JP2005282627A - Method for inspecting presence of vacuum insulation material - Google Patents

Method for inspecting presence of vacuum insulation material Download PDF

Info

Publication number
JP2005282627A
JP2005282627A JP2004093922A JP2004093922A JP2005282627A JP 2005282627 A JP2005282627 A JP 2005282627A JP 2004093922 A JP2004093922 A JP 2004093922A JP 2004093922 A JP2004093922 A JP 2004093922A JP 2005282627 A JP2005282627 A JP 2005282627A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
fluid
vacuum
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004093922A
Other languages
Japanese (ja)
Other versions
JP4260054B2 (en
Inventor
Yoshiaki Shiromoto
善昭 城本
Koichi Yamazaki
幸一 山崎
Hiroshi Tsujita
博志 辻田
Toshio Kuboki
俊夫 窪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004093922A priority Critical patent/JP4260054B2/en
Publication of JP2005282627A publication Critical patent/JP2005282627A/en
Application granted granted Critical
Publication of JP4260054B2 publication Critical patent/JP4260054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and efficiently check the presence of vacuum insulation materials and the number and position of the vacuum insulation materials when they are mounted, in various types of collected heat-insulated products such as refrigerators. <P>SOLUTION: By using an injector-like detection device 11 comprising a needle part 12, a cylinder part 13 and a piston part 14, the needle part 12 is stuck into a heat insulating layer 8 to be inspected, and movement of air 15 stored in the cylinder part 13 beforehand to the heat insulating layer 8 is detected, so as to determine the presence of a vacuum insulation material inside the heat insulating layer 8. Since inside of the vacuum insulation material 9 is usually in a decompression state compared with the atmospheric pressure, when the needle part 12 is stuck, the air 15 inside the cylinder part 13 is flowed to the vacuum insulation material 9 side, or the heat insulating layer 8 side, due to pressure difference. Therefore, when movement of the piston part 14 accompanied by the flow is detected, it is determined that the vacuum insulation material 9 exists in the heat insulating layer 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷蔵庫などの真空断熱材搭載製品を解体し、真空断熱材を取り出す際の工程を効率化するための真空断熱材の有無検査方法に関するものである。   The present invention relates to a vacuum heat insulating material presence / absence inspection method for disassembling a product equipped with a vacuum heat insulating material such as a refrigerator and improving the efficiency of a process for taking out the vacuum heat insulating material.

近年、地球環境保護のため、省エネルギーと省資源の視点に立った様々な取り組みがなされている。家電製品においては、消費電力の削減による省エネルギーや、製品の回収・解体・再資源化による省資源および環境汚染防止がすすめられている。   In recent years, various efforts have been made from the viewpoint of energy saving and resource saving to protect the global environment. In household electrical appliances, energy saving by reducing power consumption, resource saving and environmental pollution prevention by collection, disassembly and recycling of products are promoted.

冷蔵庫・自動販売機(以下、冷蔵庫と言う)の分野では、断熱性能の高い真空断熱材(=Vacuum Insulation Panel;VIP)を搭載することで、大幅な省エネルギーが実現されている。真空断熱材は、ガラスウール等の芯材をアルミ蒸着フィルムなどのガス遮断性の高いフィルムで覆い、真空引きした後に、封止したものが主流であり、冷蔵庫の箱体内部にウレタンフォームなどの樹脂発泡体と組み合わせて収納されている。   In the field of refrigerators and vending machines (hereinafter referred to as refrigerators), significant energy savings have been realized by installing vacuum insulation panels (VIP) with high thermal insulation performance. Vacuum insulation is mainly made of glass wool or other core material covered with a highly gas barrier film such as an aluminum vapor deposition film, vacuumed and then sealed. Stored in combination with resin foam.

しかし真空断熱材搭載製品を解体・再資源化するに当たって、従来の冷蔵庫リサイクル工程で破砕処理すると、不都合が起きると予想される。つまり、従来の冷蔵庫リサイクル工程では、冷蔵庫の箱体を丸ごと破砕選別機で処理しているため、選別されるウレタンや廃プラスチックに真空断熱材の芯材のガラス繊維が混入し、回収素材の有価性が落ちる恐れがある。従って、冷蔵庫の破砕前に真空断熱材を取り出すことが、回収素材の品位を高めるために望まれる。   However, when dismantling and recycling products with vacuum insulation, it is expected that inconvenience will occur if they are crushed by the conventional refrigerator recycling process. In other words, in the conventional refrigerator recycling process, the entire box of the refrigerator is processed by a crushing and sorting machine, so the glass fiber of the core material of the vacuum insulation material is mixed into the urethane and waste plastic to be sorted, and the value of the recovered material is reduced. There is a risk that sex will fall. Therefore, taking out the vacuum heat insulating material before crushing the refrigerator is desired to improve the quality of the recovered material.

ところが、リサイクル工場に回収されてくる廃家電冷蔵庫は、全ての機種に真空断熱材が搭載されているわけではなく、また真空断熱材が搭載されているものでも、その搭載位置はメーカー・製造年・機種によってまちまちである。2002年度に国内で販売された真空断熱材搭載冷蔵庫は、真空断熱材を冷蔵庫の背面、側面、底面などの箇所に1枚〜9枚使用されているとのデータがあるが、これらの冷蔵庫には、真空断熱材を意味する「VIP」という表示が製品外部に付されているのみで、製品のどの箇所に真空断熱材が搭載されているかを簡単に知ることは出来ない。   However, the waste home appliance refrigerators collected at recycling factories are not equipped with vacuum insulation materials in all models, and even those equipped with vacuum insulation materials are installed at the manufacturer / year of manufacture.・ Varies depending on the model. There are data that 1 to 9 vacuum insulators are used in places such as the back, side, and bottom of refrigerators that are sold in Japan in 2002. Is simply labeled “VIP”, which means a vacuum heat insulating material, on the outside of the product, and it is not possible to easily know in which part of the product the vacuum heat insulating material is mounted.

「VIP」と表示された製品、あるいは真空断熱材に関する表示がない製品でも、機種番号、メーカー名、製造年月は概ね製品の外側筐体などに記載されているので、機種を調査して特定すれば、製造当時の仕様書データから、真空断熱材の搭載枚数や位置を把握することは可能ではある。しかし、製造年月・機種の異なる様々な冷蔵庫が回収されてくるリサイクル中間処理工場において、製品一つずつ機種番号をチェックし、それを基に真空断熱材の搭載位置を把握し、しかる後に取り出すという作業は効率的ではない。これまでに提案された、真空断熱材の有無や位置を表示する方法としては、真空断熱材を樹脂発泡体で覆った断熱パネルに直接、真空断熱材の搭載位置を明記する方法がある(例えば、特許文献1参照)。
特開2000−248653号公報
Even if the product is labeled “VIP” or has no indication regarding vacuum insulation, the model number, manufacturer name, and date of manufacture are generally listed on the outer casing of the product. If this is the case, it is possible to grasp the number and position of the vacuum insulation material from the specification data at the time of manufacture. However, at the recycling intermediate processing plant where various refrigerators with different production dates and models are collected, the model number is checked for each product, and the mounting position of the vacuum insulation is ascertained based on the model number. That work is not efficient. As a method of displaying the presence and position of the vacuum heat insulating material proposed so far, there is a method of specifying the mounting position of the vacuum heat insulating material directly on the heat insulating panel in which the vacuum heat insulating material is covered with the resin foam (for example, , See Patent Document 1).
JP 2000-248653 A

しかしながら、従来の真空断熱材の搭載位置の表示方法は、上記したように断熱パネルに明記するものであり、冷蔵庫などの製品の外側から真空断熱材の搭載位置を知ることはできない。   However, the conventional method for displaying the mounting position of the vacuum heat insulating material is specified on the heat insulating panel as described above, and the mounting position of the vacuum heat insulating material cannot be known from the outside of the product such as a refrigerator.

このため、回収されてくる様々な機種の冷蔵庫などの断熱製品について、真空断熱材の搭載の有無、搭載している場合はその搭載数や位置を、これらに関する表示の有無に関わらず、簡便に、効率的に確認する方法が課題となっていた。なおその際に、廃製品から取り出される真空断熱材を有効活用できるように、真空断熱材を大きく破損させることなく検査することが課題となっていた。   For this reason, the heat insulation products such as refrigerators of various types that are collected can be easily and easily installed with or without vacuum insulation, regardless of the presence or absence of the indication. Therefore, a method for efficiently checking has been an issue. At that time, in order to effectively utilize the vacuum heat insulating material taken out from the waste product, it has been a problem to inspect the vacuum heat insulating material without greatly damaging it.

上記課題を解決するために、本発明の真空断熱材の有無検査方法は、容量変更自在な流体収容容器に連通した検査針を検査対象の断熱層に刺し込み、前記流体収容容器内に予め収容した流体の前記断熱層との間の移動を検知することにより、前記断熱層内における真空断熱材の有無を判定することを特徴とする。   In order to solve the above-described problem, the vacuum thermal insulation presence / absence inspection method of the present invention includes a test needle communicated with a fluid storage container whose capacity can be changed, inserted into a thermal insulation layer to be inspected, and previously stored in the fluid storage container. The presence or absence of the vacuum heat insulating material in the heat insulating layer is determined by detecting the movement of the fluid to the heat insulating layer.

真空断熱材の内部は通常は大気圧に比べて減圧状態になっているため、検査針が刺し込まれると差圧によって、流体収容容器内の流体が検査針を通って真空断熱材側へ、つまり断熱層側へ流れる。この現象は流体収容容器の容量変更となって現れるので、目視にて検知することができ、この現象が検知された時には断熱層に真空断熱材が存在すると判定できる。流体収容容器内の流体が断熱層方向に自発的に移動しない場合は、検査針が真空度の落ちた真空断熱材に刺し込まれているのか、または真空断熱材でない断熱材に接しているのか、そのままでは判断できないので、断熱層に真空断熱材が存在するか否か不明と判定することになる。検査針を刺し込むだけなので、断熱層を大きく破壊することはなく、真空断熱材などの有効活用を図ることも可能である。   Since the inside of the vacuum heat insulating material is usually in a reduced pressure state compared to the atmospheric pressure, when the inspection needle is inserted, the fluid in the fluid container passes through the inspection needle to the vacuum heat insulating material side due to the differential pressure. That is, it flows to the heat insulation layer side. Since this phenomenon appears as a change in the capacity of the fluid storage container, it can be detected with the naked eye, and when this phenomenon is detected, it can be determined that a vacuum heat insulating material is present in the heat insulating layer. If the fluid in the fluid container does not move spontaneously in the direction of the heat insulation layer, is the inspection needle stuck in a vacuum insulation with a reduced vacuum or is it in contact with a non-vacuum insulation? Since it cannot be determined as it is, it is determined whether or not the vacuum heat insulating material exists in the heat insulating layer. Since only the inspection needle is inserted, the heat insulation layer is not greatly destroyed, and it is possible to effectively utilize a vacuum heat insulating material or the like.

流体収容容器と検査針とを持った検査装置として、シリンダ部とピストン部と針部とからなる注射器状の検査装置を使用することができる。この検査装置では、差圧によってシリンダ部内の流体が針部を通って真空断熱材側へ流れ、ピストン部がシリンダ部に沿って針部方向へ移動する現象が起こる。   As an inspection apparatus having a fluid container and an inspection needle, a syringe-shaped inspection apparatus including a cylinder part, a piston part, and a needle part can be used. In this inspection device, a phenomenon occurs in which the fluid in the cylinder portion flows to the vacuum heat insulating material side through the needle portion due to the differential pressure, and the piston portion moves in the direction of the needle portion along the cylinder portion.

詳細には、真空断熱材および他の空気遮断性断熱材が存在する可能性がある断熱層に検査針を刺し込んだ時に、
(A)流体収容容器内の流体が断熱層方向に自発的に移動する場合は、前記検査針が真空断熱材に刺し込まれていると認識し、前記断熱層に真空断熱材が存在すると判定し、
(B)流体収容容器内の流体が断熱層方向に自発的に移動しない場合、前記流体収容容器内の流体を人為的に検査針方向へ押し、それにより流体収容容器内の流体が断熱層方向に移動したら、前記検査針が真空度の落ちた真空断熱材に刺し込まれていると認識し、前記断熱層に真空断熱材が存在すると判定し、
(C)流体収容容器内の流体が断熱層方向に自発的に移動しない場合、前記流体収容容器内の流体を人為的に検査針方向へ押し、それにより流体収容容器内の流体が一時的に圧縮され復元したら、前記検査針が前記断熱層に存在する空気遮断性の断熱材に刺し込まれていると認識し、前記断熱層に真空断熱材は存在しないと判定することができる。
Specifically, when a test needle is inserted into a thermal insulation layer where vacuum insulation and other air barrier insulation may be present,
(A) When the fluid in the fluid container spontaneously moves in the direction of the heat insulating layer, it is recognized that the inspection needle is stuck in the vacuum heat insulating material, and it is determined that the vacuum heat insulating material exists in the heat insulating layer. And
(B) When the fluid in the fluid container does not spontaneously move in the direction of the heat insulation layer, the fluid in the fluid container is artificially pushed toward the inspection needle, so that the fluid in the fluid container is in the direction of the heat insulation layer. If it moves to, it is recognized that the inspection needle is stuck in a vacuum heat insulating material having a reduced degree of vacuum, it is determined that there is a vacuum heat insulating material in the heat insulating layer,
(C) When the fluid in the fluid storage container does not move spontaneously in the direction of the heat insulation layer, the fluid in the fluid storage container is artificially pushed toward the inspection needle, whereby the fluid in the fluid storage container is temporarily When compressed and restored, it can be determined that the inspection needle is stuck in an air-insulating heat insulating material present in the heat insulating layer, and it can be determined that there is no vacuum heat insulating material in the heat insulating layer.

上述したように、流体収容容器内の流体が断熱層方向に自発的に移動する場合は、断熱層に真空断熱材が存在すると判定できる((A)の場合)が、自発的に移動しない場合は、検査針が真空度の落ちた真空断熱材に刺し込まれているのか、または真空断熱材でない断熱材に接しているのか、そのままでは判断できない。   As described above, when the fluid in the fluid container moves spontaneously in the direction of the heat insulating layer, it can be determined that the vacuum heat insulating material exists in the heat insulating layer (in the case of (A)), but does not move spontaneously. Therefore, it cannot be determined as it is whether the inspection needle is stuck in the vacuum heat insulating material whose degree of vacuum is reduced or is in contact with the heat insulating material that is not the vacuum heat insulating material.

ここで、断熱層は、上述したように真空断熱材と硬質ウレタンフォーム等の樹脂発泡体との複合体、あるいは樹脂発泡体のみで構成されていることが多い。真空断熱材は通常、空隙率が90%以上あるので、外被フィルムが破れて大気開放されていたり、経年変化で真空度が落ちていたりすると、検査針によって流体を押し込むと、容易に断熱層側へ流れる。一方、樹脂発泡体などの空気遮断性の断熱材であれば、検査針によって流体を押し込もとしても断熱層側へ流れず、流体収容容器内の流体は圧縮されて大気圧以上の加圧状態となり、人為的に押し込む力を解放すればすぐに復元する。このことを利用して、(B)(C)のように判定するのである。   Here, as described above, the heat insulating layer is often composed only of a composite of a vacuum heat insulating material and a resin foam such as rigid urethane foam, or a resin foam. Vacuum insulation usually has a porosity of 90% or more, so if the outer cover film is broken and opened to the atmosphere, or the degree of vacuum drops due to secular change, it is easy to insulate the insulation layer by pushing the fluid with an inspection needle. Flows to the side. On the other hand, if it is an air-blocking heat insulating material such as a resin foam, it does not flow to the heat insulating layer side even if the fluid is pushed in by the inspection needle, and the fluid in the fluid container is compressed and pressurized above the atmospheric pressure. If it becomes a state and releases the force to push artificially, it will be restored immediately. Using this fact, the determination is made as shown in (B) and (C).

検査針を刺し込むに先立って、断熱層の表面を覆った被覆材に前記検査針を挿入可能な穴を形成するのが好ましい。一般に、真空断熱材や樹脂発泡体等のその他の断熱材からなる断熱層は、製品の外部に露出していることは少なく、大抵は強度確保のために金属や樹脂などの保護材や筐体で覆われている。このため、これらの被覆材に予め穴をあけておくことで、検査針を所望位置に容易かつ正確に刺し込むことが可能になり、検査針の破損も防止することができ、かつ、検査針に被覆材の破片が付着して流体の通り道が塞がれ、検査ミスが発生するのを防止できる。   Prior to inserting the inspection needle, it is preferable to form a hole into which the inspection needle can be inserted in the covering material covering the surface of the heat insulating layer. Generally, a heat insulating layer made of other heat insulating materials such as vacuum heat insulating materials and resin foams is rarely exposed to the outside of the product, and is usually a protective material or casing such as metal or resin for securing strength. Covered with. For this reason, by making holes in these covering materials in advance, it becomes possible to puncture the inspection needle easily and accurately at a desired position, prevent the inspection needle from being damaged, and the inspection needle. It is possible to prevent a test error from occurring due to the adhering debris of the covering material to block the passage of fluid.

断熱層を内箱と外箱との間に配置した冷蔵庫については、樹脂で形成された前記内箱の内面側から断熱層に検査針を刺し込むのが好ましい。一般的な冷蔵庫の断熱箱体の外箱は鉄板で形成され、内箱は樹脂で形成されており、断熱層はこれら外箱と内箱との間に充填・配置されている。このため、樹脂製の内箱の内面側から検査針を刺し込むことにより、穴あけ、刺し込みを容易に短時間で行うことが可能となる。   About the refrigerator which arrange | positioned the heat insulation layer between the inner box and the outer box, it is preferable to insert an inspection needle into the heat insulation layer from the inner surface side of the inner box made of resin. The outer box of a heat insulating box of a general refrigerator is formed of an iron plate, the inner box is formed of resin, and the heat insulating layer is filled and arranged between the outer box and the inner box. For this reason, it becomes possible to puncture and puncture easily and in a short time by inserting the inspection needle from the inner surface side of the resin inner box.

以上のように、本発明の真空断熱材の有無検査方法は、検査対象の断熱層に検査針を刺し込み、この検査針に連通した流体収容容器内の流体が断熱層側に移動するかを確認して、真空断熱材の有無を判定するものであり、短時間で且つ容易に実施することができ、真空断熱材芯材を再利用するためのリユース性を阻害することもない。   As described above, the method for inspecting the presence / absence of the vacuum heat insulating material according to the present invention determines whether or not the fluid in the fluid container that communicates with the inspection needle moves toward the heat insulation layer by inserting the inspection needle into the heat insulation layer to be inspected. It confirms and determines the presence or absence of a vacuum heat insulating material, can be implemented in a short time and easily, and does not hinder the reusability for reusing the vacuum heat insulating material core material.

以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は検査対象の冷蔵庫の一例を示す。冷蔵庫(断熱箱体)の本体1は上収納部2と下収納部3とに仕切られており、各収納部2,3をそれぞれ開閉する扉体4,5が取付けられている。本体1および扉体4,5はそれぞれ、鉄板製の外箱6と樹脂製の内箱7との間に断熱層8を配した構造である。断熱層8は、搭載位置によって、真空断熱材と硬質ウレタンフォームとの複合体で構成されるか、あるいは硬質ウレタンフォームのみで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a refrigerator to be inspected. The main body 1 of the refrigerator (heat insulation box) is partitioned into an upper storage portion 2 and a lower storage portion 3, and door bodies 4 and 5 that open and close the storage portions 2 and 3 are attached. The main body 1 and the door bodies 4 and 5 each have a structure in which a heat insulating layer 8 is disposed between an iron plate outer box 6 and a resin inner box 7. The heat insulating layer 8 is composed of a composite of a vacuum heat insulating material and rigid urethane foam, or only composed of rigid urethane foam, depending on the mounting position.

上記したような冷蔵庫について真空断熱材の有無を検査する原理を説明する。真空断熱材の真空度は約4〜10Paであり、検査作業環境は大気圧で約0.1MPaであるものとする。   The principle of inspecting the refrigerator as described above for the presence of a vacuum heat insulating material will be described. The vacuum degree of the vacuum heat insulating material is about 4 to 10 Pa, and the inspection work environment is about 0.1 MPa at atmospheric pressure.

図2は冷蔵庫の任意検査位置の拡大断面を示す。この検査位置では、鉄板製の外箱6と樹脂製の内箱7との間に配された断熱層8は、真空断熱材9と硬質ウレタンフォーム10との複合体である。真空断熱材9は、ガラスウール等の芯材9aをガスバリア性外皮材9bで覆い、真空引きした後に、封止して形成されている。   FIG. 2 shows an enlarged cross section of an arbitrary inspection position of the refrigerator. In this inspection position, the heat insulating layer 8 disposed between the iron plate outer box 6 and the resin inner box 7 is a composite of the vacuum heat insulating material 9 and the rigid urethane foam 10. The vacuum heat insulating material 9 is formed by covering a core material 9a such as glass wool with a gas barrier outer skin material 9b, evacuating, and then sealing.

図2(a)に示すように、検出装置11として、針部12とシリンダ部13とピストン部14とからなる注射器状の検出装置を用いる。検査に先立って、シリンダ部13内に空気15が存在するように、ピストン部14の位置を調整しておく。冷蔵庫の内箱7の表面には、針部12を挿入可能な穴7aをあけておく。   As shown in FIG. 2A, a syringe-like detection device including a needle portion 12, a cylinder portion 13, and a piston portion 14 is used as the detection device 11. Prior to the inspection, the position of the piston portion 14 is adjusted so that the air 15 exists in the cylinder portion 13. On the surface of the inner box 7 of the refrigerator, a hole 7a into which the needle portion 12 can be inserted is opened.

図2(b)に示すように、樹脂製の内箱7側から断熱層8に針部12を突き刺す。すると、針部12の先端が真空断熱材9に突き刺さった時点で、シリンダ部13内の空気15が即座に真空断熱材9の内部に吸い込まれ、図2(c)に示すように、ピストン部14が針部12に近づく方向へ移動するのが目視で確認される。   As shown in FIG. 2B, the needle portion 12 is pierced into the heat insulating layer 8 from the resin inner box 7 side. Then, when the tip of the needle portion 12 pierces the vacuum heat insulating material 9, the air 15 in the cylinder portion 13 is immediately sucked into the vacuum heat insulating material 9, and as shown in FIG. It is visually confirmed that 14 moves in a direction approaching the needle portion 12.

よって、このようなピストン部14の移動が確認された場合、針部12の先端が真空断熱材9に刺し込まれていると認識し、断熱層8に真空断熱材9が存在すると判定できる。
図3は冷蔵庫の他の任意検査位置の拡大断面図である。この検査位置でも、鉄板製の外箱6と樹脂製の内箱7との間に配された断熱層8は、真空断熱材9と硬質ウレタンフォーム10との複合体である。ただし真空断熱材9には図示しない外被フィルムの破れが生じている。
Therefore, when such movement of the piston portion 14 is confirmed, it is recognized that the tip of the needle portion 12 is stuck in the vacuum heat insulating material 9 and it can be determined that the vacuum heat insulating material 9 exists in the heat insulating layer 8.
FIG. 3 is an enlarged cross-sectional view of another arbitrary inspection position of the refrigerator. Even at this inspection position, the heat insulating layer 8 arranged between the iron plate outer box 6 and the resin inner box 7 is a composite of the vacuum heat insulating material 9 and the rigid urethane foam 10. However, an outer film (not shown) is broken in the vacuum heat insulating material 9.

この冷蔵庫に、図3(a)に示すように、樹脂製の内箱7側から断熱層8に針部12を突き刺すと、針部12の先端が真空断熱材9に突き刺さっても、シリンダ部13内の空気15は移動しない。しかし、図3(b)に示すように人為的にピストン部14を針部12方向へ押し込むと、シリンダ部13内の空気15が断熱層8方向へ送り込まれ、ピストン部14がスムーズに移動する。   As shown in FIG. 3 (a), when the needle portion 12 is pierced into the heat insulating layer 8 from the resin inner box 7 side in this refrigerator, even if the tip of the needle portion 12 pierces the vacuum heat insulating material 9, the cylinder portion The air 15 in 13 does not move. However, as shown in FIG. 3B, when the piston portion 14 is artificially pushed in the direction of the needle portion 12, the air 15 in the cylinder portion 13 is sent in the direction of the heat insulating layer 8, and the piston portion 14 moves smoothly. .

これは、真空断熱材9が外被フィルムの破れによって既に大気開放されていて、真空断熱材9の内部圧力が大気圧と同じになっているため、空隙率の高い真空断熱材9中に空気110が吸収されて広がったためである。   This is because the vacuum heat insulating material 9 is already open to the atmosphere due to the tearing of the outer cover film, and the internal pressure of the vacuum heat insulating material 9 is the same as the atmospheric pressure. This is because 110 was absorbed and spread.

よって、このようなピストン部14の移動が確認された場合は、針部12の先端が真空度の落ちた真空断熱材9に刺し込まれていると認識し、断熱層8に真空断熱材9が存在すると判定できる。   Therefore, when such movement of the piston portion 14 is confirmed, it is recognized that the tip of the needle portion 12 is stuck in the vacuum heat insulating material 9 having a reduced degree of vacuum, and the vacuum heat insulating material 9 is attached to the heat insulating layer 8. Can be determined to exist.

図4は冷蔵庫の他の任意検査位置の拡大断面図である。この検査位置では、鉄板製の外箱6と樹脂製の内箱7との間に配された断熱層8は硬質ウレタンフォーム10だけで構成されている。   FIG. 4 is an enlarged cross-sectional view of another arbitrary inspection position of the refrigerator. In this inspection position, the heat insulating layer 8 arranged between the iron plate outer box 6 and the resin inner box 7 is composed of only the hard urethane foam 10.

この冷蔵庫に、図示したように、樹脂製の内箱7側から断熱層8に針部12を突き刺すと、針部12の先端が断熱層8に達しても、シリンダ部13内の空気15は移動しない。また人為的にピストン部14を針部12方向へ押し込んでも、シリンダ部13内の空気15は圧縮されるだけであり、ピストン部14を押す人為的な力を解放すればピストン部14はすぐに元の位置へ押し戻される。   As shown in the figure, when the needle portion 12 is pierced into the heat insulating layer 8 from the resin inner box 7 side, even if the tip of the needle portion 12 reaches the heat insulating layer 8, the air 15 in the cylinder portion 13 is Do not move. Further, even if the piston portion 14 is artificially pushed in the direction of the needle portion 12, the air 15 in the cylinder portion 13 is only compressed, and if the artificial force pushing the piston portion 14 is released, the piston portion 14 is immediately It is pushed back to the original position.

これは、硬質ウレタンフォーム10が空気遮断性の断熱材であるため、針部12の先端から断熱層8(つまり硬質ウレタンフォーム10)に押し込まれた空気15は断熱層8内に拡散することはできず、シリンダ部13に戻るからである。   This is because the hard urethane foam 10 is an air barrier heat insulating material, so that the air 15 pushed into the heat insulating layer 8 (that is, the hard urethane foam 10) from the tip of the needle portion 12 is not diffused into the heat insulating layer 8. It is because it cannot return and it returns to the cylinder part 13. FIG.

よって、このようなピストン部14の移動が確認された場合は、針部12の先端が真空断熱材9でない空気遮断性の断熱材に刺し込まれていると認識し、断熱層8に真空断熱材9は存在しないと判定できる。   Therefore, when such movement of the piston portion 14 is confirmed, it is recognized that the tip of the needle portion 12 is stuck in an air-insulating heat insulating material that is not the vacuum heat insulating material 9, and the heat insulating layer 8 is vacuum insulated. It can be determined that the material 9 does not exist.

以上の検査方法の流れを図5のフローチャートを参照しながら説明する。
検出装置11の針部12の先端を断熱層8に突き刺し(S1)、自発的にシリンダ部13内の空気15が断熱層8方向へ流れ込むか観察する(S2)。
The flow of the above inspection method will be described with reference to the flowchart of FIG.
The tip of the needle portion 12 of the detection device 11 is pierced into the heat insulating layer 8 (S1), and it is observed whether the air 15 in the cylinder portion 13 spontaneously flows toward the heat insulating layer 8 (S2).

S2での観察の結果、シリンダ部13内の空気15が断熱層8方向へ自発的に流れ込む場合には、断熱層8に真空断熱材9が存在すると判定(S3)する。シリンダ部13内の空気15が断熱層8方向へ自発的に流れ込まない場合には、ピストン部14を押してシリンダ部13内の空気15を人為的に断熱層8方向に押し込み(S4)、シリンダ部13内の空気15が断熱層8方向に流れ込むか観察する(S5)。   As a result of the observation in S2, when the air 15 in the cylinder part 13 spontaneously flows in the direction of the heat insulating layer 8, it is determined that the vacuum heat insulating material 9 exists in the heat insulating layer 8 (S3). When the air 15 in the cylinder part 13 does not spontaneously flow in the direction of the heat insulation layer 8, the piston part 14 is pushed to artificially push the air 15 in the cylinder part 13 in the direction of the heat insulation layer 8 (S4). It is observed whether the air 15 in 13 flows in the direction of the heat insulation layer 8 (S5).

S5での観察の結果、空気15が流れ込む場合には、断熱層8に真空断熱材9が存在すると判定する(S3)。空気15が流れ込まないだけでなく、ピストン部14が押し戻される場合は、断熱層8には空気遮断性の断熱材(つまり硬質ウレタンフォーム10)のみが存在し、真空断熱材9は存在しないと判定する(S6)。   If the air 15 flows as a result of the observation in S5, it is determined that the vacuum heat insulating material 9 is present in the heat insulating layer 8 (S3). When not only the air 15 does not flow, but also when the piston portion 14 is pushed back, it is determined that only the air barrier heat insulating material (that is, the hard urethane foam 10) exists in the heat insulating layer 8 and the vacuum heat insulating material 9 does not exist. (S6).

このようにして、注射器状の検出装置11を用いて真空断熱材9の有無を、真空断熱材搭載の表示の有無に関わらず、容易に迅速に効率よく、且つ真空断熱材9(特に芯材)がある場合は大きく損傷させることなく、検査できる。   In this way, the presence or absence of the vacuum heat insulating material 9 using the syringe-like detection device 11 can be easily and quickly performed regardless of the presence or absence of the display equipped with the vacuum heat insulating material, and the vacuum heat insulating material 9 (particularly the core material). ) Can be inspected without significant damage.

実際には、図1の冷蔵庫に示したように、天部2a、側部2b、背部2c、仕切部2d、底部3a、扉体4a,5aなどの各部位ごとに、できれば複数ポイントずつ、上記した検査を実施することで、冷蔵庫のどの位置に真空断熱材9が搭載されているかを詳細に把握することになる。   Actually, as shown in the refrigerator of FIG. 1, the top 2a, the side 2b, the back 2c, the partition 2d, the bottom 3a, the doors 4a, 5a, etc. By performing the inspection, it is possible to grasp in detail in which position of the refrigerator the vacuum heat insulating material 9 is mounted.

この方法によって、真空断熱材の搭載の有無が不明な20台の冷蔵庫を検査したところ、100%の正答率を得ることが出来た。この20台の冷蔵庫は、検査の正確さを評価するために側部2bに真空断熱材を搭載したものとそうでないものであり、以下の材料を用いて構成した。   According to this method, when 20 refrigerators in which the presence or absence of the vacuum heat insulating material was unknown were inspected, a correct answer rate of 100% could be obtained. In order to evaluate the accuracy of the inspection, the 20 refrigerators are the ones with and without the vacuum heat insulating material mounted on the side portion 2b, and are configured using the following materials.

真空断熱材9は、グラスウール製の芯材をガスバリア性を有する外被フィルムにて約4Paの状態で真空封着したものである。
芯材は、平均直径3〜5μm程度、平均長さ50mm程度の、SiOを主成分とするガラス繊維の集合体で、封着前の厚さ約14mm、密度約250kg/mとしたものを用いた。
The vacuum heat insulating material 9 is obtained by vacuum-sealing a core material made of glass wool in a state of about 4 Pa with a jacket film having gas barrier properties.
The core material is an aggregate of glass fibers mainly composed of SiO 2 having an average diameter of about 3 to 5 μm and an average length of about 50 mm, and has a thickness of about 14 mm and a density of about 250 kg / m 3 before sealing. Was used.

外被フィルムは、芯材の片側に、表面保護層がポリエチレンテレフタレート、中間層がアルミ箔、熱シール層が高密度ポリエチレンからなる厚み約70μmのラミネートフィルム、もう片側に、表面保護層がポリエチレンテレフタレート、中間層がエチレン−ビニルアルコール共重合体樹脂組成物の内側にアルミ蒸着を施したフィルム層、熱シール層が高密度ポリエチレンからなる厚み約35μmのラミネートフィルムを用いた。   The outer cover film is a laminated film having a thickness of about 70 μm made of polyethylene terephthalate as the surface protective layer, aluminum foil as the intermediate layer and high-density polyethylene as the heat seal layer on one side of the core material, and polyethylene terephthalate as the surface protective layer on the other side. The intermediate layer was a film layer in which aluminum was deposited on the inside of the ethylene-vinyl alcohol copolymer resin composition, and the heat seal layer was a laminate film having a thickness of about 35 μm made of high-density polyethylene.

真空封着直後の真空断熱材は、厚み12mm程度、空隙率90%以上、外被フィルム内の真空度5〜10Pa程度である。外被フィルムの空気進入量は、24時間当たり、また外被フィルムの外側と内側との圧力差1atmあたり、また真空断熱材の単位面積(1m)あたり、約0.4〜0.6ml/m・atm程度である。 The vacuum heat insulating material immediately after vacuum sealing has a thickness of about 12 mm, a porosity of 90% or more, and a degree of vacuum of about 5 to 10 Pa in the jacket film. The amount of air entering the outer cover film is about 0.4 to 0.6 ml / per 24 hours, per 1 atm pressure difference between the outer side and inner side of the outer cover film, and per unit area (1 m 2 ) of the vacuum heat insulating material. It is about m 2 · atm.

硬質ウレタンフォームは、シクロペンタンを発泡剤とした発泡ポリウレタンであり、空気遮断性を有することは周知のものである。
検出装置11は、注射器(テラオカ製テルモシリンジSS−10S2138注射針付き)を使用した。針部12は、図6に示したように、外径Φ0.8、内径Φ0.5で、針先方向に向かって12°でカットしたものを用いた。先端をこのようにカットしているので、針穴に硬質ウレタンフォーム10や真空断熱材9の芯材が詰まることもほとんど無い。万が一詰まっても、ピストン部14を押すことによって簡単に詰まり解除もできる。またこのように針部12が細いと、真空断熱材9の芯材を破壊することはほとんど無い。このことは、真空断熱材9をリサイクルする際に芯材のリユースの途を開くものである。真空断熱材9の芯材が破壊されると、リユースした際に空隙率が悪くなり、破壊のない芯材に比べて断熱性能が低くなる恐れが大きい。
Rigid urethane foam is a foamed polyurethane using cyclopentane as a foaming agent, and is well known to have air barrier properties.
As the detection device 11, a syringe (with Tero syringe Terumo syringe SS-10S2138 injection needle) was used. As shown in FIG. 6, the needle portion 12 has an outer diameter of Φ0.8 and an inner diameter of Φ0.5, and is cut at 12 ° toward the needle tip direction. Since the tip is cut in this way, the needle hole hardly clogs the core material of the hard urethane foam 10 or the vacuum heat insulating material 9. Even if it is clogged, it can be easily released by pushing the piston portion 14. Further, when the needle portion 12 is thin like this, the core material of the vacuum heat insulating material 9 is hardly destroyed. This opens the way for reuse of the core material when the vacuum heat insulating material 9 is recycled. When the core material of the vacuum heat insulating material 9 is destroyed, the porosity becomes worse when reused, and the heat insulation performance is likely to be lower than that of the core material without destruction.

実際に、上記した構成の真空断熱材を搭載した冷蔵庫について、検査終了後に真空断熱材を取り出し、それより更に芯材を取り出し、取り出した芯材を140℃で1時間乾燥させた後、新しい外被フィルムで真空封着して新たな真空断熱材を作成してみた。冷蔵庫への搭載前の真空断熱材と検査後に作成した真空断熱材とについて熱伝導率を測定したところ(熱流計法による測定装置(英弘精機製HC−074))、前者の真空断熱材の熱伝導率は0.0020W/m・Kであったのに対し、後者の真空断熱材の熱伝導率も0.0020W/m・Kであり、断熱性能の劣化は見られなかった。   Actually, for the refrigerator equipped with the vacuum heat insulating material having the above-described configuration, the vacuum heat insulating material is taken out after the inspection is completed, the core material is further taken out, and the taken out core material is dried at 140 ° C. for 1 hour. I tried to create a new vacuum insulation by vacuum-sealing with the film. When the thermal conductivity was measured for the vacuum heat insulating material before mounting on the refrigerator and the vacuum heat insulating material created after the inspection (measuring device by heat flow meter method (HC-074 manufactured by Eihiro Seiki)), the heat of the former vacuum heat insulating material While the conductivity was 0.0020 W / m · K, the thermal conductivity of the latter vacuum heat insulating material was also 0.0020 W / m · K, and no deterioration of the heat insulation performance was observed.

なお、検出装置11として、他の注射器を使用できるのは勿論のこと、注射器でなくとも、断熱層に対する空気の移動を検出できる装置、例えばシリンダ内に風量計を配置した装置などを使用しても同様に検査を実施できる。   As the detection device 11, other syringes can be used, and a device that can detect the movement of air with respect to the heat insulating layer, for example, a device in which an air flow meter is arranged in a cylinder, is used. Can be tested in the same way.

また、作業環境で得やすい空気を使用して検査する方法を例示したが、他の気体の移動を検出するようにしてもよい。他の気体としては、真空断熱材の芯材や、真空断熱材中の水分・酸素吸着のために同封されることが多い吸着剤(一般に生石灰CaOを主成分としている)に悪影響を与えない不活性なものであれば使用することができ、たとえば窒素ガスやアルゴンガスを用いることができる。   Moreover, although the method of inspecting using air that can be easily obtained in the work environment has been exemplified, the movement of another gas may be detected. Other gases do not adversely affect the core material of the vacuum heat insulating material and the adsorbent (generally containing quicklime CaO as a main component) that is often enclosed for moisture and oxygen adsorption in the vacuum heat insulating material. Any active material can be used. For example, nitrogen gas or argon gas can be used.

また、グラスウール製の芯材を用いた真空断熱材9を検査する方法を例示したが、ウレタン樹脂粉末やガラス粉末など、他の材料を芯材とした真空断熱材であっても、空隙率が90%以上存在すれば同様に検査可能である。   Moreover, although the method of inspecting the vacuum heat insulating material 9 using the core material made from glass wool was illustrated, even if it is a vacuum heat insulating material using other materials as the core material such as urethane resin powder and glass powder, the porosity is low. If it is 90% or more, it can be similarly inspected.

本発明の真空断熱材の有無検査方法は、冷蔵庫、自動販売機、温水ポット、温調機などの真空断熱材搭載製品のリサイクル処理に適用することができ、処理の効率化に寄与するものである。   The vacuum insulation material presence inspection method of the present invention can be applied to recycling processing of products equipped with vacuum insulation materials such as refrigerators, vending machines, hot water pots, temperature controllers, etc., and contributes to efficient processing. is there.

検査対象とした冷蔵庫の斜視図Perspective view of refrigerator to be inspected 図1の冷蔵庫の任意検査位置の拡大断面図1 is an enlarged cross-sectional view of an arbitrary inspection position of the refrigerator in FIG. 図1の冷蔵庫の他の任意検査位置の拡大断面図The expanded sectional view of other arbitrary inspection positions of the refrigerator of FIG. 図1の冷蔵庫のさらに他の任意検査位置の拡大断面図The expanded sectional view of the other arbitrary test | inspection position of the refrigerator of FIG. 本発明の真空断熱材の検査方法のフローチャートFlowchart of the vacuum insulating material inspection method of the present invention 検査装置の検査針の先端部を示した側面図Side view showing the tip of the inspection needle of the inspection device

符号の説明Explanation of symbols

1・・・冷蔵庫本体
6・・・外箱
7・・・内箱
8・・・断熱層
9・・・真空断熱材
10・・・硬質ウレタンフォーム
11・・・検査装置
12・・・針部
13・・・シリンダ部
14・・・ピストン部
15・・・空気
DESCRIPTION OF SYMBOLS 1 ... Refrigerator main body 6 ... Outer box 7 ... Inner box 8 ... Heat insulation layer 9 ... Vacuum heat insulating material 10 ... Hard urethane foam 11 ... Inspection apparatus 12 ... Needle part 13 ... Cylinder part 14 ... Piston part 15 ... Air

Claims (5)

容量変更自在な流体収容容器に連通した検査針を検査対象の断熱層に刺し込み、前記流体収容容器内に予め収容した流体の前記断熱層との間の移動を検知することにより、前記断熱層内における真空断熱材の有無を判定する真空断熱材の有無検査方法。   By inserting a test needle communicated with a fluid storage container whose capacity can be changed into the heat insulation layer to be inspected, and detecting movement of the fluid previously stored in the fluid storage container with the heat insulation layer, the heat insulation layer Method for inspecting presence / absence of vacuum heat insulating material for determining presence / absence of vacuum heat insulating material in the inside. 流体収容容器と検査針とを持った検査装置が、シリンダ部とピストン部と針部とからなる注射器状の検査装置である請求項1記載の真空断熱材の有無検査方法。   2. The method for inspecting the presence / absence of a vacuum heat insulating material according to claim 1, wherein the inspection device having a fluid container and an inspection needle is a syringe-like inspection device comprising a cylinder portion, a piston portion, and a needle portion. 真空断熱材および他の空気遮断性断熱材が存在する可能性がある断熱層に検査針を刺し込んだ時に、
(A)流体収容容器内の流体が断熱層方向に自発的に移動する場合は、前記検査針が真空断熱材に刺し込まれていると認識し、前記断熱層に真空断熱材が存在すると判定し、
(B)流体収容容器内の流体が断熱層方向に自発的に移動しない場合、前記流体収容容器内の流体を人為的に検査針方向へ押し、それにより流体収容容器内の流体が断熱層方向に移動したら、前記検査針が真空度の落ちた真空断熱材に刺し込まれていると認識し、前記断熱層に真空断熱材が存在すると判定し、
(C)流体収容容器内の流体が断熱層方向に自発的に移動しない場合、前記流体収容容器内の流体を人為的に検査針方向へ押し、それにより流体収容容器内の流体が一時的に圧縮され復元したら、前記検査針が前記断熱層に存在する空気遮断性の断熱材に刺し込まれていると認識し、前記断熱層に真空断熱材は存在しないと判定する
請求項1または請求項2のいずれかに記載の真空断熱材の有無検査方法。
When a test needle is inserted into a thermal insulation layer where vacuum insulation and other air barrier insulation may be present,
(A) When the fluid in the fluid container spontaneously moves in the direction of the heat insulating layer, it is recognized that the inspection needle is stuck in the vacuum heat insulating material, and it is determined that the vacuum heat insulating material exists in the heat insulating layer. And
(B) When the fluid in the fluid container does not spontaneously move in the direction of the heat insulation layer, the fluid in the fluid container is artificially pushed toward the inspection needle, so that the fluid in the fluid container is in the direction of the heat insulation layer. If it moves to, it is recognized that the inspection needle is stuck in a vacuum heat insulating material having a reduced degree of vacuum, it is determined that there is a vacuum heat insulating material in the heat insulating layer,
(C) When the fluid in the fluid storage container does not move spontaneously in the direction of the heat insulation layer, the fluid in the fluid storage container is artificially pushed toward the inspection needle, whereby the fluid in the fluid storage container is temporarily When compressed and restored, it is recognized that the inspection needle is stuck in an air-blocking heat insulating material present in the heat insulating layer, and it is determined that there is no vacuum heat insulating material in the heat insulating layer. 3. A method for inspecting the presence or absence of the vacuum heat insulating material according to any one of 2 above.
検査針を刺し込むに先立って、断熱層の表面を覆った被覆材に前記検査針を挿入可能な穴を形成する請求項1〜請求項3のいずれかに記載の真空断熱材の有無検査方法。   The method for inspecting the presence / absence of a vacuum heat insulating material according to any one of claims 1 to 3, wherein a hole into which the inspection needle can be inserted is formed in a covering material covering the surface of the heat insulating layer prior to inserting the inspection needle. . 断熱層を内箱と外箱との間に配置した冷蔵庫については、樹脂で形成された前記内箱の内面側から断熱層に検査針を刺し込む請求項1〜請求項4のいずれかに記載の真空断熱材の有無検査方法。   About the refrigerator which has arrange | positioned the heat insulation layer between the inner box and the outer box, the inspection needle | hook is inserted in a heat insulation layer from the inner surface side of the said inner box formed of resin. Inspection method of vacuum insulation material.
JP2004093922A 2004-03-29 2004-03-29 Inspection method for vacuum insulation Expired - Fee Related JP4260054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093922A JP4260054B2 (en) 2004-03-29 2004-03-29 Inspection method for vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093922A JP4260054B2 (en) 2004-03-29 2004-03-29 Inspection method for vacuum insulation

Publications (2)

Publication Number Publication Date
JP2005282627A true JP2005282627A (en) 2005-10-13
JP4260054B2 JP4260054B2 (en) 2009-04-30

Family

ID=35181264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093922A Expired - Fee Related JP4260054B2 (en) 2004-03-29 2004-03-29 Inspection method for vacuum insulation

Country Status (1)

Country Link
JP (1) JP4260054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111564A (en) * 2006-10-30 2008-05-15 Sharp Corp Recycling method of refrigerator
JP2018130675A (en) * 2017-02-15 2018-08-23 中部エコテクノロジー株式会社 Method for bringing out vacuum heat insulating material of refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457299B1 (en) * 2013-06-27 2014-11-04 사단법인 한국전자산업환경협회 Refrigerator recycling method and apparatus capable of recycling refrigerator regardless of including vacuum insulation panel
KR101458347B1 (en) * 2014-08-22 2014-11-06 사단법인 한국전자산업환경협회 Apparatus for discriminating wether vacuum insulation panel is used in refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111564A (en) * 2006-10-30 2008-05-15 Sharp Corp Recycling method of refrigerator
JP2018130675A (en) * 2017-02-15 2018-08-23 中部エコテクノロジー株式会社 Method for bringing out vacuum heat insulating material of refrigerator

Also Published As

Publication number Publication date
JP4260054B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CN104204646B (en) Vacuumed insulation panel and the heat insulation shell using it
CN100432521C (en) Vacuum heat insulating material production apparatus
JP5362024B2 (en) Vacuum heat insulating material, heat insulating box, refrigerator, refrigeration / air conditioning device, hot water supply device and equipment, and method for manufacturing vacuum heat insulating material
JP5372029B2 (en) Vacuum heat insulating material, heat insulation box using vacuum heat insulating material, refrigerator, freezing / air conditioning device, hot water supply device and equipment
CN107076636B (en) Thin film chamber with a measurement volume for a coarse leak test
CN104870881A (en) Vacuum heat insulation material, heat insulation box comprising same, and method for manufacturing vacuum heat insulation material
CN103511796B (en) A kind of glass fibre separator and mineral cotton plate composite core material VIP plate and preparation method thereof
CN101788364A (en) Vacuum-degree detection device of vacuum thermal-insulation plate
JP4260054B2 (en) Inspection method for vacuum insulation
TW200813417A (en) Sealing test method, test specimen and test bench
JP2007147327A (en) Air leakage inspection device
CN106813097A (en) Dewar structure with detection and safeguard protection
CN104913193B (en) The leak hunting method of a kind of interlayer low-temperature (low temperature) vessel inner pressurd vessel and device
CN204785554U (en) Leak hunting device of intermediate layer low temperature container inner container
CN101788443A (en) Prediction method for service life of vacuum thermal-insulation plate
JP2010230444A (en) Water stop inspecting device for grommet
JP3222717U (en) Double shell structure of buried tank with leak detection device
FI20065411L (en) Method and arrangement for monitoring and detecting leakage from a container
CN209799966U (en) Carbon dioxide sends and splits ware convenient to transport
EP3284995A1 (en) Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same
JP2006112439A (en) Vacuum heat insulating material and refrigerator using the vacuum heat insulating material
KR101739871B1 (en) Simulation device of low temperature gas storage tank
CN106596627A (en) Measurement method for improving accuracy of evaluating initial thermal conductivities of vacuum insulation panels
EP3141370B1 (en) Method for producing composite thermal insulator, method for producing water heater, and composite thermal insulator
JP2006342852A (en) Vacuum thermal insulating material and refrigerator using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees