JP2005281763A - Method for forming corrosion resistant laminated structure film and corrosion resistant laminated structure film - Google Patents

Method for forming corrosion resistant laminated structure film and corrosion resistant laminated structure film Download PDF

Info

Publication number
JP2005281763A
JP2005281763A JP2004097063A JP2004097063A JP2005281763A JP 2005281763 A JP2005281763 A JP 2005281763A JP 2004097063 A JP2004097063 A JP 2004097063A JP 2004097063 A JP2004097063 A JP 2004097063A JP 2005281763 A JP2005281763 A JP 2005281763A
Authority
JP
Japan
Prior art keywords
underlayer
corrosion
forming
layer
laminated structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097063A
Other languages
Japanese (ja)
Other versions
JP4475998B2 (en
Inventor
Yukio Imaizumi
幸男 今泉
Hiroki Kamakura
宏樹 鎌倉
Toshio Sakurada
敏生 桜田
Kenichi Yamada
謙一 山田
Masanobu Irie
政信 入江
Yoshiichi Mito
芳一 水戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMADA KINZOKU BOSHOKU KK
Kyushu Electric Power Co Inc
Original Assignee
YAMADA KINZOKU BOSHOKU KK
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMADA KINZOKU BOSHOKU KK, Kyushu Electric Power Co Inc filed Critical YAMADA KINZOKU BOSHOKU KK
Priority to JP2004097063A priority Critical patent/JP4475998B2/en
Publication of JP2005281763A publication Critical patent/JP2005281763A/en
Application granted granted Critical
Publication of JP4475998B2 publication Critical patent/JP4475998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a corrosion resistant laminated structure film capable of remarkably improving the high-temperature corrosion resistance and wear resistance of a film forming surface and a corrosion resistant laminated structure film. <P>SOLUTION: The method for forming the corrosion resistant laminated structure film comprises forming an underlayer 14 composed of a self-fluxing alloy on the surface of a base material 15 and forming a front layer consisting of ceramics composed mainly of stabilized ZrO<SB>2</SB>or partially stabilized ZrO<SB>2</SB>on the underlayer 14 by a high output plasma arc thermal spraying apparatus, wherein the underlayer 14 is subjected to a heat melting treatment. The film composed of the underlayer 14 and the front layer 16 is heated up to the melting temperature of the underlayer 14 by the heat treatment and the underlayer 14 is once melted and is thereafter solidified, and thereby the boundary 17 between the base material 15 and the underlayer 14 and the boundary 18 between the underlayer 14 and the front layer 16 are brought into tight contact with each other and the heat resistance and adhesion are improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、高温腐食環境下にある廃棄物発電設備の蒸気管、スーパーヒーターチューブなどの高温腐食に対して優れた高温耐食性を有する耐食性積層構造皮膜の形成方法および耐食性積層構造皮膜に関する。   The present invention relates to a method for forming a corrosion-resistant laminated structure film having excellent high-temperature corrosion resistance against high-temperature corrosion, such as a steam pipe and a super heater tube of a waste power generation facility in a high-temperature corrosion environment, and a corrosion-resistant laminated structure film.

産業廃棄物や生活ごみ等の廃棄物の処理は、焼却処理による減容化技術とともに、エネルギーの安定供給の観点から、その燃焼エネルギーを有効に活用する廃棄物発電等の技術が益々重要となってきている。現在、二酸化炭素の削減や廃棄物処理問題の対策として最も期待されているのが廃棄物発電であり、通常の発電所並である発電効率が30%以上の高効率発電が望まれている。   For the disposal of industrial waste and household waste, waste generation technology that effectively uses the combustion energy is becoming more and more important from the viewpoint of stable energy supply, as well as volume reduction technology through incineration. It is coming. Currently, waste power generation is the most promising measure for the reduction of carbon dioxide and the problem of waste disposal, and high-efficiency power generation with a power generation efficiency of 30% or more, which is equivalent to that of ordinary power plants, is desired.

廃棄物発電設備において燃料として使用される廃棄物には、木材、紙、プラスチックなどの可燃物の他、さまざまな物質が不均一に混在している。そのため、廃棄物焼却炉の燃焼ガス中には、一般の化石燃料(重油、石炭など)の燃焼ガスに比べてHClなどの腐食性成分および燃焼飛灰(ダスト)を多く含んでいる。これらの腐食性成分やダストが高温になることにより、ボイラチューブなどの基材が腐食することを避けるため、現状の廃棄物発電は、蒸気温度が300℃以下に設定されており、発電効率も5〜15%程度と低くなっている。   In the waste used as fuel in the waste power generation facility, in addition to combustible materials such as wood, paper, and plastic, various substances are unevenly mixed. Therefore, the combustion gas of the waste incinerator contains more corrosive components such as HCl and combustion fly ash (dust) than the combustion gas of general fossil fuel (heavy oil, coal, etc.). In order to avoid corrosion of base materials such as boiler tubes due to high temperatures of these corrosive components and dust, the current waste power generation is set at a steam temperature of 300 ° C. or less, and the power generation efficiency is also low. It is as low as 5-15%.

近年、廃棄物発電設備では、発電効率の向上を目的として高温高圧化が進められているが、ボイラチューブや基材の高温腐食環境が苛酷化するため、その腐食劣化が問題となっている。   In recent years, waste power generation equipment has been increased in temperature and pressure for the purpose of improving power generation efficiency. However, since the high temperature corrosion environment of boiler tubes and base materials becomes severe, deterioration of the corrosion has been a problem.

発電効率の向上という目標の実現には、ボイラの蒸気温度を高めることが必須の条件である。このため、高温の廃棄物燃焼ガス中の塩素系ガスやアルカリ溶融塩による激しい腐食に耐える材料の研究開発が行われ、Ni基合金(Alloy625)等の優れた高温耐食合金チューブが開発されている。しかし、これらの合金は枯渇資源を大量に使用し、非常に高価であることから、発電コストの観点からより安価な高温耐食材料が求められている。   In order to realize the goal of improving power generation efficiency, it is essential to raise the steam temperature of the boiler. For this reason, research and development of materials that can withstand severe corrosion caused by chlorine-based gas or alkali molten salt in high-temperature waste combustion gas has been conducted, and excellent high-temperature corrosion-resistant alloy tubes such as Ni-based alloys (Alloy 625) have been developed. . However, since these alloys use a large amount of depleted resources and are very expensive, a cheaper high temperature corrosion resistant material is required from the viewpoint of power generation cost.

特許文献1には、Ni等をベースとする耐熱合金基材の表面にZrO2を溶射する方法、また、基材と表層の間に傾斜機能材料(FGM:Functionally Graded Materials)からなる中間層を設けて熱応力を緩和する方法が記載されている。 Patent Document 1 discloses a method of spraying ZrO 2 on the surface of a heat-resistant alloy base material based on Ni or the like, and an intermediate layer made of functionally graded materials (FGM) between the base material and the surface layer. A method of providing and relaxing thermal stress is described.

このような溶射作業を行うために、各種のプラズマ装置が用いられている。図7は、従来の高出力プラズマアーク溶射装置の要部の断面図である。同図に示すように、従来の高出力プラズマアーク溶射装置は、円筒状のトーチ本体51の基端側に、主として,N2,Ar,H2等のガスが供給流路51aから供給されるチャンバ51bを形成し、このチャンバ51bの中に陰極の電極52を組み込んでいる。そして、チャンバ51bと同軸として陽極53をトーチ本体51内に配置し、トーチ本体51の末端側であって陽極53の終端から少し離れた位置に溶射材料の供給管54を備えている。陽極53は、陰極から遠ざかるにしたがい縮小する形状に形成されている。 In order to perform such a thermal spraying operation, various plasma apparatuses are used. FIG. 7 is a cross-sectional view of a main part of a conventional high-power plasma arc spraying apparatus. As shown in the figure, in the conventional high power plasma arc spraying apparatus, a gas such as N 2 , Ar, H 2 or the like is mainly supplied from the supply flow path 51 a to the proximal end side of the cylindrical torch body 51. A chamber 51b is formed, and a cathode electrode 52 is incorporated in the chamber 51b. An anode 53 is arranged in the torch body 51 so as to be coaxial with the chamber 51 b, and a spray material supply pipe 54 is provided at a position on the end side of the torch body 51 and slightly away from the end of the anode 53. The anode 53 is formed in a shape that decreases as it moves away from the cathode.

このようなプラズマアーク溶射装置では、供給流路51aをチャンバ51bの内周面の接線方向にガスを供給することによって、ガスは、チャンバ51bから陽極53内の流路にかけて図中の実線で示すようにスパイラルの旋回流れとなる。   In such a plasma arc spraying apparatus, the gas is shown by a solid line in the drawing from the chamber 51b to the flow path in the anode 53 by supplying the gas in the tangential direction of the inner peripheral surface of the chamber 51b through the supply flow path 51a. Thus, it becomes a spiral swirl flow.

そして、電極52と陽極53との間に100V〜500Vの直流電圧を印加して高電圧の高周波を重畳すると、スパーク電流が流れ、プラズマガスを媒体として直流電流による安定したプラズマアーク55が発生する。このプラズマアーク55は、チャンバ51bから陽極53内を抜けるガス流が旋回流となっていることから、図中の実線で示すように流路断面の中心に収束する。   When a DC voltage of 100 V to 500 V is applied between the electrode 52 and the anode 53 to superimpose a high voltage high frequency, a spark current flows and a stable plasma arc 55 is generated by the DC current using the plasma gas as a medium. . Since the gas flow passing through the anode 53 from the chamber 51b is a swirl flow, the plasma arc 55 converges to the center of the cross section of the flow path as shown by the solid line in the figure.

したがって、プラズマアーク55は高速のプラズマガス流による旋回流れの中心に沿って安定した収束流となり、陽極53の終端までの途中でアークが着地することなく、内部流路53aを介して陽極53の終端を出て外まで誘導される。   Therefore, the plasma arc 55 becomes a stable convergent flow along the center of the swirling flow due to the high-speed plasma gas flow, and the arc does not land on the way to the end of the anode 53, and the anode 53 passes through the internal channel 53a. You are guided out of the end.

このように、チャンバ51bに供給されたガスは、プラズマガスとして陽極53を出た直後まで効率良く加熱され、高熱容量のプラズマフレーム56となって噴射される。そして、供給管54から溶射材料粉末57を添加することによって、高速プラズマ流により溶融され、プラズマフレーム56を介して被溶射体の表面に付着して溶射皮膜となる。溶射材料粉末57としては、NiおよびCrを主体とする材料が用いられている。   As described above, the gas supplied to the chamber 51b is efficiently heated until immediately after it exits the anode 53 as a plasma gas, and is injected as a plasma frame 56 having a high heat capacity. Then, by adding the thermal spray material powder 57 from the supply pipe 54, it is melted by the high-speed plasma flow, and adheres to the surface of the sprayed body through the plasma frame 56 to form a thermal spray coating. As the thermal spray material powder 57, a material mainly composed of Ni and Cr is used.

特開平5−279832号公報(段落番号0003、図1)Japanese Unexamined Patent Publication No. 5-279732 (paragraph number 0003, FIG. 1)

しかしながら、特許文献1に記載されたような方法で形成された皮膜は、廃棄物発電の炉内において、燃焼灰と腐食性ガスが複雑に絡み合った過酷な環境下に暴露されると、Cl(クロル)やS(サルファ)を多く含む腐食性ガスが皮膜内の気孔に侵入し、Ni層とZrO2層の界面を経時的に腐食するという問題がある。皮膜内の気孔は、下地のNi層やZrO2を従来のプラズマ溶射装置で溶射した場合に、下地のNi層やZrO2の層に形成されるもので、通常数%程度の気孔が存在する。 However, when the film formed by the method described in Patent Document 1 is exposed to a severe environment in which combustion ash and corrosive gas are intertwined in a waste power generation furnace, Cl ( There is a problem that a corrosive gas containing a large amount of (chlor) and S (sulfur) penetrates into pores in the film and corrodes the interface between the Ni layer and the ZrO 2 layer with time. Pores in the coating, when spraying Ni layer or ZrO 2 underlying the conventional plasma spray device, intended to be formed in the layer of Ni layer and ZrO 2 of the underlying, there are pores usually about several% .

そこで本発明が解決しようとする課題は、皮膜形成面の高温耐食、耐摩耗性を飛躍的に改善できる耐食性積層構造皮膜の形成方法および耐食性積層構造皮膜を提供することにある。   Accordingly, the problem to be solved by the present invention is to provide a method for forming a corrosion-resistant laminated film and a corrosion-resistant laminated film that can dramatically improve the high-temperature corrosion resistance and wear resistance of the film-forming surface.

前記課題を解決するため、本発明の耐食性積層構造皮膜の形成方法は、高出力プラズマアーク溶射装置により、基材の表面に自溶性合金からなる下地層を形成し、この下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層を形成する耐食性積層構造皮膜の形成方法であって、前記下地層に加熱溶融処理を施すことを特徴とする。 In order to solve the above-mentioned problems, the method for forming a corrosion-resistant laminated structure film of the present invention comprises forming a base layer made of a self-fluxing alloy on the surface of a substrate with a high-power plasma arc spraying apparatus, and stabilizing the base layer on the base layer. A method for forming a corrosion-resistant laminated structure film for forming a surface layer made of ceramic mainly composed of ZrO 2 or partially stabilized ZrO 2 , wherein the underlayer is subjected to heat melting treatment.

自溶性合金は、Ni系のNi基、Ni−Cr基等の合金、あるいはCo系のCo基、Co−Cr基等の合金に、それぞれBとSiを1%から数%添加したもので、耐磨耗性、耐食性、耐高温酸化性などにすぐれている。下地層の溶射後に、加熱溶融処理(フュージング)を施すことによって、緻密で基材との密着力の高い皮膜を作ることができる。BとSiを添加することによって合金の融点を下げフュージングを容易にすると同時に、皮膜中の酸化物を除去するフラックス成分として働く。フュージング後の皮膜に形成されたホウ化物は硬度が高く、耐磨耗性の向上に寄与する。また,溶融処理により皮膜が緻密化するので、耐腐食性も高く防食用途にも適している。   The self-fluxing alloy is an alloy such as Ni-based Ni-base, Ni-Cr-based or the like, or Co-based Co-base, Co-Cr-based alloy, etc., with B and Si added from 1% to several percent, Excellent wear resistance, corrosion resistance, and high temperature oxidation resistance. By performing heat melting treatment (fusing) after thermal spraying of the base layer, a dense film having high adhesion to the substrate can be formed. By adding B and Si, the melting point of the alloy is lowered to facilitate fusing, and at the same time, it acts as a flux component for removing oxides in the film. The boride formed on the film after fusing has high hardness and contributes to improvement of wear resistance. In addition, since the film is densified by melting treatment, it has high corrosion resistance and is suitable for anticorrosion applications.

フュージングは、下地層を形成した後に行うが、表層を形成する前または表層を形成した後のいずれに行ってもよい。   Although fusing is performed after the base layer is formed, it may be performed either before the surface layer is formed or after the surface layer is formed.

本発明方法によって形成された皮膜は、自溶性合金からなる下地層の上にセラミックからなる表層が形成されているので、燃焼灰はセラミック皮膜の上に積層することになり、基材の溶融塩腐食が防止される。特に、自溶性合金からなる溶射皮膜が形成されているので、下地層および基材の界面の気孔が小さくなって、腐食が防止され、腐食の進行による表層の割れや脱落が防止される。   In the film formed by the method of the present invention, the surface layer made of ceramic is formed on the base layer made of self-fluxing alloy, so that the combustion ash is laminated on the ceramic film, and the molten salt of the base material Corrosion is prevented. In particular, since a sprayed coating made of a self-fluxing alloy is formed, the pores at the interface between the base layer and the base material are reduced, corrosion is prevented, and cracking or dropping off of the surface layer due to the progress of corrosion is prevented.

ここで、高出力プラズマアーク溶射装置とは、ガスの旋回流を用いて高い電圧(100V以上)を発生させる溶射装置で、プラズマフレームの吹出速度が1000m/s以上であるプラズマ溶射装置のことをいう。   Here, the high-power plasma arc spraying device is a spraying device that generates a high voltage (100 V or more) using a swirling flow of gas, and is a plasma spraying device having a plasma flame blowing speed of 1000 m / s or more. Say.

前記加熱溶融処理を、前記下地層および前記表層を形成した後に、900℃〜1250℃の範囲で高周波加熱を行うと、基材の表面付近に高密度のうず電流が発生し、そのジュール熱で基材および下地層が直接加熱されるので、自溶性合金を均一に加熱することができる。セラミックからなる表層はこの温度範囲では溶融しないが、下地層は溶融され、凝固した後に気孔率の少ない、緻密な下地層が形成される。下地層が凝固するときには、基材と下地層との界面、および下地層と表層との界面が緊密に密着する。また、この加熱の段階で下地層にホウ化物が形成され、耐食性がより向上する。   In the heating and melting treatment, after forming the base layer and the surface layer, if high-frequency heating is performed in the range of 900 ° C. to 1250 ° C., a high-density eddy current is generated near the surface of the substrate, and the Joule heat Since the substrate and the underlayer are directly heated, the self-fluxing alloy can be heated uniformly. The surface layer made of ceramic does not melt in this temperature range, but the base layer is melted and solidified to form a dense base layer with low porosity after solidification. When the foundation layer solidifies, the interface between the base material and the foundation layer and the interface between the foundation layer and the surface layer are closely adhered. Further, a boride is formed in the underlayer at this heating stage, and the corrosion resistance is further improved.

加熱温度を900℃以上1250℃以下としたのは、加熱温度が900℃未満では、下地層が溶融せずに気孔が残ってしまい、耐食性が低い状態のままになってしまうからであり、加熱温度が1250℃を超えると、下地層が組成変化してしまい、また表層の皮膜が割れて劣化することがあるからである。加熱温度範囲を900℃〜1250℃とすることにより、耐食性を向上させるとともに下地層の組成変化と表層の割れを防止することができる。   The reason why the heating temperature is set to 900 ° C. or more and 1250 ° C. or less is that when the heating temperature is less than 900 ° C., the base layer does not melt and pores remain, and the corrosion resistance remains low. This is because if the temperature exceeds 1250 ° C., the composition of the underlayer changes, and the surface film may break and deteriorate. By setting the heating temperature range to 900 ° C. to 1250 ° C., the corrosion resistance can be improved and the composition change of the underlayer and the cracking of the surface layer can be prevented.

前記加熱溶融処理を、前記下地層を形成した後であって、前記表層を形成する前に、前記下地層の表面を900℃〜1250℃の範囲で高周波加熱することにより行うと、下地層が溶融されて表面が滑らかになる状態を目視できるので、未処理範囲が発生することを防止でき、また、表層の割れを考慮せずに作業を行うことができるので、作業性が向上する。   When the heating and melting treatment is performed by high-frequency heating the surface of the foundation layer in the range of 900 ° C. to 1250 ° C. after forming the foundation layer and before forming the surface layer, Since the melted surface can be visually observed, it is possible to prevent the occurrence of an untreated range, and the work can be performed without considering the cracks in the surface layer, thereby improving workability.

前記加熱溶融処理を行った後であって、前記表層を形成する前に、前記下地層の表面にブラスト処理を行うと、表層の密着性が向上する。下地層に加熱溶融処理を行うと、溶射されて積層した粒子の表面が溶融、凝固することにより滑らかに形成されるので、ブラスト処理を行うことにより表面に粗面を形成し、その上面に溶射されるセラミックからなる表層の密着性がよくなる。   If the surface of the underlayer is subjected to blasting after the heat-melting treatment and before forming the surface layer, the adhesion of the surface layer is improved. When the thermal melting treatment is performed on the underlayer, the surface of the sprayed and laminated particles is smoothly formed by melting and solidifying. Therefore, a rough surface is formed on the surface by blasting, and the thermal spraying is performed on the upper surface. The adhesion of the surface layer made of ceramic is improved.

本発明の耐食性積層構造皮膜は、基材の表面に自溶性合金からなる下地層と、安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層とを有する耐食性積層構造皮膜が形成され、前記基材と前記下地層との界面および前記下地層と前記表層との界面が、前記下地層の溶融と凝固の過程を経て緊密に密着していることを特徴とする。 The corrosion-resistant laminated film of the present invention is formed on the surface of a base material having a base layer made of a self-fluxing alloy and a surface layer made of a ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2. The interface between the base material and the base layer and the interface between the base layer and the surface layer are in close contact with each other through a process of melting and solidification of the base layer.

高出力プラズマアーク溶射装置により、基材の表面に自溶性合金からなる下地層を形成し、この下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層を形成し、前記下地層および前記表層を形成した後に、900℃〜1250℃の範囲で高周波加熱することにより加熱溶融処理を行うと、自溶性合金からなる下地層が表層を介して溶融温度まで加熱され、下地層がいったん溶融し、その後凝固することによって、下地層の気孔がほとんどなくなり、基材と下地層との界面および下地層と表層との界面が緊密に密着する。また、下地層にホウ化物が形成されるので、皮膜は優れた高温耐食性を発揮する。 The high power plasma arc spraying device, forming a surface layer forming the base layer made of self-fluxing alloy on the surface of a substrate, comprising the stabilized ZrO 2 or partially stabilized ZrO 2 on the undercoat layer from a ceramic which is mainly Then, after the underlayer and the surface layer are formed, when the heat melting treatment is performed by high-frequency heating in the range of 900 ° C. to 1250 ° C., the underlayer made of a self-fluxing alloy is heated to the melting temperature through the surface layer. When the underlayer is once melted and then solidified, there are almost no pores in the underlayer, and the interface between the base material and the underlayer and the interface between the underlayer and the surface layer are closely adhered. Further, since a boride is formed in the underlayer, the coating exhibits excellent high temperature corrosion resistance.

本発明の他の耐食性積層構造皮膜は、基材の表面に、自溶性合金からなる下地層と、安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層とを有する耐食性積層構造皮膜が形成され、前記基材と前記下地層との界面が、前記下地層の溶融と凝固の過程を経て緊密に密着され、前記下地層と前記表層との界面が、粗面に形成されていることを特徴とする。 Another corrosion-resistant laminated structure film of the present invention is a corrosion-resistant laminated structure having a base layer made of a self-fluxing alloy and a surface layer made of a ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 on the surface of the substrate. A film is formed, and an interface between the base material and the base layer is closely adhered through a process of melting and solidification of the base layer, and an interface between the base layer and the surface layer is formed on a rough surface. It is characterized by being.

高出力プラズマアーク溶射装置により、基材の表面に自溶性合金からなる下地層を形成し、900℃〜1250℃の範囲で高周波加熱することにより加熱溶融処理を行い、下地層の表面にブラスト処理を行ってから、下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層を形成すると、下地層が溶融し凝固することにより基材と下地層との界面および下地層と表層との界面が緊密に密着するとともに下地層の表面が平滑に形成されてしまうので、この下地層の表面にブラスト処理を行ってから表層を形成すると、界面が粗面に形成され、密着性がよくなる。 A base layer made of a self-fluxing alloy is formed on the surface of the base material by a high-power plasma arc spraying apparatus, and heat melting treatment is performed by high-frequency heating in the range of 900 ° C. to 1250 ° C., and blast treatment is performed on the surface of the base layer After forming a surface layer made of ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 on the underlayer, the underlayer is melted and solidified, whereby the interface between the substrate and the underlayer and Since the interface between the underlayer and the surface layer is closely adhered and the surface of the underlayer is formed smoothly, when the surface layer is formed after blasting the surface of the underlayer, the interface is formed into a rough surface. , Adhesion is improved.

前記下地層の気孔率は、1%以下であることが好ましい。下地層の上に表層を形成した後に加熱処理を行うことにより、下地層内の気孔が小さくなる。気孔率を1%以下としたのは、気孔率がこれより大きくなると耐食性が低下するからである。例えば、灰塗布法による耐食性試験において、500℃以上の雰囲気中で50時間以上経過したときに、気孔率が1%より大きいときは腐食の進行が著しいことから、実使用面で問題があると判断される。   The porosity of the underlayer is preferably 1% or less. By performing the heat treatment after forming the surface layer on the base layer, the pores in the base layer are reduced. The reason why the porosity is set to 1% or less is that the corrosion resistance decreases when the porosity is higher than this. For example, in a corrosion resistance test using an ash coating method, when 50 hours or more have passed in an atmosphere of 500 ° C. or higher, if the porosity is larger than 1%, the progress of corrosion is significant, and there is a problem in actual use. To be judged.

気孔率を1%以下にすることにより、気孔に腐食性ガスが侵入することが防止され、耐食性を向上させることができる。   By setting the porosity to 1% or less, it is possible to prevent the corrosive gas from entering the pores and improve the corrosion resistance.

(1)本発明に係る耐食性積層構造皮膜は、高出力プラズマアーク溶射装置により基材の表面に自溶性合金からなる下地層が形成され、この下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層が形成され、下地層には加熱溶融処理が施されているので、皮膜形成面の高温耐食性および耐摩耗性が飛躍的に改善される。この耐食性積層構造皮膜を形成した基材を、廃棄物発電設備などの高温腐食環境下で使用したときに、燃焼灰などが下地層に接触することが防止され、また、運転停止時における露点腐食に対しても優れた耐食性を発揮することができる。これにより、ボイラの蒸気温度500℃以上で、発電効率30%以上の向上を果たすことができる。 (1) In the corrosion-resistant laminated film according to the present invention, a base layer made of a self-fluxing alloy is formed on the surface of a base material by a high-power plasma arc spraying apparatus, and stabilized ZrO 2 or partially stabilized on the base layer. Since a surface layer made of a ceramic mainly composed of ZrO 2 is formed and the base layer is heated and melted, the high-temperature corrosion resistance and wear resistance of the film forming surface are dramatically improved. When the base material on which this corrosion-resistant laminated film is formed is used in a high-temperature corrosive environment such as a waste power generation facility, it prevents the combustion ash from coming into contact with the underlayer, and also provides dew point corrosion when the operation is stopped. Can exhibit excellent corrosion resistance. As a result, it is possible to improve the power generation efficiency by 30% or more when the steam temperature of the boiler is 500 ° C. or higher.

(2)加熱溶融処理を、前記下地層および前記表層を形成した後に行うと、基材の表面付近に高密度のうず電流が発生し、そのジュール熱で基材および下地層が直接加熱されるので、自溶性合金を均一に加熱することができ、下地層全体を均一に溶融して凝固させることができる。 (2) When the heat-melting treatment is performed after forming the base layer and the surface layer, a high-density eddy current is generated near the surface of the base material, and the base material and the base layer are directly heated by the Joule heat. Therefore, the self-fluxing alloy can be heated uniformly, and the entire underlayer can be uniformly melted and solidified.

(3)加熱温度を900℃〜1250℃とすることにより、確実に溶融を行って耐食性を向上させるとともに、過熱による下地層の組成変化と表層の割れを防止することができる。 (3) By setting the heating temperature to 900 ° C. to 1250 ° C., it is possible to reliably melt and improve the corrosion resistance, and it is possible to prevent changes in the composition of the underlayer and cracking of the surface layer due to overheating.

(4)加熱溶融処理を、表層を形成する前に行うと、下地層が溶融されて表面が滑らかになる状態を目視できるので、未処理範囲が発生することを防止して、全体を均一に溶融することができる。また、表層の割れを考慮せずに作業を行うことができるので、作業性が向上する。 (4) If the heat-melting treatment is performed before the surface layer is formed, it is possible to visually observe the state where the underlayer is melted and the surface becomes smooth. Can be melted. Moreover, since work can be performed without considering cracks in the surface layer, workability is improved.

(5)表層を形成する前に、下地層の表面にブラスト処理を行うと、加熱溶融処理により平滑化された下地層に粗面を形成するので、表層の密着性が向上し、皮膜の信頼性が向上する。 (5) If the surface of the underlayer is blasted before forming the surface layer, a rough surface is formed on the underlayer smoothed by the heat-melting process, so that the adhesion of the surface layer is improved and the reliability of the film is improved. Improves.

(6)本発明の耐食性積層構造皮膜は、基材と下地層との界面および下地層と表層との界面が、前記下地層の溶融と凝固の過程を経て緊密に密着しているので、耐食性が向上する。 (6) Since the interface between the base material and the underlayer and the interface between the underlayer and the surface layer are in close contact with each other through the melting and solidification process of the underlayer, the corrosion-resistant laminated structure film of the present invention is resistant to corrosion. Will improve.

(7)本発明の他の耐食性積層構造皮膜は、基材と下地層との界面が、下地層の溶融と凝固の過程を経て緊密に密着され、下地層と表層との界面が、粗面に形成されているので、基材と下地層、また、下地層と表層との界面の密着性がそれぞれ向上し、耐食性が向上する。 (7) Another corrosion-resistant laminated film of the present invention is such that the interface between the base material and the underlayer is closely adhered through the melting and solidification process of the underlayer, and the interface between the underlayer and the surface layer is rough. Therefore, the adhesion at the interface between the base material and the base layer, or between the base layer and the surface layer is improved, and the corrosion resistance is improved.

(8)下地層の気孔率を1%以下に形成すると、気孔に腐食性ガスが侵入することが防止され、耐食性をさらに向上させることができる。 (8) When the porosity of the underlayer is 1% or less, the corrosive gas is prevented from entering the pores, and the corrosion resistance can be further improved.

以下、本発明の実施の形態について説明する。
(第1の実施の形態)
図1は本発明の第1の実施の形態の耐食性積層構造皮膜の形成方法に用いる高出力プラズマアーク溶射装置の要部の断面図である。
Embodiments of the present invention will be described below.
(First embodiment)
FIG. 1 is a cross-sectional view of a main part of a high-power plasma arc spraying apparatus used in the method for forming a corrosion-resistant laminated structure film according to the first embodiment of the present invention.

図1に示すように、第1の実施の形態の耐食性積層構造皮膜の形成方法に用いる高出力プラズマアーク溶射装置は、従来の高出力プラズマ装置と同様に、円筒状のトーチ本体1の基端側に、主としてN2,Ar,H2等のガスが供給流路1aから供給されるチャンバ1bを形成し、このチャンバ1bの中に陰極2を組み込んでいる。そして、チャンバ1bと同軸として陽極3をトーチ本体1内に配置し、トーチ本体1の末端側であって陽極3の終端から少し離れた位置に溶射材料の供給管4を備えている。陽極3は、陰極から遠ざかるにしたがい縮小する形状に形成されている。この高出力プラズマ装置は、従来の高出力プラズマ装置と同様に動作し、プラズマガスは、内部流路3aを通過しながらプラズマアーク5により加速され、陽極3の終端を出て高熱容量のプラズマフレーム6となって噴射される。 As shown in FIG. 1, the high-power plasma arc spraying apparatus used in the method for forming a corrosion-resistant laminated structure film according to the first embodiment is similar to a conventional high-power plasma apparatus in the base end of a cylindrical torch main body 1. On the side, a chamber 1b in which a gas such as N 2 , Ar, H 2 or the like is mainly supplied from the supply flow path 1a is formed, and the cathode 2 is incorporated in the chamber 1b. An anode 3 is arranged in the torch body 1 so as to be coaxial with the chamber 1 b, and a spray material supply pipe 4 is provided at a position on the terminal side of the torch body 1 and slightly away from the terminal end of the anode 3. The anode 3 is formed in a shape that decreases as it moves away from the cathode. This high-power plasma apparatus operates in the same manner as the conventional high-power plasma apparatus, and the plasma gas is accelerated by the plasma arc 5 while passing through the internal flow path 3a, exits from the end of the anode 3, and has a high heat capacity plasma flame. 6 is injected.

本実施の形態の高出力プラズマアーク溶射装置においては、供給管4から供給される溶射材料粉末7として、BおよびSiを含むNi系自溶性合金材料が用いられている。   In the high-power plasma arc spraying apparatus of the present embodiment, a Ni-based self-fluxing alloy material containing B and Si is used as the thermal spray material powder 7 supplied from the supply pipe 4.

次に、耐食性積層構造皮膜の形成手順について説明する。
(下地層形成工程)
図2は、耐食性積層構造皮膜の断面図である。図2に示すように、本発明の下地層14として用いられるNi系自溶性合金は、Niを主体としてBとSiとを1%〜数%含んでおり、他にCo、Al、Y、Mo、Fe、W、Nb、Ta等を含む耐熱合金である。
Next, the procedure for forming the corrosion-resistant laminated structure film will be described.
(Underlayer forming process)
FIG. 2 is a cross-sectional view of a corrosion-resistant laminated structure film. As shown in FIG. 2, the Ni-based self-fluxing alloy used as the underlayer 14 of the present invention contains 1% to several percent of B and Si mainly composed of Ni, and additionally Co, Al, Y, Mo. , Fe, W, Nb, Ta, etc.

本工程では、Ni系自溶性合金の粉末を、高出力プラズマアーク溶射装置の供給管4に供給し、これを吹出口から噴出されるプラズマフレーム6とともに基材15の表面に噴出し、下地層14を形成する。下地層14の厚みは50μm〜500μm程度に形成することができる。   In this step, the Ni-based self-fluxing alloy powder is supplied to the supply pipe 4 of the high-power plasma arc spraying apparatus, and this is sprayed onto the surface of the base material 15 together with the plasma frame 6 ejected from the blowout port. 14 is formed. The thickness of the underlayer 14 can be formed to about 50 μm to 500 μm.

(表層形成工程)
下地層14の上には、表層16を形成する。表層16を形成する安定化ZrO2または部分安定化ZrO2を主体としたセラミック粉末は、ZrO2を主成分としてY23、MgO、CaO、SiO2から選ばれた1種以上の安定化材を含む材料である。
(Surface layer forming step)
A surface layer 16 is formed on the underlayer 14. Ceramic powder stabilized ZrO 2 or partially stabilized ZrO 2 to form a surface layer 16 mainly includes, Y 2 O 3 and ZrO 2 as a main component, MgO, CaO, 1 or more stabilizing selected from SiO 2 It is a material containing a material.

本工程では、下地層14の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミック粉末を、高出力プラズマアーク溶射装置の供給管4に供給し、これを吹出口から噴出されるプラズマフレーム6とともに基材15の下地層14の表面に噴出し、表層16を形成する。表層16の厚みは50μm〜500μm程度に形成することができる。 In this step, ceramic powder mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 is supplied onto the base layer 14 to the supply pipe 4 of the high-power plasma arc spraying apparatus, and this is ejected from the outlet. A surface layer 16 is formed by jetting onto the surface of the base layer 14 of the substrate 15 together with the plasma frame 6. The thickness of the surface layer 16 can be formed to about 50 μm to 500 μm.

(加熱工程)
表層形成工程の後に、表層16および下地層14を、高周波加熱を用いて900℃〜1250℃に加熱し、0.1秒〜30分間保持する加熱処理を行う。この加熱処理は、下地層14および表層16の材料に応じて、最適な加熱温度と保持時間がある。たとえば、Ni自溶性合金を用いた場合には、加熱温度1080℃で保持時間10秒以上となるようにするとよい。
(Heating process)
After the surface layer forming step, the surface layer 16 and the base layer 14 are heated to 900 ° C. to 1250 ° C. using high-frequency heating, and heat treatment is performed for holding for 0.1 seconds to 30 minutes. This heat treatment has an optimum heating temperature and holding time depending on the materials of the base layer 14 and the surface layer 16. For example, when a Ni self-fluxing alloy is used, the holding time is preferably 10 seconds or more at a heating temperature of 1080 ° C.

加熱処理によって、下地層14および表層16からなる皮膜が下地層14の溶融温度まで加熱され、下地層14がいったん溶融し、その後凝固することによって、基材15と下地層14との界面17および下地層14と表層16との界面18が緊密に密着し、耐熱性および密着性が向上する。特に、下地層をNi系自溶性合金にしているので、下地層14の気孔率を、1%以下(ほとんど0%)にすることができる。そのため、腐食成分であるCl(クロル)、S(サルファ)は下地層へ侵入することができず、その下の基材15への侵入をほぼ完全に防止することができるので、耐食性が向上する。   By the heat treatment, the film composed of the base layer 14 and the surface layer 16 is heated to the melting temperature of the base layer 14, and the base layer 14 is once melted and then solidified, whereby the interface 17 between the base material 15 and the base layer 14 and The interface 18 between the foundation layer 14 and the surface layer 16 is closely adhered, and heat resistance and adhesion are improved. In particular, since the underlayer is made of a Ni-based self-fluxing alloy, the porosity of the underlayer 14 can be 1% or less (almost 0%). Therefore, Cl (chlor) and S (sulfur), which are corrosive components, cannot penetrate into the underlying layer and can almost completely prevent the underlying substrate 15 from entering, thereby improving the corrosion resistance. .

図3Aおよび図3Bは腐食成分であるCl(クロル)、S(サルファ)の侵入の様子を示した模式図であって、図3Aは上記加熱処理を行わずに溶射のみを行った場合を示し、図3Bは上記加熱処理を行った場合を示している。図3Aに示すように、溶射のみの場合、腐食成分であるCl、Sは表層16aから下地層14aへ侵入し、基材15aに到達することにより、基材15aを腐食させる。一方、図3Bに示すように、上記加熱処理を行った場合、腐食成分であるCl、Sは表層16と下地層14の界面18で下地層14へ侵入することができず、その下の基材15への侵入がほぼ完全に防止される。   FIGS. 3A and 3B are schematic diagrams showing the invasion of corrosion components Cl (chlor) and S (sulfur), and FIG. 3A shows a case where only the thermal spraying is performed without performing the above heat treatment. FIG. 3B shows a case where the above heat treatment is performed. As shown in FIG. 3A, in the case of only thermal spraying, Cl and S, which are corrosive components, penetrate the base layer 14a from the surface layer 16a and reach the base material 15a, thereby corroding the base material 15a. On the other hand, as shown in FIG. 3B, when the heat treatment is performed, Cl and S that are corrosive components cannot enter the base layer 14 at the interface 18 between the surface layer 16 and the base layer 14, Intrusion into the material 15 is almost completely prevented.

図4Aおよび図4Bは上記加熱処理による下地層の変化を示した断面写真を示す図であって、図4Aは上記加熱処理を行わずに溶射のみを行った場合を示し、図4Bは上記加熱処理(1000℃、30秒)を行った場合を示している。図4Aに示すように、溶射のみの場合、下地層14aの中に完全には溶融しきれていない溶射材料粉末7の粒21が含まれている。また、この下地層14aには、不定形な気孔22が含まれているので、腐食成分であるCl、Sは、この不定形な気孔22を通じて下地層14aへ侵入する。一方、図4Bに示すように、上記加熱処理を行った場合、溶射材料粉末7は完全に溶融し、その後凝固しているため、この溶射材料粉末7は現れていない。また、下地層14の気孔23は限りなく小さい球状の独立気孔となるので、腐食成分であるCl、Sは下地層14へ侵入することができない。   4A and 4B are diagrams showing cross-sectional photographs showing changes in the underlayer due to the heat treatment. FIG. 4A shows a case where only the thermal spraying is performed without performing the heat treatment, and FIG. The case where the process (1000 degreeC, 30 second) was performed is shown. As shown in FIG. 4A, in the case of only thermal spraying, grains 21 of the thermal spray material powder 7 that are not completely melted are included in the underlayer 14a. Further, since the underlying layer 14 a includes the irregular pores 22, the corrosion components Cl and S enter the underlying layer 14 a through the irregular pores 22. On the other hand, as shown in FIG. 4B, when the above heat treatment is performed, the thermal spray material powder 7 is completely melted and then solidified, so that the thermal spray material powder 7 does not appear. Further, since the pores 23 of the underlayer 14 are infinitely small spherical independent pores, the corrosion components Cl and S cannot enter the underlayer 14.

また、一般的な金属皮膜の加熱処理を行うときは、通常、金属皮膜の表面にフラックスなどの酸化防止剤を塗布し、乾燥してから加熱処理を行うのであるが、本発明の耐食性積層構造皮膜は、下地層14の上層にセラミック層である表層16が形成されているので、酸化防止剤を塗布しなくても、金属皮膜である下地層14が酸化されることはほとんどない。   In addition, when performing heat treatment of a general metal film, usually, an anti-oxidant such as flux is applied to the surface of the metal film and dried before heat treatment. Since the surface layer 16 which is a ceramic layer is formed on the upper layer of the base layer 14, the base layer 14 which is a metal film is hardly oxidized even if an antioxidant is not applied.

本実施の形態に係る耐食性積層構造皮膜は、最適な加熱温度に達しただけで高温耐食性の向上が認められるので、この加熱温度での保持時間は0.1秒以上あればよい。加熱保持時間は長いほど気孔率は限りなく0%に近くなり、耐食性能の向上が認められるが、保持時間が長過ぎると基材の酸化や鋭敏化などの影響がでるので、保持時間の上限は30分が適当である。   Since the corrosion-resistant laminated structure film according to the present embodiment is improved in high-temperature corrosion resistance only by reaching the optimum heating temperature, the holding time at this heating temperature may be 0.1 seconds or more. The longer the heating and holding time, the porosity becomes nearly 0%, and the corrosion resistance is improved. However, if the holding time is too long, the substrate may be oxidized or sensitized. 30 minutes is appropriate.

(第2の実施の形態)
第2の実施の形態の耐食性積層構造皮膜の形成方法は、第1の実施の形態の耐食性積層構造皮膜を形成するときに行った加熱工程を、表層を形成する前に行ったもので、他の手順や条件は同じである。
下地層を直接再溶融すると、表層の表面が滑らかに形成されるので、処理の前後の状態を目視で確認することができる。
(Second Embodiment)
The formation method of the corrosion-resistant laminated structure film of the second embodiment is a method in which the heating process performed when forming the corrosion-resistant laminated structure film of the first embodiment is performed before forming the surface layer. The procedures and conditions are the same.
When the ground layer is directly remelted, the surface of the surface layer is formed smoothly, so that the state before and after the treatment can be visually confirmed.

(第3の実施の形態)
第3の実施の形態の耐食性積層構造皮膜の形成方法は、第2の実施の形態の耐食性積層構造皮膜の形成方法の加熱工程の後、下地層の表面にブラスト処理を行ったものである。
下地層にブラスト処理を行うことによって下地層に粗面が形成され、表層の密着性がよくなる。
(Third embodiment)
The method for forming a corrosion-resistant multilayer structure film according to the third embodiment is such that the surface of the base layer is subjected to blasting after the heating step of the method for forming the corrosion-resistant multilayer structure film according to the second embodiment.
By performing blasting on the underlayer, a rough surface is formed on the underlayer, and the adhesion of the surface layer is improved.

(高温腐食試験)
本発明の耐食性積層構造皮膜の耐食性を確認するために高温腐食試験を行った。
表1は高温腐食試験条件である。また、図5は高温腐食試験結果を示すグラフである。
(High temperature corrosion test)
A high temperature corrosion test was conducted to confirm the corrosion resistance of the corrosion resistant laminated structure film of the present invention.
Table 1 shows the hot corrosion test conditions. FIG. 5 is a graph showing the results of the high temperature corrosion test.

表1に示す溶融塩を用いて、腐食温度550℃、650℃、750℃の各温度において腐食時間50時間の灰塗布法による高温腐食試験を行った。試験は、大気中における溶融塩腐食で行った。本発明の試験片は、高出力プラズマアーク溶射装置を使用して形成した皮膜、およびこの皮膜を1080℃に加熱し、30秒保持した後放冷した皮膜を用いた。比較試験片は、皮膜のないSUS304基材およびインコネル625基材を用いた。溶射で用いた材料は、基材にSUS304、下地層に自溶性合金(膜厚:150μm)、表層にジルコニア/イットリア(ZrO2/8%Y23 膜厚:200μm)を用いた。 Using the molten salt shown in Table 1, a high temperature corrosion test was conducted by an ash coating method at a corrosion temperature of 550 ° C., 650 ° C., and 750 ° C. with a corrosion time of 50 hours. The test was performed by molten salt corrosion in the atmosphere. The test piece of the present invention used was a coating formed using a high-power plasma arc spraying apparatus, and a coating that was allowed to cool after being heated to 1080 ° C. and held for 30 seconds. As a comparative test piece, a SUS304 base material and an Inconel 625 base material without a film were used. As materials used for thermal spraying, SUS304 was used for the base material, a self-fluxing alloy (film thickness: 150 μm) for the underlayer, and zirconia / yttria (ZrO 2 /8% Y 2 O 3 film thickness: 200 μm) for the surface layer.

図5からわかるように、本発明品(1,2)は、腐食温度550℃、650℃、750℃において、皮膜の腐食減量及び皮膜の剥離、割れなどが認められず、優れた高温耐食性を示した。比較としたSUS304基材およびインコネル625基材は、いずれの腐食条件においても腐食減量を示し、基材断面のミクロ観察により粒界腐食を起こしているのが確認された。なお、この試験で本発明品がプラスの腐食量を示しているのは、試験後に試験片の水洗を行った後に、皮膜内に侵入した溶融灰が一部残留していたためである。   As can be seen from FIG. 5, the products (1, 2) of the present invention have excellent high-temperature corrosion resistance at the corrosion temperatures of 550 ° C., 650 ° C., and 750 ° C., with no loss of corrosion of the film and no peeling or cracking of the film. Indicated. The comparison SUS304 base material and Inconel 625 base material showed corrosion weight loss under any corrosion conditions, and it was confirmed that intergranular corrosion was caused by micro observation of the cross section of the base material. The reason why the product of the present invention shows a positive corrosion amount in this test is that some of the molten ash that entered the film remained after the test piece was washed with water after the test.

(湿式腐食試験)
廃棄物発電所の運転停止時における炉内結露による腐食の発生を想定して、結露に対する耐食性を確認するために湿式腐食試験行った。
表2は湿式腐食試験条件であり、図6は湿式腐食試験結果を示すグラフである。
(Wet corrosion test)
Assuming the occurrence of corrosion due to condensation in the furnace when the waste power plant is shut down, a wet corrosion test was conducted to confirm the corrosion resistance against condensation.
Table 2 shows the wet corrosion test conditions, and FIG. 6 is a graph showing the wet corrosion test results.

本発明品(1,2)の試験片は、表層にジルコニア/8%イットリア皮膜、下地層にNi自溶性合金皮膜、基材にSS400を用いた円筒状のもので、表層の外側全体を所定厚みの樹脂で覆い、樹脂の一方の側面を直径15mmだけ切除して基材の直径より小さい窓部を形成し、表面を外部に露出させたものである。比較品(3)の試験片は単層の皮膜のみ、(4)は基材のみである。
これらの試験片を用いて、1Nの硫酸60℃で500mlの中に浸漬し、経時的な重量変化を測定した。
The test piece of the present invention product (1, 2) is a cylindrical one using a zirconia / 8% yttria film as a surface layer, a Ni self-fluxing alloy film as an underlayer, and SS400 as a base material. It is covered with a resin having a thickness, and one side surface of the resin is cut by a diameter of 15 mm to form a window portion smaller than the diameter of the substrate, and the surface is exposed to the outside. The test piece of the comparative product (3) is only a single layer film, and (4) is only the base material.
Using these test pieces, they were immersed in 500 ml of 1N sulfuric acid at 60 ° C., and the change in weight over time was measured.

図6からわかるように、SS400基材よりもその上に単層の皮膜がある方が、また単層皮膜よりもその上にジルコニア皮膜がある二層構造皮膜の方が、さらに二層構造皮膜よりも加熱処理(1100℃、30S)を行った二層構造皮膜が良好な湿式腐食性能の結果を示した。   As can be seen from FIG. 6, the one having a single-layer coating on the SS400 substrate, and the two-layer coating having a zirconia coating thereon more than the single-layer coating is further provided. The two-layer structure film subjected to the heat treatment (1100 ° C., 30S) showed a better wet corrosion performance result.

本発明の耐食性積層構造皮膜の形成方法および耐食性積層構造皮膜は、高温腐食環境下にある廃棄物発電設備の蒸気管、スーパーヒーターチューブなどの高温腐食に対して優れた高温耐食性を有する皮膜とその形成方法として有用である。また、各種ボイラ、ガスタービン、加熱炉などの、断熱皮膜、耐食性積層構造皮膜を必要とする分野の基材の表面処理技術として好適である。   The method of forming a corrosion-resistant laminated film and the corrosion-resistant laminated film of the present invention are a film having excellent high-temperature corrosion resistance against high-temperature corrosion such as steam tubes and super heater tubes of waste power generation equipment in a high-temperature corrosion environment It is useful as a forming method. Moreover, it is suitable as a surface treatment technique for a substrate in a field that requires a heat insulating film and a corrosion-resistant laminated structure film such as various boilers, gas turbines, and heating furnaces.

本発明の第1の実施の形態の耐食性積層構造皮膜の形成に用いる高出力プラズマアーク溶射装置の要部の断面図である。It is sectional drawing of the principal part of the high power plasma arc spraying apparatus used for formation of the corrosion-resistant laminated structure film of the 1st Embodiment of this invention. 耐食性積層構造皮膜の断面図である。It is sectional drawing of a corrosion-resistant laminated structure film. 加熱処理を行わずに溶射のみを行った場合の腐食成分の侵入の様子を示す模式図である。It is a schematic diagram which shows the mode of the penetration | invasion of the corrosion component at the time of performing only a thermal spraying, without performing heat processing. 加熱処理を行った場合の腐食成分の侵入が防止される様子を示す模式図である。It is a schematic diagram which shows a mode that the penetration | invasion of the corrosion component at the time of performing heat processing is prevented. 加熱処理を行わずに溶射のみを行った場合の下地層の断面写真を示す図である。It is a figure which shows the cross-sectional photograph of a base layer at the time of performing only thermal spraying, without performing heat processing. 加熱処理を行った場合の下地層の断面写真を示す図である。It is a figure which shows the cross-sectional photograph of a base layer at the time of performing heat processing. 高温腐食試験結果を示すグラフである。It is a graph which shows a high temperature corrosion test result. 湿式腐食試験結果を示すグラフである。It is a graph which shows a wet corrosion test result. 従来の外部ポート型の高出力プラズマアーク溶射装置の要部の断面図である。It is sectional drawing of the principal part of the conventional external port type high output plasma arc spraying apparatus.

符号の説明Explanation of symbols

1 トーチ本体
1a 供給流路
1b チャンバ
2 陰極
3 陽極
3a 内部流路
4 供給管
5 プラズマアーク
6 プラズマフレーム
7 溶射材料粉末
14 下地層
15 基材
16 表層
17 界面
18 界面
DESCRIPTION OF SYMBOLS 1 Torch main body 1a Supply flow path 1b Chamber 2 Cathode 3 Anode 3a Internal flow path 4 Supply pipe 5 Plasma arc 6 Plasma flame 7 Thermal spray material powder 14 Underlayer 15 Base material 16 Surface layer 17 Interface 18 Interface

Claims (7)

高出力プラズマアーク溶射装置により、基材の表面に自溶性合金からなる下地層を形成し、この下地層の上に安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層を形成する耐食性積層構造皮膜の形成方法であって、
前記下地層に加熱溶融処理を施すことを特徴とする耐食性積層構造皮膜の形成方法。
The high power plasma arc spraying device, forming a surface layer forming the base layer made of self-fluxing alloy on the surface of a substrate, comprising the stabilized ZrO 2 or partially stabilized ZrO 2 on the undercoat layer from a ceramic which is mainly A method for forming a corrosion-resistant laminated structure film,
A method for forming a corrosion-resistant laminated film, characterized by subjecting the underlayer to a heat melting treatment.
前記加熱溶融処理は、前記下地層および前記表層を形成した後に、900℃〜1250℃の範囲で高周波加熱することにより行われることを特徴とする請求項1に記載の耐食性積層構造皮膜の形成方法。   2. The method for forming a corrosion-resistant laminated film according to claim 1, wherein the heat-melting treatment is performed by high-frequency heating in a range of 900 ° C. to 1250 ° C. after forming the base layer and the surface layer. . 前記加熱溶融処理は、前記下地層を形成した後であって、前記表層を形成する前に、前記下地層の表面を900℃〜1250℃の範囲で高周波加熱することにより行われることを特徴とする請求項1に記載の耐食性積層構造皮膜の形成方法。   The heating and melting treatment is performed by high-frequency heating the surface of the base layer in the range of 900 ° C. to 1250 ° C. after forming the base layer and before forming the surface layer. The method for forming a corrosion-resistant laminated film according to claim 1. 前記加熱溶融処理を行った後であって、前記表層を形成する前に、前記下地層の表面にブラスト処理を行うことを特徴とする請求項3に記載の耐食性積層構造皮膜の形成方法。   The method for forming a corrosion-resistant laminated film according to claim 3, wherein the surface of the underlayer is subjected to blasting after the heat-melting treatment and before the surface layer is formed. 基材の表面に、自溶性合金からなる下地層と、安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層とを有する耐食性積層構造皮膜が形成され、前記基材と前記下地層との界面および前記下地層と前記表層との界面が、前記下地層の溶融と凝固の過程を経て緊密に密着していることを特徴とする耐食性積層構造皮膜。 On the surface of the base material, a corrosion-resistant laminated structure film having an underlayer made of a self-fluxing alloy and a surface layer made of ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 is formed. An anticorrosive laminated structure film characterized in that an interface with a base layer and an interface between the base layer and the surface layer are in close contact with each other through a process of melting and solidification of the base layer. 基材の表面に、自溶性合金からなる下地層と、安定化ZrO2または部分安定化ZrO2を主体としたセラミックからなる表層とを有する耐食性積層構造皮膜が形成され、前記基材と前記下地層との界面が、前記下地層の溶融と凝固の過程を経て緊密に密着され、前記下地層と前記表層との界面が、粗面に形成されていることを特徴とする耐食性積層構造皮膜。 On the surface of the base material, a corrosion-resistant laminated structure film having an underlayer made of a self-fluxing alloy and a surface layer made of ceramic mainly composed of stabilized ZrO 2 or partially stabilized ZrO 2 is formed. An anti-corrosive laminated structure film characterized in that an interface with a base layer is closely adhered through a process of melting and solidifying the base layer, and an interface between the base layer and the surface layer is formed on a rough surface. 前記下地層の気孔率が1%以下であることを特徴とする請求項5または6に記載の耐食性積層構造皮膜。
The corrosion-resistant multilayer structure film according to claim 5 or 6, wherein the porosity of the underlayer is 1% or less.
JP2004097063A 2004-03-29 2004-03-29 Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film Expired - Lifetime JP4475998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097063A JP4475998B2 (en) 2004-03-29 2004-03-29 Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097063A JP4475998B2 (en) 2004-03-29 2004-03-29 Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film

Publications (2)

Publication Number Publication Date
JP2005281763A true JP2005281763A (en) 2005-10-13
JP4475998B2 JP4475998B2 (en) 2010-06-09

Family

ID=35180483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097063A Expired - Lifetime JP4475998B2 (en) 2004-03-29 2004-03-29 Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film

Country Status (1)

Country Link
JP (1) JP4475998B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012863A (en) * 2009-06-30 2011-01-20 Electric Power Dev Co Ltd Burner
JP2011012866A (en) * 2009-07-01 2011-01-20 Electric Power Dev Co Ltd Burner
CN112457044A (en) * 2020-12-21 2021-03-09 刘波 Preparation process of self-reinforcing high-temperature-resistant ceramic membrane for waste gas treatment
CN113233920A (en) * 2021-06-30 2021-08-10 新中天环保工程(重庆)有限公司 Modification method for improving chlorine corrosion resistance of refractory material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087841B (en) * 2014-06-17 2016-01-20 宁国东方碾磨材料股份有限公司 A kind of high tenacity coating mill section

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012863A (en) * 2009-06-30 2011-01-20 Electric Power Dev Co Ltd Burner
JP2011012866A (en) * 2009-07-01 2011-01-20 Electric Power Dev Co Ltd Burner
CN112457044A (en) * 2020-12-21 2021-03-09 刘波 Preparation process of self-reinforcing high-temperature-resistant ceramic membrane for waste gas treatment
CN113233920A (en) * 2021-06-30 2021-08-10 新中天环保工程(重庆)有限公司 Modification method for improving chlorine corrosion resistance of refractory material

Also Published As

Publication number Publication date
JP4475998B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP2007308737A (en) Corrosion protection method for welded part
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
CN112518092B (en) Composite protection process for fire grate segment based on plasma surfacing and laser cladding technology
JP2006283176A (en) Water-cooled steel pipe structure having excellent corrosion resistance and wear resistance, and method for producing the same
CN110819929A (en) Spraying material for heating surface of boiler tube of garbage incinerator and construction process of spraying material
JP4475998B2 (en) Method for forming corrosion-resistant laminated film and corrosion-resistant laminated film
US20110165334A1 (en) Coating material for metallic base material surface
JP2008174786A (en) Method for forming thermal spray coating, and device for high speed thermal flame spraying
JP4255264B2 (en) Method for forming high-temperature corrosion-resistant film and high-temperature corrosion-resistant film
CN108611588A (en) A kind of alloy coat and preparation method thereof of high temperature oxidation resisting and sulfur resistive, chlorine corrosion
JP4464752B2 (en) Adhesion prevention method
JP5584161B2 (en) Thermal spray material
TWI749097B (en) Boiler water pipe of waste incinerator and manufacturing method thereof
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JPH1046315A (en) Corrosion resistant heat transfer tube
JP2001323361A (en) Radiant tube excellent in high temperature oxidation resistance and its production method
JP2005146409A5 (en)
JP2005272927A (en) High temperature corrosion resistant material
JPS61170555A (en) Mud gun nozzle
CN104232838A (en) Red copper oxygen lance sprayer
CN103469199A (en) Laser cladding manufacturing technology of high-performance steam turbine boiler tubes
KR102259947B1 (en) Nozzle of Low NOx Coal Burner and Making Method Thereof
JPH1054516A (en) Gasifying furnace burner
JP2005140073A (en) Sprayed coating on gas turbine blade
JP2005042186A (en) Coated member with heat-resistant/oxidation-resistant thermal-sprayed film and manufacturing method therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Ref document number: 4475998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250