy in the red region by being dissolved in the phosphor. However, if the amount of substitution of La by Y or Gd is too large, crystal distortion cannot be ignored, and conversely, the emission intensity decreases. Therefore, the amount of substitution by Y or Gd is preferably 30 mol% or less of La. . A more preferable substitution amount is in the range of 5 to 20 mol%.

蛍光体粒子2を構成する3価のEuおよびSm付活酸硫化ランタン蛍光体は、波長270〜395nmの紫外線、特に波長350〜390nmの長波長紫外線を効率よく吸収する。従って、そのような紫外線(特に長波長紫外線)で励起した際に、例えばピーク波長が625nm付近の赤色光を効率よく得ることができ、各種表示装置用の赤色発光蛍光体等として有用なものである。   The trivalent Eu and Sm activated lanthanum oxysulfide phosphor constituting the phosphor particle 2 efficiently absorbs ultraviolet light having a wavelength of 270 to 395 nm, particularly long wavelength ultraviolet light having a wavelength of 350 to 390 nm. Therefore, when excited with such ultraviolet rays (especially long wavelength ultraviolet rays), for example, red light having a peak wavelength of around 625 nm can be efficiently obtained, which is useful as a red light emitting phosphor for various display devices. is there.

そして、本発明の赤色発光蛍光体1においては、上記した3価のEuおよびSm付活の酸硫化ランタン蛍光体からなる蛍光体粒子2の表面に金属酸化物を付着させており、この蛍光体粒子2の表面に付着された金属酸化物が防湿層3を形成している。防湿層3を構成する金属酸化物には、それ自体の安定性および防湿性が高く、かつ発光特性を実質的に有しない酸化物が用いられる。このような金属酸化物としては、Al、Si、Y、Gd、Lu、Ti、Nb、TaおよびZnから選ばれる金属元素を含む酸化物が例示され、これら金属元素を1種以上含む酸化物を用いることが好ましい。   In the red light emitting phosphor 1 of the present invention, a metal oxide is attached to the surface of the phosphor particle 2 made of the above-described trivalent Eu and Sm activated lanthanum oxysulfide phosphor. The metal oxide attached to the surface of the particle 2 forms the moisture-proof layer 3. As the metal oxide constituting the moisture-proof layer 3, an oxide having high stability and moisture-proof property and having substantially no light emission characteristics is used. Examples of such metal oxides include oxides containing metal elements selected from Al, Si, Y, Gd, Lu, Ti, Nb, Ta and Zn, and oxides containing one or more of these metal elements. It is preferable to use it.

金属酸化物からなる防湿層3は、例えば金属酸化物の微粒子を蛍光体粒子2の表面に付着させたり、また蛍光体粒子2の表面を金属酸化物の被膜(超微粒子層等による略被膜状のものを含む)で覆うことにより形成することができる。このような防湿層3を蛍光体粒子2の表面に形成することによって、例えば赤色発光蛍光体1を長期間保管した場合においても、蛍光体粒子2が水分を吸収して凝集することを防ぐことが可能となる。   The moisture-proof layer 3 made of a metal oxide, for example, allows metal oxide fine particles to adhere to the surface of the phosphor particles 2, or the surface of the phosphor particles 2 is coated with a metal oxide film (substantially film-like by an ultrafine particle layer etc. And the like). By forming such a moisture-proof layer 3 on the surface of the phosphor particles 2, for example, even when the red light-emitting phosphor 1 is stored for a long period of time, the phosphor particles 2 are prevented from absorbing water and aggregating. Is possible.

上記したように、金属酸化物からなる防湿層3は、蛍光体粒子2が水分を吸収することを妨げる機能を有するため、例えば保管後における蛍光体粒子2の凝集を確実に抑制することができる。さらに、防湿層3としての金属酸化物は、蛍光体粒子2の分散性の向上に対しても有効に作用する。このような防湿層3の凝集防止効果および分散性向上効果等に基づいて、赤色発光蛍光体1を用いてLEDランプ等の発光装置を作製する際に、長期間保存後においても赤色発光蛍光体1を均一に分散させることが可能となる。従って、発光ムラのない発光装置、言い換えると発光の色温度が均一な発光装置を提供することができる。このような発光層の品質改善効果は、赤色発光蛍光体1を青色および緑色発光蛍光体と混合し、このような混合蛍光体を使用して白色発光のLEDランプのような発光装置を作製する際に、特に顕著に得ることができる。   As described above, since the moisture-proof layer 3 made of a metal oxide has a function of preventing the phosphor particles 2 from absorbing moisture, for example, aggregation of the phosphor particles 2 after storage can be reliably suppressed. . Furthermore, the metal oxide as the moisture-proof layer 3 also works effectively for improving the dispersibility of the phosphor particles 2. When a light emitting device such as an LED lamp is manufactured using the red light emitting phosphor 1 based on the moisture preventing effect and the dispersibility improving effect of the moistureproof layer 3, the red light emitting phosphor is stored even after long-term storage. 1 can be uniformly dispersed. Therefore, a light-emitting device without light emission unevenness, in other words, a light-emitting device with uniform color temperature of light emission can be provided. The effect of improving the quality of the light emitting layer is that the red light emitting phosphor 1 is mixed with the blue and green light emitting phosphors, and a light emitting device such as a white light emitting LED lamp is manufactured using such a mixed phosphor. In particular, it can be obtained particularly prominently.

上述したような防湿層3は、それを構成する金属酸化物を蛍光体粒子2に対して質量比で0.01〜5%の範囲で付着させて形成することが好ましい。蛍光体粒子2に対して金属酸化物の付着量が0.01質量%未満であると、上記した凝集防止効果や分散性向上効果等を十分に得ることができないおそれがある。一方、防湿層3は基本的には蛍光体粒子2の発光を妨げるものであるため、そのような金属酸化物の付着量が5質量%を超えると、赤色発光蛍光体1の発光出力の低下が著しくなって実用性が低下する。金属酸化物の蛍光体粒子2に対する付着量は、質量比で0.05〜1%の範囲とすることがより好ましい。なお、本発明における金属酸化物の種類と量はICP発光分析法で測定するものとする。ただし、母合金にYあるいはGdが含まれる場合にはEPMAで測定する。   The moisture-proof layer 3 as described above is preferably formed by attaching a metal oxide constituting the moisture-proof layer 3 to the phosphor particles 2 in a mass ratio of 0.01 to 5%. If the adhesion amount of the metal oxide with respect to the phosphor particles 2 is less than 0.01% by mass, the above-described aggregation preventing effect and dispersibility improving effect may not be sufficiently obtained. On the other hand, since the moisture-proof layer 3 basically prevents the phosphor particles 2 from emitting light, if the amount of such metal oxide attached exceeds 5% by mass, the emission output of the red-emitting phosphor 1 is reduced. Becomes remarkably difficult to use. The adhesion amount of the metal oxide to the phosphor particles 2 is more preferably in the range of 0.05 to 1% by mass ratio. In addition, the kind and quantity of the metal oxide in this invention shall be measured by ICP emission spectrometry. However, when the mother alloy contains Y or Gd, the measurement is performed by EPMA.

金属酸化物からなる防湿層3は、例えば以下に示す微粒子法や溶液法等により形成することができる。微粒子法においては、まず金属酸化物の微粉末を水中に分散させ、この分散液中に3価のEuおよびSm付活酸硫化ランタン蛍光体粉末、さらに必要に応じて有機高分子系バインダ等を加えて十分に撹拌する。この懸濁液をろ過した後に加熱乾燥させることによって、3価のEuおよびSm付活の酸硫化ランタン蛍光体からなる蛍光体粒子2の表面に金属酸化物からなる防湿層3を形成することができる。このような微粒子法によれば、蛍光体粒子2の表面に金属酸化物微粒子が付着して防湿層3が形成される。   The moisture-proof layer 3 made of a metal oxide can be formed by, for example, a fine particle method or a solution method described below. In the fine particle method, first, a metal oxide fine powder is dispersed in water, and trivalent Eu and Sm activated lanthanum oxysulfide phosphor powder is dispersed in the dispersion, and an organic polymer binder is added as necessary. Add sufficient agitation. The moisture-proof layer 3 made of a metal oxide can be formed on the surface of phosphor particles 2 made of trivalent Eu and Sm-activated lanthanum oxysulfide phosphors by filtering and drying this suspension. it can. According to such a fine particle method, the metal oxide fine particles adhere to the surface of the phosphor particles 2 to form the moisture-proof layer 3.

また、溶液法においては、上記したような金属元素(Al、Si、Y、Gd、Lu、Ti、Nb、Ta、Zn等)を含む硝酸塩や炭酸塩等の水溶性化合物を水中に溶解し、この溶液中に3価のEuおよびSm付活の酸硫化ランタン蛍光体粉末を加えて十分に撹拌する。この混合溶液のpH調整等を行ってゲル状の水酸化物等を生成し、この状態でさらに十分に撹拌した後にろ過し、得られたろ過ケーキを熱処理することによって、3価のEuおよびSm付活の酸硫化ランタン蛍光体からなる蛍光体粒子2の表面に金属酸化物からなる防湿層3を形成することができる。このような溶液法によれば、蛍光体粒子2の表面を金属酸化物被膜(もしくは超微粒子層)で覆うことができる。   In the solution method, a water-soluble compound such as nitrate or carbonate containing the above metal elements (Al, Si, Y, Gd, Lu, Ti, Nb, Ta, Zn, etc.) is dissolved in water. Trivalent Eu and Sm activated lanthanum oxysulfide phosphor powders are added to this solution and sufficiently stirred. Trivalent Eu and Sm are produced by adjusting the pH of the mixed solution to produce a gel-like hydroxide and the like, followed by further stirring and filtering in this state, and heat-treating the obtained filter cake. A moisture-proof layer 3 made of a metal oxide can be formed on the surface of phosphor particles 2 made of an activated lanthanum oxysulfide phosphor. According to such a solution method, the surface of the phosphor particles 2 can be covered with the metal oxide film (or ultrafine particle layer).

上述したような赤色発光蛍光体1は、例えば波長270〜395nmの紫外線、特に波長350〜390nmの長波長紫外線で励起して可視光を得る用途、すなわち発光装置用蛍光体に適用されるものである。本発明の発光装置の製造方法は、そのような赤色発光蛍光体1を青色および緑色発光蛍光体と共に用いて、紫外線で励起される発光部を形成するものである。なお、防湿層は赤色発光蛍光体のみに形成することが好ましい。発光装置はこのような発光部に光源から紫外線を照射することで可視光を得るものである。このような発光装置の代表例としてはLEDランプが挙げられるが、これ以外にも例えば標識用表示装置(発光装置)等に適用することもできる。   The red light emitting phosphor 1 as described above is applied to a use for obtaining visible light by being excited by, for example, ultraviolet light having a wavelength of 270 to 395 nm, particularly long wavelength ultraviolet light having a wavelength of 350 to 390 nm, that is, a phosphor for a light emitting device. is there. The method for manufacturing a light emitting device of the present invention uses such a red light emitting phosphor 1 together with blue and green light emitting phosphors to form a light emitting portion excited by ultraviolet rays. The moisture-proof layer is preferably formed only on the red light emitting phosphor. A light-emitting device obtains visible light by irradiating such a light-emitting part with ultraviolet rays from a light source. A typical example of such a light emitting device is an LED lamp, but other than this, for example, the present invention can also be applied to a sign display device (light emitting device).

図2は本発明の発光装置をLEDランプに適用した一実施形態の概略構成を示す断面図である。同図において、11は例えばInGaN活性層を有する中心波長が370nm付近の紫外LEDチップであり、この紫外LEDチップ11はリードフレーム12上に接着剤層13を介して固定されている。また、紫外LEDチップ11とリードフレーム12とは、ボンディングワイヤ14により電気的に接続されている。   FIG. 2 is a cross-sectional view showing a schematic configuration of an embodiment in which the light emitting device of the present invention is applied to an LED lamp. In the figure, reference numeral 11 denotes an ultraviolet LED chip having an InGaN active layer and a center wavelength of around 370 nm. The ultraviolet LED chip 11 is fixed on a lead frame 12 via an adhesive layer 13. Further, the ultraviolet LED chip 11 and the lead frame 12 are electrically connected by a bonding wire 14.

紫外LEDチップ11は、ボンディングワイヤ14等と共に樹脂層15により覆われている。ここで、樹脂層15は紫外LEDチップ11の周囲を覆うプレディップ材16と、このプレディップ材16の周囲を覆うキャスティング材17とを有している。プレディップ材16とキャスティング材17には、透明な樹脂等が用いられる。   The ultraviolet LED chip 11 is covered with a resin layer 15 together with bonding wires 14 and the like. Here, the resin layer 15 includes a pre-dip material 16 that covers the periphery of the ultraviolet LED chip 11 and a casting material 17 that covers the periphery of the pre-dip material 16. Transparent resin or the like is used for the pre-dip material 16 and the casting material 17.

図2に示すLEDランプにおいて、プレディップ材16は前述した赤色発光蛍光体を青色および緑色発光蛍光体と共に含む発光装置用蛍光体を含有しており、紫外LEDチップ1から放射された紫外線により励起されて、発光装置用蛍光体の種類や混合比率等に応じた可視光を発光させる発光部として機能する。なお、発光装置用蛍光体はプレディップ材16中に含有させて使用することに限られるものではなく、例えば紫外LEDチップ11の発光面に蛍光体層を形成して用いる等、種々の形態で使用することができる。   In the LED lamp shown in FIG. 2, the pre-dip material 16 contains a phosphor for a light emitting device including the above-described red light emitting phosphor together with blue and green light emitting phosphors, and is excited by ultraviolet rays emitted from the ultraviolet LED chip 1. Thus, it functions as a light emitting unit that emits visible light according to the type and mixing ratio of the phosphor for the light emitting device. The phosphor for the light emitting device is not limited to be used by being contained in the pre-dip material 16, and may be used in various forms, for example, by forming a phosphor layer on the light emitting surface of the ultraviolet LED chip 11. Can be used.

発光装置用蛍光体は目的とする発光色に応じて、赤色発光蛍光体と青色発光蛍光体と緑色発光蛍光体とを混合して用いることができる。この際、赤色発光蛍光体は分散性に優れることから、青色および緑色発光蛍光体等と混合してプレディップ材16中に分散させる際に、良好な混合状態を維持した上で均一分散させることができる。これによって、発光ムラの発生等を抑制することが可能となる。   The phosphor for a light emitting device can be used by mixing a red light emitting phosphor, a blue light emitting phosphor and a green light emitting phosphor in accordance with a target emission color. At this time, since the red light-emitting phosphor is excellent in dispersibility, when mixed with the blue and green light-emitting phosphors and dispersed in the pre-dip material 16, it is uniformly dispersed while maintaining a good mixed state. Can do. As a result, it is possible to suppress the occurrence of uneven light emission.

上述した発光装置用蛍光体において、青色発光成分および緑色発光成分としての各蛍光体は特に限定されるものではないが、長波長の紫外線による発光効率に優れる蛍光体を使用することが好ましい。   In the phosphor for a light-emitting device described above, each phosphor as a blue light-emitting component and a green light-emitting component is not particularly limited, but it is preferable to use a phosphor that is excellent in light emission efficiency with long-wavelength ultraviolet rays.

例えば、青色発光蛍光体としては、
一般式:(M1,Eu)10(PO46・Cl2
(式中、M1はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す)
で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体、および
一般式:a(M2,Eu)O・bAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数である)
で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体から選ばれる少なくとも1種を用いることが好ましい。
For example, as a blue light emitting phosphor,
General formula: (M1, Eu) 10 (PO 4 ) 6 · Cl 2
(Wherein M1 represents at least one element selected from Mg, Ca, Sr and Ba)
In the divalent europium activated halophosphate phosphor substantially represented, and the general formula: a (M2, Eu) O · bAl 2 O 3
(Wherein M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5)
It is preferable to use at least one selected from divalent europium activated aluminate phosphors substantially represented by:

また、緑色発光成分としては、
一般式:c(M2,Eu,Mn)O・dAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、cおよびdはc>0、d>0、0.2≦c/d≦1.5を満足する数である)
で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体、および
一般式:(Y1-v-w-zvTbwCez23・nSiO2
(式中、RはLaおよびGdから選ばれる少なくとも1種の元素を示し、v、w、zおよびnはそれぞれ5×10-4≦v≦0.3、0.05≦w≦0.3、0.001≦z≦0.15、0.8≦n≦1.3を満足する数である)
で実質的に表される3価のテルビウムおよびセリウム付活希土類珪酸塩蛍光体から選ばれる少なくとも1種を用いることが好ましい。
Moreover, as a green light emission component,
General formula: c (M2, Eu, Mn ) O · dAl 2 O 3
(In the formula, M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and c and d are c> 0, d> 0, 0.2 ≦ c / d ≦ 1.5)
In the divalent europium and manganese activated aluminate phosphor substantially represented, and the general formula: (Y 1-vwz R v Tb w Ce z) 2 O 3 · nSiO 2
(In the formula, R represents at least one element selected from La and Gd, and v, w, z and n represent 5 × 10 −4 ≦ v ≦ 0.3, 0.05 ≦ w ≦ 0.3, 0.001 ≦ z ≦ 0.15, respectively. , 0.8 ≦ n ≦ 1.3.
It is preferable to use at least one selected from trivalent terbium and cerium activated rare earth silicate phosphors substantially represented by

上記したような青色および緑色発光蛍光体は、いずれも波長270〜395nmの紫外線、特に波長350〜390nmの長波長紫外線の吸収効率に優れるものであり、従って長波長の紫外線で励起した際に青色光および緑色光を効率よく得ることができる。このような青色および緑色発光蛍光体等を、赤色発光蛍光体と適宜に組合せて使用することによって、任意の色温度の白色光や紫色、桃色、青緑色等の中間色光を効率よく取り出すことができ、さらには各色の色再現性を大幅に向上させることが可能となる。   The blue and green light emitting phosphors as described above are excellent in the absorption efficiency of ultraviolet light having a wavelength of 270 to 395 nm, particularly long wavelength ultraviolet light having a wavelength of 350 to 390 nm, and therefore blue when excited with long wavelength ultraviolet light. Light and green light can be obtained efficiently. By using such blue and green light emitting phosphors in appropriate combination with red light emitting phosphors, it is possible to efficiently extract white light of any color temperature and intermediate color light such as purple, pink, and blue green. In addition, the color reproducibility of each color can be greatly improved.

赤色、青色、緑色の各色発光成分の混合比率は、目的とする発光色に応じて適宜設定することができる。例えば、白色光を得る際には質量比で、青色発光成分を65%以下、緑色発光成分を5〜65%の範囲、赤色発光成分を15〜95%の範囲とすることが好ましい。このような混合比率によれば、例えば色温度2700K前後から8000K前後の白色光を任意に得ることができ、さらには従来の波長254nmで励起した三波長蛍光体と遜色のない明るさが得られる。   The mixing ratio of the red, blue, and green light emitting components can be appropriately set according to the target light emission color. For example, when obtaining white light, it is preferable that the blue light-emitting component is 65% or less, the green light-emitting component is in the range of 5 to 65%, and the red light-emitting component is in the range of 15 to 95%. According to such a mixing ratio, for example, white light having a color temperature of about 2700K to about 8000K can be obtained arbitrarily, and furthermore, brightness comparable to that of a conventional three-wavelength phosphor excited at a wavelength of 254 nm can be obtained. .

本発明が適用される発光装置は、上述したLEDランプに限られるものではなく、例えば赤色発光蛍光体を含む発光装置用蛍光体を塗料と共に塗布した発光部と、この発光部に紫外線特に長波長紫外線を照射する光源とを具備する表示装置等にも適用可能である。このような表示装置は標識等に用いられ、その際の光源としてはBaSi25:Pb蛍光体(ピーク波長:353nm)やSrB47:Eu蛍光体(ピーク波長:370nm)等を用いたブラックライト(蛍光ランプ)が使用される。 The light emitting device to which the present invention is applied is not limited to the LED lamp described above. For example, a light emitting unit in which a phosphor for a light emitting device including a red light emitting phosphor is applied together with a paint, and ultraviolet light, particularly a long wavelength, is applied to the light emitting unit. The present invention can also be applied to a display device including a light source that emits ultraviolet rays. Such a display device is used for a label or the like, and as a light source at that time, BaSi 2 O 5 : Pb phosphor (peak wavelength: 353 nm), SrB 4 O 7 : Eu phosphor (peak wavelength: 370 nm) or the like is used. Black light (fluorescent lamp) is used.

次に、本発明の具体的な実施例およびその評価結果について述べる。   Next, specific examples of the present invention and evaluation results thereof will be described.

実施例1、比較例1
まず、純水0.2L(リットル)に硝酸イットリウム(Y(NO33)0.74gを溶解し、この溶液に3価のEuおよびSm付活酸硫化ランタン蛍光体((La0.93Eu0.06Sm0.0122S)粉末100gを添加し、十分に撹拌した。次いで、この分散液に撹拌しながらアンモニア水を滴下し、分散液のpHを9前後に調整した。このpH領域においては、水酸化イットリウムのゲル状物質が得られる。この状態でさらに十分に撹拌した後、純水で洗浄した。この懸濁液を吸引ろ過し、得られたろ過ケーキを400℃×6時間の条件で熱処理することによって、目的とする赤色発光蛍光体を得た。
Example 1 and Comparative Example 1
First, 0.74 g of yttrium nitrate (Y (NO 3 ) 3 ) was dissolved in 0.2 L (liter) of pure water, and trivalent Eu and Sm activated lanthanum oxysulfide phosphor ((La 0.93 Eu 0.06 Sm 0.01 ) was dissolved in this solution. ) 100 g of 2 O 2 S) powder was added and stirred thoroughly. Next, ammonia water was added dropwise to the dispersion while stirring to adjust the pH of the dispersion to around 9. In this pH range, a yttrium hydroxide gel-like substance is obtained. In this state, the mixture was further sufficiently stirred and then washed with pure water. This suspension was subjected to suction filtration, and the obtained filter cake was heat-treated at 400 ° C. for 6 hours to obtain the intended red light-emitting phosphor.

このようにして得た赤色発光蛍光体において、La22S:Eu,Sm蛍光体粒子の表面にはY23超微粒子層が付着形成されていた。このY23超微粒子層はおおよそ被膜状となっていることをSEMにより確認した。La22S:Eu,Sm蛍光体粒子に対するY23の付着量は0.2質量%であった。 In the red light-emitting phosphor thus obtained, a Y 2 O 3 ultrafine particle layer was deposited on the surface of La 2 O 2 S: Eu, Sm phosphor particles. It was confirmed by SEM that this Y 2 O 3 ultrafine particle layer was roughly in the form of a film. The amount of Y 2 O 3 deposited on the La 2 O 2 S: Eu, Sm phosphor particles was 0.2% by mass.

上記した実施例1による赤色発光蛍光体と、蛍光体粒子表面に金属酸化物層を形成していない以外は実施例1と同一の赤色発光蛍光体(比較例1)とを用いて、これらを大気中に種々の時間で放置した後に、下記のようにして各蛍光体の凝集状態を評価した。その結果を表1に示す。   Using the red light emitting phosphor according to Example 1 described above and the same red light emitting phosphor (Comparative Example 1) as Example 1 except that the metal oxide layer is not formed on the surface of the phosphor particles, these are used. After being left in the atmosphere at various times, the aggregation state of each phosphor was evaluated as follows. The results are shown in Table 1.

蛍光体の凝集性評価は以下のようにして実施した。まず、内径15mm、高さ300mmのガラス管内に1.5%のエチルセルロースを溶解したキシレン溶液40ccを入れる。この中に20gの蛍光体粉末を入れ、20分間ガラス管をよく振り、均一な懸濁液を調製する。その後、ガラス管を垂直に保持し、48時間放置した後、沈降した蛍光体層の高さを測定する。1日大気中に放置した本発明の赤色発光蛍光体の高さを基準(10点)とし、高さが1.15倍増す毎にマイナス1点として、蛍光体の凝集状態を評価する。蛍光体が凝集すると分散媒中での分散性が悪くなり、その結果として沈降した蛍光体層の高さが高くなる。   The aggregation property of the phosphor was evaluated as follows. First, 40 cc of a xylene solution in which 1.5% ethylcellulose is dissolved is placed in a glass tube having an inner diameter of 15 mm and a height of 300 mm. In this, 20 g of phosphor powder is put, and the glass tube is shaken well for 20 minutes to prepare a uniform suspension. Thereafter, the glass tube is held vertically and allowed to stand for 48 hours, and then the height of the precipitated phosphor layer is measured. The height of the red light-emitting phosphor of the present invention left in the atmosphere for one day is set as a reference (10 points), and the aggregation state of the phosphor is evaluated as minus 1 point every time the height increases 1.15 times. When the phosphor is aggregated, the dispersibility in the dispersion medium is deteriorated, and as a result, the height of the precipitated phosphor layer is increased.

Figure 2005286351
Figure 2005286351

表1から明らかなように、実施例1による赤色発光蛍光体は、大気中で長時間保管した後においてもほとんど凝集しておらず、このことから良好な分散性が保たれていることが分かる。   As is apparent from Table 1, the red-emitting phosphor according to Example 1 hardly aggregates even after being stored in the atmosphere for a long time, and it can be seen from this that good dispersibility is maintained. .

実施例2、比較例2
まず、純水0.2L(リットル)に粒径50nm前後の酸化アルミニウム(Al23)微粉末を添加して十分に撹拌した。この分散液中に3価のEuおよびSm付活酸硫化ランタン蛍光体((La0.90Eu0.07Sm0.0322S)粉末100gを添加し、さらに十分に撹拌した。次いで、0.1gのアクリルエマルジョンと0.05gのポリアクリル酸アンモニウムを順次添加し、均一に分散させた後、この懸濁液をろ過し、得られたろ過ケーキを120℃×24時間の条件で乾燥させることによって、目的とする赤色発光蛍光体を得た。
Example 2 and Comparative Example 2
First, a fine powder of aluminum oxide (Al 2 O 3 ) having a particle size of around 50 nm was added to 0.2 L (liter) of pure water and sufficiently stirred. To this dispersion, 100 g of trivalent Eu and Sm activated lanthanum oxysulfide phosphor ((La 0.90 Eu 0.07 Sm 0.03 ) 2 O 2 S) powder was added and further stirred sufficiently. Next, 0.1 g of acrylic emulsion and 0.05 g of ammonium polyacrylate were sequentially added and dispersed uniformly, then the suspension was filtered, and the resulting filter cake was dried at 120 ° C. for 24 hours. As a result, an intended red light-emitting phosphor was obtained.

このようにして得た赤色発光蛍光体において、La22S:Eu,Sm蛍光体粒子の表面にはAl23微粒子が付着しており、Al23微粒子層が形成されていることをSEMにより確認した。また、La22S:Eu,Sm蛍光体粒子に対するAl23の付着量は0.5質量%であった。 In the red light emitting phosphor thus obtained, Al 2 O 3 fine particles are adhered to the surface of La 2 O 2 S: Eu, Sm phosphor particles, and an Al 2 O 3 fine particle layer is formed. This was confirmed by SEM. Moreover, the adhesion amount of Al 2 O 3 to La 2 O 2 S: Eu, Sm phosphor particles was 0.5 mass%.

上記した実施例2による赤色発光蛍光体と、蛍光体粒子表面に金属酸化物層を形成していない以外は実施例2と同一の赤色発光蛍光体(比較例2)とを用いて、これらを大気中に種々の時間で放置した後に、実施例1と同様にして蛍光体の凝集状態を評価した。その結果を表2に示す。   Using the red light emitting phosphor according to Example 2 described above and the same red light emitting phosphor (Comparative Example 2) as Example 2 except that the metal oxide layer is not formed on the surface of the phosphor particles, these are used. After being left in the atmosphere for various times, the aggregation state of the phosphor was evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 2005286351
Figure 2005286351

表2から明らかなように、実施例2による赤色発光蛍光体は、大気中で長時間保管した後においてもほとんど凝集しておらず、このことから良好な分散性が保たれていることが分かる。   As is apparent from Table 2, the red-emitting phosphor according to Example 2 hardly aggregates even after being stored in the atmosphere for a long time, and it can be seen from this that good dispersibility is maintained. .

実施例3〜9、比較例3〜9
表3に組成を示す3価のEuおよびSm付活酸硫化ランタン蛍光体に対して、それぞれ表3に示す金属酸化物を実施例2と同様にして付着させた後、これら各赤色発光蛍光体の保管後の凝集状態を実施例1と同様にして評価した。その結果を表4に示す。なお、表中の比較例3〜9は、蛍光体粒子表面に金属酸化物層を形成していない以外は実施例3〜9と同一の赤色発光蛍光体であり、これらについても保管後の凝集状態を評価した。
Examples 3-9, Comparative Examples 3-9
After attaching the metal oxide shown in Table 3 to the trivalent Eu and Sm activated lanthanum oxysulfide phosphors having the compositions shown in Table 3 in the same manner as in Example 2, each of these red light emitting phosphors The aggregation state after storage was evaluated in the same manner as in Example 1. The results are shown in Table 4. In addition, Comparative Examples 3 to 9 in the table are the same red light emitting phosphors as Examples 3 to 9 except that the metal oxide layer is not formed on the surface of the phosphor particles, and these are also aggregated after storage. The condition was evaluated.

Figure 2005286351
Figure 2005286351

Figure 2005286351
Figure 2005286351

表4から明らかなように、実施例3〜9による各赤色発光蛍光体は、大気中で長時間保管した後においてもほとんど凝集しておらず、このことから良好な分散性が保たれていることが分かる。   As is apparent from Table 4, each of the red light emitting phosphors according to Examples 3 to 9 hardly aggregates even after being stored in the atmosphere for a long time, and thus good dispersibility is maintained. I understand that.

実施例10、比較例10
まず、実施例1による赤色発光蛍光体と、(Sr0.73Ba0.22Ca0.0510(PO46・Cl2:Eu組成の青色発光蛍光体と、3(Ba,Mg)O・8Al23:Eu0.20,Mn0.40組成の緑色発光蛍光体とを用意した。これら各色の蛍光体を、質量比で赤色発光成分が61%、青色発光成分が21%、緑色発光成分が18%となるように秤量し、これらを十分に混合することによって、色温度が6500K前後の白色発光蛍光体を得た。なお、赤色発光蛍光体は90日間保管した後のものを使用した。
Example 10 and Comparative Example 10
First, a red light-emitting phosphor according to Example 1, a blue light-emitting phosphor of (Sr 0.73 Ba 0.22 Ca 0.05 ) 10 (PO 4 ) 6 · Cl 2 : Eu composition, and 3 (Ba, Mg) O · 8Al 2 O 3 : A green light-emitting phosphor having a composition of Eu 0.20 and Mn 0.40 was prepared. The phosphors of each color are weighed so that the red light-emitting component is 61%, the blue light-emitting component is 21%, and the green light-emitting component is 18%, and the color temperature is 6500K. Before and after white phosphors were obtained. The red light-emitting phosphor used after 90 days storage.

このようにして得た混合蛍光体を用いて、図2に示したLEDランプを作製した。具体的には、上記した混合蛍光体をプレディップ材6としてのエポキシ樹脂溶液中に分散させ、この樹脂溶液を用いてInGaN活性層を有する紫外LEDチップの周囲を被覆することによって、LEDランプを作製した。このLEDランプの作製工程において、上記した混合蛍光体は樹脂溶液中に均一に分散することを確認した。また、LEDランプの点灯試験を行ったところ、発光ムラの発生は認められず、色温度の均一な白色光が得られることを確認した。   The LED lamp shown in FIG. 2 was produced using the mixed phosphor thus obtained. Specifically, the above-described mixed phosphor is dispersed in an epoxy resin solution as the pre-dip material 6, and this resin solution is used to coat the periphery of an ultraviolet LED chip having an InGaN active layer. Produced. In the LED lamp manufacturing process, it was confirmed that the above-described mixed phosphor was uniformly dispersed in the resin solution. Moreover, when the lighting test of the LED lamp was conducted, it was confirmed that no light emission unevenness was observed and white light having a uniform color temperature was obtained.

一方、本発明との比較例10として、比較例1による赤色発光蛍光体を90日間保管した後に使用する以外は、上記した実施例10と同様にしてLEDランプを作製したところ、混合蛍光体の樹脂溶液中への分散工程で蛍光体の分離が認められ、また得られたLEDランプには発光ムラの発生が認められた。   On the other hand, as Comparative Example 10 with the present invention, an LED lamp was produced in the same manner as in Example 10 except that the red light-emitting phosphor according to Comparative Example 1 was used after being stored for 90 days. Separation of the phosphor was observed in the dispersion process in the resin solution, and emission unevenness was observed in the obtained LED lamp.

本発明で用いられる赤色発光蛍光体の一実施形態の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of one Embodiment of the red light emission fluorescent substance used by this invention. 本発明の発光装置をLEDランプに適用した一実施形態の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of one Embodiment which applied the light-emitting device of this invention to the LED lamp.

符号の説明Explanation of symbols

1…赤色発光蛍光体、2…蛍光体粒子、3…防湿層、11…紫外LEDチップ、15…樹脂層、16…プレディップ材。   DESCRIPTION OF SYMBOLS 1 ... Red light emission fluorescent substance, 2 ... Phosphor particle, 3 ... Moisture-proof layer, 11 ... Ultraviolet LED chip, 15 ... Resin layer, 16 ... Pre-dip material.

Claims (13)

紫外線を放射する光源と、赤色発光蛍光体と青色発光蛍光体と緑色発光蛍光体とを含み、かつ前記光源からの紫外線により励起されて可視光を発光させる発光装置用蛍光体を有する発光部とを具備する発光装置を製造するにあたり、
前記赤色発光蛍光体として3価のユーロピウムおよびサマリウムで付活された酸硫化ランタン蛍光体を用いると共に、前記酸硫化ランタン蛍光体の粒子表面に金属酸化物からなる防湿層を形成することを特徴とする発光装置の製造方法。
A light emitting unit including a light source that emits ultraviolet light, and a phosphor for a light emitting device that includes a red light emitting phosphor, a blue light emitting phosphor, and a green light emitting phosphor, and that emits visible light when excited by ultraviolet light from the light source; In manufacturing a light emitting device comprising
A lanthanum oxysulfide phosphor activated with trivalent europium and samarium is used as the red light-emitting phosphor, and a moisture-proof layer made of a metal oxide is formed on the particle surface of the lanthanum oxysulfide phosphor. A method for manufacturing a light emitting device.
請求項1記載の発光装置の製造方法において、
前記発光装置用蛍光体のうち、前記赤色発光蛍光体の粒子表面のみに前記防湿層を形成することを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of Claim 1,
A method of manufacturing a light emitting device, wherein the moisture-proof layer is formed only on the particle surface of the red light emitting phosphor among the phosphors for the light emitting device.
請求項1または請求項2記載の発光装置の製造方法において、
前記酸硫化ランタン蛍光体は、
一般式:(La1-x-yEuxSmy22
(式中、xおよびyはそれぞれ0.01≦x≦0.15、0.0001≦y≦0.03を満足する数である)
で表される組成を有することを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of Claim 1 or Claim 2,
The lanthanum oxysulfide phosphor is
General formula: (La 1-xy Eu x Sm y) 2 O 2 S
(Wherein x and y are numbers satisfying 0.01 ≦ x ≦ 0.15 and 0.0001 ≦ y ≦ 0.03, respectively)
A method for producing a light-emitting device, characterized by having a composition represented by:
請求項1ないし請求項3のいずれか1項記載の発光装置の製造方法において、
前記金属酸化物としてAl、Si、Y、Gd、Lu、Ti、Nb、TaおよびZnから選ばれる少なくとも1種の金属元素を含む酸化物を用いることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 3,
A method for manufacturing a light emitting device, wherein an oxide containing at least one metal element selected from Al, Si, Y, Gd, Lu, Ti, Nb, Ta and Zn is used as the metal oxide.
請求項1ないし請求項4のいずれか1項記載の発光装置の製造方法において、
前記金属酸化物を前記蛍光体の粒子に対して質量比で0.01〜5%の範囲で付着させることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 4,
A method for manufacturing a light-emitting device, wherein the metal oxide is attached to the phosphor particles in a mass ratio of 0.01 to 5%.
請求項1ないし請求項5のいずれか1項記載の発光装置の製造方法において、
前記酸硫化ランタン蛍光体はLaの30mol%以下がYおよびGdから選ばれる少なくとも1種で置換されていることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 5,
In the method for manufacturing a light emitting device, the lanthanum oxysulfide phosphor has 30 mol% or less of La substituted with at least one selected from Y and Gd.
請求項1ないし請求項6のいずれか1項記載の発光装置の製造方法において、
前記青色発光蛍光体として、
一般式:(M1,Eu)10(PO46・Cl2
(式中、M1はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す)
で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体、および
一般式:a(M2,Eu)O・bAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数である)
で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体から選ばれる少なくとも1種を用いることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 6,
As the blue light emitting phosphor,
General formula: (M1, Eu) 10 (PO 4 ) 6 · Cl 2
(Wherein M1 represents at least one element selected from Mg, Ca, Sr and Ba)
In the divalent europium activated halophosphate phosphor substantially represented, and the general formula: a (M2, Eu) O · bAl 2 O 3
(Wherein M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5)
A method for producing a light emitting device, comprising using at least one selected from divalent europium activated aluminate phosphors substantially represented by the formula:
請求項1ないし請求項7のいずれか1項記載の発光装置の製造方法において、
前記緑色発光蛍光体として、
一般式:c(M2,Eu,Mn)O・dAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、cおよびdはc>0、d>0、0.2≦c/d≦1.5を満足する数である)
で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体、および
一般式:(Y1-v-w-zvTbwCez23・nSiO2
(式中、RはLaおよびGdから選ばれる少なくとも1種の元素を示し、v、w、zおよびnはそれぞれ5×10-4≦v≦0.3、0.05≦w≦0.3、0.001≦z≦0.15、0.8≦n≦1.3を満足する数である)
で実質的に表される3価のテルビウムおよびセリウム付活希土類珪酸塩蛍光体から選ばれる少なくとも1種を用いることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 7,
As the green light emitting phosphor,
General formula: c (M2, Eu, Mn ) O · dAl 2 O 3
(In the formula, M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and c and d are c> 0, d> 0, 0.2 ≦ c / d ≦ 1.5)
In the divalent europium and manganese activated aluminate phosphor substantially represented, and the general formula: (Y 1-vwz R v Tb w Ce z) 2 O 3 · nSiO 2
(In the formula, R represents at least one element selected from La and Gd, and v, w, z and n represent 5 × 10 −4 ≦ v ≦ 0.3, 0.05 ≦ w ≦ 0.3, 0.001 ≦ z ≦ 0.15, respectively. , 0.8 ≦ n ≦ 1.3.
A method for producing a light-emitting device, comprising using at least one selected from trivalent terbium and cerium-activated rare earth silicate phosphors substantially represented by:
請求項1ないし請求項8のいずれか1項記載の発光装置の製造方法において、
前記発光部は波長270〜395nmの紫外線で励起した際に白色光を発光することを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 8,
The method for manufacturing a light emitting device, wherein the light emitting portion emits white light when excited by ultraviolet rays having a wavelength of 270 to 395 nm.
請求項1ないし請求項9のいずれか1項記載の発光装置の製造方法において、
前記酸硫化ランタン蛍光体は波長350〜390nmの長波長紫外線で励起した際に赤色光を発光することを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 9,
The lanthanum oxysulfide phosphor emits red light when excited with long-wavelength ultraviolet light having a wavelength of 350 to 390 nm.
請求項1ないし請求項10のいずれか1項記載の発光装置の製造方法において、
前記発光装置は前記光源として波長350〜390nmの長波長紫外線を放射する窒化物系化合物半導体層を有する発光チップを具備するLEDランプであることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 10,
The light-emitting device is an LED lamp including a light-emitting chip having a nitride compound semiconductor layer that emits long-wavelength ultraviolet light having a wavelength of 350 to 390 nm as the light source.
請求項1ないし請求項11のいずれか1項記載の発光装置の製造方法において、
前記発光装置用蛍光体を透明樹脂中に分散させて前記発光部を形成することを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 11,
A method of manufacturing a light emitting device, wherein the light emitting unit is formed by dispersing the phosphor for a light emitting device in a transparent resin.
請求項1ないし請求項10のいずれか1項記載の発光装置の製造方法において、
前記発光装置は標識用表示装置であることを特徴とする発光装置の製造方法。
In the manufacturing method of the light-emitting device of any one of Claim 1 thru | or 10,
The method of manufacturing a light emitting device, wherein the light emitting device is a display device for a sign.
JP2005165042A 2005-06-06 2005-06-06 Method for manufacturing light emitting device Expired - Fee Related JP4886221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165042A JP4886221B2 (en) 2005-06-06 2005-06-06 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165042A JP4886221B2 (en) 2005-06-06 2005-06-06 Method for manufacturing light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000386291A Division JP3954304B2 (en) 2000-12-20 2000-12-20 Light emitting device

Publications (2)

Publication Number Publication Date
JP2005286351A true JP2005286351A (en) 2005-10-13
JP4886221B2 JP4886221B2 (en) 2012-02-29

Family

ID=35184317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165042A Expired - Fee Related JP4886221B2 (en) 2005-06-06 2005-06-06 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4886221B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020575A1 (en) * 2006-08-14 2008-02-21 Alps Electric Co., Ltd. Semiconductor light emitting device
JP2008291251A (en) * 2007-04-26 2008-12-04 Sharp Corp Manufacturing method of phosphor, wavelength converting member and light-emitting device
WO2012124302A1 (en) * 2011-03-16 2012-09-20 株式会社 東芝 Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020575A1 (en) * 2006-08-14 2008-02-21 Alps Electric Co., Ltd. Semiconductor light emitting device
JP2008291251A (en) * 2007-04-26 2008-12-04 Sharp Corp Manufacturing method of phosphor, wavelength converting member and light-emitting device
WO2012124302A1 (en) * 2011-03-16 2012-09-20 株式会社 東芝 Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
CN103328607A (en) * 2011-03-16 2013-09-25 株式会社东芝 Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
JPWO2012124302A1 (en) * 2011-03-16 2014-07-17 株式会社東芝 Phosphor for light emitting device, method for producing the same, and light emitting device using the same
CN103328607B (en) * 2011-03-16 2015-05-20 株式会社东芝 Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
JP5813096B2 (en) * 2011-03-16 2015-11-17 株式会社東芝 Phosphor for light emitting device, method for producing the same, and light emitting device using the same
US9231150B2 (en) 2011-03-16 2016-01-05 Kabushiki Kaisha Toshiba Phosphor for light emitting device and method for manufacturing the same, and light emitting device using the same

Also Published As

Publication number Publication date
JP4886221B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
TWI420710B (en) White light and its use of white light-emitting diode lighting device
JP5747023B2 (en) White light-emitting lamp and white LED illumination device using the same
JP5398141B2 (en) White light emitting LED lamp, backlight using the same, and liquid crystal display device
JP4322774B2 (en) Phosphor and light emitting device using the same
WO2003032407A1 (en) Semiconductor light emitting element and light emitting device using this
JP5813096B2 (en) Phosphor for light emitting device, method for producing the same, and light emitting device using the same
JP2005264160A (en) Phosphor, method for producing the same and light emitting device
WO2007037339A1 (en) White light-emitting device, method for manufacturing same, backlight using same, and liquid crystal display
TW200849669A (en) White light-emitting lamp and illuminating device using the same
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
JP4965840B2 (en) Manufacturing method of white light emitting LED lamp, manufacturing method of backlight using the same, and manufacturing method of liquid crystal display device
JP6201848B2 (en) Phosphor, phosphor-containing composition, light emitting device, illumination device, and liquid crystal display device
JP4619509B2 (en) Light emitting device
WO2016199406A1 (en) Phosphor and method for producing same, and led lamp
JP2003160785A (en) Red-light-emitting phosphor and light emitter using the same
JP4810152B2 (en) Red phosphor and white light emitting device
JP3954304B2 (en) Light emitting device
JP5226929B2 (en) LIGHT EMITTING ELEMENT, LIGHTING DEVICE USING SAME, AND IMAGE DISPLAY DEVICE
JP5402008B2 (en) Phosphor production method, phosphor, and light emitting device using the same
JP4886221B2 (en) Method for manufacturing light emitting device
JP2010196049A (en) Phosphor and method for producing the same, phosphor-containing composition, and light-emitting device, image display device and lighting device using the phosphor
JP5912895B2 (en) Phosphor, manufacturing method thereof, and light emitting device using the same
JP2005194340A (en) Phosphor and light-emitting element using the same
JP2013149981A (en) Light emitting element, and illuminating device and image display device using the same
JP2010013608A (en) Phosphor and emitter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080919

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4886221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees