JP2005281075A - Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate - Google Patents

Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate Download PDF

Info

Publication number
JP2005281075A
JP2005281075A JP2004098793A JP2004098793A JP2005281075A JP 2005281075 A JP2005281075 A JP 2005281075A JP 2004098793 A JP2004098793 A JP 2004098793A JP 2004098793 A JP2004098793 A JP 2004098793A JP 2005281075 A JP2005281075 A JP 2005281075A
Authority
JP
Japan
Prior art keywords
alumina
raw material
based artificial
artificial aggregate
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098793A
Other languages
Japanese (ja)
Inventor
Yasunori Otsuka
靖紀 大塚
Norihiko Misaki
紀彦 三崎
Norifumi Nagata
憲史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004098793A priority Critical patent/JP2005281075A/en
Publication of JP2005281075A publication Critical patent/JP2005281075A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing alumina-based artificial aggregate, by which the high strength alumina-based artificial aggregate can be produced at a low cost when corundum-based artificial aggregate is produced by using a raw material containing alumina as a main component, and to provide the alumina-based artificial aggregate obtained by the method. <P>SOLUTION: In the method for producing the alumina-based artificial aggregate, a raw material containing alumina as the main component and a powdery mixed raw material of a component adjusting material and/or a sintering assistant is charged into a rotary kiln, and then the mixed raw material is fired while subjecting them to rolling granulation. The obtained alumina-based artificial aggregate is characterized in that the specific gravity in absolute dry condition is 1.0-2.5 g/cm<SP>3</SP>, the water absorption rate for 24 h is 0.1-7%, the crushing load of the aggregate having diameters of 5-10 mm is ≥1.0 kN, and the crushing load of the aggregate having diameters of 10-15 mm is ≥1.5 kN. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はアルミナ質人工骨材の製造方法及びアルミナ質人工骨材に関し、特に高強度且つ低吸水率のアルミナ質人工骨材の製造方法及びアルミナ質人工骨材に関する。 The present invention relates to a method for producing an alumina-based artificial aggregate and an alumina-based artificial aggregate, and more particularly to a method for producing an alumina-based artificial aggregate having high strength and low water absorption and an alumina-based artificial bone.

建築物の高層化や、建築物、土木構造物の耐震性、耐久性向上の観点から、コンクリートの高強度化が求められている。一般的にコンクリートの強度を高めるためには、セメントや混和剤の選定、水量をはじめとした各材料の配合量等の最適化を図ることが重要であることは勿論であるが、使用する骨材の強度が大きく影響することが知られており、より高強度の骨材を用いる必要があると言われている。 From the viewpoint of increasing the height of buildings and improving the earthquake resistance and durability of buildings and civil engineering structures, there is a demand for higher strength of concrete. In general, in order to increase the strength of concrete, it is important to optimize the selection of cement and admixtures and the amount of each material including water, etc. It is known that the strength of the material greatly affects, and it is said that it is necessary to use a higher strength aggregate.

ボーキサイトを焼成して得られたコランダム系の骨材は、天然砕石と同等がそれ以上の強度を示すことから、高強度を必要とするコンクリートの粗骨材として用いることが可能で、特許文献1及び2には、これ用いたコンクリートが提案されている。 Corundum-based aggregate obtained by firing bauxite exhibits strength higher than that of natural crushed stone, and thus can be used as concrete coarse aggregate that requires high strength. In 2 and 2, the concrete used is proposed.

特開平5−208856号公報JP-A-5-208856 特開平5−58700号公報JP-A-5-58700

しかし、特許文献1及び2のように、ボーキサイトを焼成して骨材を得る場合には、確かに得られた骨材は高強度であるが、Al2O3−SiO2−CaO 3成分系状態図からも明らかなように、非常に融点が高く、焼成に高温を要することに加え、原料のボーキサイトはアルミニウムの原料として重要であり、骨材の原料としては高価なものであるという問題点があった。 However, as in Patent Documents 1 and 2, when bauxite is fired to obtain an aggregate, the obtained aggregate is certainly high in strength, but also from the Al2O3-SiO2-CaO ternary phase diagram. Obviously, the melting point is very high and high temperature is required for firing. In addition, bauxite as a raw material is important as a raw material for aluminum and expensive as a raw material for aggregate.

そこで本発明は、かかる問題を解決するためになされたものであり、アルミナを主成分とする原料を用いてコランダム系の人工骨材を製造するにあたり、高強度且つ低吸水率のアルミナ質人工骨材を安価に製造するための方法及び該製造方法で得られるアルミナ質人工骨材を提供することにある。 Therefore, the present invention has been made to solve such a problem, and in producing a corundum artificial bone using a raw material mainly composed of alumina, an alumina artificial bone having high strength and low water absorption. An object of the present invention is to provide a method for producing a material at low cost and an alumina-based artificial aggregate obtained by the production method.

上記課題を解決するため、本発明者らは、鋭意検討を行った結果、アルミナを主成分とする原料に成分調整材、焼結助材等を混合し、ロータリーキルンで転動造粒しながら焼成することが有効であることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, mixed a raw material mainly composed of alumina with a component adjusting material, a sintering aid, etc., and fired while rolling granulation in a rotary kiln. It has been found that this is effective, and the present invention has been completed.

すなわち、請求項1の発明は、アルミナを主成分とする原料と、成分調整材及び/又は焼結助材との粉末状の混合原料をロータリーキルンに投入し、転動造粒しながら焼成することを特徴とするアルミナ質人工骨材の製造方法である。 That is, in the invention of claim 1, a powdery mixed raw material of a raw material mainly composed of alumina and a component adjusting material and / or a sintering aid is put into a rotary kiln and fired while rolling granulation. Is a method for producing an alumina-based artificial aggregate.

成分調整材の添加は、アルミナを主成分とする原料の焼結温度を低下させる効果がある。焼結助材は、焼結反応を促進する効果がある。これらにより、アルミナ質人工骨材の焼成温度が過剰に高かくなることを防止することができる。 The addition of the component adjusting material has the effect of lowering the sintering temperature of the raw material mainly composed of alumina. The sintering aid has the effect of promoting the sintering reaction. With these, it is possible to prevent the firing temperature of the alumina artificial aggregate from becoming excessively high.

また、前記混合原料を造粒して焼成するのではなく、粉末状のままロータリーキルンに投入し、転動造粒しながら焼成することにより、粒子の内部から表層まで、緻密に焼き締まり、高強度且つ低吸水率のアルミナ質人工骨材を得ることができる。 Also, instead of granulating and firing the mixed raw material, it is put into a rotary kiln in powder form, and fired while rolling granulation, so that it is densely baked from the inside of the particle to the surface layer, and has high strength. In addition, an alumina-based artificial aggregate having a low water absorption rate can be obtained.

請求項2に記載の発明は、原料の一部として廃棄物を使用することを特徴とする請求項1に記載のアルミナ質人工骨材の製造方法である。 The invention described in claim 2 is the method for producing an alumina-based artificial aggregate according to claim 1, wherein waste is used as a part of the raw material.

特に、主原料であるアルミナを主成分とする原料について、産業廃棄物であるアルミドロス等を用いることにより、人工骨材を安価に製造することが可能となる。 In particular, by using aluminum dross, which is an industrial waste, with respect to a raw material mainly composed of alumina, which is a main raw material, it is possible to manufacture an artificial aggregate at a low cost.

請求項3に記載の発明は、請求項1又は2のいずれか1項に記載の製造方法で製造し、絶乾密度:1.0〜2.5kg/cm3、24時間吸水率:0.1〜7%、圧かい荷重:直径が5〜10mmの粒子1.0kN以上又は直径が10〜15mmの粒子1.5kN以上の性状を有することを特徴とするアルミナ質人工骨材である。 Invention of Claim 3 is manufactured with the manufacturing method of any one of Claim 1 or 2, Absolutely dry density: 1.0-2.5 kg / cm < 3 >, 24 hour water absorption: 0.00. 1 to 7%, compressive load: An alumina artificial bone material having a property of particles having a diameter of 5 to 10 mm of 1.0 kN or more or particles having a diameter of 10 to 15 mm and 1.5 kN or more.

請求項1又は2のいずれか1項に記載の製造方法で製造することにより、上記の諸性状を満足する、絶乾密度が高く、24時間吸水率が低い上に、圧かい荷重が高い、アルミナ質人工骨材を得ることができる。 By producing by the production method according to claim 1 or 2, the above properties are satisfied, the absolute dry density is high, the water absorption is low for 24 hours, and the pressing load is high. An alumina-based artificial aggregate can be obtained.

請求項4に記載の発明は、化学組成が、SiO2 20〜40質量%、CaO 5〜25質量%、Al2O3 45〜65質量%であることを特徴とした請求項3に記載のアルミナ質人工骨材である。 The invention according to claim 4 is characterized in that the chemical composition is SiO2 20 to 40% by mass, CaO 5 to 25% by mass, and Al2O3 45 to 65% by mass. It is a material.

SiO2が20質量%より小さいと焼成温度が上昇し、易焼結性が悪くなるため好ましくなく、40質量%より大きいと、アルミナ質の高強度が得られなくなるため好ましくない。CaOが5質量%よりも小さいと、焼成温度が著しく上昇し、実用的ではなく、25質量%よりも大きい場合にも、易焼結性が悪くなるため好ましくない。Al2O3が45質量%よりも小さいと、液相の大量発生等が生じ安定運転が困難となるので好ましくなく、65質量%より大きいと、焼成温度が著しく上昇し、実用的でなく好ましくない。 If the SiO2 is less than 20% by mass, the firing temperature rises and the sinterability deteriorates, which is not preferable. If it is more than 40% by mass, high alumina strength cannot be obtained. When CaO is less than 5% by mass, the firing temperature is remarkably increased, which is not practical, and when it is more than 25% by mass, the sinterability is deteriorated. If Al2O3 is less than 45% by mass, a large amount of liquid phase is generated and stable operation becomes difficult, which is not preferable. If it is more than 65% by mass, the firing temperature is remarkably increased, which is not practical and not preferable.

本発明のアルミナ質人工骨材の製造方法によれば、高強度で低吸水率のアルミナ質人工骨材を安価に製造することができる。また、本発明の人工骨材は、絶乾密度、吸水率、圧かい荷重等の諸性状が良好で、高強度を必要とするコンクリートに用いることができる。 According to the method for producing an alumina artificial bone material of the present invention, an alumina material artificial bone material having high strength and low water absorption can be produced at low cost. Further, the artificial aggregate of the present invention has good properties such as absolutely dry density, water absorption rate, and compressive load, and can be used for concrete that requires high strength.

以下、上記した本発明に係るアルミナ質人工骨材の製造方法及びアルミナ質人工骨材の実施の形態を、詳細に説明する。 Hereinafter, embodiments of the above-described method for producing an alumina artificial bone and the alumina artificial bone according to the present invention will be described in detail.

本発明で原料として用いるアルミナを主成分とする原料としては、アルミナ粉末、焼成ボーキサイト等を使用できるが、廃棄物利用の観点からアルミドロスの使用が好ましい。 Alumina powder, calcined bauxite, or the like can be used as a raw material mainly composed of alumina used as a raw material in the present invention, but aluminum dross is preferably used from the viewpoint of waste utilization.

アルミドロスとは、アルミニウム及びその合金を溶解したときに生じる残渣である。アルミドロスを埋め立て処分すると、アルミドロス中に含まれる窒化物、金属分、カーバイド、サルファイド等の成分が雨水と反応して、アンモニア、メタン、硫化水素ガス等を発生して大気汚染、水質汚濁、臭気といった問題が発生する。 Almidros is a residue generated when aluminum and its alloys are dissolved. When Almidros is disposed of in landfills, nitrides, metals, carbides, sulfides, and other components contained in aluminum dross react with rainwater to generate ammonia, methane, hydrogen sulfide gas, etc., resulting in air pollution, water pollution, Problems such as odor occur.

そこで、このアルミドロスを本発明におけるアルミナを主成分とする原料として有効活用すれば、粉末状で高温焼成するため、前記成分のほぼ完全な熱分解ができ、キルン排気ガスの有害物質除去を完全に行えば、環境保全上問題のない処理が可能である。 Therefore, if this aluminum dross is effectively utilized as a raw material mainly composed of alumina in the present invention, it is powdery and fired at a high temperature, so that the above components can be almost completely pyrolyzed, and the removal of harmful substances from the kiln exhaust gas is completely achieved. If this is done, it is possible to perform processing with no problem in environmental conservation.

アルミドロスのような廃棄物を用いる場合、粉砕、仮焼することにより、アルミナの純度を高めることができ、必要に応じて行うと有効である。 When using a waste such as Almidros, the purity of alumina can be increased by pulverizing and calcining, and it is effective to carry it out as necessary.

このアルミドロスに、成分調整材及び/又は焼結助材を添加する。ここで、成分調整材とは、アルミドロスが非常に融点が高く高温焼成を必要とするので、それを適度に引き下げるために添加するものである。例えば、SiO2源として石炭灰、ケイ石粉、粘土、カオリン、ベントナイトといったものが挙げられる。また、CaO源として、石灰粉、セメント、石膏などが挙げられる。 A component adjusting material and / or a sintering aid is added to the aluminum dross. Here, the component adjusting material is added in order to lower it moderately because aluminum dross has a very high melting point and requires high-temperature firing. Examples of the SiO2 source include coal ash, silica powder, clay, kaolin, and bentonite. Examples of the CaO source include lime powder, cement, and gypsum.

一方、焼結助材とはその名のとおり、焼結反応を促すために添加するものであって、原料であるアルミドロス、或いはアルミドロスと成分調整材の混合物にすでに焼結性が備わっていれば特に添加する必要はない。しかし、これら原料成分では十分な焼結性が確保できない場合には、焼結助材を添加する。 On the other hand, as the name suggests, sintering aids are added to promote the sintering reaction, and the raw material aluminum dross or a mixture of aluminum dross and component adjusting material already has sinterability. If it is, it is not necessary to add in particular. However, if these raw material components cannot ensure sufficient sinterability, a sintering aid is added.

焼結助材としては、種々の物質が利用可能であるが、例えば上記に示した成分調整材のうち、粘土、カオリン、ベントナイト、各種Al2O3源及びセメント等は焼結を促す効果を併せ持っており、焼結助材になり得る。MgOも焼結を促す効果を有しており、MgO、Mg(OH)2、MgCO3、CaCO3・MgCO3(ドロマイト)、MgO・Al2O3(スピネル)、2MgO・SiO2(フォルステライト)なども好適である。また、鉄鋼副産物であるフェロニッケルスラグなどもMgOの含有量が高く焼結助材として有効利用することが好適な材料である。 Various materials can be used as the sintering aid, but for example, among the component adjusting materials shown above, clay, kaolin, bentonite, various Al2O3 sources and cement have the effect of promoting sintering. It can be a sintering aid. MgO also has an effect of promoting sintering, and MgO, Mg (OH) 2, MgCO3, CaCO3 · MgCO3 (dolomite), MgO · Al2O3 (spinel), 2MgO · SiO2 (forsterite) and the like are also suitable. In addition, ferronickel slag, which is a by-product of steel, has a high MgO content and is also a suitable material for effective use as a sintering aid.

カリウムやナトリウムなどのアルカリ金属の酸化物や、炭酸化物、例えば炭酸ナトリウムや炭酸カリウムなども、焼結反応を促進する効果を示すことが知られており、その複合酸化物である正長石、曹長石などの長石族、硝石、雲母族、霞石も焼結助材として好適である。また、廃ガラス、赤泥なども焼結助材として用いることが可能で、廃棄物の有効利用という観点からも好適である。 Alkali metal oxides such as potassium and sodium, and carbonates such as sodium carbonate and potassium carbonate are also known to show the effect of promoting the sintering reaction. A feldspar group such as stone, glass stone, mica group, and meteorite are also suitable as sintering aids. In addition, waste glass, red mud and the like can be used as a sintering aid, which is preferable from the viewpoint of effective use of waste.

また、鉄を含有する酸化物や複合酸化物、例えばFe2O3粉末や鉄さいなども、焼結反応を促進する効果を持っており、使用することが可能である。 In addition, iron-containing oxides and composite oxides, such as Fe2O3 powder and iron powder, have an effect of promoting the sintering reaction and can be used.

さらに、各種の焼却灰や焼却飛灰、或いは下水汚泥、建設発生土、汚染土壌などは、焼結を促す種々の成分を含有しており、添加量によっては十分に焼結助材としての機能を発揮する。副産物や廃棄物の有効活用という観点からも、これらの利用を推奨する。これらの中には、油類などの可燃分を数10%程度含んでいるものもあるが、その使用を制限するものではない。 In addition, various incineration ash, incineration fly ash, sewage sludge, construction generated soil, contaminated soil, etc. contain various components that promote sintering, and depending on the amount added, they can function as a sintering aid. Demonstrate. The use of these by-products and waste is also recommended from the viewpoint of effective use. Some of these contain flammable components such as oils, but do not limit their use.

これら焼結助材の添加量としては、アルミナ質人工骨材中の焼結助材成分元素の酸化物換算値として、
MgO:0.1〜10質量%
R2O:0.1〜10質量%
(R2Oとは、アルカリ金属酸化物の総称で、R2O(%)=Na2O(%)+0.685K2O(%)で表すことができる。)
Fe2O3:0.1〜10質量%
とすると良い。
As the addition amount of these sintering aids, as oxide-converted values of the sintering aid component elements in the alumina artificial aggregate,
MgO: 0.1 to 10% by mass
R2O: 0.1 to 10% by mass
(R2O is a general term for alkali metal oxides and can be expressed as R2O (%) = Na2O (%) + 0.685 K2O (%).)
Fe2O3: 0.1 to 10% by mass
And good.

MgOが0.1質量%よりも小さいと焼結助材としての効果が得られないため好ましくなく、10質量%よりも大きいと焼結助材としての効果はそれ以上は増加しないため好ましくない。R2Oが0.1質量%よりも小さいと焼結助材としての効果が得られないため好ましくなく、10質量%よりも大きいと焼結時の液相の発生が急激になり、安定した運転が行えなくなるため好ましくない。また、Fe2O3が0.1質量%よりも小さいと焼結助材としての効果が得られないため好ましくなく、10質量%よりも大きいと焼結時の液相の発生が急激になり、安定した運転が行えなくなることや、焼成の雰囲気によっては、O2を放出し、骨材に無数の気泡を発生させる原因となるため好ましくない。 If MgO is less than 0.1% by mass, the effect as a sintering aid cannot be obtained. If it is more than 10% by mass, the effect as a sintering aid does not increase any more. If R2O is less than 0.1% by mass, the effect as a sintering aid cannot be obtained, which is not preferable. If it is more than 10% by mass, the generation of a liquid phase during sintering becomes abrupt and stable operation is achieved. This is not preferable because it cannot be performed. Further, if Fe2O3 is less than 0.1% by mass, the effect as a sintering aid cannot be obtained, which is not preferable. If it is more than 10% by mass, the generation of a liquid phase during sintering becomes abrupt and stable. Depending on the inability to operate and the firing atmosphere, it is not preferable because it releases O2 and causes countless bubbles to be generated in the aggregate.

これらの原料を、所定の割合で混合し、粉砕後ロータリーキルンに供給し、転動焼成して本発明のアルミナ質人工骨材を得る。 These raw materials are mixed at a predetermined ratio, and after pulverization, supplied to a rotary kiln, and rolling and firing to obtain the alumina-based artificial aggregate of the present invention.

原料の混合、粉砕は、均質な混合物が得られ、所定の粒度に粉砕できれば、任意の混合機、粉砕機を用いることができる。混合後粉砕をしても、粉砕後混合をしても、混合・粉砕を同時に行っても良い。混合、粉砕、混合粉砕を、それぞれバッチ式、連続式どちらで行っても良い。 For mixing and pulverizing the raw materials, any mixer and pulverizer can be used as long as a homogeneous mixture can be obtained and pulverized to a predetermined particle size. The mixture may be pulverized, mixed after pulverization, or mixed and pulverized simultaneously. Mixing, pulverization, and mixing pulverization may be performed in either a batch type or a continuous type, respectively.

この混合が不十分であったり、原料粉末の粒度が粗粒であったりすると、良好な骨材が得られなくなるため、これらの操作には最大の注意を払う必要がある。ここで、粉末原料の平均粒子径は、アルミドロス等の各原料の反応性、焼結性を考慮すると、1〜30μmが好ましい。1μmよりも小さくなると粉砕等に掛かる費用が急騰するため好ましくなく、30μmよりも大きいと反応性、焼結性が悪くなり好ましくない。 If this mixing is inadequate or the particle size of the raw material powder is coarse, good aggregates cannot be obtained, so maximum care must be taken in these operations. Here, the average particle diameter of the powder raw material is preferably 1 to 30 μm in consideration of the reactivity and sinterability of each raw material such as aluminum dross. If it is smaller than 1 μm, the cost for pulverization and the like will increase rapidly, and if it is larger than 30 μm, the reactivity and the sinterability are deteriorated.

混合粉砕された原料は、粉末の状態でロータリーキルンに投入し、転動造粒しながら焼成する。ロータリーキルンは、被焼成物を転動しながら焼成するので、焼成の過程で同時に粉末の被焼成物を造粒し、粒子状としていくことができる。また、焼成温度のコントロールが容易で、安定した品質の骨材を連続して得られることから、工業生産に適している。
ここで、ロータリーキルンによる転動造粒ではなく、事前に造粒してからロータリーキルンに送入し焼成した場合には、焼成途上で原料から発生した気体により、造粒体に気孔が残存し、結果として吸水率、強度に優れた人工骨材が得られなくなる。
The mixed and pulverized raw material is put into a rotary kiln in a powder state and fired while rolling granulation. Since the rotary kiln is fired while rolling the material to be fired, the powder material to be fired can be granulated at the same time in the course of firing to form particles. Moreover, since the firing temperature is easily controlled and stable quality aggregates can be obtained continuously, it is suitable for industrial production.
Here, when rolling granulation with a rotary kiln, instead of granulating in advance, feeding into the rotary kiln and firing, pores remain in the granulated body due to the gas generated from the raw material during firing, and the result As a result, an artificial aggregate excellent in water absorption and strength cannot be obtained.

ここでの焼成は、好ましくは1250〜1450℃、より好ましくは1300〜1400℃にて行う。焼成温度が1250℃より低いと、焼成物が緻密化せず、所望品質の骨材が得られないため好ましくない。また、1450℃を超えると、混合原料が溶融してしまい、運転に支障を来たすため好ましくない。 The firing here is preferably performed at 1250 to 1450 ° C, more preferably 1300 to 1400 ° C. When the firing temperature is lower than 1250 ° C., the fired product is not densified, and an aggregate having a desired quality cannot be obtained. Moreover, when it exceeds 1450 degreeC, since a mixed raw material will fuse | melt and it will interfere with a driving | operation, it is unpreferable.

ここで使用するロータリーキルンは、セメント焼成キルンのように、排気系に予熱設備、廃熱ボイラー等を付設していても、していなくても良い。 The rotary kiln used here may or may not have a preheating facility, a waste heat boiler, or the like attached to the exhaust system like a cement fired kiln.

燃料としては、重油、微粉炭、再生油、LPG、LNG等、一般的に用いられているものであれば、単体或いは混焼で使用すればよく、所定の焼成温度となるように、焚き込み量を調整する。近年、セメントキルンにおいて、廃プラスチックや廃タイヤ等が燃料代替として用いられているが、それらを燃料の一部として用いても良い。 As fuel, if it is generally used such as heavy oil, pulverized coal, reclaimed oil, LPG, LNG, etc., it can be used alone or in a mixed firing, and the amount of squeezing so as to achieve a predetermined firing temperature Adjust. In recent years, waste plastics and waste tires have been used as fuel substitutes in cement kilns, but they may be used as part of the fuel.

焼成時間は、概ね15分から120分とするのが適当である。15分より短いと焼結反応が十分進行しないので好ましくない。120分より長くすると、焼成に要するコストが高騰するので好ましくない。焼成時のロータリーキルン内のO2分圧は、一般的な範囲である3〜12%に調整すると良いが、特に限定されるものではない。 The firing time is suitably about 15 to 120 minutes. If it is shorter than 15 minutes, the sintering reaction does not proceed sufficiently, which is not preferable. If it is longer than 120 minutes, the cost required for firing increases, which is not preferable. The O2 partial pressure in the rotary kiln during firing may be adjusted to 3 to 12%, which is a general range, but is not particularly limited.

サイクロン等の飛散原料の循環系を備えていないロータリーキルンにて焼成を行う場合は、ロータリーキルン窯尻の風速が概ね5m/s以下となるよう、ドラフトを調整すると良く、該風速が5m/sを超えると、多量の原料が系外へ飛散し、焼成物の収率が低下するため好ましくない。 When firing in a rotary kiln that is not equipped with a circulating system for scattered raw materials such as a cyclone, the draft should be adjusted so that the wind speed at the bottom of the rotary kiln kiln is approximately 5 m / s or less, and the wind speed exceeds 5 m / s. And a large amount of raw materials are scattered out of the system, and the yield of the fired product is lowered, which is not preferable.

焼成中は、粒子状となった被焼成物同士の、それ以上の融着を防止する目的で、融着防止材をロータリーキルンの窯前から吹き込むと良く、融着防止材としては、ケイ石粉末、水酸化アルミニウム粉末、アルミナ粉末、セメント、セメントの主要鉱物であるエーライト又はビーライトの粉末などを用いることができる。 During firing, in order to prevent further fusion between the particles to be fired, it is better to blow an anti-fusing material from the front of the kiln of the rotary kiln. Aluminum hydroxide powder, alumina powder, cement, alite or belite powder, which is the main mineral of cement, can be used.

融着防止材の平均粒子径は、10〜1000μmのものを用いると、融着防止効果が得られ易いので良く、その純度が高く、融点が高いものほど良い。融着防止材の平均粒子径が10μmより小さいと、焼成中に焼成物中に取り込まれる可能性が高く、融着防止効果が低下するとともに、人工骨材の品質低下を生じるため、好ましくない。融着防止材の平均粒子径が1000μmより大きくなると、送入部位等の磨耗が著しく、これら消耗部位や部品の交換が頻繁になるため好ましくない。 When the average particle diameter of the anti-fusing material is 10 to 1000 μm, the anti-fusing effect can be easily obtained, and the higher the purity and the higher the melting point, the better. If the average particle diameter of the anti-fusing material is less than 10 μm, it is not preferred because it is likely to be taken into the fired product during firing, the effect of preventing fusion is reduced, and the quality of the artificial aggregate is lowered. When the average particle diameter of the anti-fusing material is larger than 1000 μm, the wear of the feeding site and the like is remarkable, and replacement of these consumable sites and parts is not preferable.

融着防止材の吹込み方法としては、焼点付近に融着防止材が所定量吹付けられる方法であれば、特に限定されないが、例えば水冷管或いは空冷管等の送入管をロータリーキルンの窯前から挿入し、エジェクター等の空気圧送やモノーポンプ等の輸送ポンプによって、融着防止材を吹込むと、装置が簡便にでき推奨される。 The method for blowing the anti-fusing material is not particularly limited as long as a predetermined amount of the anti-fusing material is sprayed in the vicinity of the burning point. For example, a feed pipe such as a water-cooled tube or an air-cooled tube is used as a rotary kiln kiln. It is recommended to insert the anti-fusing material from the front and blow the anti-fusing material with pneumatic pump such as ejector or transport pump such as mono pump.

また、融着防止材の吹込み量は、ロータリーキルンに送入する混合原料に対し、3〜10質量%が好ましい。3質量%より少ないと融着防止材としての効果が得られ難く、10質量%を超えると融着防止効果はそれ以上増大しないため、好ましくない。 Moreover, the blowing amount of the anti-fusing material is preferably 3 to 10% by mass with respect to the mixed raw material fed into the rotary kiln. If the amount is less than 3% by mass, it is difficult to obtain the effect as an anti-fusing material, and if it exceeds 10% by mass, the anti-fusing effect does not increase any more.

このような製造方法によって、絶乾密度が1.0〜2.5g/cm3、24時間吸水率が0.1〜7%、直径5〜10mmの骨材の圧かい荷重が1.0kN以上、直径10〜15mmの骨材の圧かい荷重が1.5kN以上のアルミナ質人工骨材を得る。 By such a manufacturing method, the absolute dry density is 1.0 to 2.5 g / cm 3, the 24-hour water absorption is 0.1 to 7%, the compressive load of the aggregate having a diameter of 5 to 10 mm is 1.0 kN or more, An alumina-based artificial aggregate having a crushing load of 1.5 kN or more on an aggregate having a diameter of 10 to 15 mm is obtained.

本発明のアルミナ質人工骨材は、鉱物種として少なくともコランダムが含有されていることが好ましい。そのためには、原料であるアルミドロス等のアルミナを含む主原料と、成分調整材及び/又は焼結助材とを、一定組成となるように配合し、焼成すれば良い。そして焼成されたアルミナ質人工骨材の化学組成が、CaO:5〜25質量%、SiO2:20〜40質量%、Al2O3:45〜65質量%であることが好ましい。各化学成分がこの範囲を外れた場合の弊害は、前述したとおりである。 The alumina-based artificial aggregate of the present invention preferably contains at least corundum as a mineral species. For that purpose, a main raw material containing alumina such as aluminum dross as a raw material, a component adjusting material and / or a sintering aid may be blended so as to have a constant composition and fired. The calcined alumina artificial aggregate preferably has a chemical composition of CaO: 5 to 25% by mass, SiO2: 20 to 40% by mass, and Al2O3: 45 to 65% by mass. The adverse effects when each chemical component is out of this range are as described above.

次に、実施例や比較例を用いて、本発明の詳細を説明する。
〔実施例1〜5〕
実験に用いたアルミドロス2種類(A及びB)、成分調整材3種類(石炭灰、建設発生土、炭酸カルシウム)、焼結助材1種類(フェロニッケルスラグ)の化学組成を表1に示す。なお、建設発生土は水分を約30%含んでいたので、乾燥を十分に行ってから使用した。
Next, details of the present invention will be described using examples and comparative examples.
[Examples 1 to 5]
Table 1 shows the chemical composition of two types of aluminum dross (A and B), three types of component adjusting materials (coal ash, construction generated soil, calcium carbonate), and one type of sintering aid (ferronickel slag) used in the experiment. . Since the construction generated soil contained about 30% of moisture, it was used after being sufficiently dried.

(表1)

Figure 2005281075
(Table 1)
Figure 2005281075

表1に示した原料を表2に示す割合で計量し、焼成物が本発明の好ましい化学成分範囲となるように配合した。該配合原料を、バッチ式のチューブ型ボールミルを用いて、1バッチの原料投入量100kgとして、30分混合粉砕を行った。これにより得られた平均粒子径10μmの混合原料を、内径0.35m×長さ3.2mのロータリーキルンに30kg/hで送入し、滞留時間が40分となる条件で、緻密質の人工骨材が得られるよう燃料であるA重油の焚き量を調整しながら焼成した。この際、被焼成物の融着を防止する目的で、平均粒子径30μmのケイ石粉末を窯前から1.5kg/hで焼点付近へ吹込みながら焼成した。こうして焼成物として得られた人工骨材は、外観上緻密質なものであった。 The raw materials shown in Table 1 were weighed in the proportions shown in Table 2, and blended so that the fired product was in the preferred chemical component range of the present invention. The blended raw material was mixed and pulverized for 30 minutes using a batch-type tube-type ball mill with a raw material input amount of 100 kg as one batch. The resulting mixed raw material having an average particle diameter of 10 μm is fed into a rotary kiln having an inner diameter of 0.35 m × length of 3.2 m at a rate of 30 kg / h. Firing was carried out while adjusting the amount of A heavy oil that was used as a fuel so as to obtain a material. At this time, for the purpose of preventing fusion of the material to be fired, the silica powder having an average particle diameter of 30 μm was fired from the front of the kiln while being blown to the vicinity of the burning point at 1.5 kg / h. The artificial aggregate thus obtained as a fired product was dense in appearance.

(表2)

Figure 2005281075
(Table 2)
Figure 2005281075

得られた人工骨材を目開き5、10、15mmの篩にて篩い分け、5〜10mm、10〜15mmの人工骨材についてそれぞれ化学組成を蛍光X線分析により定量分析し、絶乾密度、吸水率をJIS A 1110に準拠して測定した。さらに、骨材強度を測定するため、一軸プレスによる圧かい荷重を測定した(土木学会基準の高強度フライアッシュ人工骨材の圧壊荷重試験方法に準拠して測定した。)。それらの結果を表3に示す。表3から明らかなように、いずれの実施例とも吸水率が低く、且つ高強度の人工骨材が得られた。また、各人工骨材を粉砕し、粉末X線回折装置により、主要鉱物を同定したところ、各人工骨材の主要鉱物として、コランダムの存在が確認された。 The obtained artificial aggregate is sieved with a sieve having openings of 5, 10 and 15 mm, and the chemical composition of each of the artificial aggregates of 5 to 10 mm and 10 to 15 mm is quantitatively analyzed by fluorescent X-ray analysis. The water absorption was measured according to JIS A 1110. Furthermore, in order to measure the aggregate strength, the crushing load by the uniaxial press was measured (measured in accordance with the crushing load test method of the high strength fly ash artificial aggregate of the Japan Society of Civil Engineers). The results are shown in Table 3. As can be seen from Table 3, in any of the Examples, an artificial aggregate having a low water absorption rate and a high strength was obtained. Moreover, when each artificial aggregate was pulverized and the main mineral was identified by a powder X-ray diffractometer, the presence of corundum was confirmed as the main mineral of each artificial aggregate.

(表3)

Figure 2005281075
(Table 3)
Figure 2005281075

〔比較例〕
実験には表1に化学組成を示したアルミドロス1種類(A)、成分調整材2種類(石炭灰、炭酸カルシウム)を用いた。これらを表4に示す配合にて計量し、原料とした。
比較例では、配合した原料を実施例と同様に混合粉砕後、パンペレタイザーで直径約10mmに造粒し、該造粒物をやはり実施例と同様に焼成した。得られた人工骨材は外観上気孔の多いものであり、実施例と同様の各種測定を行った結果は表5に示すとおりで、吸水率、強度ともに、望ましい結果は得られなかった。



[Comparative example]
In the experiment, one kind of aluminum dross (A) whose chemical composition is shown in Table 1 and two kinds of component adjusting materials (coal ash, calcium carbonate) were used. These were weighed according to the formulation shown in Table 4 and used as raw materials.
In the comparative example, the blended raw materials were mixed and pulverized in the same manner as in the example, and then granulated to a diameter of about 10 mm with a pan pelletizer, and the granulated product was fired in the same manner as in the example. The obtained artificial aggregate had many pores in appearance, and the results of various measurements similar to those in Examples were as shown in Table 5, and desirable results were not obtained for both water absorption and strength.



(表4)

Figure 2005281075
(Table 4)
Figure 2005281075

(表5)

Figure 2005281075
(Table 5)
Figure 2005281075

以上の実験結果より明らかなように、本発明のアルミナ質人工骨材の製造方法によれば、高強度、低吸水率のアルミナ質人工骨材が得られることがわかる。 As apparent from the above experimental results, it can be seen that according to the method for producing an alumina-based artificial aggregate of the present invention, an alumina-based artificial aggregate having high strength and low water absorption can be obtained.

Claims (4)

アルミナを主成分とする原料と、成分調整材及び/又は焼結助材との粉末状の混合原料をロータリーキルンに投入し、転動造粒しながら焼成することを特徴とするアルミナ質人工骨材の製造方法。 Alumina artificial bone material characterized by charging a rotary kiln with a powdery mixed raw material of a raw material mainly composed of alumina, a component adjusting material and / or a sintering aid, and firing while rolling granulation Manufacturing method. 原料の一部として廃棄物を使用することを特徴とする請求項1に記載のアルミナ質人工骨材の製造方法。 2. The method for producing an alumina-based artificial aggregate according to claim 1, wherein waste is used as a part of the raw material. 請求項1又は2のいずれか1項に記載の製造方法で製造し、以下の性状を有することを特徴とするアルミナ質人工骨材。
絶乾密度 :1.0〜2.5kg/cm3
24時間吸水率:0.1〜7%
圧かい荷重 :直径が5〜10mmの粒子 1.0kN以上又は
直径が10〜15mmの粒子 1.5kN以上
An alumina based artificial bone material produced by the production method according to claim 1 and having the following properties.
Absolutely dry density: 1.0 to 2.5 kg / cm 3
24 hour water absorption: 0.1-7%
Press load: Particles having a diameter of 5 to 10 mm 1.0 kN or more or
Particles with a diameter of 10-15mm 1.5kN or more
化学組成が、SiO2 20〜40質量%、CaO 5〜25質量%、Al2O3 45〜65質量%であることを特徴とした請求項3に記載のアルミナ質人工骨材。
4. The alumina artificial bone material according to claim 3, wherein the chemical composition is SiO2 20 to 40% by mass, CaO 5 to 25% by mass, and Al2O3 45 to 65% by mass.
JP2004098793A 2004-03-30 2004-03-30 Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate Pending JP2005281075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098793A JP2005281075A (en) 2004-03-30 2004-03-30 Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098793A JP2005281075A (en) 2004-03-30 2004-03-30 Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate

Publications (1)

Publication Number Publication Date
JP2005281075A true JP2005281075A (en) 2005-10-13

Family

ID=35179859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098793A Pending JP2005281075A (en) 2004-03-30 2004-03-30 Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate

Country Status (1)

Country Link
JP (1) JP2005281075A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117164A (en) * 2013-12-19 2015-06-25 太平洋プレコン工業株式会社 Heat shielding cement composition and heat shielding laminate
JP2017015737A (en) * 2016-10-19 2017-01-19 住友金属鉱山株式会社 Method of inspecting copper slag containing fine aggregate
CN114538894A (en) * 2022-02-10 2022-05-27 广东省福日升绿色科技研究有限公司 Aluminum ash brick and preparation process thereof
CN115784721A (en) * 2022-10-26 2023-03-14 中冶赛迪工程技术股份有限公司 Aggregate for high-purity corundum refractory brick, and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117164A (en) * 2013-12-19 2015-06-25 太平洋プレコン工業株式会社 Heat shielding cement composition and heat shielding laminate
JP2017015737A (en) * 2016-10-19 2017-01-19 住友金属鉱山株式会社 Method of inspecting copper slag containing fine aggregate
CN114538894A (en) * 2022-02-10 2022-05-27 广东省福日升绿色科技研究有限公司 Aluminum ash brick and preparation process thereof
CN115784721A (en) * 2022-10-26 2023-03-14 中冶赛迪工程技术股份有限公司 Aggregate for high-purity corundum refractory brick, and preparation method and application thereof
CN115784721B (en) * 2022-10-26 2023-11-03 中冶赛迪工程技术股份有限公司 Aggregate for high-purity corundum refractory bricks and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Boltakova et al. Utilization of inorganic industrial wastes in producing construction ceramics. Review of Russian experience for the years 2000–2015
KR101941328B1 (en) Production method for cement composition
JP5624722B2 (en) Cement clinker and cement
JP2002003248A (en) Method of manufacturing artificial aggregate by using municipal refuse incinerator ash
JP5627840B2 (en) Cement composition
JP5398236B2 (en) Cement clinker manufacturing method
JP2006255609A (en) Method for manufacturing sintered product and sintered product
JP2007261880A (en) Sintered matter production method
JP2006272174A (en) Manufacturing method of sintered object
JP2009114011A (en) Cement additive and cement composition
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JP2007275868A (en) Calcined product manufacturing method
JP4963553B2 (en) Method for producing fired product
JP5279191B2 (en) Method for producing fired product
JP2005306707A (en) Method for manufacturing sintered body and sintered body
JP2007260503A (en) Manufacturing method of burned matter
JP2005281075A (en) Method for producing alumina-based artificial aggregate and alumina-based artificial aggregate
JP2001253740A (en) Artificial aggregate and its production process
US6416251B1 (en) Process for the stabilization of soluble chromium contaminated solid by down draft sintering
JP4944750B2 (en) Cement additive and cement composition
JP4447494B2 (en) Manufacturing method of sintered product
JP2005255515A (en) Method for manufacturing sintered compact
JP2008156197A (en) Method for producing fired material
JP7218211B2 (en) Cement manufacturing method